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Observation of near-field correlations in spontaneous parametric down-conversion
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We experimentally demonstrate how the two-photon field generated by spontaneous parametric down-
conversion contains an intriguing fine structure associated with the positional spread within the photon pair.
The obtained results provide a three-dimensional picture of the near-field correlations, which are determined by
the phase-matching conditions. These correlations are compared with previous results on second-harmonic
generation, spatial antibunching, and transverse entanglement in parametric down-conversion.
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Spatial entanglement between photons can be easily gen-
erated in spontaneous parametric down-conversion (SPDC),
where a single pump photon splits into a pair of down-
converted photons [1]. These nonclassical correlations have
been essential in many landmark experiments on quantum
entanglement, such as ghost interference [2], quantum lithog-
raphy [3,4], and recent demonstration of Bell inequalities
with spatially entangled modes [5]. Having a wide range of
applications, full knowledge of the spatial properties of the
SPDC field is highly desirable.

Spatial correlations in any coherent two-photon field natu-
rally occur on two length scales, being the spread in the
“center of mass” of the photon pair and the ‘“positional
spread” within each pair. Most experiments operate in a re-
gime where the first length scale, which is set by the width of
the pump laser, is much larger than the structure that origi-
nates from the phase-matching condition of the pair creation.
This “fine structure” is then generally removed and conve-
niently replaced by a ¢ function in position and a uniform
angular emission [6]. In this so-called thin-crystal limit, spa-
tial entanglement boils down to the statement that the two-
photon field contains a copy of the pump profile. We will go
beyond this simplified approach.

This Rapid Communication describes the experimental
observation of a rich structure in the two-photon field that is
associated with the spatial correlations originated from the
phase-matching conditions. Apart from its intrinsic value, the
obtained results provide a link with prior experiments on
second-harmonic generation (SHG) [7,8], spatial antibunch-
ing of photons [9,10], and measurements on two-photon
position-momenta correlations [11,12]. Furthermore, some
consequences of the observed structures to the spatial en-
tanglement will be addressed.

In the absence of walk-off, the two-photon wave function
in momentum representation has a special form, factorizing
in two functions of the sum and difference transverse mo-
menta as [6,13]

5(41,CI2)=EP(¢I1+112)‘7(¢I1—112), (1)

where Ep(q) is the angular spectrum of the pump beam and
V(g)=sinc(b*|g|>+¢) derives from the phase-matching con-
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ditions, with b*>=L/8nk. L is the crystal thickness, k is the
down-converted field wave vector, n, is the refractive index
at the down-converted frequency, and ¢ is the phase-
mismatch parameter, which accounts for operation outside
perfect phase matching. These momentum correlations can
be measured in the far field, where each plane wave in the
angular spectrum contributes to the field at a defined point.
In that regime the “sinc” function, originated from the phase-
matching conditions, is generally much wider than the pump

profile EI, and is often neglected in the analysis. We are in-
terested, instead, in the near-field regime. There the opposite
is true and the spatial representation of the phase-matching
function shapes the position correlations within the photon
pairs.

The problem can be analyzed considering the ideal imag-
ing system (with unity magnification) depicted in the inset of
Fig. 1. The probability amplitude of detecting two-photon
coincidences at the image plane (z=0) is given by the Fou-
rier transform of Eq. (1), which links transverse momenta ¢
to transverse coordinates p. In the vicinity of z=0, which
corresponds to an image of the center of the crystal, the
two-photon correlation assumes the form

41+ 45

400
A(pl,pz;z)=f quldqu(ql,qz)exp(—iTZ>

Xexp(-iqy - py—iqy- pa), (2)

where the first exponential accounts for the field propagation
around the image plane and the second one is the Fourier
kernel. It should be stressed that the plane z=0 contains con-
tribution from all points inside the crystal and behaves as a
secondary light source. Equation (2) also factorizes in two

functions of the sum and difference coordinates A(p;,p,;z)

=E[,(']1J2rp2 ;2)V(p —pa;z). Tt is straightforward to show that

for a wide pump beam the two-photon field depends domi-
nantly on the difference coordinate p_=p;—p, in the image
plane,

+00 2
V(P_;Z)‘Xf qu(Zq)exp(—i%z—iq-p_). (3)

-0

The coincidence counting rate measured by pointlike detec-
tors placed in transverse positions p; and p, at plane z is then
R |[V(p_:2)|-

A more realistic description must take into account the
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FIG. 1. (Color online) Experimental setup for measuring the
near-field correlations in the two-photon field. The inset shows an
ideal 1:1 imaging system, where z=0 is defined as the image plane
with respect to the center of the crystal. We are interested in probing
the spatial correlations in the vicinity of the image plane. The inset
also illustrates how the finite resolution of the detectors should be
included in the description. In our experimental implementation we
use a 13X magnified imaging system. Spatially entangled photon
pairs generated in PPKTP are separated at a beam splitter, selected
with filters (spectral width 5 @ 826 nm) and detected by photon
counters and coincidence electronics (D1 and D2). Only coinci-
dence counts within a time window of 1.4 ns are considered. The
crystal position can be adjusted by a translation stage. An f
=50 mm lens is used to make a 13X magnified image of the near
field onto an intermediate plane, which is then imaged onto single-
mode optical fibers by objective lenses. It is important to remark
that all transverse planes inside the crystal contribute coherently to
this “image.”

finite resolution of the detectors. Working with single-mode
(fiber-coupled) detectors centered at p; and p,, the measured
two-photon field will then be given by an overlap integral of
the generated field and the Gaussian profile ¢ of the detec-
tion modes,

Vproject(p—;z) o Vi ¢(P1) * ¢(P2), (4)

where * denotes the convolution integral. Using compact de-
tection modes, the thus obtained projected two-photon field
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will closely resemble the generated field V(p_;z) and can be
regarded as a smoothed version thereof.

Figure 1 shows the experimental setup used to observe the
near-field structure in the two-photon field. In our experi-
mental implementation we use a magnified (instead of a 1:1)
imaging system. Entangled photon pairs of equal polariza-
tion are generated by mildly focusing (w,=157 wm) a laser
beam (N\,=413.1 nm) on a L=5-mm-thick periodically
poled potassium titanyl phosphate (PPKTP) crystal, whose
transverse dimensions are much larger than the pump width.
The refractive index n=1.843 for PPKTP at \j=826.2 nm
and 7=60 °C. An f=50 mm lens makes a M =13X magni-
fied image of the near field onto an intermediate plane, which
is then demagnified by a factor 1/28X by imaging it with
objectives onto the input tips of two optical fibers. The trans-
verse correlations are measured by keeping detector 2 cen-
tered at Mp,=0 and moving detector 1 horizontally over
Mx,=M]|p,|. To measure the longitudinal (z) dependence of
the correlations, we move the crystal with a translation stage
around the “object plane” of the lens . This will displace the
near-field structure in the vicinity of the image plane. The
on-axis phase mismatch ¢(7) can be adjusted by setting the
temperature of the crystal. The derivative d¢/dT
~1.04 K~ was calculated and checked experimentally [14].
The waist of the Gaussian detection modes, w,=80 um at
the image plane and 6.7 um at the crystal, was chosen to
provide a good trade-off between resolution and detection
efficiency.

Figure 2(a) shows the full spatial dependence of the coin-
cidence counting rate Re.(p_,z) % |Vpjec(p-:2)|* for the in-
teresting phase mismatch ¢=+2.0*=0.1. The projections of
the p_=0 and z=0 curves are shown on the back and lateral
planes, respectively. The single count rate (o< optical inten-
sity) is practically constant over this scan, as indicated by the
upper curves in the two projections (the full intensity surface
is not shown). The experimental results are in perfect agree-
ment with the theoretical prediction obtained from Eq. (4)
and depicted as Fig. 2(b).

The three-dimensional reconstruction of the coincidence
counting rate displays intriguing structures. For positive
phase mismatch, as in Fig. 2, there are two well-pronounced
peaks in the coincidence profile which are separated by the

Coincidence counts (a.u.)

FIG. 2. (Color online) (a) Measured coincidence rate R..(p_,z) « |Vproject(p7;z)|2 at a phase mismatch ¢=2.0*+0.1. The intersections with
the p— =0 and z=0 planes are projected on the back and lateral side of the plot. The transverse correlations for z=0 are amplified five times
on the lateral plane. The upper (blue) curves represent similar projections of the single count rate of the scanning detector (not in scale; full
intensity distribution not shown). (b) Theoretical results as predicted by Eq. (4). No fitting parameters are necessary.
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imaging optical thickness of the crystal L/n~2.7 mm. The
physical origin of this structure can be understood as fol-
lows. The crystal acts as a longitudinally extended source of
photon pairs. The phase-matching conditions determine the
relative phase of photon pairs born at different planes within
the pumped region. The final probability amplitude of detec-
tion is given by the sum of all contributions from many
creation sites inside the crystal and propagated to the image
plane. A fourth-order interference effect will lead then to the
observed result. The change from an on-axis interference
peak to an interference valley after free-space propagation
also appears in the context of Fresnel diffraction. However,
one must emphasize that the observed peculiar interference
structure is only present in the fourth-order correlation func-
tion as the single count rates remain approximately constant
during the scans.

It is possible to show that for points on-axis p_=0 our
mathematical description becomes identical to a classical ex-
pression used in nonlinear optics for the efficiency of
second-harmonic generation in a medium pumped by a
tightly focused Gaussian beam. The classical counterpart of
our results has been predicted and observed a long time ago
[7,8]. This is the experimental observation of a similar effect
in the context of SPDC. By properly setting the phase-
mismatch parameter ¢ many of the longitudinal correlations
presented in [7] can also be obtained with SPDC light.

The central part of Fig. 2 exhibits an almost total suppres-
sion of coincidence counts (but not of singles) for points
on-axis. The observation of this on-axis minimum is an ex-
perimental proof of the quantum nature of the field and the
presence of spatial antibunching. This statement is based on
the work by Nogueira ef al. [9], who showed that the fourth-
order correlation function of any classical homogeneous
field, where (I(p\)I(p,))*R..(p;,p,) is a function of p_
=p,—p, only, should obey a Cauchy-Schwarz-type inequal-
ity. For our correlation, which is homogeneous as V(p_) de-
pends only on p_, this classical inequality reads

[V(p)l? = [V(0)]. (5)

The violation of inequality (5) observed in Fig. 2 therefore
implies that the generated two-photon field is nonclassical
and spatially antibunched; the field is at the same time ho-
mogeneous and reveals destructive fourth-order interference
for p_=0 in the image plane. This is perhaps the simplest and
most direct method up to date to observe spatial antibunch-
ing in the two-photon field.

By varying the phase mismatch ¢ many different three-
dimensional profiles can be obtained. As another example,
Fig. 3 shows the spatial correlations measured for
¢=-5.2*0.1. Notice the prominent ripples in the transverse
correlations observed in the z=0 plane. Both coincidence
profiles in Figs. 2 and 3 are symmetric with respect to the
z=0 plane, as predicted by Eq. (3).

Since we have now a complete understanding of the struc-
ture of the two-photon field in the near-field regime, we can
revisit previous works that were analyzed under certain ap-
proximations. In a recent experiment of Howell et al. [12]
measurements of position correlations were used to violate
separability criteria in a realization of the Einstein-Podolsky-
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FIG. 3. (Color online) Measured coincidence rate R..(p_,z)

% |Vproject(P-:2)|* at a phase mismatch @=-5.2+0.1. The intersec-

tions with the p—=0 and z=0 planes are projected on the back and
lateral sides of the plot.

Rosen (EPR) paradox. One of the key results was the mea-
sured conditional variance (Ax;, |x2)2, which was taken at a
single plane in the near field. In Fig. 4 we show our mea-
sured transverse correlations at perfect phase matching (¢
=0), with the crystal facet imaged at the detection plane [Fig.
4(a)] and the center of the crystal [Fig. 4(b)]. The calculated
variance (Ax, |x2)2 for these two plots differs by 35%, imply-
ing that the variance product used to quantify the EPR para-
dox is not unique. On the other hand, it is well known that
the amount of entanglement cannot change under free-space
propagation. These differences are due to the fact that the
considered uncertainty relations are based on intensity mea-
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FIG. 4. (Color online) Transverse correlations close to perfect
phase matching (¢=0.0£0.2) for (a) the crystal facet imaged and
(b) the center of the crystal imaged on the detection plane. The solid
(black) curves are the experimental data, while the dashed (red)
curves are theoretical predictions. The 10X magnified plot shows
the agreement between theory and experiment also at the side
bumps. The indicated full width at half maximum (FWHM) of the
curves varies with the focused plane. The ratio between the peak
heights =1.25.
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surements, whereas entanglement can also exist in the phase
of the two-photon field. In this way we provide experimental
support to the proposed migration of entanglement in Hilbert
space between amplitude and phase [15].

Note that one cannot interpret the results shown in Fig. 4
as the probability distribution of the “relative birthplace” of
the photons [12] since the correlations obtained are a conse-
quence of interference of photons generated at all possible
sites in the crystal. This point can be strengthened by con-
sidering the observed spatial antibunching in Fig. 2, which is
not in contradiction with the assumption of localized emis-
sion.

In conclusion, we have reported a complete experimental
observation of the near-field structure in the two-photon
field. Contrary to the predominant view in the literature, the
exact form of the phase-matching function leads to striking
observable effects, such as many complex and intriguing
structures in the transverse correlations, longitudinal correla-
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tions that resemble those observed in SHG with tightly fo-
cused beams, and a way of producing spatial antibunching.
The fact that these correlations can be easily measured may
open a window on experimental studies of continuous vari-
able entanglement. First, it allows one to corroborate and
compare different proposed entanglement measures [16—18]
in the near-field regime. Additionally, issues such as the be-
havior of entanglement under propagation can be addressed.
Finally, previous works that were analyzed under approxima-
tions regarding the near-field correlations in SPDC, e.g., re-
alization of the EPR paradox [12], quantum optical lithogra-
phy [3,4], and entanglement migration in Hilbert space [15],
can now be revisited.

The authors wish to acknowledge fruitful discussions with
C. H. Monken. This work is supported by the Stichting voor
Fundamenteel Onderzoek der Materie (FOM).
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