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The influence of a single magnetic cluster in a nonmagnetic host metal on the spin current j�s� and the charge
current j in the vicinity of a ferromagnetic scanning tunneling microscope �STM� tip is studied theoretically.
Spin-flip processes due to electron interaction with the cluster are taken into account. We show that quantum
interference between the partial waves injected from the STM tip and those scattered by the cluster results in
the appearance of components perpendicular to the initial polarization of the spin current j�s�, which obtain a
strongly inhomogeneous spatial distribution. This interference produces oscillations of the conductance as a
function of the distance between the contact and the cluster center. The oscillation amplitude depends on the
current polarization. We predict a strong magneto-orientational effect; the conductance oscillations may grow,
shrink, or even vanish for rotation of the cluster magnetic moment �eff by an external magnetic field. These
results can be used for the determination of the �eff for magnetic clusters below a metal surface.
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I. INTRODUCTION

Subsurface defects, such as impurities and vacancies, re-
sult in oscillations of the conductance as a function of the
position of a scanning tunneling microscope �STM� tip rela-
tive to the defect position �see, for example, Refs. 1–3�.
These Friedel-type oscillations originate from interference
between electron waves directly transmitted through the con-
tact and waves that are scattered by the defect and reflected
back by the contact. The theory of STM conductance in the
presence of a single nonmagnetic pointlike defect below a
metal surface in the vicinity of the contact has been devel-
oped in Refs. 4 and 5. First the signature of Fermi-surface
anisotropy in STM conductance in the presence of defects
had been analyzed theoretically in detail in Ref. 6. In the
paper7 the general results of Ref. 6 was applied for the the-
oretical investigation of the conductance of a tunnel point
contact of noble metals in the presence of a single defect
below surface. A pattern of the conductance oscillations,
which can be observed by the method of scanning tunneling
microscopy, was obtained for different orientations of the
surface for the noble metals.7 Recently it had been confirmed
experimentally that Fermi surfaces can be imaged in real
space with a low-temperature scanning tunneling microscope
when subsurface point scatterers are present.8 The effect of
Kondo scattering by a subsurface magnetic impurity on the
conductance of a tunnel point contact has been analyzed
theoretically in Ref. 9.

The applicability of STM can be extended for the study of
magnetic objects below the surface of a conductor when a
magnetic material is used for the STM tip such that the elec-
tric current is spin polarized �SP� �for review of SP-STM see
Ref. 10�. An important feature of SP-STM is that the spin-
polarized current influences a magnetic object in a nonmag-
netic matrix, producing so-called spin-transfer torque �for re-
view, see Ref. 11�. For example, near a point contact, where
the current density is large, the spin-transfer torque can be

strong enough to reorient the magnetization of ferromagnetic
layers in magnetic multilayers.12 Such investigations are very
important for the development of innovative high-density
data-storage technologies.

In this paper we consider theoretically the conductance of
a tunnel point contact between magnetic and nonmagnetic
metals in a SP-STM geometry. A magnetic cluster is embed-
ded in the nonmagnetic metal in the vicinity of the contact.
The changes in the spin-polarized current and the spin-
transfer torque that influences the magnetic moment of the
cluster are analyzed. We study the dependence of the ampli-
tude of the conductance oscillations as a function of the STM
tip position on the relative orientation between the spin po-
larization of the tunneling electrons and the magnetic mo-
ment of the cluster �eff.

II. MODEL OF THE CONTACT AND BASIC EQUATIONS

Let us consider a tunnel contact between a semi-infinite
half space z�0 of a nonmagnetic metal �the sample� and a
sharp tip of a magnetic conductor �Fig. 1�. A voltage V is
applied between the tip and the sample. The electrical �and
spin� current flows through a small region of the surface at
z=0 near the tip apex that is closest to the sample. This
system models the geometry of a SP-STM experiment. The
tip magnetization �in real SP-STM the magnetization of the
last atom10�, which we choose along the z direction, defines
the direction of the polarization of the tunnel current. Such
magnetization can be obtained, for example, for a Fe/Gd-
coated W STM tip.13 In the nonmagnetic metal we place a
spherical single-domain magnetic cluster having a magnetic
moment �eff �Fig. 1�. As first predicted by Frenkel and
Dorfman14 particles of a ferromagnetic material are expected
to organize in a single magnetic domain below a critical
particle size �a typical value for this critical size for Co is
about 35 nm�. Depending on the size and the material, the
magnetic moments of such particles can be �eff
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�102–105 �B, where �B is the Bohr magneton.15 Below,
we only consider electron scattering by the magnetic cluster,
assuming the mean-free paths for all other processes
�electron-spin-diffusion length, electron-phonon mean-free
path and others� are much larger than the distance between
the contact and the cluster center r0.

In order to describe the spin-polarized electron states of
our system we use the approach proposed in the works of
Slonczewski and Berger:16,21 all calculations are performed
by means of independent single-particle spinor wave func-

tions �̂�rl ;�l� of electrons with opposite spin directions,
where rl and �l are the position vector and the spin direction,
respectively, for each spin orientation l=1,2. We use the
representation �1,2= ↑ ,↓ in which the spin projection on the
z axis, sz= �

1
2 , is used. This approach corresponds to reduc-

ing the many-particle problem of a partially polarized elec-
tron system with nonzero average spin to a double-particle
problem for electrons in a pure �completely polarized� spin
state. Neglect of electron-electron interactions enables us to
separate the double-particle Schrödinger equation into two

independent equations for �̂�rl ;�l�. In our case this separa-
tion is valid if �eff��B, i.e., the electron-electron exchange
interaction is negligible compared to electron exchange in-
teraction with the cluster. Generally, the moment �eff of the
cluster in a nonmagnetic metal takes an arbitrary direction.
This direction �the angle 	 in Fig. 1� can be held fixed by an
external magnetic field H	, the value of which is estimated
as H	�T /�eff, where T is the temperature �see, for example,
Ref. 17�. For �eff�102�B and T�1 K the field H	 is on the
order of 0.1 T. We assume that H	 is much smaller than the
magnetocrystalline anisotropy field of the STM tip, i.e., the
direction of the external magnetic field controls the direction
of the cluster magnetic moment but its influence on the spin-
polarization of the STM current is negligible. If the magnetic
moment �eff of the cluster is “frozen” by the field H	 the
problem becomes a stationary one. Also we take the distance
between the contact and the cluster r0 to be much smaller
than the radius rH=cpF /eH	 of the electron trajectory in the

applied external magnetic field H	, and we do not take into
account trajectory magnetic effects, which have been ana-
lyzed in Ref. 18. The condition r0
rH together with inequal-
ity �BH	 /�
1 �� is the electron energy� allow neglecting
the magnetic field in the single-electron Hamiltonian and
considering H	 as an independent external parameter.

The external magnetic field may result in a modulation of
the tunnel current due to electron-spin precession.19 For our
problem such precession would become noticeable when the
transit time for the electron motion from the contact to the
cluster t�r0 /vF is larger than 1 /�L, where vF and �L are the
Fermi velocity and Larmor frequency. The inequality men-
tioned above, r0
rH, is equivalent to the condition �Lt
1,
so that the effect of electron-spin precession is negligible.

Thus, under the assumptions outlined above the spinor

wave functions �̂�rl ;�l� satisfy the one-electron Schrödinger
equation

�−
2

2m�
�l

2 − ��Î�̂�rl;�l� = − Û�rl��̂�rl;�l� , �1�

where m� is the effective mass of the electrons and Û�r� is
the interaction potential of the electrons with the cluster. The

matrix Û consists of two parts, describing the potential as
well as the magnetic scattering,

Û�r� = �gÎ +
1

2�B
J�eff�̂�D��r − r0�� , �2�

where g is the constant describing the nonmagnetic part of
the interaction �for g�0 the potential is repulsive�, J is the
constant of exchange interaction, �eff=�eff�sin 	 ,0 ,cos 	� is
the magnetic moment of the cluster, �̂= ��̂x , �̂y , �̂z� with �̂�

the Pauli matrices and Î is the unit matrix. D��r−r0�� is a
spherically symmetric function localized within a region of
characteristic radius rD centered at the point r=r0, which
satisfies the normalization condition

� dr�D�r�� = 1. �3�

Equation �1� must be supplemented with the common bound-
ary conditions for continuity of the wave function and its
normal derivative on the metal surface.

We assume that the potential Û�r� is small and use per-
turbation theory. As a first step we should find the solutions

�̂�0��rl ;�l� of Eq. �1� for Û�r�=0. Generally, this solution
depends on the model chosen to represent the tunnel barrier.
For any suitable model for the potential barrier the wave

functions �̂�0��rl ;�l� describe the spreading of the electron
waves in the metal from the small contact region on the
surface. Here, we use the results of Refs. 9 and 20, in which
the tunnel contact is modeled in the form of a circular orifice
of radius a, with a large amplitude potential barrier U0��z�.

In order to describe the spin polarization of the STM cur-
rent we introduce different magnitudes for the wave vector
k� for spin-up and spin-down electrons �for the same energy
�� before tunneling from the tip. This difference results in

FIG. 1. Model of the contact in a SP-STM configuration with a
subsurface magnetic cluster near the tunnel contact point. Spin-
polarized electrons tunnel into the nonmagnetic metal in the small
area below the STM tip. The trajectories of electrons that are scat-
tered by the spherical magnetic cluster are shown schematically.
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different amplitudes t�k�� of the electron waves injected into
the nonmagnetic metal for different directions of the spin,9,20

t��k�� 	
2k� cos �

im�U0
; �t�� 
 1. �4�

Here, � is the angle between wave vector k� and the normal
to the surface z=0, pointing into the sample. The total effec-
tive polarization Peff of the current depends on the difference
between the probabilities of tunneling for different �,

Peff��� =
�t↑�2 − �t↓�2

�t↑�2 + �t↓�2
=

k↑
2 − k↓

2

k↑
2 + k↓

2 . �5�

The functions �̂�0��rl ;�l� for each spin direction have the
same spatial dependence as those for a contact between non-
magnetic metals. In following calculations we use the

asymptotic expression for �̂�0��rl ;�l� valid for ka
1 �Ref.
9�

�̂�0��r;�� = t���0��r��̂�, �6�

where

��0��r� =
�ka�2z

2ikr2 eikr�1 +
1

ikr
� , �7�

�̂� is the spinor

�̂↑ = �1

0
�, �̂↓ = �0

1
� , �8�

and k=
2m�� / is the magnitude of the electron wave vec-
tor k in the nonmagnetic metal. Note that the wave function
��0��r�, Eq. �7�, is zero in all points on the surface z=0,
except the point r=0 �at the contact� where it diverges. This
divergence is the result of taking the limit a→0 in the inte-
gral expressions for ��0��r�.5,20 Yet, Eq. �7� gives a finite
value for the total charge current through the contact as ob-
tained over a half sphere of radius r with its center in the
point r=0 for r→0.

The solution to Eq. �1� in linear approximation in the

potential Û, Eq. �2�, can be written as

�̂�r;��

= t����0��r��̂� + ��g̃ � J̃ cos 	��̂� + J̃ sin 	�̂−���1��r�� ,

�9�

where the sign �� � corresponds to �= ↑ ,↓. We have intro-
duced the notation

g̃ =
2m�k

2 g, J̃ =
m�k

�B2J�eff �10�

for the dimensionless constants of interaction for potential
and magnetic scattering, respectively. The wave function
scattered by the cluster is given by

��1��r� = −
1

k
� dr�G0

+�r,r��D��r� − r0����0��r�� , �11�

which undergoes specular reflection at the metal surface.

Aiming for a solution for the wave function �̂��r� in first
approximation in the small parameter �t��
1 we substitute
the electron Green’s function G0

+�r ,r�� of the nonmagnetic
half space in Eq. �9�,

G0
+�r,r�� = G00

+ ��r − r��� − G00
+ ��r − r̃��� , �12�

where r̃= �� ,−z� is the mirror image of the point r relative to
the metal surface and G00

+ is the Green’s function for free
electrons,

G00
+ �R� = −

eikR

4�R
; R = �r − r�� . �13�

The wave function, Eq. �9�, enables calculation of the
charge-current density j and spin-current density j���, and the
expectation value of the spin s. They are obtained as the
sums of independent contributions of the two electron groups
�l=1,2�

j�r� =
e

m� �
l=1,2

Im��̂ � �̂+�r1=r2=r, �14�

j����r� =
i

2m� �
l=1,2

����̂+����̂ − �̂+�����̂�r1=r2=r,

�15�

s�r� = �
l=1,2

��̂+�̂�̂�r1=r2=r. �16�

The Eqs. �14�–�16� with wave function, Eq. �9�, describe the
so-called tunneling contributions �see, Ref. 16�. They are
proportional to the tunneling probability and define the mea-
surable quantities which can be obtained after averaging over
the energies of the tunneling electrons and wave-vector di-
rections �see, Sec. III�.

In absence of the cluster sx=sy =0 and the local magneti-
zation s0�r� due to itinerant spin-polarized electrons is ori-
ented along the z axis. The spin polarization in zeroth ap-
proximation, sz0�r�, which is calculated from the wave
function, Eq. �6�, is a monotonic function of coordinates

sz0�r� = ��t↑�2 − �t↓�2�� kza2

2r2 �2�1 +
1

�kr�2� . �17�

The electron scattering by the spin-dependent potential,
Eq. �2�, changes the value and the direction of the vector
s0�r�. Components sx and sy appear due to electron scattering
by the cluster and they are subject to quantum interference
between transmitted and scattered waves. As a result of the
interference the spin components perpendicular to the z axis
are oscillatory functions of the coordinates while sz0 acquires

a small oscillatory component proportional to J̃2.
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�sx�r�
sy�r� � = ��t↑�2 � �t↓�2�J̃ sin 	���0��r�����1��r��

��cos

sin
���1�r� − �0�r� . �18�

Here ���i��r�� and �i�r� are the absolute values and the
phases of the coordinate part of the wave functions, Eq. �9�
�see, Eqs. �7� and �11�.

Figure 2 shows the spacial distribution of the x compo-
nent of the normalized spin density sx�r� /c0 in the vicinity of
the contact. The normalization constant c0= ��t↑�2

+ �t↓�2�J̃�ka�4sin 	 /16�. The figure demonstrates that the spin
component sx�r� changes sign in the space of the normal
metal. The sign of sx depends on the difference of the phases
�i�r�. In Fig. 3 we present a vector plot of the x component
of the spin-current density j�x�. An intricate image of the
distribution in orientation of j�x� is visible. Note the lines at
which the direction of the vector j�x� is inverted.

III. CONDUCTANCE OF THE CONTACT, SPIN CURRENT,
AND SPIN-TRANSFER TORQUE

The total current through the contact can be evaluated by
integration of the charge current density j�r�, Eq. �14�, over a
half sphere centered at the point contact r=0 and covering
the contact at z�0, and integration over all directions of the
electron wave vector on the Fermi surface �=�F. In the
Ohm’s law approximation and at zero temperature the total
current through the contact I can be written as

I = eV���F�r2�
�=�F

d�k

4�
� d���z���kz�jr�r� , �19�

where d� and d�k are elements of solid angle in real and
momentum space, respectively, ���F� is the electron density
of states at the Fermi energy, �F, for one spin direction, kz is
z component of the wave vector, jr�r� is the radial compo-
nent of j�r�, Eq. �14�, and ��x� is the Heaviside unit step
function. After integration of Eq. �19� the conductance G of
the contact takes the form

G =
I

V
= G0�1 +

6

�
�g̃ + PeffJ̃ cos 	�W�r0��

�=�F

, �20�

where G0 is the conductance of the contact in absence of the
cluster

G0 = �kF↑
2 + kF↓

2 �
e23�kFa�4

72��m�U0�2 . �21�

Here, kF� and kF are the absolute values of electron wave
vectors at the Fermi level in magnetic and nonmagnetic met-
als, respectively; Peff is the effective spin polarization of the
current injected through the contact �see Eq. �5�; the con-

stants g̃ and J̃ are given by Eq. �10� and

W�r0� =� dr�D��r� − r0��� z�

r�
�2

y1�kr��j1�kr�� , �22�

where jl�x� and yl�x� are the spherical Bessel functions.
Equation �20� coincides with the result for a tunnel point
contact between nonmagnetic metals9 when Peff=0 and krD

1. When the radius of action rD of the function D��r
−r0�� is much smaller than the distance between the contact
and the cluster center r0, W�r0� is an oscillatory function of
kr0 for krD�1, but the oscillation amplitude is reduced as a
result of superposition of waves scattered by different points
of the cluster. The integral W�r0�, Eq. �22�, can be calculated
asymptotically for r0�rD, kr0�1, and krD�1. For a homo-
geneous spherical potential D��r��=VD

−1��rD−r� �VD is the
cluster volume� the function W�r0� takes the form

W�r0� �
3

2
� z0

r0
�2sin 2kr0

�2kr0�2

j1�kd�
kd

, �23�

where d=2rD is the cluster diameter. The last factor in Eq.
�23� describes the quantum size effect related with electron
reflections by the cluster’s boundary. Such oscillations may
exist if the cluster boundary is sharp on the scale of the
electron wavelength. Figure 4 shows the dependence of the
amplitude of the conductance oscillations on the cluster di-

FIG. 2. Grayscale plot of the spacial distribution of the x com-
ponent of the spin density, sx�r� /c0. The coordinate plane xz in real
space crosses the contact and the cluster of the radius rD=k−1 with
its center in the point r0= �0,0 ,15�k−1.

FIG. 3. Vector plot of the direction of the x component of spin-
current density, j�x�. The contour lines correspond to jz

�x�=0. The
plane xz crosses the contact and the cluster; as in Fig. 2 we have
chosen rD=k−1 and r0= �0,0 ,15�k−1.
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ameter. It demonstrates that a �-phase shift may occur result-
ing from interference of electron waves over a distance of the
cluster diameter.

In Eq. �20� the term proportional to Peff takes into account
the difference in the probabilities of scattering of electrons
with different � by the localized magnetic moment �eff. It
depends on the angle 	 between the tip magnetization and
�eff as cos 	. The same dependence was first predicted for a
tunnel junction between ferromagnets for which the magne-
tization vectors are misaligned by an angle 	,16 and this was
observed in SP-STM experiments.10

Similar to the electrical conductance, Eq. �20�, the total
spin current for each spin component can be calculated

I�z� =
G0V

e
�Peff +

6

�
�Peffg̃ + J̃ cos 	�W�r0��

�=�F

, �24�

I�x� =
6G0V

e�
sin 	�J̃W�r0��=�F

. �25�

For our choice of the vector �eff, I�y�=0. The value of the z
component of the spin current I�z�, Eq. �24�, is determined to
a large extent by the polarization Peff, Eq. �5�, of the initial
current. The oscillatory part of I�z� is modified by the addition
of a term due to spin-flip processes on the cluster. The spin-
current component perpendicular to initial direction of polar-
ization, I�x�, has only a term that oscillates with r0 and which
disappears when the magnetic moment �eff is aligned with
the z direction.

The spin-transfer torque T acting on the magnetic mo-
ment �eff is given by

T = −
J


� dr�D��r� − r0���eff � �s�r��� , �26�

where

�s�r�� = eV���F��
�=�F

d�k

4�
s�r� , �27�

s�r� is defined by Eq. �16�. This torque is related with the
spin-polarized electron tunnel current. In linear approxima-

tion in J̃ only the spin-density contribution sz0�r�, Eq. �17�,
without interaction with the cluster, should be taken for the
calculation of the torque, Eq. �26�. In this approach Tx=Tz
=0. For large r0�rD we obtain

Ty = sin 	
3G0V

e�
�PeffJ̃� z0

kr0
2�2�1 +

1

�kr0�2��
�=�F

. �28�

The dependence of Ty, Eq. �28�, on the angle 	 agrees with
the dependence of the spin-transfer torque in tunnel junctions
between two ferromagnets with different directions of
magnetization.16,21

In this paper we do not aim to investigate the dynamics of
the cluster magnetic moment. We only note that once the
spin-polarized current-induced torque pulls the magnetic mo-
ment away from alignment with H	, the cluster moment will
start precessing around the field axis. The Larmor frequency
is defined by the magnetic field due to combining the exter-
nal field H	 and the effective field produced by the polarized
current Heff�−J�s�r0�� /gc�B �gc is the cluster “g factor”�.
The precession of the cluster magnetic moment gives rise to
a time modulation of the SP-STM current as for clusters on a
sample surface.22,23 The study of nonstationary effects pro-
vides a further means of obtaining information on the cluster
and the spin polarization of the current inside the sample.

IV. DISCUSSION

In summary, we have studied theoretically the current and
spin flows through a tunnel point contact between magnetic
and nonmagnetic metals when the tunnel current is spin po-
larized in the geometry of SP-STM, Fig. 1. Electron-spin-flip
processes due to a magnetic cluster situated in the nonmag-
netic metal have been taken into account. These processes
result in the appearance of components of the spin-current
density j�s��r� perpendicular to the source direction �taken
along the contact axis z�, and a finite expectation value of the
spin s�r�. We have analyzed the contribution of tunneling
electrons to the spacial distribution of j�x,y��r� and sx,y�r�. It
is found that these are nonmonotonic functions of the coor-
dinates and undergo strong spacial oscillations originating
from quantum interference between partial waves transmit-
ted through the contact and those scattered by the cluster
�see, Figs. 2 and 3�. Specifically, between the contact and the
cluster there are neighboring regions in which j�x��r� flows in
opposite directions �Fig. 3�.

The oscillatory correction, �G, to the conductance G0 of
the ballistic tunnel point contact strongly depends on the
magnetic scattering, Eq. �20�,

�G � �g̃ + PeffJ̃ cos 	�sin 2kr0, kr0 � 1. �29�

The effective spin polarization Peff of the tunneling electrons
and the dimensionless constants of potential scattering g̃ and

FIG. 4. Dependence of the oscillatory part of the conductance
on the tip position on the metal surface for different cluster diam-
eters. The �0 coordinate is measured from the point �0=0 at which
the contact is situated directly above the cluster; r0= �0,0 ,10� /kF;

g̃=0.5; J̃=2.5; Peff=0.4; and 	=0.
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exchange scattering J̃ are given by Eqs. �5� and �10�. Gener-
ally, for a single magnetic defect, which has a magnetic mo-
ment on the order of one Bohr magneton, �B, the spin part of
electron scattering gives only a small contribution to the
electrical resistance. For a magnetic cluster with �eff��B,
the exchange energy can be larger than the energy of spin-

independent interaction �J̃� g̃, see Eq. �10�. An interesting

phenomenon may be found when PeffJ̃� g̃. A change in the
direction of the vector �eff �the angle 	� controlled by an
external magnetic field is predicted to lead to a change in the
amplitude of the oscillations, and for certain directions the
amplitude may vanish, Gosc=0. This large magneto-
orientational effect provides a new mechanism for obtaining
information on magnetic particles buried below a metal sur-
face. Note that this effect is observable only for a spin-

polarized current: if t↑= t↓, in linear approximation in J̃ the
changes in the scattering amplitude for spin-up and spin-
down electrons balance each other and the magneto-
orientational effect is absent.

As a consequence of spin flips due to the interaction of
the electrons with the cluster the oscillatory part �I�z� of the
spin current in the original z direction obtains a correction

which depends on the exchange constant J̃ and the orienta-
tion of the magnetic moment, Eq. �24�

�I�z� � �Peffg̃ + J̃ cos 	�sin 2kFr0, kFr0 � 1. �30�

A component of the spin current perpendicular to the z di-
rection, Ix

�s�, is formed only by scattered waves and as the

result of quantum interference it becomes an oscillatory
function of the distance r0, Eq. �25�

I�x� � J̃ sin 	 sin 2kFr0, kFr0 � 1. �31�

The spin currents, Eqs. �30� and �31�, appear even in the case
of nonpolarized current through the contact and they are re-
lated to the magnetic scattering by the cluster.

The torque, which acts on the magnetic cluster due to spin
polarization of electric current is a monotonic function of the
distance r0, Eq. �28�, to linear approximation in the exchange
constant

Ty � sin 	PeffJ̃�z0/kFr0
2�2, kFr0 � 1, �32�

where z0 is the depth of the cluster below metal surface.
These results may be exploited in future experiments for

detecting and investigating individual magnetic clusters bur-
ied below the surface of a host metal. Specifically, a com-
parison of the amplitude of the conductance oscillations for
different directions of the cluster magnetic moment allows
determination of the exchange energy J�eff and for a known
value of the exchange integral J to find �eff.
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