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ABSTRACT

Lipoprotein transport is thought to occur in the plasma compartment of the blood, where 

lipoproteins are modulated by various enzymatic reactions. Subsequently, lipoproteins can 

migrate through the endothelial barrier to the subendothelial space or are taken up by the 

liver. The interaction between pro-atherogenic (apoB-containing) lipoproteins and blood cells 

(especially monocytes and macrophages) in the subendothelial space is well known. This 

lipoprotein-infl ammatory cell interplay is central in the development of the atherosclerotic 

plaque. In this review, a novel interaction is described between lipoproteins and both leuko-

cytes and erythrocytes in the blood compartment. This lipoprotein-blood cell interaction may 

also be related to the process of atherosclerosis by inducing infl ammatory changes in the case 

of leukocytes (pro-atherogenic) and as an anti-atherogenic transport-system by adherence to 

erythrocytes. Triglyceride rich lipoprotein (TRL)-mediated leukocyte activation can lead to an 

infl ammatory situation with generation of oxidative stress and the production of cytokines, 

ultimately resulting in acute endothelial dysfunction. Binding of apoB containing lipoproteins 

to erythrocytes may be a potential antiatherogenic mechanism protecting the vessel wall from 

the pro-infl ammatory eff ects of these lipoproteins and also playing a role in the removal of 

these particles from the circulation. One of the proposed mechanisms of this interaction implies 

complement activation on the lipoprotein surface and binding to the Complement Receptor 1 

(CR1) on erythrocytes and leukocytes, followed by clearance by the liver.
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INTRODUCTION

Cardiovascular disease is the major cause of death in the general population. The classical risk 

factors for developing atherosclerosis are smoking, dyslipidemia, diabetes mellitus, hyperten-

sion, obesity and a family history of premature cardiovascular disease (1). 

Atherosclerosis can progress very slowly over decades without clinical manifestations. The 

accumulation of LDL and remnants in the subendothelial space is recognized as one of the 

main contributors to atherogenesis. The initial steps in the process of lipid-mediated athero-

sclerosis are thought to be modifi cation of lipoproteins, migration to the subendothelial space 

and binding to the scavenger receptors on monocytes and macrophages (2,3). This leads to 

the generation of oxidative stress and production of cytokines, eventually causing a local and 

generalized infl ammatory response resulting in endothelial dysfunction (4).

The endothelium actively controls the traffi  cking of lipoproteins between the intra- and extra-

vascular compartments. Small lipoproteins like remnants, LDL and HDL migrate to the suben-

dothelium through a non-receptor-mediated process of transcytosis (5). Alternatively, these 

lipoproteins may enter the sub-intimal space through leaky junctions over the endothelium or 

fl uxes across fenestral pores. Remnants of TRL’s increase the permeability of the endothelium 

and are cytotoxic for endothelial cells (6). 

Recent studies have suggested that apoB-containing lipoproteins may interact with the leuko-

cytes in the blood leading to infl ammatory changes which may be related to endothelial dam-

age (7). In theory, apoB-containing particles may also bind to erythrocytes, leading to a lower 

concentration of free apoB-containing lipoproteins in the plasma compartment and therefore 

less interaction with the endothelium. This mechanism could represent an anti-atherogenic 

process.

CURRENT CONCEPT OF LIPOPROTEIN TRANSPORT

The current concept of lipid metabolism consists of two major pathways, the exogenous and 

the endogenous pathway. The exogenous pathway starts in the intestinal cells with the syn-

thesis and secretion of chylomicrons after absorption of dietary fat. Chylomicrons enter the 

systemic circulation at the site of the thoracic duct, after having been transported in the chyle. 

Until recently, it was thought that apoCII and lipoprotein lipase (LPL) where necessary and suffi  -

cient for the hydrolysis of chylomicron triglycerides (TG) (8,9). Recent work from Stephen Young’s 

laboratory has elegantly shown that glycosylphosphatidylinositol-anchored high-density 

lipoprotein-binding protein 1 (GPIHBP1) plays a critical role in the lipolytic process of chylomi-

crons. GPIHBP1 is located on the luminal face of the capillary endothelium and appears to be an 

important platform for the LPL-mediated processing of chylomicrons in capillaries (10,11).
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The endogenous pathway depends on the hepatic production of VLDL. These lipoproteins are 

secreted into the circulation and degraded to LDL by LPL and hepatic lipase (HL). This modifi ca-

tion of lipids by lipolytic enzymes leads to the generation of atherogenic remnants and HDL 

particles (4,5,12. This process takes place in the plasma where other enzymes like cholesterol 

ester transfer protein (CETP), lecithin cholesterol acyl transferase (LCAT) and phosolipid transfer 

protein (PLTP) are involved in the modulation of these lipoproteins (4,13). The liver and the 

intestine can also synthesize and secrete HDL directly.

Besides this well accepted concept, it has been proposed that apoB-containing lipoproteins are 

not only present in the plasma compartment, but may also be located in a so called “margin-

ated pool” attached to various cells. This marginated pool is thought to be located mainly (but 

not solely) on the surface of endothelial cells (14). Other candidates for lipoprotein binding in 

the blood are leukocytes and erythrocytes.

LIPOPROTEIN BINDING TO BLOOD CELLS

The fi nding that lipoproteins bind to blood cells in human is not new. Binding of LDL to lym-

phocytes was reported by Hui and Harmony three decades ago (15,16). Tertov et al. described 

intracellular accumulation of triglycerides and cholesterol esters in freshly isolated leukocytes 

of patients with coronary heart disease (17). Recent work from our laboratory has shown that 

apoB-containing lipoproteins can bind to leukocytes in the blood and that meal-derived fatty 

acids can be taken up by these cells in vivo (18). The fact that diff erent types of leukocytes 

showed a diff erent content of apoB on their surface (with neutrophils carrying the largest num-

ber of apoB), suggested that a specifi c receptor could be involved. Furthermore, it was proposed 

that this interaction may lead to activation of leukocytes, especially neutrophils and monocytes 

(7). It was also suggested that triglyceride rich lipoprotein (TRL)-mediated leukocyte activation 

could lead to an infl ammatory situation with generation of oxidative stress and the production 

of cytokines (19-21), ultimately resulting in acute endothelial dysfunction. Intuitively, all these 

eff ects on leukocytes and endothelial cells could be related to the generation of endothelial 

cell damage and atherosclerosis. The mechanism whereby lipoproteins bind to leukocytes has 

not been elucidated yet.

Binding of LDL to erythrocytes has also been reported by Hui and Harmony. These authors 

proposed that the binding site for LDL on the erythrocyte membrane was not the LDL-R (22,23). 

Arbustini et al. found that the cholesterol content of erythrocyte membranes was more than 2 

times higher in patients presenting with acute coronary syndrome than in patients with stable 

angina (24). It is not known how this cholesterol-enrichment of the erythrocyte membrane 

occurs. Membrane-bound cholesterol may be incorporated in the phospholipid layer of the 

membrane. Alternatively, cholesterol carrying lipoproteins may also be attached to the eryth-

rocyte and contribute to the cholesterol in the membrane. 



Lipoprotein Transport by Erythrocytes and Leukocytes

155

Preliminary data from our laboratory suggest that apoB can be detected on erythrocytes in 

humans. Flowcytometric measurements, with specifi c anti-apoB antibodies, detected apoB at 

diff erent concentrations on all blood cells in humans (Figure 1).
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Figure 1. Histograms showing overlay of fl uorescence for samples with and without apo B antibodies 
(panel a). The gray graphs represent the background  signal due to binding of the FITC-labeled secondary 
antibody only. The colored graphs depict ApoB signal. Panel (b) shows fl uorescence of background 
staining (Auto) and ApoB signal (ApoB) on the diff erent types of leukocytes and erythrocytes. The 
diff erences of the apoB levels on all cell types are statistically signifi cant (P < 0.0001). Data are given in 
arbitrary units (x±SD).



156

PROPOSED MECHANISM OF LIPOPROTEIN BINDING TO ERYTHROCYTES

If both leukocytes and erythrocytes can carry apoB-containing lipoproteins, it seems logical to 

assume one common mechanism. The LDL-R seems to be one logical candidate, but erythro-

cytes do not express these receptors under normal conditions (2). 

An alternative candidate is the complement receptor 1 (CR1). This receptor is present in both 

blood cell types in primates (25–27). The average number of CR1 receptors of erythrocytes is 

small (mean < 2000/cell) compared with that of circulating B lymphocytes, monocytes and 

neutrophils (20,000–150,000/cell). The circulating erythrocytes however, outnumber the leuko-

cytes approximately 1000-fold, and therefore the vast majority of all CR1 receptors present in 

the circulation of humans is located on the erythrocyte (28).

Erythrocytes play an important role in the removal of immune complexes in the bloodstream. 

Primate erythrocytes can bind soluble, as well as complement opsonised immune complexes 

(IC) in the circulation (28,29). CR1 facilitates attachment and clearance of bound IC, either via 

the natural ligand C3b, or via the hexopolymer (HP) construct, without lysis or destruction of 

the erythrocyte (30) (a phenomenon also known as “immune adherence”). In theory, binding 

of apoB-containing lipoproteins to erythrocytes can be an anti-atherogenic mechanism by pre-

venting these atherogenic particles to interact with the endothelium. In the liver, erythrocyte-

apoB may be cleared from the circulation without erythrocyte destruction in a similar way as 

immune complexes attached to the CR1 on erythrocytes (31).

Preliminary data from our laboratory suggest that subjects with coronary artery disease (CAD) 

have a lower signal of apoB on erythrocytes than subjects without CAD. Moreover, apoB bind-

ing to erythrocytes does not correlate to classical plasma lipid levels like cholesterol or apoB 

concentrations. This suggests that apoB binding to blood cells is not merely a refl ection of 

plasma concentrations. 

Finally, in patients with atherosclerosis (32,33), and in asymptomatic adults (34), monoclonal 

and polyclonal antibodies against lipoproteins can be detected and explain the presence of 

immune complexes (IC). This formation of LDL-IC and the binding to red cells can aff ect the 

cholesterol homeostasis and LDL metabolism (28,35).

APOLIPOPROTEIN B AND COMPLEMENT ACTIVATION

C3 concentrations increase signifi cantly in the postprandial situation refl ecting complement 

activation (20,36,37). C3 activation may occur on the surface of lipoproteins resembling the 

immune-adherence phenomenon. Since complement activation can only take place on pro-

teins and glycoproteins, we propose that mannose binding lectin (MBL) binds to certain sugars 

on the surface of the apoB containing lipoproteins (38).
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It is well known that the oligosaccharides necessary to bind MBL, mannose (17.8%), N-acetyl-

glucosamine (16.8%), galactose (13.4%) and fructose (3.4%) are all present on the apoB 

molecule (39). This binding of MBL could be the start of the activation of a part of the comple-

ment system leading to the activation of C4, C2 and resulting in a C3 convertase (C4C2a). C3b 

generated in thisway may bind to the surface of the lipid particle and to the CR1 molecule on 

the erythrocytes.

The C3a molecule is immediately inactivated by carboxypeptidase N (CPN) becoming the 

well known C3adesArg also known as acylation stimulating protein (ASP) which plays a role in 

triglyceride and free fatty acid metabolism (40,41).

Recent work form our laboratory has provided supporting evidence for this concept by demon-

strating that the MBL pathway is involved in TRL metabolism in humans (42). Figure 2 provides a 

schematic representation of the model developed in our laboratory. This model could integrate 

the fi ndings of several groups showing that lipoprotein metabolism and the complement 

system are closely connected.

In conclusion, the transport of atherogenic lipoproteins in humans is not only a process that 

occurs in the plasma compartment but it seems to depend in part on cellular transport by 

erythrocytes and leukocytes. While the exact mechanism whereby binding to blood cells takes 

place is not known, complement activation on the lipoprotein surface by the MBL pathway and 

binding to CR1 is one of the candidate mechanisms.
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Figure 2. Triglyceride lipoproteins (TRP) may bind with mannose binding lectin (MBL) and C3. MBL binds 
to certain sugars on the apoB molecule. This binding of MBL is the start of the activation of C4, C2 and 
resulting in C3 convertase. C3b remains attached to the surface of the lipid particle. This C3b is also able 
to bind to the CR1 molecule on the erythrocyte (immune adherence), ultimately resulting in binding of 
the lipoprotein to the erythrocyte.
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