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Sheared Force Networks: Anisotropies, Yielding, and Geometry
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A scenario for the yielding of granular matter is presented by considering the ensemble of force
networks for a given contact network and applied shear stress 7. As 7 is increased, the probability
distribution of contact forces becomes highly anisotropic, the difference between average contact forces
along minor and major axes grows, and the allowed networks span a shrinking subspace of all force
networks. Eventually, contacts start to break, and at the maximal shear stress the packing becomes
effectively isostatic. The size of the allowed subspace exhibits simple scaling properties, which lead to a
prediction for the yield stress for packings of an arbitrary contact number.
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Granular media, foams, and emulsions are amorphous
materials that can jam and then sustain a certain amount of
shear stress before yielding [1-5]. If one slowly increases
the applied shear stress and follows the evolution of contact
forces and grain locations for such systems, one encounters
a rather complex set of phenomena. First, before the sys-
tem yields as a whole, there are nonadiabatic precursor
events such as local rearrangements and microslip [6—8].
Second, the interparticle contact forces in these systems are
organized into highly anisotropic and fragile force net-
works [9-13]—see Fig. 1. Unraveling these shear-induced
phenomena and their impact on macroscopic unjamming
has remained a great challenge.

While the contact forces evolve to satisfy the applied
stresses, the selection of a specific force network for a
single numerical experiment hinges on microscopic details
and packing history. On the other hand, features like con-
tact force probabilities have turned out to be relatively
insensitive to these subtle details [11-15], which suggest
the use of a purely statistical approach. In this Letter we
characterize granular packs under shear stress by studying
ensembles of force networks for fixed contact networks
[16—21]. This approach is based on the fact that in jammed
systems there are more contact forces than force balance
equations—the ensemble simply consists of all those force
networks for which the contact forces are repulsive, bal-
ance on every grain, and satisfy global stress constraints,
while keeping the geometry fixed. This provides a novel
access to the statistics of force networks under shear stress,
in which the roles of fabric and force anisotropy are
separated explicitly.

We consider ensembles of sheared force networks for
frictionless disks in two dimensions, for contact numbers z
ranging from the lower limit z = z, = 4 (isostatic [22]) to
z = 6 (strongly hyperstatic). We recover a number of
experimental features, in particular, a transition to yielding.
We show that force networks, in which purely repulsive
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forces satisfy force balance on every grain while also
sustaining the applied shear stress, cease to exist beyond
a critical stress 7,,. This maximum stress 7,,, which is an
upper bound for the yield stress 7, strongly depends on the
coordination number [Fig. 1(a)].

Force ensemble.—The numerical results have been ob-
tained by a recently developed ensemble technique [17-
21]. The input of the ensemble consists of a fixed contact
geometry of a 2D packing of N = 1024 frictionless disks
of radii R; with centers r; and coordination number z > z,.
in a volume V, which we generated from molecular dy-
namics simulations of a 50:50 binary mixture of particles
with size ratio 1.4 that have a purely repulsive Lennard-
Jones interaction; results presented in this Letter are inde-
pendent of the potential. Different densities were used to
obtain different z, typical deformations ranging from 1% to
get z = 4.3 to about 30% for z = 6. The system is not
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FIG. 1. (a) Overview of the z-7 parameter space, where z and 7
denote coordination number and shear stress, respectively. For a
given z, force networks cease to exist beyond a maximum 7,
[dashed line, Eq. (8)]. The dots indicate the values of 7 and z in
(b)—(d). (b)—(d) Parts of the force networks, where line thick-
nesses represent the strength of the contact forces. These net-
works become highly anisotropic under shear stress.
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sheared, and the resulting contact networks are isotropic
[2,17]. These contact networks are then kept fixed, and the
positive interparticle forces between particles i and j, f;; =
|f;;|, are seen as degrees of freedom that satisfy mechanical
equilibrium, restricted by the macroscopic stress o ,g:

I‘i - I‘j . _ 1
E f”lr,- my Tap =5 E..( Do —1))g
J {ij}
(D

In this picture there are (zN/2) degrees of freedom (contact
forces) constrained by (2N + 3) equations, leading, for z >
4, to an ensemble of force networks that forms a high-
dimensional convex subspace F. [17-19]. The actual en-
semble calculation amounts to sampling this force space
using a simulated annealing procedure, described in detail
in Ref. [18], where it was shown that it samples the force
space uniformly. Because of the fixed contact geometry, all
resulting networks have an isotropic fabric. The forces,
however, become more and more anisotropic as a higher
shear stress is imposed on the ensemble. In this Letter we
choose the coordinates and pressure such that o,, =
Oyy = 1/2, and consider the dimensionless shear stress
T = 0,,/ 0 (equivalent to the relative deviatoric stress)
[see Fig. 2(a)].

Angle resolved force distributions.—To characterize the
anisotropic force networks, we introduce here the contact-
angle resolved force distribution P 4(f). This is a natural
extension of the overall force distribution P(f) [11-15] and
acts as a sensitive probe for anisotropy due to shear.
Figure 2(b) illustrates that for sheared systems P,(f)
modulates with ¢ —this modulation has its extrema along
major and minor axes. Many contact forces along the
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FIG. 2. (a) Illustration of our geometry, showing the direction
of shear stress (arrows), contact angle ¢, and major and minor
axes. (b) Angle resolved force distributions for z = 5. P,(f)
becomes increasingly modulated with contact angle ¢ for in-
creasing shear stress 7.

minor axis (¢ ~ 37/4) evolve towards zero for increasing
shear, effectively breaking these contacts [17] and leading
to a 6 peak at f = 0 [black area in Fig. 2(b4)]. These angle
resolved distributions allow a straightforward interpreta-
tion of the observed broadening or disappearance of the
peak of P(f) [1,2,13-15]. Moreover, they can act as a
sensitive tool for the comparison of force data from experi-
ments, numerics, and theory [13].

Analytical bounds on 7.—The most basic manifestation
of stress anisotropy, however, is the modulation of the
average force, f (), as a function of the contact orienta-
tion. This effect is clearly visible in Fig. 1 and has only
recently been accessed experimentally [10,13]. In Fig. 3
we therefore show examples of f(¢) for various stresses
and contact numbers, as obtained by the ensemble. For the
strongly hyperstatic case [Figs. 3(b) and 3(d)], it is clear
that the anisotropy is limited by the requirement that f(¢)
should definitely remain positive for all ¢. This is due to
the repulsive nature of the contact forces, which requires
all f;; =0.

This simple criterion imposes an analytical bound on the
maximum shear stress 7, that becomes increasingly accu-
rate for strongly hyperstatic packings. This bound can be
computed from the probabilistic version of Eq. (1), which
for isotropic contacts reads

__ TN,
T = Yo

ﬁ) " dGF()nang, e

where 7 is the average particle radius [23], while (n,, n,) =
(cosa, sing); in the remainder we set the prefactor FN,./V
equal to unity. We Fourier expand f(¢) as 3 a; sin2k¢ +
Y by cos2kep, and anticipate that only odd k sine terms and
even k cosine terms are compatible with the symmetry of a
simple shear [3]. Equation (2) then yields
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FIG. 3. Average contact force as a function of contact angle ¢
and applied shear stress 7. (a) f(¢), for z =5 develops a
sinusoidal modulation when 7 is increased. f(¢) can be fitted
well by an expression of the form 1 + 27sin2¢ — b, cosd¢p; b,
slowly increases with 7 as shown in (c). (b) f(¢), for z =6
develops a strong second harmonic for large 7 and approaches
the limiting curve given by Eq. (4) (dashed curve). (c),(d) Cor-
responding dependence of b, on 7.
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f(d) =1+ 27sin2¢p — bycosdep + - - -, 3)

where the coefficients of the higher order terms b, ..., are
independent of the stress tensor (Fourier modes with k = 2
yield zero upon integration). The role of the higher order
terms is limited [24]: our numerics show a significant
contribution to f(¢) for large 7 and z for k =2 only
[Figs. 3(b) and 3(d)]. Furthermore, f(¢) evolves mono-
tonically between the major and minor principle directions.
Truncating Eq. (3) at second order leads to an optimization
problem (maximizing 7) with two parameters, 7 and b,,
bounded by demanding f(¢) and its second derivative to
be non-negative at ¢ = 37/4. The first condition reflects
the purely repulsive nature of the forces, while the second
ensures monotonic variation between major and minor
directions. The solution to this linear programis 7 = 7,, =
2/3 and b, = 1/3, so the maximum average force modu-
lation is given by

F (@) =1+ 4/3sin2¢ — 1/3 cosd. 4)

Figures 3(b) and 3(d) illustrate the relevance of this bound
for strongly hyperstatic packings: for z = 6 the maximal
stress is close to 2/3, while f(¢) approaches the limiting
form Eq. (4), indicated by the dashed line.

One can incorporate the effect of fabric anisotropy by
introducing a modulated distribution of contact angles
D(p) = %T(l + psin2¢). This modulation now appears
in the integral of Eq. (2) and modifies the upper bound to
Ty = 87;’:182. For realistic values of the anisotropy, typi-
cally p < 0.3 [5], the increase in 7,, is remarkably mild,
e.g., 7,, = 0.70 for p = 0.3. The more general case with
frictional grains will be discussed elsewhere [26].

High-dimensional ensemble.—We now return to iso-
tropic packings and address the dependence of the maxi-
mal shear stress 7,, on z. Close to isostaticity 7, is
significantly smaller than the bound obtained above—as
can be seen by comparing Figs. 3(a) and 3(c). In fact, in the
isostatic limit there are no adjustable degrees of freedom
left and 7, tends to zero. To understand the relation
between 7,, and z, it is useful to consider the volume of
the space of allowed force networks F.. As we show below,
for any given contact network, the volume of F, shrinks as
the shear stress 7 increases. At a certain 7 = 7,, the volume
becomes zero, which marks the largest possible shear
stress for which a solution to Eq. (1) exists. The general
dependence of the 7,, on the z, based on our numerics, is
depicted by the dashed curve in Fig. 1(a).

We quantify the “size” of F, by the Euclidean distance
L between randomly chosen pairs of force networks, for
given z and 7 [19,20]. While the distances between random
points in a low dimensional space are broadly distributed,
this distribution becomes increasingly sharply peaked for
higher dimensional objects as is the case here. The average
distance L defined via

Lz, 7) = (Z(fi; — fi)P )

thus serves as an effective measure for the size of F,. Here
the brackets denote an average over the random pairs of
force networks {f;;} and {f}}.

In Fig. 4 we show our main findings for the main
properties of the force space with 7. The size L(7, z) can,
surprisingly, be fitted by a simple relation of the form

(L/L,)? + (7/7,)* = 1, (6)

which becomes particularly accurate for z < 5 [Fig. 4(a)].

The scaling relation Eq. (6) can be interpreted geomet-
rically, keeping in mind that high-dimensional objects can
be quite counterintuitive [Fig. 4(b)]. Let us consider the
ensemble F that is obtained by applying all force balance
equations and o, = o, = 1/2, but leaving o,,, and thus
7, undetermined. F is a convex body of dimension D =
(z — z,)N/2 — 2 that has zN/2 facets; each facet corre-
sponds to a certain contact force being zero. One can obtain
F, from an intersection of F with the codimension-one
hyperplane given by the linear constraint o, = 7/2
[Eqg. (1)]. Because of symmetry, the most ‘““central’’ inter-
section is obtained for 7 = 0, while for larger values of 7,
the intersection is less centered and F, is smaller.

Surprisingly, L, and 7,, approach simple scaling laws as
shown in Figs. 4(c) and 4(d):

L, =+/N(z—z.), (7)

7, ~25 % (8)

Z
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FIG. 4. (a) The linear size L of the force space F, as a function
of shear stress 7 for z as labeled (dots) are well fitted by a relation
of the form (L/L,,)*> + (7/7,,)> = 1 (solid curves). (b) Sketch of
how force space F (represented schematically by a sphere)
intersected by the constant-7 hyperplanes yields the force spaces
F. and F,, with sizes L, and L,. (c) L,, obtained by fitting
Eq. (6) (circles), compared to +/N(z — z.) (line). (d) Maximal
shear stress 7,, obtained by fitting Eq. (6) (circles) is well
approximated by 2(z —z.)/z (line). (e) ze s drops sharply
when approaching 7,,.
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The scaling relation for L,,, Eq. (7), can be recovered
analytically. The scaling L,, < /D with the dimension
D = N/2(z — z.) of F, is a common feature of high-
dimensional convex spaces [27]. If we consider a simple
approximation for F by ignoring the force balance equa-
tions but only requiring that all f;; are positive and have
(fi;) = 1, we directly obtain that L? = 2D = N(z — z,.)
[28]. On the other hand, for the relation for 7,,, Eq. (8),
we have not been able to come up with a convincing
argument, but we do note that this relation implies that
7, 1s proportional to the ratio between the dimension of F,
N/2(z — z.), and the number of its facets, zN/2.

Finally, as 7 approaches its maximum 7,,, the space F,
shrinks and L — 0, so that at 7 = 7,,, F,. consists of a
single point. The effective contact number z., which is
defined by considering contacts broken when their force
drops below a fixed small threshold [29], stays constant
over most of the range of 7, but sharply drops to z, as 7
approaches 7,, [Fig. 4(e)].

Outlook.—The ensemble approach for force networks
under shear provides a great conceptual simplification with
respect to full numerical simulations, as it steps aside the
intricate evolution of the contact network. Yet, it captures
recently measured statistical properties, such as f(¢) and
the evolution of P(f) [10,13]. Furthermore, it provides an
alternative description of yielding phenomena, in terms of
a vanishing volume of the force phase space. The precise
relation between 7,, and the yield stress will have to be
explored further, to see whether a system in which local
rearrangements do occur before yielding can really remain
jammed up to 7,,. Nevertheless, in agreement with existing
numerical simulations [4,7], we found that the maximum
shear stress 7, strongly depends on the coordination num-
ber of the packing. This dependence can be understood in
terms of the geometry of the force space, and obeys a
simple scaling law Eq. (8). The ensemble thus provides a
new perspective for soil mechanics, in which relations
between the macroscopic effective friction and microme-
chanical properties (density, coordination number, texture,
etc.) play a central role. More generally, it suggests a route
along which the unjamming by shear of a broad range of
disordered media may be understood.
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