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CHAPTER 8
Summary and General Discussion
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A diagnosis with usual vulvar intraepithelial neoplasia (uVIN), caused by a persistent 
infection with the human papilloma virus (HPV), has major impact on the patient since 
this chronic skin disease is associated with severe long-lasting complaints as pruritus, high 
recurrence rates, a malignant potency, psychosexual implications and frequent outdoor 
patient clinic follow up visits. The incidence of uVIN is increasing, mainly in young women 
and there is a need for alternative therapies. The immune response clearly plays a role 
in protection against this disease and different immunotherapies are being developed to 
treat the persistent HPV infection and related anogenital neoplasia. In contrast to patients 
with cervical intraepithelial neoplasia (CIN) for whom the conventional loop electrosurgical 
procedure (LEEP) therapy is a relatively simple and uncomplicated therapy, the conventional 
therapies for uVIN are associated with potential mutilation and high recurrence rates. 
Therefore uVIN patients form an exquisite patient group to evaluate the potency of 
immunotherapy in HPV-induced premalignant disease. In the past decade clinical successes 
have been achieved in the treatment of uVIN by different immunotherapeutic approaches, 
albeit that still a notable number of patients does not respond to these therapies. Despite 
the fact that uVIN is the first HPV-induced disease successfully treated by immunotherapy, 
the knowledge of the immune response in uVIN is relatively limited when compared to the 
well-studied CIN and cervical cancer lesions. Through the studies in this thesis we gained 
more knowledge on the local and systemic immune responses. This may help to understand 
the non-responsiveness to immunotherapy of some patients which can be used to optimize 
these therapies and to foster individualised (immune) therapies. 

Local immune cell infiltrates in the microenvironment of uVIN lesions 
The importance of the immune infiltration in protection and regression of uVIN lesions is 
indicated by the normalization of immune cell counts when the lesion is resolved1-4. The 
epithelium of the uVIN lesion has been characterised as immunosuppressive reflected 
by a lower number of CD8+ T cells, the presence of immature DCs and LCs whereas the 
stroma is the immune active compartment with higher numbers of mature DCs, NK 
and T cells1,5,6. Regulatory T cells (Tregs), which are known to suppress induction of pro-
inflammatory Th1 cells required to subsequently attract effector CD8+ T cells to the lesion, 
abundantly infiltrate uVIN lesions and are consistently associated with non-responsiveness 
to immunotherapy 1-3,7-11. Intralesional CD8+ T cells are indispensable as illustrated by the 
decrease in the number of CD8+ T cells in the progression of uVIN as well as in an increase 
of mainly CD8+ lymphocytes in clinical responders to immunotherapy1-4,12. We confirmed 
the abundant expression of CD4+ and CD8+ lymphocytes and regulatory T cells mainly in the 
stroma of uVIN lesions. Moreover a high stromal CD8+/Treg ratio was related to a prolonged 
recurrence free survival rate in uVIN lesions highlighting the importance of intralesional 
effector T cells. In the progressive course of the disease towards HPV-positive vulvar 
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carcinomas the number of regulatory T cells increase and outnumber the CD8+ T cells, as 
reflected by a lower CD8+/Treg ratio (Chapter 5). 

Alterations in HLA expression in uVIN patients 
Alterations in HLA expression (e.g. HLA class I expression) in uVIN might allow these 
premalignant lesions to escape immune surveillance by specific CD8+ T cells because of 
insufficient antigen presentation to T cells. In a previous study downregulation of HLA 
class I was reported in 30% of uVIN lesions and in the majority of vulvar carcinomas. HLA 
class I downregulation was associated with non-responsiveness to photodynamic therapy 
(PDT)2. In Chapter 4 we show that alterations in HLA expression are already present in HPV-
induced uVIN. Over 70% of uVIN lesions and 80% of vulvar carcinomas display (partial) 
downregulation of HLA class I. Total loss of HLA-A and/or HLA-B/C, however, is scarce and 
found only in <10% of uVIN lesions although total loss of HLA B/C increased from 9% in uVIN 
to 38% in uVIN adjacent to micro invasive carcinoma. Downregulation of HLA B/C was related 
to the recurrences and progression of uVIN lesions. The (partial) HLA-class I downregulation 
seems reversible in uVIN since IFNγ stimulation of uVIN keratinocytes in vitro resulted in the 
upregulation of HLA class I. Moreover, only 15% of uVIN cases showed a genetically caused 
downregulation of HLA class I, through loss of heterozygosity (LOH). The reversibility of HLA 
class I downregulation is a potential explanation for the fact that HLA class I downregulation 
showed no clinical impact on the results of our HPV16 SLP vaccination trial, where all clinical 
responders showed partial downregulation of HLA class I and non-responders could still 
fully express HLA class I. Potentially, vaccine induced IFNγ-producing HPV16-specific CD4+ T 
cells that infiltrate the lesion mediate the upregulation of HLA class I in uVIN lesion without 
genetic cause of HLA downregulation. In vulvar carcinomas however LOH was more often 
associated with HLA class I downregulation (25-55.5%) suggesting that more advanced 
stages of HPV induced neoplasia are increasingly difficult to treat by immunotherapy. MICA, 
which serves as a stimulatory molecule for CD8+ T cells and NK cells through interaction 
with NKG2d, was downregulated in 80% of uVIN and carcinomas. A combination of HLA-
class I downregulation and MICA was associated with recurrent disease. The alterations of 
the classical HLA molecules and MICA seem an early event in HPV induced neoplasia which 
may allow lesions to develop. Expression of the non-classical HLA molecules -E and -G was 
associated with the progressive course of vulvar neoplasia, and found in approximately 50% 
of carcinoma cases. Negative feedback through NKG2a, suppressing activated T cells and NK 
cells, may add to the difficulty to treat carcinoma. 

Intralesional infiltration of myeloid cells and characterisation of lymphocytes 
The observed intralesional lymphocytic and myeloid cell infiltrates in uVIN by several 
independent study groups1-6,13, are apparently not able to clear the uVIN lesions and HPV. 
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This may be caused by an impaired function of those infiltrating immune cells as result of 
an immunosuppressive microenvironment. In Chapter 5 we presented a detailed analysis 
of several immune inhibitory molecules in the uVIN lesions and observed the expression of 
co-inhibitory molecules PD1, TIM3 and NKG2a on a proportion of infiltrating lymphocytes. 
The negative regulatory molecules as CTLA-4, TIM3 and PD1 are expressed to suppress 
T-cell function and prevent uncontrolled inflammation of the immune system14,15. TIM3 is 
upregulated in IFNγ producing CD4+ and CD8+ differentiated T cells whereas CTLA-4, PD1 
and NKG2a can be upregulated on T cells after activation15-17. In our study, the expression 
of TIM3 was correlated with high numbers of infiltrating Tbet positive T cells as well as 
with higher numbers of immune cells expressing its ligand Galectin-9, which is known to be 
upregulated in response to pro-inflammatory cytokines (e.g. IFNγ) or upon activation via 
TLRs18,19. Upon Gal-9 TIM3 interactions, T-cell function can be suppressed18,20,21, but Gal-9 
TIM3 interactions in CD8+ T cell may enhance their function if these cells do not co-express 
PD121,22. Interestingly the expression of the markers TIM3 and NKG2a on lymphocytes in 
uVIN lesions seemed a reflection of T-cell activation rather than inhibition since relatively 
higher numbers of CD8+TIM3+ and CD3+NKG2a+ T cells in the stroma of uVIN lesions 
were related to a prolonged recurrence free survival. However, when co-infiltrating Tregs 
outnumber these CD8+TIM3+ T cells the recurrence free survival is decreased. This is also 
observed in vulvar carcinomas. Unfortunately, we were not able to evaluate CTLA-4 by 
immunohistochemistry due to aspecific staining of different antibodies in paraffin embedded 
tissue but analysis of PD1 showed a number of activated PD1+ T cells in uVIN lesions, the 
presence of which did not seem to have clinical impact. Interestingly, the number of PD1+ 
and NKG2a+ T cells was higher in the epithelium of control tissue compared to uVIN tissue 
suggesting that immune cells in HPV infected tissue are less activated. Although scarcely 
present, stromal NKG2a expression on CD3+ T cells was associated with an improved clinical 
outcome in uVIN lesions. Potentially, because its ligand HLA-E was almost not expressed in 
uVIN lesions23. The expression of NKG2a is thus a potential reflection of an adequate local 
pro-inflammatory T-cell response in uVIN lesions. This notion would fit with the observation 
that in HLA-E expressing vulvar carcinomas the number of stromal CD3+NKG2a+ T cells was 
remarkably lower. 
The progressive course of HPV induced vulvar neoplasia is characterised by an increase in 
both epithelial and stromal Tregs as well as intraepithelial and stromal matured M1 and M2 
macrophages (Chapter 6). In uVIN lesions M2 macrophages outnumber M1 macrophages 
whereas the numbers of M1 level up in vulvar carcinoma. In case of a dense number of 
intraepithelial CD14+ macrophages (irrespective of type M1 or M2) the risk of a recurrence 
is markedly enhanced and this is an independent prognostic factor for recurrent disease. 
The presence of these CD14+ macrophages is associated with an increase in intraepithelial 
Tregs and with low numbers of stromal CD8+TIM3+ T cells. This indicates a shift towards 
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an immunosuppressed microenvironment since the combination of these parameters 
was associated with rapid recurrences (Chapter 6). Interestingly, patients not responding 
to imiquimod display an increased average (not-significant) number of CD14+ and CD68+ 
cells suggesting that macrophage infiltration in uVIN lesions may have impact on clinical 
responses to immunotherapy1. Based on our data we expect that the patients with higher 
numbers of CD14+ and CD68+ macrophages will also display a stronger infiltration with 
regulatory T cells whereas the clinical responders to imiquimod therapy probably will show 
the presence of pro-inflammatory infiltrating T cells. 

Systemic immunity in patients with uVIN lesions 
Systemic cellular HPV specific T-cell responses characterized by relatively robust proliferative 
IFNγ- and IL-5-producing CD4+ T-cell responses against early viral proteins E2, E6 and E7 are 
associated with better control of HPV16 infections24,25. In uVIN patients the systemic HPV 
16-specific IFNγ-associated type 1 T-cell responses against E2, E6 and/or E7 are either weak 
or non-detectable in up to 50% of the patients26-28. Perhaps the patients with detectable 
systemic HPV-specific T-cell responses are also the patients where a pro-inflammatory 
effector T-cell response is detected in the microenvironment. The presence of such 
circulating HPV-specific T-cell responses is unfortunately not associated with spontaneous 
lesion clearance but is associated with a better clinical response to imiquimod or PDT26,29. 
Therapeutic vaccination studies demonstrated the importance of a strong and broad systemic 
HPV specific pro-inflammatory immune response to resolve uVIN3,13,30,31. Interestingly, the 
capacity of patients to respond to therapeutic vaccination differs extensively. Some of the 
patients display relatively weak vaccine-induced responses of limited breadth associated 
with no clinical response, whereas in others the vaccine-induced T-cell response was strong 
and broad and associated with lesion regression. These data suggested that the patients’ 
capacity to respond to the vaccination varies and potentially this depends on their immune 
status. In two hypothesis generating studies we explored the phenotypic (co-inhibitory 
molecule expression) and functional (cytokine stimulated STAT phosphorylation) analysis 
of peripheral circulating lymphocytes as well as the type and number of myeloid cells 
(macrophages, DCs and MDSCs) in uVIN patients in comparison to that of healthy controls. 

Phenotypic analysis of circulating lymphocytes and myeloid cells
The expression of the inhibitory markers on peripheral lymphocytes was limited to a 
small percentage (<1%) of all CD3+ lymphocytes apart for PD1, which is expressed in 
approximately 3-5% of CD4+ or CD8+ T cells in both uVIN patients and healthy controls. 
No overt differences were observed although in uVIN patients the proportion of CD4+PD1+ 
and CD4+TIM3+ T cells was slightly increased compared to healthy controls. Interestingly, 
there was a higher frequency of CD4+CD94+ T cells in non-recurrent uVIN patients when 
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compared to patients with a recurrence. In addition, a higher frequency of these cells 
was associated with a prolonged recurrence free survival (Chapter 7). Interestingly, high 
numbers of CD3+NKG2a+ T cells in the microenvironment were also associated with a 
favourable clinical outcome(Chapter 5). Importantly, if a cell is NKG2a+ one can consider 
it positive for CD94+ as well because NKG2a forms a complex with CD94 and cells should 
be positive for CD94 when they express NKG2a17. While we observed that the frequency 
of circulating CD4+CD94+ and CD4+CD94+NKG2a+ T cells were related to non-recurrent 
uVIN and a prolonged recurrence free survival, this was not the case for CD8+ T cells. In 
our analysis of lesion infiltrating lymphocytes we were not able to distinguish between 
CD4+NKG2a+ or CD8+NKG2a+ T cells in the microenvironment but this is an important 
goal for the future analysis since a potential direct correlation between systemic and local 
immunity in relation to clinical outcome would provide a valuable biomarker. Unlike NKG2a+ 
expression, the frequency of local and circulating CD8+TIM3+ T cells was associated with 
opposite clinical outcomes. Circulating CD8+TIM3+ T cells are related to recurrences and 
a decreased recurrence free survival period (Chapter 7). The relation between CD8+TIM3+ 
cells and their opposite relations with clinical outcome based on the origin of the biological 
sample they are measured in requires further investigation. 
Phenotyping of circulating myeloid cells revealed that the frequencies of CD14+CD11b+ 
monocytes are comparable in uVIN patients and controls and account for the largest 
population of myeloid cells. The percentage of CD14highCD11b+ monocytes was lower in 
recurrent uVIN lesions than in non-recurrent lesions (9.5% vs 16.5%) albeit that this percentual 
difference was not significant, probably due to the small group of patients analysed. Minor 
groups are represented by populations of <1% and are formed by CD14+IntCD11b+ mature 
macrophages/DCs, non-activated CD14+CD11b- monocytes and CD14-CD11b+ myeloid 
cells which may be activated DCs or monocytes with loss of CD1432,33. A comparison of the 
myeloid cell populations revealed that patients with recurrences displayed lower frequencies 
of circulating immature DCs/early differentiating monocytes and activated mature DCs 
whereas the proportion of circulating type 2 monocytes/macrophages was increased. This 
is in accordance with the observation that an increased number of lesion-infiltrating M2 
was associated with worse outcome. Patients with relatively higher frequencies of DCs and 
lower frequencies of circulating type 2 monocytes/macrophages show a s favourable clinical 
outcome and prolonged recurrence free survival (Chapter 7). 
Notably, DCs are indispensable in antigen presentation and subsequent regulation of tumor-
specific immune responses34 and their activation is impaired by immunosuppressive tumor 
associated myeloid cells as macrophages35. The immature or non-activated DCs which we 
observed more frequently in PBMCs of recurrent uVIN patients are also frequently observed 
in tumors and they do not contribute to anti-tumor immune responses34. The higher number 
of type 2 monocytes/macrophages in PBMCs of recurrent uVIN patients, which were also 
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found to be increased within the lesion (Chapter 6) are probably involved in the impairment 
of DC.

Phosphorylation of signal transduction activators of transcription (STAT) in uVIN patients 
and healthy controls
We analysed the activation of different signal transduction routes in cytokine stimulated 
immune cells as a measure of their immune responsiveness (Chapter 7). We observed no 
differences in the activation rate or expression levels of pSTAT between uVIN patients and 
healthy controls for most of the cytokines tested. The only observations that we made 
were that healthy donor derived CD8+ T cells more often upregulated pSTAT5 upon IFNα 
stimulation when compared to uVIN patients. In an earlier study HPV-specific T cells from 
patients with recurrent respiratory papillomatosis display a reduced IFNγ and IL-2 secretion 
as well as lower STAT5 phosphorylation when compared to healthy controls suggesting that 
the HPV-specific T-cells were anergic. Their function could be restored by IL-2 implying that 
interventions restoring pro-inflammatory cytokine responses could improve clinical outcome 
and reverse T-cell anergy36. In addition, we observed that the CD14+CD33 monocytes of uVIN 
patients displayed lower levels of pSTAT5 upon IFNα stimulation whereas upon stimulation 
with GM-CSF higher levels of pSTAT5 were induced. Potentially, the cytokine signalling in 
these precursor antigen presenting cells has been altered in uVIN patients. 
The data obtained with the immune modulators GM-CSF and IFNα, both involved in DC 
activation, are of interest for future immunotherapeutic studies. They are both used 
as adjuvants to different therapeutic vaccines in order to enhance a Th1 polarized T-cell 
response37-39 but mainly the use of IFNα has been proven beneficial to vaccine induced 
T-cell responses38,39. The use of GM-CSF to enhance T-cell immunity has met with mixed 
outcomes38,39. Our data suggested that IFNα can indeed be regarded as a potent immune 
stimulator. It synergizes with IFNγ and may be a promising immune modulator during 
immunotherapy of uVIN patients. IFNα therapy has already shown promising enhancement 
of immune responses and potentially is related to clinical outcomes37,38,40-42. In a small 
number of vaccinated uVIN patients, with a peak of IFNγ upon the first HPV-16 SLP ISA101 
vaccination, pSTAT1 expression was increased upon stimulation with IFNα as well although 
it is difficult to unravel the activated interactive pathways in vivo that may explain the 
difference in the patients’ capacity to respond to immunotherapy. 
In conclusion, the circulating myeloid cell population is phenotypically and functionally 
altered in uVIN patients and our phenotypical analysis of circulating immune cells revealed 
two potential biomarkers associated with a better clinical outcome. The first is the frequency 
of CD4+CD94+ cells whereas the second is formed by the frequency of certain myeloid cell 
subsets, in particular DCs and type 2 monocytes/macrophages. 
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Future prospects for the immunotherapy of premalignant uVIN lesions
The prerequisites for successful immunotherapy of uVIN consist of adequate T-cell priming 
by APCs, a balance towards effector instead of regulatory T cells, an increase of intralesional 
effector T cells, prevention of immune exhaustion and creating a pro-inflammatory 
microenvironment in which the activated HPV-specific effector T cells can exert their function 
in order to resolve the infection and lesion43,44. Different immunotherapies may act on parts of 
this. For instance, the topical immune modifier imiquimod enhances the migration of effector 
T cells in the lesion but apparently lacks the capacity to induce systemic T-cell activation to 
HPV antigens1,7,26. Therapeutic HPV vaccination results in adequate T-cell priming and pro-
inflammatory T-cell responses and is in two studies related to clinical responses (reviewed 
in 45) of which the TA-HPV results in an increase in intralesional influx of T cells in responders 
if combined with imiquimod3 whereas this remains unknown for the HPV-16 SLP vaccine30,31. 
We recently submitted the results of a vaccination study with HPV16 SLP ISA101, in which 
patients were randomised for vaccination with or without imiquimod application on the 
vaccination sites46. This trial confirmed the clinical efficacy of the vaccine as well as the 
relation of clinical responses to the strength of the vaccine induced pro-inflammatory HPV 
specific T-cell response. PDT may also result in the priming of lesion-specific T cells47, but 
is not likely to be as effective as vaccines. Since the vaccine-induced immune responses in 
the two HPV16 SLP trials are quite strong, one can envisage that meaningful improvements 
of clinical efficacy are not likely to come from further improvements of the vaccine itself 
but need to come from manipulation of the microenvironment where the T cells need to 
execute their function30,46.
We have shown that the premalignant uVIN lesions are actually immune supportive 
compared to progressed vulvar lesions. This is reflected by reversibility of HLA-class I 
downregulation, the infiltration with relative high numbers of activated CD8+ effector T cells 
and IFNγ-producing (Tbet+) T cells as well as relatively low numbers of regulatory T cells 
and intraepithelial CD14+ monocytes, all of which are related to time to recurrence and 
progression of the disease. We hypothesize that for immunotherapy one may best focus 
on this group of patients as, with such a supportive immunological profile of which it is 
likely that they will be responsive. For instance, the lesions of patients within this group 
show no impaired migration of T cells or local immune suppression which may counteract a 
therapeutic vaccine-induced or boosted T-cell response.
The non-responders to current immunotherapies are likely to be among the group of patients 
with lesions that are characterised by loss of HLA expression and show a strong infiltration 
with Treg and CD14+ macrophages. These lesions are more alike to HPV induced vulvar 
cancers. Here one can expect that immunotherapy requires a strategy including methods 
to overcome the different aspects of immunological failure which may come from the 
field of cancer immunotherapy. Potentially, a combination of therapeutic vaccination with 
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imiquimod on the lesion can be used. Imiquimod is a topical immune modifier which acts 
through activation of innate immune cells by binding to TLR7 and 8 on DCs, which induces 
activation of NF-kB and subsequent secretion of multiple pro-inflammatory cytokines and 
activation of DCs, resulting in an influx of immune cells in the vulvar lesions and in increased 
antigen presentation because of LC migration to the draining lymph nodes1,3,4,7,48,49. Recently, 
it was also shown to upregulate the local expression of CXCL9 and CXCL10, chemokines 
involved in recruitment of CD4+ and CD8+ T cells50. Thus imiquimod may be used to change 
the local microenvironment cytokine milieu resulting in M1 polarization of the macrophages 
and a better attraction of CD8+ T cells to a number that outbalances Tregs. Treatment 
does not result in expansion of HPV-specific T cells26 but the combination is very likely to 
be successful as pre-existing HPV-specific immunity is related to better clinical responses 
upon imiquimod therapy26 and data from our clinical vaccination trials show that vaccinated 
patients who were initially not responding to vaccination, but are subsequently treated with 
imiquimod, generally display a complete and durable lesion regression30,46. Furthermore, 
the combination of vaccination and local imiquimod resulted in increased lesion-infiltrating 
immune cells and disease control in an animal model 50 and in uVIN patients3. A similar 
observation was made when imiquimod was combined with PDT3,4. In contrast to the 
combination of PDT and imiquimod, the numbers of intralesional T cells did not return to 
levels before imiquimod application when it was combined with vaccination suggesting that 
the vaccine-induced HPV 16 specific T-cell response resulted in increased T-cell infiltration 
and subsequent higher numbers of clinical responders1-4,31. 
Of note, our associations between immune cell infiltrates and clinical outcome are based 
on a cohort of uVIN patients treated with conventional therapies. It will be of utmost 
importance to estimate and validate these associations in a second patient cohort consisting 
of patients treated with immunotherapies such as imiquimod and therapeutic vaccines, in 
particular with HPV16 SLP vaccination. 
As already established the combination of local imiquimod and systemic immunotherapy to 
increase both intralesional and circulating immune responses promoted the clinical success 
rate3. 
Furthermore depletion of Tregs may be of additional value to enhance cytotoxic T-cell 
mediated responses since we showed the importance of Tregs in the recurrence and 
progression of uVIN and the association of local Treg infiltration in non-responsiveness to 
immunotherapy. Cyclophosphamide is a well-known Treg depleting agent and anti-CD25, 
anti-CTLA-4 and anti-GITR monoclonal antibodies have been used as well51-54. Anti-CTLA4 
has been shown to deplete tumor infiltration regulatory T cells, which express high levels of 
CTLA4, via an Fc dependent mechanism55-59. In a murine model of HPV tumor bearing mice 
a single dose of cyclophosphamide prior to therapeutic HPV-16 DNA vaccination resulted in 
an increase in anti-tumor responses related to a reduction in infiltration of regulatory T cells 
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and increased number of HPV specific CD8+ T cells52. Moreover in patients with genital warts 
administration of cyclophosphamide reduces the number of regulatory T cells and improves 
the microenvironment resulting in prevention of recurrence in patients with large genital 
warts after laser therapy60. In ovarian cancer patients pre-treated with cyclophosphamide 
before p53 SLP vaccination the systemic number of Tregs nor their function was altered but 
induced higher IFNγ specific T cells compared to p53 SLP vaccination although the influence 
on the local regulatory T cell infiltrates was not established61. 
The targets for monoclonal antibodies on either blocking of co-stimulatory or co-
inhibitionary pathways on effector T cells, monocytes/APCs or regulatory T cells to release 
the brake on T-cell proliferation and activation are extensive (reviewed in 14,62-64). Our current 
data do not support the use of such antibodies to improve immunity, however, more specific 
phenotyping of the cells expressing these inhibitory molecules as well as their ligands are 
needed before firm conclusions on this topic can be made.
Another target that should be considered to optimize immunotherapy of uVIN may be the 
depletion or re-programming of macrophages as they were found to be associated with 
recurrent disease and increased numbers of regulatory T cell infiltrates in uVIN lesions. 
In our data the absence of intraepithelial macrophages, irrespective of type 1 or type 2 
macrophages, is favourable. Notably, the CD14+CD163-negative cells that are thought to 
be M1 macrophages may also reflect a population of CD14+CD11c+PDL1+ regulatory DCs 
which have been correlated to Tregs in metastatic lymph nodes of cervical cancer patients65. 
This still needs to be studied in uVIN. If so, depletion of macrophages might be the first 
choice. On the other hand, we found that M2 macrophages strongly outnumber the M1 
macrophages in uVIN lesions which may have masked a potential positive influence of M1 
macrophages. In tumors, M1 macrophages were an independent prognostic factor for 
better clinical outcome32,66. Furthermore, our research group showed that a population 
of inflammatory macrophages was required for vaccine induced regression of tumors67. 
In case M1 macrophages are as essential in uVIN lesions, therapies resulting in a switch 
from M2 to M1 macrophages are required. As production of PGE2 and IL-6 is known to 
induce M2 macrophages and hamper DC differentiation68,69, blocking with anti-IL-6 
(tocilizumab) or COX-inhibition which blocks production of PGE2 (celexocib) can induce re-
polarization of macrophages and may improve clinical outcome68-72. Moreover blockade of 
colony-stimulating factor 1 receptor (CSF1 inhibitors) results in improved anti-tumor T-cell 
responses by decreasing the number of tumor associated macrophages (TAM) but also 
reprogram remaining TAMs to support antigen presentation and include T-cell activation 
revealing reduced local immune suppression and IFNγ responses73-75. Re-differentiation 
of macrophages can as well be induced in response to IFNγ in combination with CD40-
CD40L68 since upon CD40 ligation DCs mature and produce pro-inflammatory cytokines 
and upregulate co-stimulatory molecules to induce effector T cells76,77. Other repolarisation 
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options rely in triggering of TLRs78,79. By triggering of TLR3 by poly I:C in mice tumor supporting 
macrophages were converted into tumor suppressing M1 macrophages rapidly producing 
inflammatory cytokines78. Furthermore blocking of IL-10 by antibodies in combination with 
the TLR9 ligand CpG resulted in a shift from M2 to M1 infiltrating macrophages 79. 
Recently antiviral therapy by cidofovir 1%, which may induce apoptosis of the HPV infected 
cells80, showed comparable results to imiquimod making this a feasible and active alternative 
in treatment of uVIN lesions81. It will be important to establish if the clinical effect of this 
compound relies on the immune system. If so, the effects of this compound may be improved 
by combination with one or more immunotherapeutic agents. 
Last but not least if pre-existing immune infiltrates can function as biomarkers in the 
individual patient to predict the patients’ responsiveness to the suggested therapy we could 
prevent unnecessary side effects of immunotherapy as well as delay in effective therapy 
and prevent potential progression in this period. In the ideal situation combination of 
local immunotherapy, as imiquimod or cidofovir, to induce local inflammation and effector 
T-cell homing, combined with therapeutic vaccination to induce a strong and proliferative 
systemic HPV T-cell response would be combined with an additional immune modulating 
therapy depending on the immune infiltrates profile present in the local environment of the 
patients’ uVIN lesion. 

Final conclusion

All steps achieved in the last decade regarding the knowledge of immune infiltrating 
cells in (pre)malignant lesions as well as steps taken in immunotherapeutic approaches, 
makes that we now know that these high grade HPV uVIN lesion can undergo an immune-
driven regression and we are challenged to further improve the promising established 
immunotherapies. Individualisation of patients therapy based on the immune infiltrates 
prior to therapy requiring for example depletion of immune suppressive macrophages or 
Tregs or enhancement of the pre-existent pro-inflammatory environment should be a goal 
to keep in mind in order to minimize the side effects of therapies and to improve the number 
of responding patients.
The recent introduction of prophylactic HPV vaccination to prevent HPV related (pre)
malignancies is expected to lower the incidence and impact of HPV related disease as 
uVIN in the future82. However it will take a long time until the prophylactic vaccination will 
actually decrease the burden of HPV-induced (pre)malignancies over the general population 
especially since the coverage of HPV vaccination is lower as expected83. These prophylactic 
vaccines are not able to treat already infected HPV women84. Therefore, new strategies to 
effectively treat HPV-induced (pre)malignancies as uVIN are still needed. 
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