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Abstract 

A failure of the immune system to launch a strong and effective immune response to high 
risk HPV is related to viral persistence and the development of anogenital (pre)malignant 
lesions such as vulvar intraepithelial neoplasia (VIN). Different forms of immunotherapy, 
aimed at overcoming the inertia of the immune system, have been developed and met 
with clinical success. Unfortunately these, in principal, successful therapeutic approaches 
also fail to induce clinical responses in a substantial number of cases. In this review we 
summarize the traits of the immune response to HPV in healthy individuals and in patients 
with HPV induced neoplasia. We discuss the potential mechanisms involved in the escape of 
HPV-induced lesions from the immune system and indicate gaps in our knowledge. Finally, 
the interaction between the immune system and VIN is discussed with a special focus on the 
different forms of immunotherapy applied to treat VIN and the potential causes of therapy 
failure. We conclude that there are a number of pre-existing conditions that determine the 
patient’s responsiveness to immunotherapy and that an immunotherapeutic strategy in 
which different aspects of immune failure are attacked by complementary approaches will 
improve the clinical response rate. 

Keywords: VIN, immunotherapy, immune modulation, vaccination, HPV, immune escape, 
regulatory T-cells, macrophages
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Introduction 

Vulvar intraepithelial neoplasia (VIN) is a chronic vulvar skin disease with malignant 
potential that often causes severe and long-lasting complaints of pruritis, pain and sexual 
dysfunction.[1] In 2004, VIN lesions were classified according to the International Society for 
the Study of Vulvovaginal Disease into; usual type VIN (uVIN), historically called VIN 2 and 
3, and differentiated type VIN (dVIN).[1,2] The incidence of dVIN accounts for less than 5% 
of all VIN lesions, occurs in older women, and is associated with chronic dystrophies of the 
vulva such as lichen sclerosus and lichen planus.[1-3] dVIN has a high malignant potential 
(5.6 fold compared to uVIN).[1,3] UVIN is caused by a persistent human papilloma virus 
(HPV) infection, in particular HPV type 16, which is present in over 90% of cases.[1,4,5] The 
incidence of uVIN, approximately two per 100,000 women, is increasing worldwide and is 
related to the increase of HPV infections in young women.[3,6-9] UVIN occurs predominantly 
in younger women (peak incidence 40 years), tends to be multifocal in 60% of patients and is 
correlated with smoking.[1,2] Progression rates to malignancy of uVIN are estimated at 3-4% 
after treatment and 9% without treatment in 1–8 years, whereas spontaneous regression 
of VIN occurs in less than 1.5%.[10,11] Treatments are therefore aimed at both relief of 
symptoms and prevention of progression into (micro-)invasive lesions. Conventional surgical 
treatment is often disfiguring, mutilating and suboptimal, as reflected by the high recurrence 
rates of 20-40% and physical and psychological morbidities.[10,12-14] 
HPV is a DNA virus that infects the basal cells of the genital epithelia, in particular the 
squamous epithelium, and is the most common sexually transmitted pathogen worldwide.
[9,15] Over 100 types of HPV are identified, which are subdivided into low risk (non-
oncogenic; e.g. lr-HPV 6 and 11) and high risk HPV (oncogenic; e.g. hr-HPV 16 and 18)[16] 
Approximately 60% of young women are infected with either an hr-HPV (40%) or lr-HPV 
(20%) within the5-year period after they become sexually active, while the lifetime risk 
of acquiring an HPV infection is estimated at 80%.[8,9,17,18] In most cases the infection 
is asymptomatic and is cleared within 1 year.[8,17] Persistent infections only develop 
in less than 10% of the infected women and are causally related to the development of 
intraepithelial neoplasia of the cervix (CIN), vagina (VAIN), anus (AIN) and/or vulva (VIN) 
and their subsequent progression to invasive squamous- or adeno-carcinoma.[8,9,17,19,20] 
Multicentric disease affecting the cervix, vagina and/or anus have been described in 22–
71% of VIN patients.[21,22] The risk factors associated with HPV-induced disease are the 
lifetime number of sexual partners, smoking (as it results in a decreased local immune 
response), and the use of oral contraceptives (of which the estrogens may increase cellular 
proliferation via an effect on the early oncoproteins of HPV).[23,24] 
The early viral oncoproteins of HPV (E1, E2 and E4–E7) are the key factors in progression 
of HPV induced disease because they have different and synergistic functions in the 
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maintenance, replication and progression of a potential HPV associated lesion.[15,16,25,26] 
These early oncoproteins influence several signal transduction pathways such as the cell 
proliferation pathway due to inactivation of cell cycle arrest protein p16INK4A, the TNF-α and 
IFN pathways.[26] The pivotal players E6 and E7 are constitutively expressed in malignant 
tissue and their expression results in enhanced cell proliferation and subsequent viral 
genome replication.[15] E6 downregulates p53 and expression of the proapoptotic protein 
BAK, leading to resistance to apoptosis and increased chromosomal instability.[25] E7 binds 
to and degrades the retinoblastoma susceptibility protein (pRB), which leads to apoptosis. 
By transcriptional activation of the cyclin A and cyclin E genes, E7 regulates cell proliferation 
and downregulates p16INK4A, which can counteract the function of E6.[25] The E1 protein is 
essential in HPV replication where the E2 protein acts both as a replication and transcription 
activator.[16] E2 represses the viral promoter of E6 and E7 during early stages of infection.
[27] Carcinogenic progression is accompanied by integration of the viral genome into the 
host cell DNA which disrupts E1 and E2 function and enables upregulation of E6 and E7 
expression.[27] E5 appears to be important in the early course of infection by stimulating 
cell growth and preventing apoptosis following DNA damage.[25] 
The high prevalence of hr-HPV infection in uVIN has lead to the suggestion that therapy 
should aim for the immunological eradication of virus-infected cells. Different types of 
local and systemic forms of immunotherapy have already been described with encouraging 
clinical results; in a number of trials almost half of the treated patients had durable complete 
lesion regression.[28-33] Notwithstanding these successes, these therapeutic approaches 
also fail to induce clinical responses in a substantial number of cases. The aim of this review 
is to provide insight into the nature of HPV-induced disease, to indicate the gaps in our 
knowledge of the interaction between uVIN and the immune system and to identify the 
possible causes of immunotherapy failure as a guide to optimize the immunotherapy of 
uVIN.
 
Immunity to HPV infection 
Infection with HPV occurs when the epithelial surface is disrupted through minor damage of 
the genital mucosa, thereby allowing access to the basal cells of the epithelium.[25] Here, 
the early proteins E6 and E7 are expressed.[15] In the suprabasal layers, E1, E2 and E5 are 
expressed and viral replication takes place.[15] In the most superficial layers, newly made 
viral DNA is encapsulated by the late structural proteins L1 and L2 and the new virions are 
released by wear and tear of the epithelial surface.[15] The absence of a cytopathic phase 
or systemic viraemia reduces the potential exposure of HPV to the immune system and 
causes delay in the activation of the immune system. This is not absolute as over 80% of 
the HPV infections are controlled within 2 years after infection.[8,17,34] There is strong 
evidence that both the innate and the adaptive arms of the immune system play a role in 
the protection against HPV as will be described in detail below.
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Innate immunity
The innate immune system acts as the first line of defense against invading viruses. 
Keratinocytes express pathogen recognition receptors (PRRs), including the membrane 
bound toll-like receptors (TLR), the cytoplasmic NOD-like receptors (NLR) and RNA helicase 
retinoic-acid-inducible gene I (RIG-1) and melanoma differentiation-associated gene 5 
(MDA5).[35-39] The latter two recognize double-stranded viral RNA in the cytoplasm and 
are constitutively expressed in human keratinocytes.[36-38] The TLR family (TLR 1-10) 
recognizes different molecular patterns; TLR3 recognizes double-stranded RNA, TLR7 
and TLR8 recognize single-stranded RNA found during viral replication, whereas TLR9 
recognizes unmethylated CpG motifs common in viral DNA.[35,36,40] TLR3 is expressed in 
undifferentiated keratinocytes while the expression of TLR9 in undifferentiated keratinocytes 
is debated or present at very low levels.[38-40] Both TLR3 and TLR9 are capable of regulating 
proinflammatory responses, whereas TLR7 and TLR8 were not functionally expressed in 
undifferentiated keratinocytes.[38-40] However, human keratinocytes are able to upregulate 
TLR7 in response to stimulation with poly I:C, which is a strong agonist for TLR3, RIG-I and 
MDA5, suggesting that under inflammatory conditions the keratinocytes may become 
responsive to immune-modifying TLR7 agonists.[37] Binding of viral components to these 
receptors during early stages of viral infection leads to direct NF-kappa-B activation, which 
results in upregulation of pro-inflammatory cytokines, and/or activation of type I interferon 
(IFN) response genes, including transcription factors IRF3 and IRF7 regulating the production 
of antiviral and pro-inflammatory cytokines (e.g. GM-CSF, IL-1β, TNF-α, IL-10, IL-12, MIP3α).
[35-40] Proliferative cytokines and chemokines influence the migration and function of 
antigen presenting cells (APCs), with Langerhans cells (LCs) and dermal dendritic cells (DCs) 
being their main representatives in the skin.[41,42] This wide variety of PRRs present in 
human keratinocytes reflects their ability to respond to different classes of pathogens and 
HPV infected keratinocytes should be able to detect the presence of HPV genomic DNA 
directly via TLR9 or indirectly via RIG-I.[36,38] 

Cellular immunity 
The important role of the immune system in protection against HPV-induced lesions is 
demonstrated by the high incidence of persistent HPV infections and subsequent HPV-
related malignancies in immunosuppressed individuals.[43,44] On the other hand, only a 
minority of infected non-immunosuppressed subjects develop progressing epithelial lesions 
or cancer.[8,9,17-20,45] Composite data indicate the importance of CD4+ T-cells in the 
control of HPV-induced disease as more severe lesions are observed in HIV+ patients with low 
numbers of circulating CD4+ T-cells.[45,46] In addition, the increase in CD4 cell count after 
anti-retroviral treatment correlates with the regression of HPV-induced CIN lesions in HIV+ 
patients.[46] Activation of the adaptive immune response is dependent on cross-presented 
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viral antigens by activated LCs and DCs. Depending on the different environmental cues in 
the microenvironment; the APC will adopt a certain state of differentiation and migrate to 
the local lymphoid tissues to present antigens to naïve T-cells. Depending on the status of 
the APC, as reflected by the levels of co-stimulatory or inhibitory molecules and its cytokine 
production (e.g. IL-12 or IL-10), a T-cell response will be induced that can consist of different 
types of CD8+ T-cells, CD4+ helper T-cells (Th-cells) and regulatory T-cells (Tregs).[47,48] At 
the time of spontaneous regression of HPV-infected genital warts, the lesions are infiltrated 
with CD8+ cytotoxic T-cells (CTL), CD4+ T-cells and macrophages.[49] Approximately 60% of 
the healthy subjects display a directly ex-vivo detectable type 1 (i.e. IFNγ associated) T-cell 
reactivity against the early oncoproteins E2, E6 and E7.[50,51] Spontaneous regression and 
clearance of HPV-induced lesions is associated with the presence of both lesion infiltration 
and circulating CD4+ and CD8+ T-cells directed against the early oncoproteins whereas this 
type of immunity is weak or lacking in patients with progressive HPV-induced diseases.
[45,52-58] These data indicate that type 1 T-cell responses to the HPV 16 early proteins play 
an important role in the protection against persistent HPV infection.This notion is sustained 
by the data obtained from clinical trials in which the full regression of HPV 16-induced high-
grade vulvar lesions is strongly associated with the presence of a proliferative or type 1 HPV-
specific T-cell response prior to the treatment.[30,59] Moreover, clinical regression after 
immunotherapy by vaccination is associated with the strength (i.e. breadth and magnitude) 
of the vaccine-induced proliferative and/or IFNγ-associated HPV-specific T-cell response.
[29,31,60,61] Notably, a directly ex-vivo detectable type 1 T-cell reactivity against the late 
structural antigen L1 is not only found in healthy subjects but also in the majority of patients 
with HPV-induced disease.[55] Furthermore, strong type 1 L1-specific T-cell responses are 
induced by vaccination with L1 virus like particles (VLPs), yet these vaccinations are not able 
to induce clearance of established infections.[55,62] Together these observations indicate 
that the response against L1 is not essential for T-cell mediated protection once a person is 
infected by hr-HPV.

Humoral immunity
Antibodies to the HPV viral capsids L1 and L2 can be detected from approximately 6 months 
post infection although 30-50% of patients with persistent infections never seroconvert.
[63,64] Immunoglobulin-G (IgG) seroconversion rates appear to be higher among women 
with persistent infection over a long period of time.[65] In general, IgG antibody responses 
to HPV L1 and L2 are weak during infection (i.e. at low levels) and do not protect against 
re-infection with the same HPV type or clear HPV-induced lesions as discussed above.[66-
68] However, the induction of high levels of antibodies to the virus capsid protein – via 
prophylactic vaccination with VLPs – prevents viral infection very efficiently and has led 
to the introduction of two commercial vaccines (Gardasil® and Cervarix®).[69-71] The 
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prophylactic vaccine protection times depend on follow-up in the clinical trials and range 
from 4 to 9 years.[69-71] However, no accelerated clearance of existing viral infections has 
been observed despite these high antibody levels.[62] Antibodies reactive to E6 and E7 are 
also frequently found in patients with HPV-induced cancer and their induction appears to 
be dependent on the clinical stage of disease, with approximately 20% of seroconverters at 
FIGO stage I up to more than 50% in stage III.[72,73] Particularly in early stage disease, the 
antibody response to HPV 16 E6 is more frequently found compared to E7.[72,73] While 
it does not appear to affect prognosis at the stage of cancer, positive humoral reactivity 
to E7 was observed in patients who had cleared the viral infection rather than patients 
with persistent infection.[74] Although these antibodies are not expected to exert any 
direct effect on infected or transformed cells, their presence indicates active priming of 
an underlying T-cell response. Notably, HPV-specific T-cell responses are also found more 
frequently in cervical cancer patients with more advanced stages of disease.[75]

Immunogenetics 
Besides environmental and lifestyle factors, host genetic factors are likely to play a role in 
persistence and appearance of HPV-induced neoplasia. The antigen processing machinery 
(APM) and human leukocyte antigen (HLA) class I molecules are key in the presentation 
of antigenic peptides to CD8+ T cells and, therefore, are important in the destruction of 
virally infected or transformed cells.[76,77] Defects in the APM and HLA molecules thus may 
contribute to viral escape, persistence and ultimately induce malignancies. From an array 
of 13 non-synonymous coding single nucleotide polymorphisms (SNPs) in the LMP2, LMP7, 
TAP1, TAP2, and ERAP1 genes, the allele distributions at the LMP7-145, TAP2-651, ERAP1-
12, and ERAP1-730 loci differed significantly between cases and controls with the major 
allele at the LMP7 and TAP2 loci and the minor allele at both ERAP1 loci associated with 
increased risk for cervical carcinoma.[76,77]
Over 800 different HLA class I and class II alleles have been defined and it is possible that 
some HLA molecules may be more or less suitable to present HPV-derived peptides and as 
such influence the ability to clear an HPV infection or HPV-induced neoplasia.[78] Indeed, the 
susceptibility or resistance to HPV infection and HPV-induced lesions has been associated to 
particular HLA alleles, albeit that many of these findings were not consistent across different 
populations.[79] A protective effect of HLA class II DRB1*13/DBQ1*0603 alleles is the most 
consistently found association, although the effect was only significant in 47% of studies.
[79] HLA-DRB1*07 and DRB1*15/DQB1*0602 have been associated with an increased risk 
of HPV-induced cervical neoplasia in The Netherlands and we confirmed that HLA-DRB1*07 
was overrepresented in Dutch patients with HPV 16-positive cervical cancer whereas HLA-
DRB1*13 was underexpressed in patients with cervical cancer compared to controls.[75,80] 
A large (>500 cases and >500 controls) study on co-occuring alleles revealed that of the 137 
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allele combinations present in >5% of women with squamous cell carcinoma of the cervix, 30 
were significantly associated with an increased risk, with all but one including DQB1*0301.
[81] Among the six co-expressed alleles that were associated with a decreased risk, four 
comprised DQB1*02.[81] The particular associations between disease and HLA class II 
alleles but not HLA class I alleles gain extra weight through the detection of predominant 
HLA class II –restricted CD4+ T-cell responses over HLA class I-restricted CD8 T-cell responses 
in healthy individuals and patients.[61,82,83] Furthermore a study of 49 candidate immune 
response and DNA repair genes revealed that a SNP in the innate immune gene IRF3 was 
associated with increased HPV persistence.[84] Reports on the influence of particular 
SNPs in the IL-10 gene are debated and those described to influence the production of the 
immunosuppressive cytokine TGFβ did not differ between cases and controls.[85-87] A SNP 
in the chemokine receptor 2 – which binds the macrophage recruiting chemokine MCP-1 – 
was associated with a decreased risk for cervical cancer.[86] SNPs in the promoter region of 
TNFγ or the receptor of IL-4 were associated with increased risk for cervical cancer.[86,88]
Other potential genetic factors involved in the progression of HPV-induced neoplasia 
may comprise genetic differences in the genes of the innate immune response (e.g. PRR 
pathways, activation of transcription factors), genes of the antigen presenting pathway, 
genes involved in APC activation and migration, or genes involved in T-cell migration and/
or differentiation and in chemo- or cytokine production. For example, WHIM (Warts, 
Hypogammaglobulinemia, Infections, and Myelocathexis) syndrome is a rare congenital 
immunodeficiency disorder characterized by high susceptibility to HPV infection and is 
associated with autosomal dominant heterozygous mutations in the gene for the CXCR4 
chemokine receptor.[89] WHIM is characterized by the marked reduction of circulating 
naïve T cells. T cells bearing this mutated chemokine receptor display an increased migratory 
response to CXCL12. It has been suggested that the increased migratory response results in 
the capture of these cells in the bone marrow [89], removing them from the periphery and 
as such potentially precluding their response to HPV.

Immune escape in HPV-induced disease - lessons from cervical neoplasias
Persistent viral infections reflect a failure of the host’s immune system to control infection 
where several immune escape mechanisms of HPV are present [Box 1] (reviewed in [26,90]). 
While viral clearance or regression is associated with the presence of circulating CD4+ and 
CD8+ T-cells, viral persistence corresponds with a weak or absent early antigen specific T-cell 
response.[45,53,55,58,75] The systemic HPV-specific immunity to E6 and E7 is detected in 
approximately one third of patients with CIN or cervical cancer. The T-cell responses detected 
are generally not associated with the capacity to produce IFNy and can consist of Th2 cells, 
non-polarized T-cells, or even regulatory T-cells.[45,56,58,59,75,82,91,92] Remarkably, 
CD4+ and CD8+ T-cell responses in tumor and tumor draining lymph nodes in cervical cancer 
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are broad and aimed at both E6 and E7. When stimulated ex-vivo, they produce only low 
amounts of IFNy, but in the presence of APC-stimulating compounds cytokine production 
increases.[82,83] Interestingly, in cervical cancer patients, deep infiltration of the tumor 
within the normal tissue correlates with the presence of circulating HPV-specific T-cells and 
a better survival of patients.[75] Cumulatively, these studies suggest that the T-cells are 
locally not sufficiently stimulated and may even be suppressed.

Impaired antigen presentation and activation of innate immunity
Initial infection by HPV causes a cascade of viral gene expression, replication of the viral 
genome and enhanced cell proliferation.[26] One of the major sensors of DNA viruses 
is TLR9. Expression of TLR9 is either lacking or at very low levels in the undifferentiated 
basal cell layer of the squamous epithelia.[38] Furthermore, infection of keratinocytes 
with recombinant retroviruses expressing the HPV 16 E6 and E7 oncoproteins inhibits TLR9 
transcription and facilitates functional loss of TLR9-regulated pathways.[93] This indicates 
that infected keratinocytes are not able to signal via TLR9, however, other viral PRRs might be 
employed.[38] Despite the presence of these other intracellular PRRs which allow infected 
cells to attract the immune system, the mean clearance time of HPV is 12-18 months, 
indicating that HPV still manages to delay or escape recognition and immune activation.
[8,17] HPV does not affect the expression of different virus-sensing PRR, but genome wide 
expression profiling studies have demonstrated that the presence of HPV was associated 
with downregulation of components of the antigen presenting pathway, the inflammasome, 
the production of antivirals such as type I interferons, pro-inflammatory and chemotactic 
cytokines and activated pathogen receptors. Notably, many of the downregulated genes are 
found in a network that is strongly interconnected by IL-1β, a crucial cytokine to activate 
adaptive immunity.[38] HPV+ keratinocytes were also shown to respond less well to 
interferon stimulation.[94,95] This concurs with the observation that interferon-inducible 
genes are downregulated via inhibition of the JAK-STAT activation response pathway and 
downregulation of the active STAT 1 (i.e. phosphorylated or pSTAT-1), which is the primary 
regulator of the interferon response.[38,96] 
In addition, HPV might also hamper activation of the adaptive immune system by regulating 
the function and migration of antigen presenting cells present in the epithelia. When viral 
particles are taken up by LC this does not necessarily result in an antiviral response. The 
structural L2 protein of HPV is able to suppress phenotypic and functional maturation of 
LCs and therefore can limit adequate antigen presentation to T-cells.[97,98] Furthermore, 
the number of LCs is reduced in HPV infected lesions compared to normal tissue.[99-101] In 
one of our studies the number of LCs varied extensively in cervical cancer and was related 
to increased migration under the influence of TNF-α.[41] The lower number of LCs is thus 
probably a result of lower production of chemokines and a subsequent lack of attraction of 
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precursor cells to replenish LC migrated out of the tissue.[42] Last but not least, the absence 
of pro-inflammatory signals in HPV-infected epithelia can result in inappropriately activated 
APCs and upon cognate interaction with T-cells they will induce T-cell tolerance.(reviewed 
in [102]) 

Alterations in Human Leukocyte Antigen (HLA) expression 
Cervical cancer patients in whom circulating HPV-specific T-cells are detected display a 
longer survival after chemoradiotherapy than patients without a detectable T-cell response.
[75] These T-cells may contribute to the antitumor response or reflect an ongoing CD8+ 
T-cell sustained tumor-specific immune response as they are only found in patients with HLA 
class I positive tumors.[103] Downregulation of HLA class I (HLA- A, -B and -C) is frequently 
observed in cervical neoplasia and may result in an escape of the tumor cells from cytotoxic 
T-cell attack.[80,104] Defects in HLA class I expression are caused by a variety of mechanisms, 
including loss of heterozygosity at chromosome 6p, β2-m or HLA class I mutations, defective 
expression and function of components of the antigen processing machinery (APM) and/or 
due to lack of IFNy expression.(reviewed in [105])[80,104,106] The HPV-encoded E5 and E7 
proteins have also been implicated in downregulation of HLA class I.[26] Downregulation 
of HLA-A is associated with worse survival of patients with cancer.[107] Induction of HLA 
class II molecules is observed in the majority of cancers and can be mediated by cytokines 
such as IFNy.[108] HLA-II expression (HLA-DR, -DQ and -DP) was observed in 67% of CIN 
I, 58% of CIN II, 93% of CIN III and in 75% of cervical cancers.[108] In each histological 
category HLA-DR was most commonly expressed and HLA-DQ least commonly expressed.
[108] Interestingly, analysis of CD4+ HPV 16- and 18- specific tumor infiltrating T-cells (TILs) 
revealed that the vast majority (>80%) of CD4+ T-cells were restricted to HLA-DQ or –DP and 
not to HLA-DR, suggesting that immune escape at the HLA-DQ-restricted CD4+ T-cell level 
may have occurred.[82] This would also agree with the protective effect of some HLA-DR/
DQ combinations found to be associated with protection against HPV-induced cancer.[79] 
The expression of HLA-class II molecules might contribute to a successful response since 
activated CD4+ Th1 cells in the tumor environment enhance the recruitment, proliferation 
and effector function of CD8+ T-cells.[109] However, it is still unclear if the expression of 
HLA class II by tumor cells can also hamper the immune response and may favor tumor 
outgrowth as HLA class II may also induce tumor promoting signaling by rendering the CD4+ 
T-cells anergic after cognate interactions in the presence of immunoinhibitory cytokines and 
lack of co-stimulatory molecules as CD40 or by activating/inducing Tregs.[110] 
Next to the classical HLA class I and II molecules, cervical tumor cells have been reported 
to express HLA-G. (Figure 1)[111-113] This non-classical HLA type plays an important 
role in tumor-driven immune escape as it inhibits the function of natural killer (NK) cells, 
T-lymphocytes and APCs through direct binding of inhibitory receptors immunoglobulin-like 
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transcripts ILT-2 and ILT-4 and the killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4).
[111] The expression of HLA-G in cervical lesions is associated with progression from pre-
malignant to malignant lesions and may play a role in inhibiting effective host immune 
responses by inducing Th2 cytokines.[111,112] 
Another non-classical HLA type is HLA-E, which by engagement of the inhibitory CD94/
NKG2A receptor expressed by NK and CTLs hampers the activity of these cells in the tumor. 
(Figure 1)[114] While NK-cells are not frequently observed, CTLs are detected in the tumors 
of many patients.[107,115] Notably, up to 50% of the CD8+ TILs expressed the inhibiting 
CD94/NKG2A receptor, whereas CD4+ TILs hardly expressed this receptor.[114] HLA-E is 
overexpressed in more than 80% of cervical tumors.[114] 
A third non-classical HLA molecule is the MHC class I chain-related molecule A (MICA), 
which is expressed on normal epithelium but is weak or absent in ~60% of cervical cancer 
cases.(Figure 1)[107] MICA interacts with the stimulating NKG2D receptor on both CD8+ 
T-cells and NK-cells and enhances the effector function of these cell types.[107,116] A 
low expression or absence of MICA was shown to be associated with worse survival when 
analyzed in the context of the ratio between CD8+ T-cells and Tregs and the expression of 
HLA-A.[107] Downregulated expression of MICA, in addition to weak expression of HLA-A, 
may surpass the threshold for the infiltrating CD8+ T-cells to exert their tumoricidal function.

Induction of regulatory T-cells 
There is a strong correlation between the ratios of CD4+, CD8+ and tumor-infiltrating Tregs 
and the prognosis of HPV-induced disease.[75,107,117,118] CD4+ Tregs are shown to 
inhibit the proliferation and cytokine production of activated naïve CD4+ T-cells and Th1 
cells and are also able to prevent the activation of CTLs by preventing the expression of 
the IL-2 receptor alpha (CD25) and inhibiting IL-2 production.[117] Tregs influence several 
other pathways to suppress the anti-tumor response, including induction of suppressive 
macrophages, upregulation of IL-10, induction of indoleamine 2,3-dioxygenase (IDO)-
positive APCs and TGFβ production.(reviewed in [117]) In cervical dysplasia, Tregs appear 
to be attracted by CXCL12, a ligand of CXCR4.[119] Importantly, part of the regulatory T cell 
repertoire comprises HPV-specific Tregs that recognize the same antigens as HPV-specific 
effector cells.[117] Upon cognate interaction with the HLA class II-positive tumor cells these 
CD4+ Tregs become activated and can suppress other immune cells within the lesions and 
tumors.[58,91] Furthermore, as these antigens are also used for therapeutic vaccination 
strategies, vaccination may result in the expansion of HPV-specific Tregs and subsequently 
cause the anti-tumor response to fail.[117,118] 
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Inhibition of T-cell function or infiltration
Exhaustion of CD4+ and CD8+ T-cells during viral infection or malignancies has been 
associated with expression of the co-inhibitory molecules cytotoxic T-lymphocyte antigen-4 
(CTLA-4), program death-1 (PD-1), T-cell immunoglobin mucin-3 (TIM-3) and B- and T- 
lymphocyte attenuator (BTLA).(Figure1)[120-123] The interaction between PD-1 receptor 
expressed by effector or Tregs, and program death ligand 1 (PD-L1(B7-H1)) and/or PD-L2 
(B7-DC) results in the induction of apoptosis, anergy or exhaustion of effector T-cells.[124-
126] Approximately half of the tumor-infiltrating T-cells in cervical cancer are PD-1 positive. 
PD-L1, however, is only occasionally expressed by cervical cancer cells. Interestingly, patients 
with PD-L1 positive tumors, infiltrated with relatively high numbers of CD4+FoxP3+ Tregs, 
show a better survival than patients with relatively high numbers of infiltrating Tregs, but 
negative for PD-L1.The impairment of the PD-1 positive Tregs by the PD-L1 expressing tumor 
cells may potentially result in a survival benefit.[126] 
The ligand for TIM-3 is Galectin 9 (Gal-9). Their interaction results in a decreased Th1 and 
CTL immunity by inducing apoptosis of Th1 cells as well as by inhibiting the function of 
CTLs and Th1 cells.[120,122,127] A decreased Gal-9 expression is inversely associated with 
malignant potential or differentiation of cervical cancer.[128] Gal-1 and Gal-3, however, 
have also been implied in the inhibition of T-cell responses and their expression is increased 
during the progression of HPV-induced neoplasia.[129,130] 
Another molecule that may hamper the immune response is the cell surface glycoprotein 
CD200 (OX-2). This protein can be expressed by many types of human cancers.[131-134] 
Co-cultures of CD200-expressing, but not CD200-negative, tumor cells suppressed the 
production of Th1 cytokine by T-cells, the cytolytic activity of CTL and the IFNγ response of 
NK-cells.[131,132] In the transplantable EMT6 mouse breast cancer model, the neutralization 
of CD200 led to a decreased tumor growth and an increased number of cytotoxic anti-tumor 
immune cells in the tumor draining lymph node.[133] Tumor-cell expressed CD200 also 
hampers the function of tumor-associated APCs.[134,135]
Finally, T-cells can also be physically hampered to infiltrate the lesions. We found that a high 
expression of versican – one of the extracellular matrix components produced by stromal 
cells - in the stroma was associated with a low number of tumor-infiltrating T-cells and in 
particular a low number of CD8-positive T-cells.[136] In addition, a study of the expression 
of the mucosal homing receptor, α(4)β(7) surface integrin, on T-cells and its ligand mucosal 
addressin cell adhesion molecule-1 (Madcam-1) on vascular endothelial cells in cervical 
tissue revealed that the ability of α(4)β(7)(+) CD8(+) T-cells to gain access to cervical 
epithelium strongly depended on the expression of Madcam-1, which was absent in lesions 
of which the dysplastic epithelium was not infiltrated by T-cells.[137]
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Microenvironment 
The local microenvironment may also play a role in HPV-induced lesions. The expression of 
cytokines such as IL-10 and TGF-β, the increase in tumor-associated macrophages, Tregs 
and IDO-expressing APCs can all help to suppress local immunity. (Figure 1)[138-142] TGF-β 
is overexpressed in CIN and cervical cancer.[143,144] It prevents T-cell infiltration into 
tumors, inhibits T-cell activation and mediates Treg-induced immunosuppression.[145] The 
immunoregulatory enzyme IDO was found to be expressed in high grade CIN and cervical 
cancer, and is particularly expressed by IL-10-producing stromal myeloid cells. Diffuse 
expression in cervical cancer was correlated with an unfavorable outcome.[140,146,147] 
Macrophages exist in many flavors ranging from a tumor-rejecting phenotype (M1 type) 
to the well known tumor promoting macrophages (M2 type). Monocytes recruited to 
lesions or tumors can differentiate towards M1 or M2 types depending on the local 
milieu. The M2 macrophages mediate direct effects on tumor growth, vascularisation 
and local immunosuppression.(reviewed in [148]) Furthermore, they produce cytokines 
and chemokines resulting in alteration of the phenotype and function of local DCs and 
the modulation of T-cell responses. The differentiation towards M2 macrophages can be 
the direct result of tumor cells producing prostaglandin E2 (PGE2) and IL-6. Blocking the 
tumor-expressed cyclooxygenase-2 (COX-2), and thereby the production of PGE2, as well 
as IL-6 restores the normal differentiation of monocytes to DCs.[149] Expression of COX-
2 is upregulated following overexpression of E5 in cervical carcinoma cell lines.[90] The 
expression of COX-2 by cervical tumors is associated with a poor response to chemotherapy.
[150] 
Interestingly, macrophages display plasticity in their differentiation, allowing them to switch 
from one type to another type depending on the local milieu. Tumor infiltrated Th1 cells can 
stimulate a tumor rejecting environment by switching M2 tumor promoting macrophages 
into activated M1 tumor-rejecting macrophages via CD40–CD40 ligand interactions and the 
production of IFNy.[149] Another cell type reported to play a role in the suppression of 
immune responses are myeloid-derived suppressor cells (MDSCs). These cells are able to 
directly inhibit T-cell responses and promote tumor progression.[151] However, the role 
of both tumor associated macrophages and MDSCs in the clinical outcome of HPV-induced 
disease is still unclear. 
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Figure 1 Immune escapes mechanisms and possible solutions 
depicts all potentially involved co-inhibitory receptors, ligands and HLA expression and their role in the suppression 
of the immune system; TIM-3 and Galectin 9 (induction of apoptosis Th1 cells and inhibition of CTL and Th1 
function), CD200R and CD200 (suppress function of Th1, CTL and NK-cells), PD-1 and B7-H1 (PD-L1) (induction 
of apoptosis, anergy or exhaustion of effector T-cells), CTLA-4 and B7-H1/H2 (inhibition of T-cell function), BTLA 
and B7-H4 (inhibition of T-cell proliferation, cytokine production, CTL function and memory cell generation), 
Galectin 1 and TCR, CD45, CD43, CD7, pre-BCR (induction of T-cell apoptosis, inhibition of T-cell function, Treg-
mediated immune suppression and inhibition of B-cell signaling and activation), Galectin 3 and TCR, CD45, CD43, 
CD7 (induction of T-cell apoptosis and inhibition of T-cell function, alternative activation of macrophages), HLA-G 
and ILT2, ILT4 and KIR2DL4 (inhibition of T-cell function, CTL lysis, induction of tolerant APC), HLA-E and NKG2A/
CD94 (inhibition of tumor cell lysis by NK-cells and CTLs), MICA and NKG2D (enhances the function of NK and CTLs). 
Moreover potential immunostimulating (green) and inhibition or blocking of inhibitory factors (red) to 
overcome some immune escape mechanisms are depicted which are of potential benefit and might improve the 
immunotherapy for HPV-induced neoplasia. 
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Immunity to HPV in vulvar intraepithelial neoplasia 
VIN lesions are histologically characterized by an increased infiltration with CD4+ T-cells, 
macrophages but not LCs or CD8+ T-cells when compared to normal vulvar tissue.[152-155] 
Low-grade VIN has relatively higher numbers of CD8+ T-cells than CD4+ T-cells.[153,155] A 
recent study on a large series of patients and controls confirm these results with respect 
to the infiltration of the dermis, but also suggests that there is an increase in mature DC 
and plasmacytoid DC in the dermis.[152] In the epidermis, however, the number of LCs, 
immature DC, plasmacytoid DC and CD8+ T-cells seems to be slightly reduced.[152] The 
gene signature of VIN generally reflected an ongoing immune response and revealed 
a strong downregulation of the transcription factor peroxisome proliferator-activated 
receptor gamma (PPARγ), which is a negative regulator of DC maturation and function.
[156] The slightly reduced number of LCs in high grade VIN can be the result of enhanced 
emigration via downregulation of E-cadherin and LC activation by TNF-α and IL-1β, but it 
may also reflect a decreased immigration of precursors due to a lower MIP-3α production by 
keratinocytes.[100,157] Interestingly in non-HPV-related dVIN, a number of LCs were found, 
suggesting that HPV induces LC activation and migration.[158] The increase of mature 
DCs in the dermis of VIN appears to indicate that persistent HPV infection does lead to 
maturation of DCs, making it most likely that disturbed immigration is the culprit in the 
inaccurate initiation of a strong adaptive immune response, leaving only a weak dermal 
influx with CD4+, CD8+ and Tregs.[152,153,156,159] Depending on the study, up to half of 
patients with a HPV 16-induced high grade VIN lesion display a directly detectable ex vivo 
HPV 16-specific IFNy-associated type 1 T-cell response against E2, E6 and/or E7.[59,160,161] 
The presence of such HPV 16-specific Th1 responses is generally not associated with 
regression of VIN, although the clinical efficacy of treatment with imiquimod cream or 
electrocoagulation of the lesion is associated with the presence of such a pre-existing HPV 
16-specific IFNy-associated T-cell response.[30,31,54,59] The absence of HPV 16-specific 
immunity is associated with treatment failure and may contribute to the high number of 
recurrences after treatment.[29-31,162] The critical role of a strong and broad systemic and 
local CD4+ and CD8+ HPV 16-specific proinflammatory T-cell response in order to clear usual 
VIN is demonstrated by therapeutic vaccination studies.[29,31,60,161,163-166] HPV 16 L1-
specific serological responses are detected in the great majority of VIN patients but are not 
related to clinical outcome and is associated with a risk of developing VIN.[59,162,167] NK 
cells are sporadically found in the epidermis but were found to be more than doubled in 
numbers in the dermis of VIN lesions compared with healthy women[152] and may reflect 
co-infiltration with dermal effector T cells and Tregs. Furthermore, in VIN, the intensity of 
COX-2 expression analyzed by immunohistochemistry is not correlated with the degree of 
vulvar dysplasia.[168]
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Similar to the other HPV-induced anogenital diseases, people carrying the HLA-DRB1*13 
and -DQB1*05 alleles are associated with a decreased risk of HPV 16-induced high grade VIN 
or vulvar cancer, whereas HLA-DQB1*03 is strongly associated with an increased risk.[169] 
Downregulation of HLA class I was found in nine out of 11 vulvar carcinomas (82% total 
loss), irrespective if they were HPV-induced or not.[155] In these 11 carcinomas HLA-class 
II expression was not upregulated.[155] In VIN, 19% total loss of HLA-class I was observed 
both in dVIN and uVIN. In addition, in 21% of usual VIN biopsies HLA-class I was found 
to be downregulated.[155] Whilst there are many mechanisms leading to changes in HLA 
expression[105], which part is still reversible via IFNγ remains to be established, particularly 
since the presence of an HPV-specific IFNγ-associated T-cell response is correlated with 
regression of lesions. 
In vulvar neoplasia both Gal-1 and Gal-3 were shown to be upregulated from normal 
vulvar tissue to high grade VIN and vulvar carcinoma.[170] The expression of Gal-1 on 
macrophages adjacent to the neoplastic cells became stronger with the increase in disease 
severity, whereas the neoplastic cells stained negative or weak for Gal-1.[129,170] Gal-
3 staining was observed mostly in the epithelial cells but was also found in endothelial 
cells and macrophages. The vast majority of VIN cases did not express Gal-3. However, 
in approximately 60% of the vulvar carcinomas, Gal-3 expression by the cancer cells was 
moderate or strong.[171] The potential role of these and the other co-inhibitory factors 
discussed above in the T-cell response to HPV-induced VIN need to be determined. 

Immunotherapy and potential causes of failure in VIN 
A successful immunotherapeutic approach probably requires resetting many parameters in 
the immune response to HPV. Therefore, immunotherapy for VIN must be aimed at adequate 
priming of T-cells, altering the balance between effectors and Tregs, increasing the homing 
of T-cells to the lesion, preventing exhaustion of the immune response, and overcoming 
inhibition by creating an immune stimulatory environment that allows the immune system 
to work.[172] At present, a number of immunotherapeutic approaches have been tested 
with varying degrees of clinical success. Although some of these approaches showed some 
clinical efficacy in patients with VIN, a substantial number of cases failed to display a clinical 
response to immunotherapy. The potential causes of which will be discussed below.

Topical immunotherapy
In the early 1990s, 21 patients were treated with topical IFNγ with or without nonoxynol-9. 
Nine patients displayed a complete response for at least 1 year and overall 67% of the patients 
showed an objective clinical response. However, due to serious local side effects and high 
costs this therapy is no longer pursued.[173,174] More recent data showed that IFNα plays 
an important role in the activation of long-lasting anti-tumor responses.[175] IFNα drives 



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

2

Review - Response to immunotherapy in usual VIN  |  51

the generation of IFNγ-producing Th-cells and CTL as well as promoting the proliferation and 
survival of T-cells.[176] The use of pegylated IFNα may overcome the side effects previously 
observed in IFNα therapy of VIN patients because it differs in pharmacokinetic and chemical 
properties and is associated with fewer side effects compared to the topically used one.
[177]
Imiquimod (Aldara®) is a topically applied immune response modifier that acts by binding 
to TLR7 resulting in activation of NF-kB, which is followed by secretion of multiple pro-
inflammatory cytokines such as TNF-α, type 1 IFNs, IL-12 and activation of DCs.[178,179] 
Topical imiquimod has been used to treat HPV-induced high grade VIN lesions and resulted 
in viral clearance, normalization of immune cell infiltrate and clinical responses even in long-
term follow up.[28,32,33,180] Complete regressions were observed in 26–100% of patients 
whereas 0–60% displayed partial regression and 0–37% experienced recurrence.[180] In two 
randomized controlled trials with imiquimod as treatment of high grade VIN, the first trial 
demonstrated complete regression in 81% of the 21 patients and partial regression in 10%, 
whereas the other trial reported a complete regression in 35% and partial response in 46% 
of the 26 patients.[28,32] Treatment in general is well tolerated, however local side effects 
of inflammation and burning are common, but can safely and successfully be treated with 
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs).[28,32,181] Regression of the lesions in 
the last study was associated with a pre-existing IFNy-associated HPV 16-specific CD4+ T cell 
response and afterwards with normalization of the lesional immune cell infiltrate.[59,159] 
Imiquimod did not induce or enhance the HPV 16-specific CD4+ T-cell response.[59] Non-
responsiveness corresponded to the local attraction of macrophages and the presence of 
Tregs.[31,159] Notably, HPV 16-specific Tregs comprise both FoxP3+ and FoxP3- suppressor 
cells and are characterized by the production of both IFNγ and IL-10.[91] It can be envisaged 
that they also play a role in VIN lesions as they are found in high grade premalignant lesions 
of the cervix.[58] 
Photodynamic therapy (PDT) in combination with topically applied 5-aminolevulinic acid 
(ALA) is a relatively new treatment regimen for VIN that exploits the interaction between a 
tumor-localizing photosensitizer and non-thermal light to induce oxidation reactions, which 
lead to tissue necrosis.[182] ALA-based PDT is particularly attractive as this drug is activated 
in rapidly growing cells, thereby reducing damage to the normal surrounding tissue.[182] 
PDT results in direct tumor destruction as well as induction of local inflammation resulting 
in the activation of APCs, recruitment of effector cells and subsequently the activation of 
tumor-specific immunity and development of immune memory.[183,184] PDT can also have 
an immunosuppressive effect, but this is prevented by reducing the rate of light delivery.
[185] Clinical responses of VIN to PDT vary widely ranging from 20 to 60% of complete 
histological responses and in 52–89% of the patients it resulted in symptom relief.(reviewed 
in [186]) Curative responses were more frequently observed in unifocal lower grade VIN and 
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non HPV-associated VIN as well as in pigmented and hyperkeratinic VIN lesions.[155,187] 
Moreover, clinical responders retained the expression of HLA-class I and displayed a 
treatment-associated increase in the numbers of infiltrating CD8+ lymphocytes. In contrast, 
non-responders showed loss of HLA-class I and low numbers of infiltrated immune cells.
[155,187] 
Advantages of PDT are a short healing time, minimal tissue destruction and preservation 
of the normal anatomy of the vulva. However, recurrence rates are high (48.7%) and do 
not differ significantly from conservative treatments with CO2 laser and surgical excision.
[12] In an attempt to increase the immune infiltration and response to PDT of HPV-induced 
VIN, a combination therapy of imiquimod and subsequent photodynamic therapy was 
given. The overall response rate was 65%, with 20% complete responders and 40% partial 
responders after 1 year.[30] Indeed, imiquimod treatment resulted in an increased CD8+ 
T-cell infiltration in the group of treated patients, but no differences were found between 
non-responders and responders within this treated group. Non-responders demonstrated 
relatively stronger infiltration with FoxP3+ T-cells after imiquimod. Clinical responders 
displayed a stronger HPV-specific proliferative T-cell response.[30] Together, these studies 
indicate that topical immunotherapy, particularly imiquimod, changes the microenvironment 
to allow more immune cells to infiltrate into the lesions. When these T-cells display the 
correct phenotype, as potentially found in patients with circulating HPV-specific T-cells, this 
infiltration may result in clinical responses. By contrast, when the immune cells display an 
immune suppressive phenotype (Tregs, M2 macrophages) the patients will not successfully 
react to the therapy. 

Systemic immunotherapy by vaccination
Therapeutic vaccines aim to reinforce the HPV-specific IFNγ-associated CD4+ and CD8+ 
T-cell responses. As previously reviewed, different types of therapeutic vaccines have been 
developed and tested in Phase I/II clinical trials in an attempt to eliminate HPV 16-associated 
disease. The types of vaccines comprise recombinant viral vectors, peptides, fusion proteins, 
DNA, antigen-pulsed DCs and virus-like particles.(reviewed in [188]) Although some vaccines 
showed high immunogenicity, vaccination has led to limited clinical successes in HPV induced 
diseases. Part of it can be explained through the failure of some vaccines to induce a strong 
and broad HPV 16-specific CD4+ and CD8+ T-cell response.(reviewed in [188]) 
Different vaccine formulations have been tested in patients with HPV-induced VIN. In general, 
these vaccines were shown to be safe and immunogenic in most cases. A live recombinant 
HPV vaccine expressing the HPV 16 and HPV 18 E6 and E7 genes (TA-HPV) was tested in 12 
women with high grade VIN or VAIN of up to 15-years duration in a single dose injection.
[161] A total of 42% of the patients showed at least a 50% reduction in total lesion size and 
in one patient a complete regression of the lesion was achieved.[161] The vaccine induced 
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an increased IFNy-associated HPV-specific T-cell response in six patients, who showed 
a concomitant clinical response.[161] However, in four women no vaccine-induced T-cell 
response was observed while two of them showed a >50% reduction in lesions size.[161] This 
vaccine was also tested in 18 women diagnosed with VIN that had persisted for 6-months to 
17-years. Eight patients showed an increase in the HPV E7-specific IFNy response, of which 
four displayed a weak response. One patient showed a complete clinical response and 
seven others a partial response. There was no obvious correlation with the vaccine-induced 
response, probably because only the response to two well defined HLA-A*0201 restricted 
CTL epitopes was measured. E6/E7-specific proliferative responses were measured in 50% 
of the patients.[164] Interestingly, a comparison of the local immune infiltrate revealed that 
the lesions of the group of clinical responders were, on average, highly infiltrated with DC/
LCs, CD4+ and CD8+ T-cells before vaccination. There was no difference in the number of 
CD68+ macrophages between the two groups. Notably, the numbers of VIN-infiltrating CD4+ 
and CD8+ T-cells did increase in the group of non-responders after vaccination, albeit not to 
the level of the clinical responders.[164] This indicates that the capacity of the immune cells 
to infiltrate the lesion represents another hurdle to be overcome. 
Another vaccine formulation consisting of HPV 16 L2E6E7 fusion protein (TA-CIN), which was 
given to ten women diagnosed with high grade VIN as three booster vaccinations after they 
were primed with TA-HPV 7–15 months earlier.[165] All patients displayed a proliferative 
response to the L2E6E7 fusion protein, but it is not clear how often this response was 
made against the L2 component. IFNγ-associated CD8+ T-cell responses to two of the 
HLA-*0201 restricted E7 epitopes were detected in three patients. One patient showed a 
complete response and one a partial response (>50% reduction in lesion size). There was 
no correlation found between the outcome of the immune assays and clinical reactivity.
[165,166] Preclinical studies on heterologous prime-boost immunizations with TA-CIN and 
TA-HPV showed that the best vaccination protocol would consist of priming with TA-CIN to 
focus the immune response toward the oncoproteins, and boosting with TA-HPV to increase 
the magnitude of the E6/E7-specific response. Therefore, a group of 27 patients with HPV 
16+ VIN 3 and two patients with VAIN 3 was vaccinated with three doses of TA-CIN at four 
week intervals followed by a single boost of TA-HPV. This resulted in one complete response 
and five partial responses.[166,189] Analysis of the HPV 16 E6/E7-specific IFNγ-associated 
T-cell response using pools of overlapping peptides of E6 and E7 was performed in 25 
patients, three of which showed a pre-existing response to E6. In nine patients, the vaccine-
induced IFNγ-associated T-cell response was detected after vaccination, including two of 
the patients with a pre-existing immune response. The responses were mainly focused at 
the E6 protein and not at E7. Two patients showed a strong IFNγ-associated T-cell response. 
Of the six clinical responders, five patients showed an E6-specific IFNγ response, including 
the complete responder.[166] Notably, the combination of TA-CIN and TA-HPV – although 
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a strong combination in mouse models - resulted in no advantage over a single TA-HPV 
vaccination in patients with VIN.[166,189]
Peptide vaccines are attractive because they are well tolerated in humans, relatively 
inexpensive to produce and easy to design. A vaccine consisting of synthetic long peptides 
(SLP), spanning the complete amino acid sequence of the two oncogenic proteins E6 and 
E7 of HPV 16, was safe and highly immunogenic in patients with cervical cancer as reflected 
by the strong IFNγ-associated HPV 16-specific CD4+ and CD8+ T-cell responses detected.
[190,191] In a Phase II trial, 20 patients with high grade HPV 16+ VIN were vaccinated three 
to four times at 3 week intervals.[29] After 12 months follow-up, a clinical response rate 
of 79% and a complete and durable regression of the lesion in 47% of the patients was 
reported. Patients with a good clinical response displayed significantly smaller lesions at 
study entry than those who did not.[29] Characteristically, patients with a smaller VIN3 
lesion displayed a strong and broad IFNγ-associated HPV-specific CD4+ T-cell response to 
HPV 16 E6 and E7. There was no difference between patients with small or larger lesions 
in the immune response to recall antigens. The patients with a smaller lesion displayed 
a distinct peak in the amount of cytokines produced by peripheral blood mononuclear 
cell (PBMCs) isolated after the first vaccination, suggesting that HPV 16-specific immune 
responsiveness is already predetermined. By contrast, in patients with larger lesions, higher 
frequencies of vaccine-enhanced HPV 16-specific Tregs were observed.[29,60] At present in 
our institute, a Phase II randomized trial in patients with HPV 16 positive high grade VIN is 
almost completed in which imiquimod is applied to site where the HPV 16 E6/E7-SLP vaccine 
is injected in an attempt to improve the Th1 polarization of the responding T-cells and as 
such clinical responses. In a peptide-based vaccine in patients with melanoma, imiquimod 
appeared to enhance the immunological response to the vaccine.[192] As a response to the 
observation that non-responders to PDT exhibited a loss of HLA-class I, a pilot study was 
performed on the available pretreatment biopsies of the HPV 16-SLP vaccinated patients. 
This revealed that (partial) loss of HLA-class I in the VIN lesions could be observed before 
vaccination across non and clinical responders, indicating that (partial) loss of HLA does not 
always prevent successful outcome of vaccination.[unpublished results] The expression of 
HLA class I may potentially be restored by the presence of IFNγ produced by HPV-specific 
CD4+ T-cells that recognize their epitope in HLA-class II, with as a result that the recruited 
CTL once again can exert their cytotoxic function.[109] Alternatively, CD4+ T-cells have a 
direct antiproliferative effect on HLA class II positive cells of the lesion. 

Combined local and systemic immunotherapy
Clearly, there are a number of immunotherapeutic strategies that are promising for the 
treatment of VIN, but are not able to induce complete regressions of the lesions in every 
single patient. Based on the finding that clinical responsiveness to vaccination is associated 
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with the extent of the pre-treatment immune infiltrate in high grade VIN[164] and that 
this infiltrate can be enhanced by the use of imiquimod[30], a vaccine trial was designed in 
which imiquimod treatment for 8 weeks was followed by three intramuscular doses of TA-
CIN at 4-week intervals.[31] A total of 19 women with (1–20 years of) high grade VIN were 
treated. After treatment with imiquimod, six patients showed a complete regression and 
this increased to 11 women after vaccination with TA-CIN. After one year of follow-up, 12 of 
the 19 treated women displayed a complete regression.[31] The group of clinical responders 
showed a stronger E6- and E7-specific proliferative response than non-responders. 
Imiquimod treatment was expected to raise the numbers of lesion infiltrating immune cells. 
Indeed a small but significant increase in the numbers of CD8+ T-cells was detected. After 
vaccination, the group of responders showed an increased CD4+ and CD8+ T-cell infiltration. 
By contrast, the group of non-responders showed an increase in the number of lesion-
infiltrated Tregs.[31] In comparison to their previous study where imiquimod was followed 
by PDT, not only the number clinical responders was much higher, but also the numbers of 
infiltrating CD4+ and CD8+ T-cells in the lesions did not return to pre-imiquimod levels as 
was seen with PDT[30], suggesting that the vaccine-induced HPV 16-specific T-cell response 
mediated this effect. However, similarly to what was observed after HPV 16-SLP vaccination, 
TA-CIN vaccination resulted in the undesirable side effect of enhanced the number of Tregs 
in the group of non-responders.[31,60]

Conclusion and Future 
Overall, one can conclude that clinical complete regression of HPV-induced disease can be 
obtained if the numbers of HPV-specific CD4+ and CD8+ T-cells are strongly enhanced and 
the lesions are (preconditioned to) allow immune cell infiltration. Clearly, a number of pre-
existing conditions (e.g. lesion size, presence of Tregs, lack of immune infiltration, lack of 
HPV-specific IFNγ-producing T-cells, number of infiltrated macrophages, lack of HLA class I 
expression) may determine the patient’s responsiveness to immunotherapy. Other factors 
that may influence responsiveness to therapy, such as the type of infiltrating macrophages 
(M1 or M2), the presence of MDSCs, the expression of Madcam or the expression of inhibitory 
molecules, which are all known to influence the immune response in other HPV-induced 
or chronic viral diseases, still need to be addressed. The consistent observation that non-
responders display enhanced numbers of Tregs after therapy suggests that new modalities 
should be sought that alter the balance between Tregs and IFNγ-producing effectors in favor 
of the latter. Tregs are known to suppress the induction of the IFNγ-producing Th1 cells that 
are required to mobilize and sustain CD8+ T-cells to the site of disease.[109,193,194] 
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Expert commentary 
VIN is the first HPV-induced disease in which real immunotherapeutic clinical successes have 
been achieved. In comparison to CIN and cervical cancer, VIN is, however, less well studied 
with respect to its interaction with the immune system. Most studies on the immune 
response to HPV in uVIN have been performed in clinical trials. On the one hand, this allows 
immune parameters to be studied in the context of therapy-induced outcome and as such 
may reveal parameters associated with success or failure. On the other hand, such studies 
are generally focused on the mechanism of action of the therapy and therefore do not 
consider other immune factors. Furthermore, most studies are performed in small cohorts 
of patients which limits the value of findings or significantly obscures potentially important 
findings. Although it is acceptable to translate findings from other HPV-induced diseases 
to the study of VIN, they do need to be confirmed preferably in larger cohorts with known 
clinical follow-up. Gaps in the knowledge of the interaction of HPV and the immune system 
in VIN include the absence or limited studies on (non-classical) HLA expression, the presence 
of co-inhibitory molecules or the presence of local inhibitory microenvironmental factors as 
macrophages and cytokines. Considering that VIN does respond to immunotherapy, in-depth 
studies should be performed to fully understand why it works, as well as to understand what 
we need to circumvent in patients who would otherwise not respond for immunotherapy of 
HPV-induced tumors to be successful. Based on what is already known, we think that HPV-
induced VIN is an immunologically active disease as reflected by marked infiltration with 
T-cells and the presence of IFNγ-associated T-cell responses, when compared, for instance, 
to HPV-induced CIN. Importantly, while evidence accumulates that HPV-specific T-cells play 
a role in all HPV-induced diseases, the results of the vaccine trials definitely show that HPV-
specific T-cells play a role in the control and regression of VIN. Moreover, these trials show 
that even high grade HPV-induced lesions can undergo immune-driven regression. However, 
when HLA expression is lost, infiltration with Tregs and macrophages, or the per individual 
differences in immune infiltration is considered, VIN is similar to the other HPV-induced 
high grade lesions or cancers. It is therefore likely that the development of new treatment 
options of this premalignant lesion will follow the same route as that for cancer. Here, one 
must consider applying immunotherapeutic vaccines in the adjuvant setting but may also 
include the use of low dose chemotherapy to obtain certain immunological effects such as 
Treg depletion. For instance, a single dose of cyclophosphamide improved IFNγ-associated 
T-cell responsiveness to vaccination in ovarian cancer.[195] In view of what has been found 
already, it is highly likely that a combination of immunotherapeutic strategies is required to 
increase success rates in the treatment of VIN.
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Five-year view 
At present the successes of different (combined) immunotherapies in the treatment of VIN 
are encouraging and unprecedented. However, non- or partial treatment responders are 
also being reported and this will spark studies that focus on unraveling the mechanisms 
underlying the differences in clinical responsiveness. Interestingly, there are several roads 
that lead to clinical success. These – in our opinion – complementary immune strategies all 
target different aspects of immune failure. We expect that combinations of these strategies 
will be tested. To the end, this will lead to either patient selection in cases where there is 
no strategy to overcome an immunological problem or to a number of combinations of 
immunotherapeutic strategies that together may solve the problems. One may consider, 
for instance, blocking the co-inhibitory molecules by antibodies, depletion of Tregs before 
therapy, depletion or re-differentiation of macrophages, increasing T-cell homing by 
the induction of local inflammation and the use of IFNα to polarize Th1/CTL responses. 
Combination of imiquimod, vaccines and IFNα are the most likely to be tested within the 
near future. 

Key-issues 
•	 Usual type VIN is a chronic premalignant disease caused by a persistent oncogenic 

HPV 16 infection in 90% of cases. 
•	 Successful treatment of HPV-induced VIN is associated with an enhanced and broad 

HPV 16-specific CD4+ and CD8+ T-cell response against the oncoproteins E6 and E7.
•	 Several types of immunotherapeutic approaches have met clinical success in 

high grade VIN although a notable number of patients fail to respond to these 
immunotherapeutic strategies.

•	 Knowledge of the interaction between VIN and the immune system is limited. 
•	 Immune escape mechanisms that play a role in VIN are loss of HLA, immune 

infiltration with Tregs and macrophages, or the lack of infiltrating CTLs. 
•	 Studies on the role of inhibitory molecules on T-cell function and the reversibility of 

HLA loss in VIN are needed. 
•	 Combinations of immunotherapies targeting different aspects of the failing immune 

response may overcome immune escape and enhance clinical response rates.
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Box 1 Potential causes of immunotherapy failure and how to correct this (Figure 1)

Lack of a robust CD4+ and CD8+ HPV-specific T cell response. 
The accumulated data show that a strong and broad IFNγ-associated HPV-specific T-cell response 
is required for complete regression of the VIN lesion. Although some patients spontaneously 
develop a respectable HPV-specific immune response, many do not. Immunotherapeutic 
strategies that do not comprise vaccination may fail in patients either by lacking HPV-specific 
immunity or by developing a dominant Th2 response.

•	 Lack of HPV-specific immunity: The immune system should come into contact with 
sufficient amounts of antigen for sustained periods to become activated. The first choice 
would be to vaccinate patients with a highly immunogenic vaccine that induces both CD4+ 
and CD8+ T-cell responses. Alternatively, one could use lesion destructive therapies that 
are known to result in the activation of T-cells such as PDT or cryoablation. 

•	 Wrong polarization of HPV-specific immunity: Stimulation of the immune system with E6 
and E7 antigens (delivered to the APC via natural mechanisms, vaccines or destructive 
therapies) to induce a strong Th1/CTL polarization requires optimal activation of APC. TLR 
3 and 9 agonists are known to appropriately stimulate human APC and could be injected 
either locally or at the site of vaccination. Alternatively, one could use pegylated IFNγ as 
this is known to prevent Th2 responses and to drive Th1/CTL responses. 

Inhibition of T-cell function and infiltration.
As a group, VIN lesions are well infiltrated with CD4+ and CD8+ T-cells, however, this varies a great 
deal between individuals. Despite strong infiltration with T-cells, they are incapable of inducing 
the spontaneous regression of VIN lesions. Immunotherapeutic strategies aiming to induce 
HPV-specific immunity have a better response rate in patients displaying considerable immune 
infiltration before treatment, except when there are high numbers of regulatory T-cells present. 

•	 Regulatory T-cells: Non responsiveness to therapy is associated with the presence as well 
as enhancement of regulatory T cell numbers. Part of the regulatory T-cell population 
is HPV-specific. In the immunotherapeutic strategies that aim to induce HPV-specific 
immunity, an increase in circulating and local regulatory T-cells is observed in clinically 
non-responding patients. Preferably, modalities to deplete or disarm regulatory T-cells 
should be included in the immunotherapeutic strategy. A number of different methods 
have been tried without much success. So far, low dose cyclophosphamide treatment 
has produced consistent results, suggesting that low dose chemotherapy should be 
considered as a treatment option. Since it is not the number of regulatory T-cells per se 
but the balance between regulatory T-cells and effectors that is important one could try 
to use adjuvants that alter the balance between these two populations in favor of the 
effector cells. 

•	 Expression of co-inhibitory molecules: Overall there is little data on the expression of co-
inhibitory molecules by T-cells, immune cells in the microenvironment or the epithelial 
cells in patients with VIN. Clearly, the increase in severity of VIN lesions is associated with 
an increased expression of galectin-1 and galectin-3 in VIN. These galectins are known 
to disrupt T-cell function and to induce apoptosis in melanoma. Similarly, the interaction 
between T-cell-expressed TIM3 and galectin-9 disrupts T-cell function. The use of galectin 
inhibitors or antibodies to TIM-3 may alleviate inhibition. The role of other inhibitory 
molecules has not been studied in VIN but extrapolation of what is known from other 
HPV-induced diseases and other types of cancers, suggest that PD1 and CTLA-4 may play 
a role. For the latter molecule a clinically effective blocking antibody has been approved 
for melanoma, whereas for PD-1, several clinical grade antibodies are being developed. 
These might be added to the immunotherapeutic strategy. Potentially, CD200/CD200R 
interaction may also play a role. An antibody to CD200 has been tested in the treatment 
of B-cell leukemia (ClinicalTrials.gov Identifier: NCT00648739)
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•	 Inhibition T-cell infiltration: A lack of Madcam-1 expression on the vasculature of CIN 
lesions was associated with a failure of T-cells to infiltrate the lesions and this may also 
explain why in a number of patients VIN lesions are not infiltrated by T-cells or not reactive 
to therapy. Madcam-1 is upregulated by TNFα, which may explain why the use of topical 
imiquimod can enhance immune infiltration of VIN lesions. 

Microenvironmental factors.
•	 Lesion associated macrophages: VIN lesions display an increased infiltration with 

macrophages and non-responsiveness to imiquimod treatment corresponded with a local 
attraction of higher numbers of macrophages, suggesting that the macrophages detected 
display a tumor-promoting M2 profile and not the tumor-rejecting M1 profile, but this is 
yet to be confirmed. In HPV-induced cervical cancer, IL-10 producing M2 macrophages can 
be induced by tumor produced PGE2 and IL-6. COX-2 is variably expressed in VIN[168], 
but the expression of IL-6 is unknown. If M2 macrophages are involved, treatment could 
consist of IL-6R blocking antibodies (e.g. Tocilizumab) as used in rheumatoid arthritis and 
COX inhibitors. Alternatively, it has been shown that the interaction between Th1 cells 
and M2 macrophages switch the latter to activated IL-12 producing M1 macrophages. 
This suggests that if an immunotherapeutic approach results in enough lesion infiltrating 
Th1 cells, there might even be a benefit from the macrophages as they help to change the 
microenvironment to become more favorable. 

•	 IDO: The expression of IDO is found in high-grade CIN and cervical cancer, where it is 
associated with clinical outcome. The IDO inhibitor 1-methyltrypthophan may be utilized 
if IDO plays a role in VIN. 

•	 MDSC: myeloid-derived suppressor cells in many cancers can suppress the infiltrated 
effector T- cells by various mechanisms, although their exact role remains to be 
determined. 

The expression of classical and non-classical HLA molecules.
•	 Loss of HLA-class I (-A,-B,-C): Downregulation of HLA-class I molecules may hamper the 

efficacy of HPV 16-specific CD8+ T-cells to exert their function. If this downregulation is 
irreversible meaning that there are genetic alterations which cannot be restored one may 
deselect such patients for immunotherapy. If the downregulation is reversible, meaning 
that it can be restored by IFN, then an increased infiltration of the lesion with Th1 cells 
should suffice to restore HLA expression. Alternatively, a local injection with pegylated 
IFNα or IFNγ during the treatment may help to promote HLA expression. 

•	 HLA-G: In CIN lesions the expression of this molecule is associated with progression and 
the induction of Th2 responses. No intervention options are yet available.

•	 HLA-E: This molecule is expressed by the majority of cervical cancer where it can bind 
to the inhibiting CD94/NKG2A receptor expressed by up to 50% of the tumor-infiltrating 
CD8+ T-cells. No blocking antibodies have been developed to prevent this interaction to 
occur. 

•	 MICA: This molecule binds to the co-stimulatory molecule NKG2D expressed by CD8+ 
T-cells. Downregulation of this molecule by cervical cancer cells is associated with lower 
patient survival. MICA is known to be upregulated by TNFα, suggesting that a local pro-
inflammatory reaction may rescue MICA expression, but also by gamma-radiation.[196] 
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