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ABSTRACT
We construct two linear filtering techniques based on weak gravitational lensing to constrain
the inner slope α of the density profile of dark matter haloes. Both methods combine all
available information into an estimate of this single number. Under idealized assumptions, α

is constrained to ∼15 per cent if the halo concentration c is known, and to �30 per cent if not.
We argue that the inevitable degeneracy between density-profile slope and halo concentration
cannot be lifted under realistic conditions, and show by means of Fisher-matrix methods which
linear combination of α and c is best constrained by our filtering of lensing data. This defines
a new parameter, called P1, which is then constrained to ∼15 per cent for a single massive
halo. If the signals of many haloes can be stacked, their density profiles should thus be well
constrained by the linear filters proposed here with the advantage, in contrast with strong
lensing analysis, to be insensitive to the cluster substructures.

Key words: gravitational lensing – methods: analytical – cosmology: theory – cosmology:
dark matter.

1 IN T RO D U C T I O N

Numerical simulations of non-linear structure formation in a broad
class of cosmological models, even with different types of power
spectra for the dark matter (DM hereafter) density fluctuations,
reveal a typical shape for the density profile of DM haloes. As far as
the numerical resolution allows this statement, the density profile
begins with at least a mild singularity in the core, then falls off with
a relatively flat slope out to a characteristic radius where it gently
steepens towards an asymptotic behaviour ∝ r−3 far away from the
core. Do real haloes behave in the same way as theory predicts?
Gravitational lensing should in principle be able to give the cleanest
answer to this question. Density profiles in galaxy-sized objects
are expected to be modified on small scales by baryonic physics,
where they are likely to approach the isothermal density slope ∝ r−2

instead of the generic DM behaviour. On the mass scale of galaxy
groups or clusters, however, baryonic physics should be constrained
to the innermost region, leaving the DM density profile almost
intact. Galaxy–galaxy lensing seems to show tentative evidence for
this expectation (Mandelbaum et al. 2006) : while the shear profile
around low-mass haloes is consistent with an isothermal density
profile, it seems to flatten towards the theoretical expectation for
DM haloes around high-mass haloes.

The question is important because it aims at a central prediction of
non-linear cosmological structure formation. Answering it is com-
plicated by the angular resolution limit of �20 arcsec of weak grav-
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de (MM); mbartelmann@ita.uni-heidelberg.de (MB)

itational lensing, set by the number density of background galaxies,
and by the high non-linearity of strong gravitational lensing. In
fact, claims that strong gravitational lensing, when combined with
stellar dynamics, requires flat halo cores have been made (Sand
et al. 2004) and doubted. In particular Meneghetti et al. (2007)
showed how the measurement of the inner slope can be systemati-
cally underestimated if halo’s substructure is not taken into account.
A weak-lensing analysis, even if observationally more challenging,
has the advantage to be almost insensitive to cluster’s substructures
because of the instrinsic nature of the signal.

Previous studies based on weak lensing have followed an ap-
proach where a shear profile was first measured and then fit to the
shear profile expected from certain three-dimensional density pro-
files, thus indirectly constraining the density-profile models. Given
the sparseness of lensing information near the core of galaxy groups
and clusters, we develop a different approach here. Instead of con-
straining the shear profile, we only wish to derive a single number
from the shear data, namely the slope α of the density profile within
the characteristic radius, assuming that the asymptotic outer slope
is −3.

We pursue this approach with two linear filtering techniques.
One of them is specifically constructed below to return α as its
only result. It is thus made to combine all available information
into its estimate and should thus optimize the significance of the
measurement. The other varies the inner slope of the density profile
until it finds the maximum signal-to-noise ratio in a given sample
of haloes.

We proceed as follows. In Section 2, we introduce the weak-
lensing properties of the generalized Navarro–Frenk–White (NFW)
density profile. We develop our linear filters in Section 3. There, we
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also discuss the degeneracy between the central density slope and
the concentration parameter of the halo and use the Fisher matrix
to find a linear parameter combination which is best constrained
by shear measurements. The sensitivity of our method and its lim-
itations are shown and discussed in Sections 4 and 5, respectively.
Section 6 presents our conclusions.

2 G E N ERALIZED NFW PRO FILE

In the last decade, a large effort has been devoted to predict the
density profile of DM haloes in � cold dark matter cosmologies.
Thanks to increasing resolution of numerical simulations, there is
now a common agreement (Navarro, Frenk & White 1997; Moore
et al. 1998) that DM density profiles can be accurately described by
the generalized NFW profile:

ρ(r) = ρs

(r/rs)α(1 + r/rs)3−α
, (1)

with the scale radius rs, the inner slope α and the scale density

ρs = ρcrit(z)
200(3 − α)(r200/rs)

31F2(3 − α, 3 − α, 4 − α,−r200/rs)
, (2)

where 1F 2(a, b, c, z) is a hypergeometric function and r200 is the
radius enclosing 200 times the critical density of the universe ρcrit.
The halo concentration is defined as

c200 = r200

rs
. (3)

Following Keeton & Madau (2001), we interpret the scale radius as
the radius where the density profile reaches slope −2, i.e. d ln ρ/d
ln r = −2. For the profile of equation (1)

r−2 = rs(2 − α) (4)

and thus

c−2 = r200

r−2
= 1

2 − α
c200. (5)

For α = 1, this formula reduces to the standard NFW case (Navarro
et al. 1997). The profile is fully characterized when the mass, the red-
shift, the concentration and the inner slope of the halo are specified.
However, not all of these parameters are independent. Numerical
simulations show that it is possible to define fitting formulae relating
the concentration with the mass and the redshift of the halo. In the
following, we will use the prescription proposed by Eke, Navarro &
Steinmetz (2001) for this purpose. They also found that for a fixed
value of mass and redshift, the concentration approximately follows
a log-normal distribution:

p(c) dc = 1√
2πσcc

exp

[
− (ln c − ln c̄)2

2σ 2
c

]
d ln c, (6)

where σ c is the 1σ deviation of �(ln c) � 0.2 (Navarro et al. 1997;
Bullock et al. 2001a).

2.1 Weak-lensing properties

This section summarizes the basic weak-lensing concepts that will
be used later. For a complete overview, we refer to Bartelmann &
Schneider (2001). An isolated lens with surface mass density �(θ )
has the lensing potential:

	(θ) = 4G

c2

DlDs

Dls

∫
d2θ ′�(θ ′) ln |θ − θ ′|, (7)

where G is the gravitational constant, c is the speed of light and
Dl,s,ls are the angular diameter distances between the observer and

the lens, the observer and the source and the lens and the source,
respectively.

Due to the presence of the lens a light ray is deflected by the
angle

ζ (θ ) = ∇	(θ ). (8)

A source located at the angular position β in the sky is seen by
the observer at an angular position θ which are related by the lens
equation

β = θ − ζ (θ ). (9)

If the source’s angular extent is much smaller than the angular
scale on which the lens properties change, the lens mapping can be
locally linearized and the image distortion is given by the following
Jacobian matrix:

A ≡ ∂β

∂θ
=

(
δij − ∂2	(θ )

∂θi∂θj

)
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
,

(10)

where

κ(θ ) = �(θ )

�cr

= 1

2
(	11 + 	22) (11)

is the convergence, i.e. the surface mass density scaled by the critical
surface mass density

�cr = c2

4πG

Ds

DlDls

(12)

and

γ1 = 1

2
(	11 − 	22), γ2 = 	12. (13)

are the two components of the complex shear γ = γ 1 + iγ 2. The net
result is a distortion and a magnification of the background sources
due to the lens gravitational field.

For an axially symmetric lens, outside critical curves, the distor-
tion is tangential to the line connecting the source and the lens so
that the tangential shear is given by

γT = −[γ1 cos(2θ ) + γ2 sin(2θ )] = −Re (γ e2iθ ) (14)

and the shear modulus can be derived from the convergence

|γ |(θ ) = κ̄(θ ) − κ(θ ), (15)

where κ̄(θ ) is the mean surface mass density inside a circle of
radius θ centred on the lens and κ(θ ) is the convergence at radius θ .
If α 
= 1, it is not possible to find an analytic expression for the shear
profile and therefore equation (15) has to be computed numerically.
We show in Fig. 1 the shear profile for three values of α (0.5, 1.0,
1.5). The inner shear profile depends sensitively on the inner slope
α. In the case α = 1, the shear is logarithmically divergent for small
values of θ (Bartelmann 1996). The divergence is more pronounced
for steeper profiles, while the shear profile decreases for α < 1 and
tends to converge to a finite value even if it is undefined for θ = 0.

The shear profile depends on the two parameters of the density
profile, of which the concentration depends mildly on the halo
redshift. An additional and stronger dependence on halo and source
redshifts is introduced through the geometry of the lens system.

The observable lensing signal is the ellipticity of the background
galaxies:

eobs = eint + g

1 + g∗eint
, (16)
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Figure 1. Shear profile of a generalized NFW halo for three different values
of α. The case α = 1 corresponds to the usual NFW profile. Note the strong
dependence on the inner slope.

where

eint � 1 − b/a

1 + b/a
exp(2iφ) (17)

is their intrinsic ellipticity, a and b are the major and minor axes,
respectively, φ is the orientation angle, g is the reduced shear g =
|γ |/(1 − κ) and g∗ is its complex conjugate. In the weak-lensing
regime (γ � 1), eobs � g � γ . In the following, we will exclusively
use the reduced shear since we want to explore scales where the
approximation κ � 1 does not hold. None the less, we shall denote
it by γ throughout for simplicity of notation.

3 ME T H O D S TO C H A R AC T E R I Z E T H E SH E A R
PROFILE

In this section, we describe two methods, based on optimal linear fil-
ters (Sanz, Herranz & Martı́nez-Gónzalez 2001; Maturi et al. 2005),
to estimate the inner slope of DM haloes using weak-lensing ob-
servations. The advantage of linear filtering as opposed to standard
profile fitting is that filters can be constructed such as to minimize
noise caused by intervening structures along the line-of-sight.

3.1 Optimal linear filtering

For a generic optimal linear filter, the data D(θ ) is modelled as the
sum of the signal to be measured and the noise

D(θ) = S(θ ) + N (θ), (18)

where S(θ) = Aτ (θ ), A is the signal amplitude and τ (θ ) is a model
for its angular shape. In our application, the signal is the lensing
shear of the intervening DM halo and the noise is given by the intrin-
sic ellipticity of the background galaxies, their finite number and the
contamination due to large-scale structures. The noise components
are assumed to be Gaussian, random with zero mean and isotropic
since their statistical properties are independent of the position in
the sky (for further detail see Maturi et al. 2005). We now define a
linear filter 	(θ , α, w) which, when convolved with the data, yields
an estimate for the amplitude of the signal at the position θ :

Aest(θ) =
∫

D(θ ′)	(θ − θ ′, α,w)d2θ ′, (19)

which is unbiased,

b = A

[∫
	(θ, α, w)τ (θ, α, w)d2θ − 1

]
= 0, (20)

and whose variance σ 2,

σ 2 = b2 + 1

2π

[∫
|	̂(k, α, w)|2PN(k)d2k

]
, (21)

is minimal. The filter 	 satisfying these two conditions minimizes
the Lagrangian L = σ 2 + λb. It reads

	̂(k) = 1

2π

[∫ |τ̂ (k, α, w)|2
PN(k)

d2k

]2
τ̂ (k, α, w)

PN(k)
(22)

where w = (c, M , z) and 	̂ and τ̂ are the Fourier transforms
of the filter and the signal shape, respectively. Note that we have
assumed in the previous derivation that the mean values of the halo
parameters (w) are well known. This is an idealizing assumption
and we refer to Section 4.1 for a more detailed discussion. The filter
depends only on the angular shape of the signal τ (k, α, w) and the
noise power spectrum PN. In particular, it is most sensitive to those
spatial frequencies for which the signal τ is large and the noise
power spectrum is small. This filter is optimal in the sense that it
maximizes the signal-to-noise ratio for the a given assumed signal
shape.

The left-hand panel of Fig. 2 shows the filter’s shape calculated
using three different values of the inner slope, α = 0.7, 1.0, 1.3.

3.1.1 Dealing with non-linear signals

The filter described in the previous section can be used to measure
quantities which appear linearly in equation (18) (e.g. the amplitude
of the shear signal). This is not the case for the inner slope α breaking
the main assumption on which the linear filter is based on. However,
if we expand the halo’s shear profile around a fiducial value of the
inner slope, α0,

γ (θ , α, w) = γ (θ , α0, w) + ∂γ (θ , α, w)

∂α

∣∣∣∣∣
α0

�α, (23)

equation (18) reads

D(θ ) − γ (θ , α0, w) = ∂γ (θ , α, w)

∂α

∣∣∣∣∣
α0

�α + N (θ ), (24)

such that �α appears linearly and the linear filtering scheme can
be applied. The shear derivative with respect to α plays the role of
the signal shape, τ , and �α that of the amplitude A to be measured.
This allows the definition of the following estimator for the inner
slope:

αest =
∫

�γ (θ , α, α0,w)	(θ , α0, w)d2θ + α0, (25)

where

�γ (θ , α, α0, w) = γ (θ , α,w) − γ (θ , α0,w). (26)

The approximation applied in equation (24) implies that αest is a
good estimator of the inner slope only when α0 is close to the real
value of α. If this is not the case, the value of the inner slope tends to
be overestimated as we show in Fig. 3. If a single halo is considered,
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Figure 2. Optimal linear filter (left-hand panel) and scale-adaptive filter (right-hand panels) shapes calculated for three different values of α. All filters are
normalized to unity.

Figure 3. Estimated inner slope αest as a function of the fiducial inner slope
α0 used in the linear filter with the 1σ error bars calculated via equation (21).
The black line shows the real value of the halo’s inner slope.

the error bars associated to αest are so large that the overestimation
can be neglected for a large range of α0. However, if several haloes
are stacked, the error bars shrink and the overestimation becomes
important. In order to avoid this problem, more measurements of the
same halo have to be carried out sequentially: the first measurement
starting with an arbitrary value of α0, and the second using the
estimate αest found previously as a fiducial value. We tested that,
for a reasonable guess of the first fiducial value, 2–3 measurements
suffice to recover the correct slope.

3.2 Scale-adaptive filter

The linear expansion used in the previous section can be avoided
by defining a scale-adaptive filter. Such a filter is defined similarly
as the linear filter from Section 3.1 with an additional constraint on
the amplitude of the signal Aest which must be maximized when the
adopted inner slope fits the data best:

ξ = ∂Aest

∂α

∣∣∣∣∣
α0

= 0. (27)

The minimization of L = σ 2 + λ1 b + λ2ξ leads to the filter

	̂(k, α) = 1

2π

τ̂ (k, α)

PN(k)

1

�

[
2b + c − (2a + b)

d ln τ̂ (k, α)

d ln α

]
(28)

with the constants

a = 1

2π

∫
dkk

τ̂ (k, α)

PN(k)
, (29)

b = 1

2π

∫
dkk

k

PN(k)

dτ̂ (k, α)

d ln α
, (30)

c = 1

2π

∫
dkk

1

PN(k)

(
dτ̂ (k, α)

d ln α

)2

, (31)

� = ac − b2 . (32)

Its defining property is thus to maximize the signal-to-noise ratio
when the correct inner slope is adopted. This implies that the inner
slope can only be determined indirectly from a sequence of mea-
surements of the shear amplitude Aest, searching for that value of α

that maximizes Aest.
The filter shape is plotted in the right-hand panel of Fig. 2.

3.3 Dealing with parameter degeneracies

The two methods presented in Sections 3.1 and 3.2 assume a cluster
model with known mass, redshift and concentration. In a realistic
situation, we can assume to have sufficiently precise redshifts. Mass
estimates would have to be obtained from optical richness, kinemat-
ics of the cluster galaxies or X-ray scaling relations. Then, estimates
for the concentration could be derived from the mass–concentration
relation found in numerical simulations, albeit with a considerable
scatter. The concentration depends only very weakly on the mass,
hence uncertainties in the mass estimate do not strongly affect the
concentration estimate, and thus the mass does not need to be pre-
cisely known. However, numerical simulations suggest a log-normal
distribution of the concentration around its mean with a standard
deviation of ∼0.2, which implies that concentration parameters of
real clusters can only be very poorly guessed.

Moreover, the inner slope, as the parameter we are aiming to
measure, is degenerate with the concentration. In fact, it is possible
to describe a halo with high central density with a large value
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of α and a small value of c or vice versa, and so the problem
is not well defined (Wyithe, Turner & Spergel 2001). Thus, any
attempt at measuring the profile’s inner slope depends critically on
the assumed halo concentration, which is uncertain in reality.

To cope with this problem, it is convenient to reparametrize the
profile accounting for this model degeneracy, defining new param-
eters which can be more precisely measured. In short, the logic
behind the procedure described below is as follows. In a realistic
situation, we have no chance to break the degeneracy between c
and α. Rather, we can rotate the parameter space such that one of
its axes becomes parallel to the degeneracy direction and the other
perpendicular to it. The latter will define a new parameter as a lin-
ear combination of c and α which observations can constrain best.
Comparisons with theory should then be performed on the basis of
this parameter rather than through c and α separately.

This is achieved by a Fisher-matrix analysis. The Fisher matrix
is

Fij =
〈

−∂2L

∂πi∂πj

〉
, (33)

where L is the logarithm of the likelihood function and π = (α, c)
are the free model parameters. In case of a Gaussian probability
distribution, the Fisher matrix can be written as

Fij = 1

2
T r

[
AiAj + C−1Mij

]
, (34)

where C is the covariance matrix, Ai = C−1 C,i and Mij = 2 ∂μ

∂πi

∂μ

∂πj

and μ is the assumed model. Since C does not depend on the
inner slope and on the concentration, the first term in equation (34)
vanishes. We evaluate the Fisher matrix at a fiducial point (α0, c0).
In particular, we assume α0 = 1 and we calculate c0 using the
prescription by Eke et al. (2001). We truncate the shear profile at
an inner radius rmin = 1/

√
ngal, which is the minimum achievable

resolution for a given number density ngal of background galaxies
and at an outer radius rout = r200. Once rout > r s, the Fisher matrix
depends negligibly on rout since the derivative of the shear profile
with respect to alpha is zero and the derivative with respect to the
concentration is very small.

The eigenvectors (v1, v2) and (v3, v4), of the Fisher matrix, deter-
mining the directions of largest and smallest degeneracy between
the parameters α and c, define a rotation of the parameter space and
thus two new parameters:

P1 = v1α + v2c, (35)

P2 = v3α + v4c, (36)

which are linear combinations of α and c. The two new parameters
are those which can be constrained best and worst, respectively,
given the model adopted in the Fisher-matrix estimate.

If the linear filter is used to measure the inner slope, the model μ

is

μ = αest(α, c) =
∫

[γ (α, c) − γ (α0, c0)]	(α0, c0)d2x, (37)

and thus

∂μ

∂πi

=
∫

∂γ (x, π)

∂πi

	(x, π0)d2x. (38)

The covariance matrix reduces in this case to the variance of the
measurement obtained from equation (21).

Note that the Fisher matrix defined above is singular, i.e. its
determinant vanishes. The errors on the new parameters are given
by 1/

√
λi , where λi are the eigenvalues of the Fisher matrix. Since

one of them is vanishing, the error on one parameter (taken to be P2)
is infinite. This means that the likelihood region in the plane (α, c)
is an ellipse infinitely elongated in the degeneracy direction. This is
because there is more than one way of fitting a single data set (�α)
by varying the two parameters. In the right-hand panel of Fig. 4,
we show the result for a halo of M = 5 × 1014M
 h−1 at redshift
z = 0.3 with concentration c = 4.4. The corresponding eigenvector
components are v1 = v4 = 0.95 and v2 = −v3 = 0.30.

When the scale-adaptive filter is used, the measurable quantity is
the shear amplitude

A(α, c) =
∫

D(αH , cH ; θ )	(α, c0; θ )d2θ, (39)

and the value of the inner slope (αest) is then estimated looking for
the value of α maximizing the amplitude. It is clear that it depends
only on the halo’s concentration c0 assumed in the filter. To find the
degeneracy direction between the inner slope and the concentration
in this case, we analyse the relation between αest and c around a
fiducial point in the (α, c) plane. The result is shown in the left-
hand panel of Fig. 4 for the same halo as considered before. Here,
too, we define two new parameters P 1 = 0.97α + 0.22c and P 2 =
−0.22α + 0.97c. In this case, the error cannot be calculated analyti-
cally since the measurement is indirect. Instead, we have performed
a Monte Carlo simulation (see Section 4).

Since the shapes of the filters are different, so are the degeneracy
directions we find.

Figure 4. 1σ and 2σ likelihood regions in the plane (α, c) computed using the linear filter (left-hand panel) and the scale-adaptive filter (right-hand panel) for
a halo of M = 5 × 1014 M
 h−1 at z = 0.3. The fiducial value is (1.0, 4.4).
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Figure 5. Probability distributions for α, c, P 1 and P2. A normal distribution
with σα = 0.15 for the inner slope (Diemand et al. 2004) and a log-normal
distribution with σ c = 0.2 for the concentration (Bullock et al. 2001b) are
assumed. The probability distribution for P1 is given by the convolution of
the probability distribution of α and c, while the probability distribution for
P2 is given by their cross correlation.

The probability distributions of P1 and P2 can be found convolv-
ing the probability distributions of the concentration and the inner
slope. Using the degeneracy direction found for the linear filter and
assuming a log-normal distribution for the concentration with σ c =
0.2 (Bullock et al. 2001b) and a Gaussian distribution for the inner
slope with σα = 0.15 (Diemand, Moore & Stadel 2004), we find that
both probability distributions of P1 and P2 can be approximated as
log-normal distributions with standard deviations σP1 = 0.29 and
σP2 = 0.33, respectively, as shown in Fig. 5.

4 ME T H O D U N C E RTA I N T I E S

Here, we discuss in detail possible error sources affecting the mea-
surement of the inner slope using the methods described in Sec-
tions 3.1 and 3.2. We will show the error calculation for a halo of
M = 5 × 1014 M
 h−1, z = 0.3, c = 4.4.

The statistical uncertainties arising from the data noise com-
ponent N are given by the intrinsic ellipticity of the background
galaxies, their finite number and from the contamination due to the
intervening large-scale structures. The filters we have defined min-
imize these uncertainties. They are quantified by equation (21) for
the linear filter and by a Monte Carlo analysis for the scale-adaptive
filter since in this case α is measured indirectly by estimating the
location of the maximum in the estimated signal, and an analytical
computation of its variance is impossible.

The Monte Carlo analysis has been performed generating 1000
realizations of a shear catalogue using randomly distributed back-
ground galaxies with a density ngal = 30 arcmin−2, placed at redshift
zs = 1.0, on a 0.01◦ field. The halo has been placed in the field cen-
tre. The noise due to the intrinsic galaxy ellipticities (σ ε = 0.3)
and the lensing effect due to the intervening large-scale structure
have been added. The latter noise is calculated assuming that the
large-scale structure can be described by a Gaussian random field
with a power spectrum determined by the linear theory of structure
growth. We assume in our analysis that the magnification bias can
be neglected, allowing us to leave the effective number ngal of avail-
able galaxies unchanged. This is justified only if the slope γ of the
flux distribution of faint galaxies,

n0(>S) = aS−γ , (40)

Figure 6. Magnification bias expected for an halo of 5 × 1014 M
 h−1 at
redshift z = 0.3 lensing galaxies at z = 1.0. γ is the exponent of the power
law in equation (40).

is unity as discussed by Bartelmann & Schneider (2001). The ef-
fective number of galaxies neff scales with γ as

neff (>S)

ngal(>S)
= μγ−1, (41)

where μ is the magnification. Specifically, neff is lowered by at most
40 per cent compared to ngal near r = 0.2r s if γ is 0.5, as shown in
Fig. 6. For galaxies in the Hubble Ultra Deep Field (Beckwith et al.
2006), we estimate γ � 0.8 causing a magnification bias of around
10 per cent.

For each realization, we use equation (19) to estimate the shear
amplitude in the position corresponding to the halo’s centre using
filters initialized with an inner slope in the range 0.6–1.4. The
estimated inner slope value is then defined as the value of α giving
the maximum value of the shear amplitude. We finally calculate
their distribution and the dispersion around the mean value (the
results are summarized in the fourth column of Table 1).

We find that the standard deviation associated with the inner
slope, measured by the scale-adaptive filter, is 0.19. The analytical
calculation done for the linear filter gives a value of 0.14.

The same calculation has been done considering haloes of dif-
ferent masses and at different redshifts. As shown in Fig. 7, the
standard deviation increases with respect to the redshift and de-
creases when the mass is increasing. In particular, for a halo placed
at intermediate redshift between the background sources and the
observer, the standard deviation varies in the range 0.2–1.0 for a
mass range 1015 to 5 × 1013.

The preceding calculations show that errors on the inner slope
due to intrinsic ellipticities of background galaxies and due to con-
tamination by large-scale structures are large when computed for a
single halo. However, stacking a large number of haloes (10–100),
it is possible to measure an average value of α with a few percent
accuracy.

A more accurate error evaluation has to consider also the scatter
around the fiducial value of the halo’s mass, redshift and concen-
tration used in the filter definition. For both methods, we perform a
Monte Carlo simulation, following the procedure described above,
assuming a Gaussian distribution for the halo mass (σ M = 1.5 ×
1014) and redshift (σ z = 0.03) and a log-normal distribution for the
concentration (σ c = 0.2) following numerical simulations (citation).
The result is shown in Fig. 8.
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Table 1. Statistical errors in the parameters measurement for a halo of 5 × 1014 M
 h−1 at redshift z = 0.3.

Filter Parameter Fiducial value σ (stat.) σ (stat.+model) Percentage error

SAF α 1.00 0.19 0.26 0.26
SAF P 1 1.95 0.21 0.29 0.15

LF α 1.00 0.14 0.28 0.28
LF P1 2.31 0.15 0.30 0.13

Note. In the first column, we indicate the used filter, in the second column the parameter we constrain and in the third column
its fiducial value. In the fourth column are shown the expected errors assuming randomly distributed background galaxies with
intrinsic ellipticity σ ε = 0.3 and random noise due to the large-scale structures. The errors presented in the fifth column take also
into account Gaussian errors in the halo mass and redshift with standard deviations σM = 1.5 × 1014 and σ z = 0.03, respectively,
and a log-normal distribution for the concentration with standard deviation σ c = 0.2. When P1 is estimated, the probability
distribution of P2 is calculated from the probability distribution of the concentration assuming a Gaussian probability distribution
for the inner slope with σα = 0.15. In the sixth column, we show the percentage error on the parameter estimation.

Figure 7. Standard deviation for α as a function of the halo’s redshift and
mass.

One critical point that we have avoided so far concerns the choice
of the fiducial values for the haloes parameter. We discuss this point
in the following section.

4.1 Model sensitivity

Defining the filter requires the specification of a model. The estima-
tor (equation 19) we defined for the inner slope is unbiased only if
the model is correct. We investigate here what happens if the filter is

defined using a generalized NFW profile with wrong fiducial values
of mass, redshift and concentration. We study in particular the case
in which the fiducial redshift used in the filter differs from the real
redshift by about 10 per cent, the mass by about 30 per cent and
the concentration by about 20 per cent. We show the results in the
first three panels of Figs 9 and 10 (blue lines) for the linear and the
scale-adaptive filter, respectively.

As expected, the inner-slope estimate is biased. This reflects the
degeneracy between the parameters, in particular between the scale
radius r−2 = r200(M , z)/c−2 and the inner slope. The scale radius
depends only slightly on the halo mass and redshift, while it is
strongly affected by a variation in the concentration.

This bias has to be compared with the statistical errors associated
with the measurement in order to assess whether uncertainties in
the fiducial halo parameters are important or not. If a single halo
is considered, a wrong assumption on the concentration (the most
critical parameter) introduces a bias that is on the same order as the
statistical error. However, if several haloes are stacked (we show in
Fig. 9 results after stacking 10 and 100 haloes), the bias is a factor
of 10 larger than the statistical uncertainty.

In Section 3.3, we discussed how it is possible to deal with
degeneracies between inner slope and concentration, defining two
new parameters (P 1, P 2), linear combinations of c and α, which are
respectively the best and the worst constrained parameters given
our model. The measurement of the new parameter P1 is almost
unaffected by the choice of the other parameter P2 as we show in
the right-hand panel of Figs 9 and 10, while the effect of a wrong
assumption of halo mass and redshift produces a similar bias. We

Figure 8. Normalized distributions of the value of the inner slope computed using the linear filter (left-hand panel) and scale-adaptive filter (right-hand panel).
A Gaussian distribution has been assumed for the mass and the redshift, while a log-normal distribution has been adopted for the concentration.
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Figure 9. Left-hand panels: estimated inner slope of the halo (αest) as a function of the fiducial inner slope used in the filter (α0) with the 1 − σ error calculated
for 10 (orange) or 100 (green line) haloes using the Monte Carlo simulations described in Section 4. The black line shows the real value of the halo’s inner
slope. The first panel shows the bias caused by a fiducial concentration 20 per cent larger or smaller than the real concentration. The second panel shows the
bias induced by a 50 per cent difference between the fiducial and the real halo’s mass, while the third panel shows the bias caused by a difference of 10 per
cent between the fiducial and the real halo’s redshift. Right-hand panels: as the left-hand panels, but for the new pair of parameters P1 and P2.

recall that these latter quantities can be measured by means of other
observables, as discussed before.

Once the model had been reparametrized in term of P1 and P2,
we estimated the error on P1 using a Monte Carlo simulation in
the same way we have done before for α. The result is shown in
Fig. 11.

5 POTEN TIA L PRO BLEMS

We now want to point out the conditions under which the two
methods described can be successfully applied.

First of all, the reduced shear must be measurable at relatively
small angular scales (smaller than the scale radius of the halo) where
the density profile is sensitive to a change of the inner slope.

Towards the halo’s centre, the image distortion becomes non-
linear such that the galaxy ellipticities are no longer an unbiased
estimator of the shear. We quantify the expected deviation by a

simple test: we use the deflection-angle map of an NFW halo to
lens a circular source (for which we assumed a Sersic profile with
n = 1.5 and r = 0.35 arcsec) moving radially towards the halo cen-
tre. We measure the ellipticity of its image (using quadrupole mo-
ments) as a function of cluster-centric distance and compare it to the
true reduced shear. Fig. 12 shows the result for three different haloes
(M = 1014, 5 × 1014, 1015 M
 h−1). The conclusion is that up to r =
0.2r s the measured ellipticity of galaxies is still an unbiased estima-
tor of the (reduced) shear while at smaller scales the contribution
from higher order terms start to be dominant. Therefore, r ≈ 0.2r s

should be taken as the minimum radius where the measured el-
lipticity can still be considered to faithfully represent the reduced
shear.

However, measuring shear at these scales can be tricky even with
a high background galaxies density due to the possible dilution
of the shear signal caused by cluster galaxies. In order to avoid
this problem, accurate colour–magnitude information should be
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Figure 10. Estimated shear amplitude (equation 19) normalized to unity as a function of the inner slope (α) (left-hand panels) and as a function of P 1 used
in the filter definition (right-hand panels). The black dashed curve represents the case in which fiducial concentration, mass and redshift used in the filter are
correct. The blue curves represent the effect of defining the filter with a wrong fiducial value for the concentration (first panel), the mass (second panel) and
the redshift (third panel). The errors on the measurement of α were computed by Monte Carlo simulation (see the text for details) and are rescaled for 10 and
100 haloes.

Figure 11. As in Fig. 8, but using the new parameters P1 and P2 instead of α and c.
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Figure 12. Comparison between the theoretical reduced tangential shear
(thick lines) and the shear estimated from galaxy ellipticities (thin lines) for
three different masses.

Figure 13. Standard deviation of the inner slope as a function of the
background-galaxy number density and of the minimal radius where the
shear can be detected. The calculation has been done for a halo of M = 5 ×
1014 M
 h−1 at redshift z = 0.3 with α = 1.0 using the linear filter.

available so that it is possible to well separate cluster members
from non-members (Broadhurst et al. 2005).

We showed in the previous section that the error associated to the
measurement of the inner slope is high when computed for a single
halo. Thus, several haloes need to be stacked together. The number
of haloes to be stacked depends strongly on the minimal radius
where the shear can be detected, and on the number of background
galaxies. In Fig. 13, we plot the relative error on the measurement
of α as a function of these two parameters for a halo of M = 5 ×
1014 M
 h−1 at redshift z = 0.3. Assuming 30 galaxies per square
arc minute, the number of haloes to be stacked to reach an accuracy
of a few percent on the inner slope is between 10 and 100 going
from rmin = 0.2 r s to rmin = 0.8r s. We emphasize that the stacking
procedure can be affected by a wrong determination of the cluster
centre that causes a circularization of the average cluster profile in
its central part (Kathinka Dalland Evans & Bridle 2008).

Meneghetti et al. (2007) showed how the determination of the
inner slope can be biased if the triaxiality structure of the haloes
are not taken properly into account. However, if many haloes are
stacked together a direct comparison with the projected DM average

profile found using stacked simulated clusters can be consistently
done.

Moreover, the effect of the baryons in shaping the density profile
at this scale is not negligible. We plan to attack this problem using
numerical simulation in order to study the effect of stacking and the
presence of the baryons on our results.

6 C O N C L U S I O N

Starting from the question how the central density profiles of group
or cluster-sized, DM haloes can best be constrained and compared
to observations, we have developed two methods based on linear
filtering of gravitational-shear data that aim at returning a single
number, i.e. an estimate of the inner slope α of density profile. One
filter is constructed to directly return this number, the other searches
for the maximum of the signal-to-noise ratio as a function of α. Our
results are as follows.

(i) When applied to a single halo of 5 × 1014 M
 h−1 near z =
0.3, the inner slope of the density profile can be estimated with a
1σ accuracy of 14 per cent with the linear filter and 19 per cent
with the scale-adaptive filter, provided the halo concentration is
known. Even though this situation is unrealistically idealized, it is
promising because it is based on a single halo only.

(ii) Taking the considerable uncertainty in halo concentrations
into account increases the 1σ error to between 25, . . . , 30 per cent.

(iii) In reality, the halo concentration is at best roughly known.
Based on real data, there is an almost perfect degeneracy between
α and the halo-concentration parameter c: if c is assumed to be too
large, α will be underestimated and vice versa. Based on lensing
data only, this degeneracy cannot be lifted.

(iv) To address this problem, we search for that combination of
the parameters α and c that can best be constrained by observations.
We set up the Fisher matrix, rotate the two-dimensional parameter
space to diagonalize it and identify its smaller eigenvalue as that
best-constrained parameter, called P1. We find P 1 = 0.95α + 0.30c

for the linear filter and P 1 = 0.97α + 0.22c for the scale-adaptive
filter.

(v) This parameter P1 is now constrained with a 1σ relative
accuracy of ∼14 per cent both with the linear and the scale-adaptive
filters and the measurement is almost insensitive to the value of the
other parameter P2.

While these results seem highly promising, in particular when
applications to cluster samples rather than individual clusters are
envisaged, we consider our study as a first step. While we have
taken into account that image ellipticities measure the reduced grav-
itational shear rather than the shear itself, measuring the reduced
shear near the centres of galaxy groups or clusters is severely ham-
pered by the cluster galaxies themselves. It thus appears necessary
to stack the signal from several or many clusters to arrive at a
reliable estimate for α. Then, clusters with different masses, red-
shifts and concentration parameters will inevitably be combined,
with the tendency to blur the signal. However, the results derived
and presented above indicate that the principle of our approach is
promising, which consists in combining all available information
into a single number, which is thus well constrained. Further studies
are required to address the issue of stacking data in this context.
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