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We present a semiclassical theory for the excitation spectrum of a ballistic quantum dot wea
coupled to a superconductor, for the generic situation that the classical motion gives rise to a phase
containing islands of regularity in a chaotic sea. The density of low-energy excitations is determi
by quantum energy scales that are related in a simple way to the morphology of the mixed phase s
An exact quantum mechanical computation for the annular billiard shows good agreement with
semiclassical predictions, in particular for the reduction of the excitation gap when the coupling to
regular regions is maximal. [S0031-9007(99)08840-7]
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The spectral statistics of quantum systems is intimate
related to the nature of the corresponding classical dyna
ics [1]. Two celebrated examples are that chaoticity of th
classical dynamics is reflected in the quantum realm b
level repulsion while integrability causes level clusterin
[2]. Recently, confined two-dimensional electron gase
(quantum dots) coupled to a superconductor via a ball
tic point contact have become a new arena for the study
quantum-classical correspondences [3–6]. Such syste
are commonly called Andreev billiards [7], because of th
alternation of ballistic motion (as in a conventional billiard
with Andreev reflection [8] at the interface with the super
conductor. The proximity of the superconductor cause
a depletion of excited states at low energies (proximi
effect). It was found [3] that a chaotic Andreev billiard
has an excitation gap of the order of the Thouless energ
while an integrable Andreev billiard has no true gap but a
approximately linearly vanishing density of states. (Th
Thouless energyET  gdy4p is the product of the point
contact conductanceg, in units of 2e2yh, and the mean
level spacingd of the isolated billiard [9].)

Both chaotic and integrable dynamics are atypical. Th
generic situation is a mixed phase space, with “islands”
regularity separated from chaotic “seas” by impenetrab
dynamical barriers. A generally applicable theory for th
proximity effect in ballistic systems should address th
case of a mixed phase space. In this paper we present s
a theory.

In a semiclassical approach we link the excitation spe
trum quantitatively and qualitatively to the morphology o
noncommunicating regions in phase space. Different r
gions exhibit greatly varying length scales, which also de
pend sensitively on the position of the point contact. Stil
we find that a general relation exists (in terms of effectiv
Thouless energies) between these classical length sca
and the corresponding quantum energy scales. The res
for integrable and fully chaotic motion are recovered a
special cases. For the mixed phase space our main find
is a reduction of the excitation gap below the valueET of
fully chaotic systems. The reduction can be an order
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magnitude, as we illustrate by a numerical calculation i
the annular billiard [10] shown in Fig. 1.

We consider a two-dimensional ballistic region (a “bil-
liard”) of areaA (mean level spacingd  2p h̄2ymA) that
is connected to a superconductor by an opening of wid
W (corresponding to a dimensionless conductanceg 
2WylF , wherelF is the Fermi wavelength). Classical
trajectories consist of straight lines inside the billiard, with
specular reflections at the boundaries and retro-reflectio
( Andreev reflections) at the interface with the supercon
ductor. We assume thatd ø ET ø D, whereD is the
excitation gap in the bulk superconductor. The first cond
tion, d ø ET or W ¿ lF , is required for a semiclassical
treatment. The second condition,ET ø D, ensures that
the excitation spectrum becomes independent of the pro
erties of the superconductor.

The Andreev billiard has a discrete spectrum for´ ,

D. (The excitation energý . 0 is measured with respect
to the Fermi energy. We count each spin-degenerate le

FIG. 1. Andreev billiard consisting of a confined norma
conducting region interfacing with a superconductor (shade
over a distanceW . The normal region is shaped like an annula
billiard, bounded by two excentric circles (outer radiusR, inner
radiusr, distance of originsr). This figure represents the case
R  1, r  0.35, r  0.1, W  0.8. A periodic trajectory is
indicated, involving two Andreev reflections at the interface
For the Poincaré map one monitors the collisions with the out
boundary (angle of incidencea and coordinates along the
boundary, witha  0 denoting normal incidence ands  0
denoting the point closest to the inner circle).
© 1999 The American Physical Society 2951
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once.) For´ ø D the semiclassical expression for th
density of statesrs´d reads [3]

rs´d 
2
d

Z `

0
dL PsLd

X̀
n0

d

√
´

2pET
2 sn 1

1
2 d

LT

L

!
,

(1)

with PsLd the distribution of path lengths between subs
quent Andreev reflections. The distributionPsLd is nor-
malized to unity and based on the measureds d sina of
initial conditions at the interface with the superconduct
(see Fig. 1). The length scaleLT ; h̄yFy2ET (with yF

the Fermi velocity) is determined by the geometry of th
billiard by LT  pAyW and is therefore purely classical

Equation (1) was derived in Ref. [3] from the Bohr
Sommerfeld quantization rule. An alternative derivatio
starts from the Eilenberger equation [11] for the quas
classical Green function and arrives at an expression (d
to Lodder and Nazarov [5]) for the local density of state
rsr, ´d at positionr in the billiard,

rsr, ´d 
m

2p h̄2

Z 2p

0
df

3
X̀
n0

d

√
´Lsr, fd

h̄yF
2 sn 1

1
2 dp

!
. (2)

Here Lsr, fd is the path length between subsequent A
dreev reflections for the trajectory passing throughr in
direction f. Equation (1) forrs´d 

R
dr rsr, ´d fol-

lows from Eq. (2) upon integration over the area of th
billiard, by introducing coordinatesl along the trajectory
and s, sina where it hits the interface next, and usin
ds d sina dl  dr df. We can also derive Eq. (1) di-
rectly from the quantization condition on the scattering m
trix [12], following the steps of Ref. [13].

None of these derivations of Eq. (1) relies on the int
grability of the classical dynamics. It may be surprisin
that Bohr-Sommerfeld quantization can be used for non
tegrable dynamics, but this becomes understandable if
consider that all trajectories become periodic because
Andreev reflection. (The Andreev-reflected hole retrac
the path of the incident electron.) We will show tha
Eq. (1) is quite accurate in nonintegrable systems, but
emphasize that it doesnot have the status of an equation
that becomes asymptotically exact in the classical lim
In contrast to conventional billiards, no quantization co
dition with this status is known for Andreev billiards.

Return probabilities likePsLd and the related decay of
classical correlations have been addressed in many stu
[14]. In a chaotic billiard,LT is the mean path length
and PsLd ~ exps2LyLT d is an exponential distribution.
Equation (1) then gives the density of states

rs´d 
2x2

d

coshx
sinh2 x

, x 
pET

´
, (3)

which drops from2yd (the factor of 2 arises because
both electron and hole excitations contribute at positive´)
to exponentially small values aśdrops belowø0.5ET .
2952
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Equation (3) is close to (but not identical with) the exa
quantum mechanical result [3], which hasr ; 0 for ´ #

0.6ET . For integrable motionPsLd decays algebraically
~ L2p with p close to 3. Equation (1) then givesrs´d ~

´p22, hence an approximately linearly vanishing densi
of states. Numerical studies on the circular and re
angular billiard confirm the validity of the semiclassica
approach [3,15].

We turn now to mixed dynamics. Equation (1) allow
us to regard each noncommunicating region in phase sp
as a distinct system, to be labeled by an indexi. It is
helpful to rewrite Eq. (1) in terms of an effective leve
spacingdi and Thouless energyET ,i ; h̄yFy2LT ,i for
each of these regions. (This approach extends the Be
Robnik conjecture [16] to open systems.) We decompo
r 

P
i ri into partial densities of statesri , defined by

ris´d 
2
di

Z `

0
dL PisLd

3
X̀
n0

d

√
´

2pET ,i
2 sn 1

1
2 d

LT ,i

L

!
. (4)

The distributionPisLd (still normalized to unity) now per-
tains to initial conditions (still with measureds d sina) on
the interface with the superconductor that evolve into t
ith region of phase space. On the scaleLT ,i , the distribu-
tion PisLd decays exponentially for chaotic parts of phas
space while algebraic decay is found for regular regio
[17]. In each case the partial density of statesri rises to
a value2ydi on an energy scaleET ,i , but whileri has an
excitation gap for the chaotic regions it rises linearly fo
the regular regions. Equation (4) applies to those regio
that are accessible for a given location of the interfac
We call these “connected” regions. The other “disco
nected” regions (usually some of the regular islands)
not feel the proximity of the superconductor and giv
a constant background contributionris´d  2ydi in the
semiclassical approximation.

Two phase space measuresOi and Vi determine the
mean lengthLT ,i  ViyOi between Andreev reflections
the effective level spacingdi  s2p h̄d2ymVi, and the ef-
fective Thouless energyET ,i  h̄yFy2LT ,i  gidiy4p,
wheregi  OiylF is the effective dimensionless conduc
tance. The first is the areaOi that the region overlaps
with the superconducting interface on the Poincaré m
(see Fig. 2). It is a measure of the coupling strength o
region to the superconductor. The second is the volu
Vi that the region fills out in the full phase spacesr, fd.

The phase space that is explored from the point cont
can again be parametrized by the variabless, sina on the
interface and the coordinatel along the trajectory. The
identification of LT ,i  ViyOi as the mean path length
in region i is a consequence ofds d sina dl  dr df.
The mean length of all trajectorieskLl ;

R
dL LPsLd P0

i OiLT ,iy2W 
P0

i Viy2W can be used to determine the
total phase space volumeVcon ;

P0
i Vi  2WkLl that is



VOLUME 82, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 5 APRIL 1999

.
m
m
ical

se
m

ed

s
ks

h,
ce

cell
ns
ed

on.
n-
of

s
is

xci-
ck-

(at
the

of
m-
te
ion
l
dy-
of
di-

tor
ly
he
FIG. 2. Poincaré map of the annular billiard of Fig. 1
Dynamical barriers separating regions in phase space are sho
as dashed lines. Chaotic trajectories are found in region
Region 2 is an island of regular motion around a short stab
periodic orbit. Region 3 is integrable and consists of skippin
orbits that never hit the inner circle. Initial conditions a
the interface with the superconductor are uniformly distribute
within the strip arounds  p, of area2W . The hatched area
is the overlapO1 of this strip with region 1.

connected to the interface with the superconductor. He
the prime denotes restriction of the sum to connected r
gions, and we used the sum rule

P0
i Oi  2W . The vol-

ume Vdis of the disconnected regions (which determine
the background contribution tor) follows from the sum
rule

P
i Vi  Vcon 1 Vdis  2pA.

Since typically the smallestET ,i ø ET , the total density
of statesr 

P
i ri has a reduced excitation gap. This

is especially the case when one couples maximally to t
regular regions. Then their contribution tor at small´
(long path lengths) is minimal (the slope~ 1yET ,idi of
the linear increase is small sinceET ,i is large), and the gap
is substantially reduced due to long chaotic trajectorie
The constant background and the linear increase from reg
lar regions dominates when the coupling is mainly to th
chaotic parts of phase space.

The preceding paragraph summarizes the key finding
our work. We illustrate it now for the annular billiard
of Fig. 1. The Poincaré map in Fig. 2 shows three ma
regions [18], one with chaotic motion (1) and two with
regular motion (2 and 3). The regular island 2 correspon
to orbits that bounce back and forth between the two circl
where their distance is largest. It has a short stable perio
orbit in its center. Region 3 is integrable and consists
skipping orbits (trajectories that do not hit the inner circle
so that their angular momentum sina is conserved).

The regular regions couple maximally to the poin
contact when it is located at the short stable period
orbit, as in Fig. 1 (locations  p). We have computed
PsLd by following trajectories and obtainedrs´d from
Eq. (1). The result is shown in Fig. 3 (solid curve). A
the bottom of the spectrum, all discernible features are d
to the chaotic region. We see an excitation gap which
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FIG. 3. Density of states of the annular billiard of Fig. 1
The solid curve is the semiclassical prediction computed fro
Eq. (1). The histogram is obtained by an exact quantu
mechanical computation. The dashed curve is the semiclass
result (3) for completely chaotic dynamics.

about a factor of 4 smaller than in the fully chaotic ca
[Eq. (3), dashed curve]. The reduction originates fro
long chaotic trajectories with mean lengthLT ,1 ø 4LT ,
henceET ,1 ø ET y4. The linear increase (with slope~
1yET ,i) of the regular partial density of states is suppress
since for the regular regionsET ,i is large. An exact
quantum mechanical calculation [19] (histogram) confirm
the low-́ behavior found semiclassically. The sharp pea
at higheŕ in the semiclassical prediction, which arise from
families of regular trajectories of almost identical lengt
are not resolved in the histogram. This is no surprise sin
their extension in phase space is still less than a Planck
for numerically accessible Fermi wavelengths. It remai
an open question whether these fluctuations would inde
appear with increase of the quantum mechanical resoluti

The regular island is disconnected from the superco
ductor when the point contact is moved to the other end
the billiard (ats  0, where the separation of the circles i
smallest). The gap in the chaotic partial density of states
reduced to a lesser degree than before; see Fig. 4(a). E
tations localized in the regular island give a constant ba
ground contribution2yd2  2mV2ys2p h̄d2. If the point
contact is placed between these two extreme positions
s  1), the regular regions of phase space dominate
low-energy behavior ofrs´d. Instead of an excitation gap
we observe a smoothly and slowly increasing density
states; see Fig. 4(b). The histograms in Fig. 4 fall syste
atically below the semiclassical prediction. We attribu
this discrepancy to the constant background contribut
in the semiclassical result, which should vanish at smal´

because of quantum mechanical tunneling through the
namical barrier between regions 1 and 2. This source
error is absent in Fig. 3, because there all regions are
rectly coupled to the superconductor.

In summary, we have found that the superconduc
proximity effect in ballistic systems depends sensitive
on the morphology of the classical phase space. T
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FIG. 4. Density of states of the billiard of Fig. 1, but with two
different locations of the interface [s  0 in (a) ands  1 in
(b)]. The semiclassical prediction from Eq. (1) (solid curves
is compared with an exact quantum mechanical computati
(histograms).

excitation spectrum at low energies can be described in
intuitively appealing way by means of effective Thoules
energies and level spacings for the regular and chao
regions of phase space. If the coupling to the regul
regions is maximal, the excitation spectrum exhibits a
excitation gap that is much smaller than the gap of a ful
chaotic system. Measurement of such a reduced gap wo
provide a unique insight into the effect of a mixed classic
phase space on superconductivity.
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