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Critical and umbilical points of a non-Gaussian random field
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Random fields in nature often have, to a good approximation, Gaussian characteristics. For such fields, the
number of maxima and minima are the same. Furthermore, the relative densities of umbilical points, topological
defects which can be classified into three types, have certain fixed values. Phenomena described by nonlinear
laws can, however, give rise to a non-Gaussian contribution, causing a deviation from these universal values. We
consider a random surface, whose height is given by a nonlinear function of a Gaussian field. We find that, as a
result of the non-Gaussianity, the density of maxima and minima no longer match and we calculate the relative
imbalance between the two. We also calculate the change in the relative density of umbilics. This allows us not
only to detect a perturbation, but to determine its size as well. This geometric approach offers an independent
way of detecting non-Gaussianity, which even works in cases where the field itself can not be probed directly.
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A wide range of phenomena feature observables that can be
regarded as random fields. The cosmic background radiation
[1] is a famous example, but the height profile of a growing
surface [2], medical images of brain activity [3], and optical
speckle patterns [4,5] also demonstrate this.

In many cases, the fields can be approximated as Gaussian
fields, meaning that they have certain properties that are related
to the Gaussian (or normal) distribution. This is, for example,
the case when the observable signal is averaged over a large
scale, producing approximately Gaussian statistics on account
of the central limit theorem. The stochastic properties of such
fields have already been the subject of several studies [5–10]:
the density of maxima and minima for instance reflects the
amount of field fluctuations at short distances.

Analytical investigations are often restricted to such Gaus-
sian fields. However, phenomena described by nonlinear
laws produce non-Gaussian signals. Since these nonlinear
effects are usually quite small, the resulting departures from
Gaussianity can be tiny. Nevertheless, these non-Gaussianities
can offer a key to understanding the interesting nonlinear
processes behind the phenomena in question.

If the non-Gaussianity is generated by microscopic nonlin-
ear processes, then some indicator that is sensitive to short dis-
tances would be necessary to observe it. Microscopic dynamics
do not involve mixing between different regions [11,12], so
the originally Gaussian field H (�r) simply transforms in a local
way, H (�r) → FNL[H (�r)]. Provided that this transformation is
nonlinear, the new function will have non-Gaussian statistics.

The standard approach to describing the statistics of a
random field is to measure its correlation functions. In the case
of a two-dimensional random scalar field h(x,y) with Gaussian
statistics, its statistical properties are entirely encoded in its
two-point correlation function 〈h(x,y)h(x ′,y ′)〉 [as a function
of the distance between (x,y) and (x ′,y ′)]. The higher-
order correlation functions can be factorized into two-point
correlation functions, by Wick’s theorem. A breakdown in
these relationships is evidence that the field is not Gaussian.

*vitelli@lorentz.leidenuniv.nl

In this paper, we take a geometric approach to tackle this
problem. We interpret the scalar field as the height of a surface
(see Fig. 1) and infer the statistical properties of the signal by
studying the stochastic topography of this surface [13]. Such
an approach has already been the subject of both theoretical
[6,7,14–16] and experimental studies [4].

First, we focus on the statistical imbalance between peaks
and troughs. A test of Gaussianity based on similar ideas has
already been applied to the temperature fluctuations in the
cosmic microwave background [17,18].

We will focus on the difference between the densities
of maxima and minima. This should also be sensitive to
local statistics of the field, but it will be a measurement of
the non-Gaussian properties in particular since a Gaussian
variable is always symmetric around its mean value. We
will study signals of the form FNL(H ) where the underlying
field H is Gaussian and FNL is any nonlinear function, and
we will find that the imbalance can be nonzero, illustrating
this approach. Moreover, we show how large the imbalance
is exactly in relation to the nonlinear perturbation, which
allows one to attack the reverse problem: by measuring the
difference in density between maxima and minima for a
given near-Gaussian field, one can quantify the size of the
non-Gaussian component.

Next, we turn to a class of singular points of the surface,
known as umbilics, that do not depend on how the surface
is oriented in space. In order to understand the geometrical
meaning of umbilical points, imagine drawing at every point
on the surface the two principal directions, along which its
curvature is maximal or minimal. At some locations, the
principal directions can not be defined because the curvature
is the same along all directions: these special points are called
umbilics. As we shall see, umbilical points are topological
defects with an index of ± 1

2 .
This geometrical construct is very useful in a number

of physical contexts. In statistical optics, the surface may
represent a curved wavefront that emerges when a plane wave
is passed through an inhomogeneous refracting medium. In
this mapping, the normals to the surface are light rays and the
umbilical points correspond to the regions where the wave
attains its maximal intensity. In two-dimensional elasticity
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FIG. 1. (Color online) A realization of a Gaussian field with
periodic boundary conditions.

or fluid flow, the surface can represent a potential function
of two variables, the second derivatives from which a shear
field can be defined that corresponds to the principal curvature
directions of the surface. The points where the shear field
vanishes correspond to the umbilical points.

The umbilical points of a surface can be classified into
three types: lemons, monstars, and stars. A striking statistical
feature of surfaces whose height fluctuates spatially like an
isotropic Gaussian random field is that the densities of the
three types of umbilics have fixed ratios, which are universal
numbers [7,16]. This property can therefore be used to test
whether a given isotropic field is Gaussian; if for a given field
h the relative densities are found to differ from the universal
values, one may immediately conclude that the field under
consideration is not an isotropic Gaussian one. Crucially, such
a test requires only that the line field corresponding to the
principal curvature directions is measurable: the statistics of
the scalar height field from which the curvature directions are
derived can be probed without being directly observed.

To give an example of a case where the near-Gaussian
field of interest is not directly observable, consider the
phenomenon of weak gravitational lensing [19]. As stipulated
by the theory of general relativity, matter bends space-time,
which also affects light rays. The light from a distant galaxy,
for instance, does not come to us in a straight line due to
the presence of matter between that galaxy and us. As a
result, we see a distorted image of the galaxy. In general, a
circular object will look like an ellipse. While most of the
matter in the universe is believed to be made up of dark matter
which we can not (yet) detect, the shear field can be detected.
The near-Gaussian field in this case is obtained by projecting
the mass onto the sky, along the lines of sight. This is called the
projected gravitational potential. On large scales, this field is
approximately Gaussian by virtue of the central limit theorem
since the projection involves summing over a lot of regions
that are randomly distributed. On smaller scales, however,
interactions can give rise to non-Gaussian contributions. If
we interpret the projected gravitational potential as a (near-
Gaussian) surface, then the shear direction corresponds to the
principal direction of this surface [20]. In terms of the shear
field, they correspond to points in the sky where a circular light
source still appears circular.

Another example of a physical process in which umbilical
points can prove their usefulness is in the context of optical
speckle fields. These fields arise, for example, when a coherent
beam of light scatters from a rough surface. Since the many
reflected waves become superimposed, this produces a random
pattern of intensity with approximately Gaussian statistics. In
this case, it is the points of circular polarization that can be
identified as umbilical points. The relative densities of the
various types of umbilical points have been found to match
the theoretical predictions in experiments [4]. A speckle field
is not always Gaussian. First, when the surface is not that
rough, the superposition of the reflected waves will not be
sufficiently random. Second, a light beam could be transmitted
through a random medium to map out the statistics of its index
of refraction.

Other contexts in which umbilical points can offer a window
for non-Gaussianity include polarization singularities in the
cosmic microwave background [21–24], topological defects
in a nematic [25,26], and a superfluid near criticality [27,28].

Testing whether the three types of umbilical points occur in
their prescribed ratios can thus reveal whether a non-Gaussian
component is present in a given field. However, it does not
provide any quantitative information on the size of the non-
Gaussianity. In this paper, we address precisely this issue by
calculating how much the relative densities of umbilical points
deviate from the universal values in relation to the type and size
of the perturbation. Aside from being applicable even when
the field itself can not be observed directly, the approach based
on umbilics provides an additional probe, should the extrema
test not be sensitive enough. As an illustration, consider the
case h(�r) = H (�r) + εH (�r)3, where H (�r) is a Gaussian field.
Since the perturbation is an odd function of H , the symmetry
between positive and negative values of H is preserved and the
densities of maxima and minima will not differ. By contrast, a
study of the umbilical points does reveal the non-Gaussianity
of h, as we will show.

The outline of this paper is as follows. In Sec. I, we
review the properties of Gaussian fields and introduce the basic
notions and notations that we will use. We then demonstrate
how the imbalance between maxima and minima can be
calculated in Sec. II. In the process, we determine the
probability distribution for the values of minima in a Gaussian
field. The final result is compared with results from computer
generated fields. In Sec. III, we introduce the necessary
geometric concepts concerning umbilical points and proceed
to determine how the fraction of monstars deviates from the
universal value for Gaussian fields in relation to the applied
perturbation. The result is again compared to results from
computer simulations. Finally, Sec. IV provides a summary
and conclusions.

I. GAUSSIAN FIELDS

The Gaussian distribution is the archetype of a continuous
probability density. It is given by

f (x) = 1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2]
, (1)

where μ and σ are the expectation value and standard deviation
of the stochastic variable, respectively. One of its special
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properties is that the sum of two independent stochastic
variables, which adhere to this distribution, is itself also a
Gaussian variable, albeit of course with μ = μ1 + μ2 and
σ 2 = σ 2

1 + σ 2
2 . This property can be considered to be one of

the components of the proof of the central limit theorem, which
states that, under some very general conditions, the sum (or
average) of a large number of independent stochastic variables
acquires a Gaussian distribution, in the limit that the number
goes to infinity [29]. Because of this, many random processes
can be well approximated using a Gaussian distribution, e.g.,
the number of times a (fair) coin comes up heads when it is
flipped a (large) number of times, or the amount of rain that
falls at a certain spot during a year.

A Gaussian random field is an extension of this principle to
two dimensions. For instance, one might consider the amount
of rain that falls at different places throughout an area rather
than a single spot. Upon adding together all the contributions
of all rain clouds during the course of a year, one obtains a
random field.

Formally, a field is a stochastic function H (�r). The mini-
mum requirement for a Gaussian field is that the probability
distribution of H ( �r0) at any point �r0 has to be described by
a Gaussian. More generally, if we consider the values that
the field attains at any number of points, ξ1 = H ( �r1), ξ2 =
H (�r2), . . . , ξn = H (�rn), the joint probability distribution has
to be of the form

p(ξ1, . . . ,ξn) ∝ exp

⎛
⎝−1

2

∑
i,j

Aij ξiξj

⎞
⎠ , (2)

where Aij are constants. These constants give information
about the relative values at different points (which would be
useful, for example, if we wanted to know the distribution of
the derivative of the field).

Any well-behaved Gaussian field can be decomposed into
Fourier modes, resulting in the sum of an infinite number of
wave functions

ψ(�r) = ψ0 +
∑

�k
A(�k) cos(�k · �r + φ�k). (3)

This shows how much of the fluctuations occur at each
wavelength, for example, a surface of water might fluctuate
with some random waves. If that is due to some external sound
at a certain frequency, the Fourier transform will be strongest
at the corresponding wavelength.

This procedure may also be turned around; a Gaussian
field may be generated by summing up a large number of
Fourier modes. We will now discuss a field that is generated in
this way and try to understand how the statistics of the phase
factors φ�k reflect properties of the field, such as Gaussianity
and translational invariance.

The defining characteristic of a Gaussian field is now that
the phases φ�k are random and completely uncorrelated to
each other. Already, by translational invariance, second order
correlations between φk and φk′ are ruled out. If the phases are
completely independent, then at each individual point �r , ψ(�r) is
the sum of an infinite number of independent random numbers
between −1 and 1 (as a result of the cosine), each weighted
with a factor A(�k). Thus, from the central limit theorem ψ(�r)
is a Gaussian random variable. In contrast, in a non-Gaussian

field the phases are correlated, i.e., the phases of different
modes depend on each other. This mechanism is often called
mode coupling.

So far, no statements have been made about the function
A(�k): it has no influence on the Gaussianity (nor on the
homogeneity) of ψ . Indeed, this function is a free parameter,
called the amplitude spectrum. While all Gaussian fields share
some general properties, other more specific properties (such
as the density of critical points, as we shall see) depend on
this amplitude spectrum. For example, when A(�k) is large for
vectors �k with a small norm, the field ψ is dominated by these
waves with small wave vectors and hence large wavelengths,
resulting in a more slowly varying ψ as compared to a Gaussian
field that is dominated by large wave vectors.

There is one more condition that we will pose: next to
being homogeneous, we will also only consider fields that are
isotropic, i.e., have rotational symmetry. This is achieved by
requiring that A(�k) depends on the magnitude of �k only, i.e.,
A(�k) = A(k).

In order to make a clear distinction between Gaussian
and non-Gaussian, we will use H to indicate an (isotropic)
Gaussian field and ψ for any (homogeneous and isotropic)
field. Later, we will also use h to indicate a perturbed Gaussian
field.

When we have a Gaussian variable x with a certain μ

and σ , we can make a transformation to y = x−μ

σ
, which

is then a standard Gaussian variable, having μ = 0 and
σ = 1. This translation and rescaling has no effect on the
overall properties of x and is introduced for convenience. We
will apply a similar transformation by setting 〈H 〉 = 0 and
〈H 2〉 = 1. The expectation values are obtained by integrating
over all possible values of all random variables, which in this
case, are the uniformly distributed phases:

〈. . .〉 ≡
⎛
⎝∏

�k

∫
dφ�k
2π

⎞
⎠ . . . . (4)

For our earlier definition (3), the normalization translates
to H0 = 0 and

∑
�k

1
2A(k)2 = 1. This normalization is for

the purpose of simplicity only and has no impact on our
analysis.

More details on these calculations, as well as additional
properties of Gaussian fields and definitions, can be found in
Appendix A. There we also demonstrate how the two-point
correlation function can be derived from Eq. (3). We also
show how the higher-order correlation functions are related to
the two-point ones. Testing whether these relations hold for a
given field ψ can reveal whether ψ is Gaussian or not. A more
detailed analysis of the correlation functions can provide clues
about the nature of the non-Gaussianity.

Although correlation functions provide an excellent ap-
proach from a purely mathematical point of view, determining
correlation functions for a given realization of a near-Gaussian
field h may not always be practical, as it requires precise
measurements of h in order to determine the correlation
functions with a large enough precision.

In this paper, we consider two geometrical tests for
Gaussianity, the first of which involves counting the number
of maxima and minima.
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II. MAXIMA VERSUS MINIMA

Due to symmetry, a Gaussian field H has as many minima
as it has maxima. For a perturbed Gaussian field, like h = H +
εH 2, this may no longer be the case. Therefore, the difference
in densities of maxima and minima can serve as an indication
of non-Gaussianity. We shall now derive what this difference
is in the generic case of a field given by h(�r) = FNL[H (�r)],
where H is a Gaussian field and FNL is any (nonlinear)
function (e.g., the identity plus a perturbation), which depends
only on H (�r), i.e., the original (unperturbed) value of the
field at that same point. This scheme we will refer to as a
local perturbation.

Transforming the function with FNL does not move maxima
and minima around, but it can interchange them, depending
on the sign of F ′

NL = dFNL/dH at the point in question. To
see this, note that maxima and minima, together with saddle
points, are critical points. The critical points of h are given by

0 = �∇h(�r) = dh

dH
�∇H (�r) = F ′

NL(H ) �∇H (�r). (5)

We see that the critical points of H and h are the same
points; however, the prefactor F ′

NL(H ) may influence the
type of critical point. The three types can be distinguished
by considering the second derivatives: saddle points have
hxxhyy − h2

xy < 0, whereas for maxima and minima (together
called extrema) this is positive. For maxima, unlike minima,
we have hxx < 0 (or hyy < 0).

Consider a critical point �r0 and let z = H ( �r0). The second
derivatives of h at �r0 simply have an extra factor F ′

NL(z)
as compared to the second derivatives of H . This has no
influence on the sign of hxxhyy − h2

xy , therefore, the saddle
points (extrema) of H are also saddle points (extrema) of
h. However, a maximum (minimum) of H is a minimum
(maximum) of h when F ′

NL(z) < 0. In order to determine how
many extrema will undergo such a transformation, we need to
know how often F ′

NL(z) < 0 at such points.
Let g(z) be the probability density that a certain minimum

�r0 of H has the value H ( �r0) = z. The probability P that a
minimum of H becomes a maximum of h is then

P =
∫

z:F ′
NL(z)<0

dz g(z). (6)

For example, if we consider a square perturbation h = H +
εH 2, for which F ′

NL(z) = 1 + 2εz, we have

P =
∫ − 1

2ε

−∞
dz g(z). (7)

Because of the symmetry of H , the maxima are distributed
according to g(−z). With that, we can similarly define a
probability Q that a maximum becomes a minimum going
from H to h.

Let n0 be the density of minima (or maxima) of H .
The density of minima (maxima) of H which are maxima
(minima) of h is then Pn0 (Qn0). We can quantify the resulting
imbalance in maxima and minima in the dimensionless

parameter

�n ≡ nmax − nmin

nmax + nmin
= (1 + P − Q)n0 − (1 − P + Q)n0

2n0

= P − Q =
∫

z:F ′
NL(z)<0

dz [g(z) − g(−z)]. (8)

Thus, if we can determine g(z), we can calculate the exact
imbalance between the maxima and minima of h.

A. Distribution of minimum values

1. One dimension

Let us first consider the probability distribution for min-
imum values of a Gaussian function on a line. We will then
generalize to two dimensions, and afterward, discuss how these
distributions depend on the power spectrum. We start with

H (x) =
∑

k

A(k) cos(kx + φk). (9)

The minima are given by Hx(x0) = 0 and Hxx(x0) > 0. We
would thus like to know the probability density that H (x0) = z,
given that Hx(x0) = 0 and Hxx(x0) > 0:

g(z) = p[H (xmin) = z]

= 1

n
p[H (x0) = z ∧ Hx(x0) = 0 ∧ Hxx(x0) > 0]. (10)

Here, n ≡ p[Hx(x0) = 0 ∧ Hxx(x0) > 0] can be identified as
the density of the minima. We need to determine the joint
probability distribution p[H (x0),Hx(x0),Hxx(x0)]; since H is
homogeneous, p does not depend on x0.

Let us take a closer look at the first derivative

Hx(x0) =
∑

k

A(k)(−k) sin(kx0 + φk)

=
∑

k

kA(k) cos

(
kx0 + φk + 1

2
π

)
. (11)

We see that the expression for Hx still describes a Gaussian:
the phases are simply increased by 1

2π (modulo 2π ) and the
spectrum has picked up a factor of k. The bottom line is that
Hx(x0) is a Gaussian variable, and it is easy to confirm that the
same goes for Hxx(x0) (or any derivative).

We thus have three Gaussian variables. The joint probability
distribution of a set of (correlated) Gaussian random variables
is given by [compare Eq. (2)]

p(ξ1, . . . ,ξn) = 1

(2π )n/2
√

det C
exp

⎛
⎝−1

2

∑
i,j

(C−1)ij ξiξj

⎞
⎠ .

(12)

Moreover, the coefficients C can be determined measuring the
statistics of the field: it is the matrix of correlations

Cij = 〈ξiξj 〉. (13)

Let us calculate 〈H (x)Hxx(x)〉 as an example. Again,
homogeneity allows us to set x0 = 0 for convenience.

012115-4



CRITICAL AND UMBILICAL POINTS OF A NON- . . . PHYSICAL REVIEW E 88, 012115 (2013)

We then find

〈H (x0)Hxx(x0)〉 = 〈H (0)Hxx(0)〉

=
〈∑

k

A(k) cos φk

∑
k′

A(k′)(−k′2) cos φk′

〉

=
∑
kk′

A(k)A(k′)(−k′2)〈cos φk cos φk′ 〉

=
∑
kk′

A(k)A(k′)(−k′2)
1

2
δkk′

=
∑

k

−1

2
A(k)2k2 = −K2. (14)

Here, we made use of the moment K2 defined in Eq. (A7).
An even and an odd derivative of H are always uncorrelated,

e.g.,

〈H (0)Hx(0)〉 =
∑
kk′

A(k)A(k′)(−k′)〈cos φk sin φk′ 〉

=
∑
kk′

A(k)2(−k)〈cos φk sin φk〉δkk′ = 0. (15)

This is because an even derivative features cosines while an
odd derivative has sines, and their product averages to zero, as
above.

The final result is that for H , Hx , and Hxx the correlations
are

C =
⎛
⎝ 1 0 −K2

0 K2 0
−K2 0 K4

⎞
⎠. (16)

The determinant of C is K2(K4 − K2
2 ) and its inverse is

C−1 = 1

K2
(
K4 − K2

2

)
⎛
⎝K2K4 0 K2

2
0 K4 − K2

2 0
K2

2 0 K2

⎞
⎠. (17)

This gives

p(H,Hx,Hxx) = 1

(2π )3/2
√

K2
(
K4 − K2

2

)
× exp

(
H 2

x

2K2
−K4H

2 + 2K2HHxx + H 2
xx

2
(
K4 − K2

2

) )
.

(18)

The plan is now to set H = z and Hx = 0 and integrate
p over Hxx . However, one important factor still needs to
be added. The probability we have calculated is actually a
probability density [since the probability that H ′(x0) = 0 and
H (x0) = z exactly is zero], and it is not defined with respect
to the variables we need. It is defined by fixing a point x0 and
determining the probability that Hx vanishes within a certain
tolerance at that point:

P [H (x0) ∈ [z,z + dz] ∧ Hx(x0) ∈ [0,dH ′]]
dz dH ′ .

Instead, we actually want the probability that there is an exact
critical point within a certain distance of x0:

P

( ∃ xm ∈ [x0,x0 + dx] :
H (xm) ∈ [z,z + dz] ∧ Hx(xm) = 0

)
dx dz

.

Over the range dx, dH ′ varies by

dH ′ =
∣∣∣∣∂Hx

∂x

∣∣∣∣dx = |Hxx |dx. (19)

In order to get the desired probability density with respect to
x, we need to multiply our current probability density with
|Hxx |.

The probability distribution for the minima is thus given by
[see Eq. (10)]

g(z) = 1

n

∫ ∞

0
dHxx p(H = z,Hx = 0,Hxx) |Hxx |. (20)

The prefactor, featuring the density of minima n, can be re-
garded as a normalization constant and is found by integrating
g(z) over the entire z range. This is easily accomplished by
taking the expression above and first integrate over z, and only
then over Hxx . The result is∫ ∞

−∞
dz g(z) = 1 ⇒ n = 1

2π

√
K4/K2. (21)

The integrand in Eq. (20) is also Gaussian, but it is only
integrated over for positive Hxx , resulting in

g(z) =
√

1 − λ

2π
exp

(
− 1

2(1 − λ)
z2

)

− 1

2

√
λ z exp

(
−1

2
z2

)
erfc

(√
λ

2(1 − λ)
z

)
. (22)

Here, erfc is the complementary error function

erfc(x) ≡ 2√
π

∫ ∞

x

dt e−t2
, (23)

which converges to 1 as x goes to −∞. The two parameters
K2 and K4 have been merged into a single dimensionless
parameter

λ ≡ K2
2

K4
(0 � λ � 1). (24)

Note that we set K0 ≡ 〈H 2〉 = 1 for convenience. In the
generic case K0 �= 1, we have λ = K2

2 /(K0K4). A proof that
λ � 1 is derived explicitly in the next section.

2. Two dimensions

In two dimensions, the procedure to calculate the distri-
bution of the minima is similar. The minima are defined
by the conditions Hx = Hy = 0 (defining critical points),
HxxHyy − H 2

xy > 0 (separating extrema from saddle points),
and Hxx,Hyy > 0 (distinguishing minima from maxima). We
thus need to find p(H,Hx,Hy,Hxx,Hyy,Hxy). This is still a
Gaussian joint distribution function.
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We start again by determining the correlations, for example
(again setting �r = 0 for convenience),

〈HxxHyy〉 =
∑
�k �k′

A(k)A(k′)k2
xk

′2
y 〈cos φ�k cos φ �k′ 〉

=
∑
�k �k′

A(k)A(k′)k2
xk

′2
y

1

2
δ�k �k′ =

∑
�k

1

2
A(k)2k2

xk
2
y

= 1

2π

∫ 2π

0

∫ ∞

0
dk dθ (k)k4 cos2 θ sin2 θ

= 1

8

∫ ∞

0
dk (k)k4 = 1

8
K4. (25)

In the third line we replaced the sum by an integral and
performed it using polar coordinates.

Remember from the one-dimensional case that the correla-
tion of an even and an odd derivative is always zero because in
the calculation we encounter a product of a cosine and a sine,
which integrated over the (random) phase yields zero. Based
on the calculation method demonstrated above, we can make
a more general statement: When the combined number of x

derivatives (y derivatives) is odd, the integral over θ (as above)
features a cosine (sine) with an odd exponent; the integral over
θ then gives zero. If we apply this rule to our six variables, we
see that Hx , Hy , and Hxy all have no “compatible match” in this
respect; therefore, they are uncorrelated to all other variables.
This allows us to factorize the joint probability distribution

p(H,Hx,Hy,Hxx,Hyy,Hxy)

= p(Hx) p(Hy) p(Hxy) p(H,Hxx,Hyy). (26)

The probability densities of the individual variables are
straightforward,

p(Hx) = 1√
πK2

exp

(
− 1

K2
H 2

x

)
, (27a)

p(Hy) = 1√
πK2

exp

(
− 1

K2
H 2

y

)
, (27b)

p(Hxy) = 2√
πK4

exp

(
− 4

K4
H 2

xy

)
. (27c)

For H , Hxx , and Hyy , we determine the correlation matrix

C =

⎛
⎜⎝

1 − 1
2K2 − 1

2K2

− 1
2K2

3
8K4

1
8K4

− 1
2K2

1
8K4

3
8K4

⎞
⎟⎠. (28)

The determinant of C is 1
8K4(K4 − K2

2 ) and its inverse is

C−1 = 1

K4
(
K4 − K2

2

)

×

⎛
⎜⎝

K2
4 K2K4 K2K4

K2K4 3K4 − 2K2
2 2K2

2 − K4

K2K4 2K2
2 − K4 3K4 − 2K2

2

⎞
⎟⎠. (29)

After some rearranging, Eq. (12) gives

p(H,Hxx,Hyy) = 1

π3/2
√

K4
(
K4 − K2

2

)
× exp

(
− (K4H + K2Hxx + K2Hyy)2

2K4
(
K4 − K2

2

)
− (Hxx − Hyy)2

2K4
− H 2

xx + H 2
yy

K4

)
. (30)

As in the one-dimensional case, we now have a probability
density with respect to Hx and Hy , which we need to convert
to one with respect to x and y. For that we need to multiply p

with the Jacobian determinant∣∣∣∣∂(Hx,Hy)

∂(x,y)

∣∣∣∣ = ∣∣HxxHyy − H 2
xy

∣∣. (31)

The probability distribution for the minima is thus given by

g(z) = 1

n
p(Hx = 0) p(Hy = 0)

×
∫∫∫

dHxxdHyydHxy p(H = z,Hxx,Hyy)

× p(Hxy)
∣∣HxxHyy − H 2

xy

∣∣
= 1

nπK2

∫∫∫
dHxxdHyydHxy p(z,Hxx,Hyy)

× p(Hxy)
∣∣HxxHyy − H 2

xy

∣∣. (32)

The integrals must be taken over the volume for which
HxxHyy − H 2

xy > 0 and Hxx,Hyy > 0, which forms the do-
main of the minima. These constraints and the integration can
be simplified by making the following change of variables:

r cos θ = 1
2 (Hxx − Hyy), (33a)

r sin θ = Hxy, (33b)

s = 1
2 (Hxx + Hyy), (33c)

dHxxdHyydHxy = 2r dr ds dθ. (34)

In terms of these new variables, we have HxxHyy − H 2
xy =

s2 − r2 and the constraints of the volume are given by 0 <

r < s. We get

g(z) = 1

nπK2

∫ 2π

0

∫ ∞

0

∫ s

0
dr ds dθ

4r(s2 − r2)

π2K4

√
K4 − K2

2

× exp

(
−K4z

2 + 4K2sz + 4s2

2
(
K4 − K2

2

) − 4r2

K4

)
. (35)

The density of the minima n can again readily be obtained by
integrating over z:

∫ ∞

−∞
dz g(z) = 1 ⇒ n = K4

8
√

3πK2

. (36)

Note that this result matches the one obtained in [6].
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After evaluating the double integral (taking care to integrate
over r first), we obtain

g(z) =
√

3

2π (3 − 2λ)
exp

(
− 3

2(3 − 2λ)
z2

)

× erfc

(√
λ

2(1 − λ)(3 − 2λ)
z

)

−
√

3

2π
λ(1 − z2) exp

(
−1

2
z2

)
erfc

(√
λ

2(1 − λ)
z

)

− 1

π

√
3λ(1 − λ) z exp

(
− 1

2(1 − λ)
z2

)
. (37)

The two parameters K2 and K4 have been merged into one as
before:

λ ≡ K2
2

K4
(0 � λ � 1). (38)

Again, when we set K0 = 〈H 2〉 �= 1, we get λ = K2
2 /(K0K4).

Let us prove that λ � 1. After some rearranging, we see
that this is equivalent to K0K4 − K2

2 � 0. We find

K0K4 − K2
2 =

∫∫
dk dk′ (k)(k′)(k′4 − k2k′2). (39)

Note that we could just as well replace k′4 with k4 (because
everything else is symmetric in k and k′), and hence also with
1
2 (k4 + k′4). If we do the latter, we can rewrite

1
2 (k4 + k′4) − k2k′2 = 1

2 (k − k′)2. (40)

We see that this is positive, together with (k) and (k′),
hence the integrand is positive and the integral too, which
concludes the proof.

We have compared Eq. (37) with distributions obtained
from computer-generated Gaussian fields; details about these
numerical simulations and how the minima were identified can
be found in Appendix B. As can be seen in Fig. 2, the agreement
between Eq. (37) and the numeric results is excellent.

Let us take a closer look at Eq. (37). The two limits of λ

give results with interesting physical interpretations:

lim
λ→0

g(z) = 1√
2π

e− 1
2 z2 −

√
λ

4√
3π

ze− 1
2 z2 + O(λ), (41)

lim
λ→1

g(z) = (1 − sgnz)

√
3

2π

(
e−z2 − 1 + z2

)
e− 1

2 z2
. (42)

The case λ = 0 occurs when K4 is unbounded [e.g., when (k)
scales as k−6]. We see that the distribution is then an elementary
Gaussian. A rough intuitive explanation for this is as follows.
The key feature of this limit is that the maxima and minima
arise from very rapid oscillations that are superimposed on top
of a slowly varying field. In fact, if K4 is extremely large, the
waves with a short wavelength (large |�k|) have an amplitude
that is small, but not negligible. They therefore create large
fluctuations in the gradient of the field and hence a lot of
extrema, a fact that can also be seen from Eq. (36). Meanwhile,
the height of the surface at any point (including the abundant
minima) is dominated by the waves with a large amplitude,
which have long wavelengths (small |�k|). The location of the
minima and the height of the surface are thus independent.

−5 −4 −3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

z

g(
z)

−5 −4 −3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

z

g(
z)

(a)

(b)

FIG. 2. Histograms of the values of 106 minima obtained from
simulations, together with the distribution given by Eq. (37), for (a)
a disk spectrum (λ = 3

4 ); (b) a Gaussian spectrum (λ = 1
2 ).

Therefore, the distribution of the value of H at a minimum is
the same as for any other point: Gaussian.

Now we consider λ = 1. From our proof that λ � 1, it is
not hard to see that this can only occur when (k) = δ(k − k0)
for some constant k0. This is called a ring spectrum since the
only occurring wave vectors are the ones with |�k| = k0, which
describes a circle in �k space. Inspecting Eq. (42) we see that,
due to the factor (1 − sgn z), all minima have a negative value
of H , as the simulations also show (see Fig. 3). The explanation
is that height fields with a ring spectrum necessarily satisfy
∇2H = −k2

0H , therefore, if H is positive, the mean curvature
Hxx + Hyy < 0, so the point can not be a minimum. In
other words, such Gaussian fields are random solutions to
Helmholtz’s equation: they could represent the height field of
a large membrane resonating at a certain frequency but with
some randomness preventing a particular mode among the
many at that frequency from stabilizing.

While Eq. (37) appears quite complex, some of its param-
eters have more transparent forms. The expectation value μ

and standard deviation σ , for example, are

μ = −4

√
2

3π
λ, (43)

σ =
√

1 − 32 − (6
√

3 − 2)π

3π
λ. (44)
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0.7

z
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z)

FIG. 3. Histogram of the values of 106 minima obtained from
simulations, together with the distribution given by Eq. (37), for a
ring spectrum (λ = 1). No minima with a positive value of H were
found.

When looking at Fig. 2, it appears that the distribution is
itself almost Gaussian. This can be captured in the skewness
γ1 and kurtosis γ2:

γ1 ≡ μ3

σ 3
= − 4

√
2[64 − (18

√
3 − 11)π ]

{3πλ−1 − [32 − (6
√

3 − 2)π ]}3/2

= − 3.46

(9.42λ−1 − 5.63)3/2
, (45)

γ2 ≡ μ4

σ 4
− 3

= 4[−1536 + 32(18
√

3 − 11)π + 9(2
√

3 − 9)π2]

{3πλ−1 − [32 − (6
√

3 − 2)π ]}2

= 2.68

(9.42λ−1 − 5.63)2
. (46)

Here, μn is the nth moment about the mean: μn ≡ 〈(ξ −
〈ξ 〉)n〉. The skewness is a measure of the symmetry of a
distribution around the mean, while the kurtosis gives an
indication of its “peakiness.” For a Gaussian distribution, both
the skewness and the kurtosis are zero. They can therefore be
considered as a measure of the Gaussianity of a distribution;
note, however, that a distribution is not necessarily Gaussian
if both parameters are zero. The two parameters are shown in
Fig. 4. Naturally, they both go to zero for λ → 0.

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

λ
 

 

γ
1
 (skewness)

γ
2
 (kurtosis)

FIG. 4. The skewness (γ1) and kurtosis (γ2) of the distribution
[Eq. (37)] as a function of λ [see Eqs. (45) and (46)].

B. Maxima and minima imbalance

Now that we have obtained g(z), we can calculate the
relative imbalance between the densities of maxima and
minima of h = FNL(H ), in accordance with Eq. (8):

�n ≡ nmax − nmin

nmax + nmin
=
∫

z:F ′
NL(z)<0

dz [g(z) − g(−z)]. (47)

The most basic example of a perturbed Gaussian for which we
may expect �n �= 0 is h = H + εH 2. In this case, the domain
of integration is [−∞, − 1

2ε
]. We have compared Eq. (47)

with results from computer-generated fields, for two different
spectra; in Fig. 5 a so-called disk spectrum was used:

A(k)2 ∼ θ (k0 − k), K2n = k2n
0

n + 1
, λ = 3

4
. (48)

Figure 6 features results for a Gaussian spectrum:

A(k)2 ∼ exp
(−k2/2k2

0

)
, K2n = 2nn!k2n

0 , λ = 1
2 . (49)

In both cases, we see an excellent agreement between the
results from the simulations and our theoretical formula.

In both figures, we see that �n increases dramatically
starting ε ∼ 0.15. This can be explained intuitively as follows:
the balance in densities of maxima and minima is disturbed
by extrema located below H = − 1

2ε
. Since H is a standard

Gaussian, such low values (i.e., large negative values) of H

are exponentially rare. It is only when − 1
2ε

is in the order of −1
that a significant �n can be expected. To get a rough estimate
for the number of these extrema, we can just look at the density

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

Δn

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

ε

Δn

(a)

(b)

FIG. 5. �n for h = H + εH 2 as a function of ε, where H has a
disk spectrum (λ = 3

4 ). The data points stem from simulations, the
solid curve is Eq. (47). The two graphs are for different ranges of ε.
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0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

0.08

ε

Δn

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

Δn

(a)

(b)

FIG. 6. �n for h = H + εH 2 as a function of ε, where H has a
Gaussian spectrum (λ = 1

2 ). The data points stem from simulations,
the solid curve is Eq. (47). The two graphs are for different ranges
of ε.

of points with H = − 1
2ε

(ignoring the requirement that they
be minima does not change the exponential dependence). This
is e−1/(8ε2). A more careful approximation (see Appendix C)

gives �n ∼
√

3
2π

λ
ε
e
− 1

8ε2 .
This argument also applies to the generic case h = H +

εfNL(H ), where fNL designates a perturbation and ε is
a parameter controlling the size of the perturbation. Now,
εf ′

NL(H ) needs to be in the order of 1 for �n to be significantly
nonzero. Thus, measuring the imbalance between maxima and
minima does not give a very sensitive test of the type of
non-Gaussianity that we have considered here, in the limit
of small ε. However, Eq. (47) is a nonperturbative result that
also holds for large ε.

III. UMBILICAL POINTS

Umbilical points are points on a surface where the curvature
of the surface is the same along all directions. The curvature
depicts how much the surface bends along a given direction,
just like the second derivative of a one-dimensional function
does. At an umbilical point then, the surface is locally spherical
(or flat).

In order to make a proper mathematical formulation,
consider a two-dimensional function f (x,y). We consider any
specific point (x0,y0) and any direction given by an angle ψ .
Along this direction, the function can be parametrized as

fψ (r) = f (x0 + r cos ψ,y0 + r sin ψ). (50)

This function now describes what f looks like at (x0,y0) along
the direction ψ . The curvature is the value of the second
derivative of fψ (r) at r = 0,

f ′′
ψ (0) = d2fψ

dr2

∣∣∣∣
r=0

= fxx(xc,yc) cos2 ψ + fyy(xc,yc) sin2 ψ

+ 2fxy(xc,yc) sin ψ cos ψ

=
(

1

2
+ 1

2
cos 2ψ

)
fxx +

(
1

2
− 1

2
cos 2ψ

)
fyy

+ sin 2ψfxy

= 1

2
(fxx + fyy) + 1

2
(fxx − fyy) cos 2ψ + fxy sin 2ψ.

(51)

We can write this in a more lucid form by applying the
transformation

1

2
(fxx − fyy) = R cos α, R = 1

2

√
(fxx − fyy)2 + 4f 2

xy,

(52)

fxy = R sin α, tan α = 2fxy

fxx − fyy

.

With this, we find

f ′′
ψ (0) = 1

2 (fxx + fyy)

+ 1
2

√
(fxx − fyy)2 + 4f 2

xy cos(2ψ − α). (53)

With the curvature now properly defined, we introduce the
two principal directions, which are the directions along which
the curvature is maximal or minimal. The corresponding
curvatures are known as the principal curvatures. We can
easily see from Eq. (53) that these two directions are given
by 2ψ − α = kπ and hence perpendicular to each other.

As noted before, at an umbilical point the curvature is the
same along all directions. In other words, the two principal
curvatures are the same, and the principal directions can not
be defined. From Eq. (53), the definition of an umbilical point
is easily seen to be

fxx = fyy and fxy = 0. (54)

Umbilical points can be classified in three types. The distinc-
tion can be clearly made when one looks at the curvature
lines. These are curves which are always tangent to a principal
direction, either the one corresponding with the maximal
curvature or the minimum one. These two sets of curvature
lines intersect at right angles since as noted before, the
principal directions are always perpendicular to each other.
At an umbilical point, no principal direction can be defined,
giving one of the three patterns shown in Fig. 7. There are
three types: lemons, monstars, and stars.

We see that, in each case, the umbilical point is a topological
defect, having a topological index (see [30], for example).
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(a) (b) (c)

FIG. 7. (Color online) One set of curvature lines (black) around
(a) a lemon, (b) a monstar, and (c) a star. The other set shows the
same pattern in all cases. The red circle and line segments show how
the principal direction rotates around the umbilical point.

Formally, the topological index is defined as

n = 1

2π

∮
∇ψ · dl, (55)

where the path integral is taken over an (infinitesimal)
counterclockwise loop around the defect. In words, it counts
the number of revolutions the principal direction makes when
traversing this closed loop. We see from Fig. 7 that, for the point
labeled star, the direction makes half a clockwise rotation,
which means a topological index of − 1

2 . The minus sign
reflects that it rotates in the opposite direction with respect to
the direction the loop is traversed in. The other two umbilical
points have index + 1

2 .
Another characteristic separating the three is the number

of curvature lines that terminate at the umbilical point. For a
lemon, this is one, whereas for the other two it is three. We see
that the third type of umbilical point shares properties with both
others: it has topological index + 1

2 , as does a lemon, and three
curvature lines terminating at it, like a star. This in-between
nature of the point is reflected in its name: monstar.

The three types of umbilical point can also be distinguished
using the third derivatives, much like the various types of
critical points can be identified by the second derivatives. From
Eqs. (52) and (53), we see that the two principal directions, for
which the curvature is maximal or minimal, are given by

tan 2ψ = 2fxy

fxx − fyy

. (56)

Note that the directions are given by angles modulo π , so
this equation has two solutions: the two principal directions.
The angle 2ψ can be pictured as the argument of the vector
�v = ( fxx − fyy

2fxy
). At an umbilical point, both vector components

are zero (hence, the principal directions are not defined). In
order to determine the topological index, we need to know
what the principal directions are in close proximity to this
point, in order to evaluate the infinitesimal loop in Eq. (55).
We can expand �v using the third derivatives. For a point �r near
an umbilical point �r0 we have

�v =
(

fxxx − fyyx fxxy − fyyy

2fxyx 2fxyy

)(
x − xu

y − yu

)
= A(�r − �r0).

(57)

If A were the identity matrix, then a counterclockwise loop
around �r0 would obviously result in 2ψ increasing by 2π ,
giving index + 1

2 . In general, A may shear and rotate �r , or
may reflect it. The former would have no effect on the charge.
However, if A includes a reflection, the gradient would rotate
in the opposite direction and the index becomes − 1

2 . Whether
A describes a reflection or not is encoded in the sign of its
determinant,

1
2 det A = (fxxx − fxyy)fxyy + (fyyy − fxxy)fxxy. (58)

Hence, the index of the umbilical point is + 1
2 (− 1

2 ) if det A
is positive (negative). Introducing α = fxxx,β = fxxy,γ =
fxyy,δ = fyyy , we thus find (see also [7])

αγ − γ 2 + βδ − β2

{
> 0 for L, M,

< 0 for S.
(59)

As mentioned before, the criterion separating the lemons
from the monstars (and stars), is the number of (locally
straight) lines ending at the umbilical point: one for lemons,
three for (mon)stars [that is one (three) for each principal
direction]. This can also be expressed in terms of α, β, γ , and
δ. Consider again a point �r near �r0. The principal directions
are given by ψ modulo 1

2π , hence one of the two is directed
toward the umbilical point when the argument θ of �r − �r0 is
equal to ψ at �r , modulo 1

2π .
To find an algebraic statement of this condition, we double

both sides: 2θ ≡ 2ψ (mod π ). The right-hand side is the
argument of �v by Eq. (56). We can also find a vector whose
argument is given by the left-hand side: let ( x

y ) = �r − �r0; then

2θ is the argument of the vector ( x2 − y2

2xy ): this is easily seen

by mapping ( x
y ) to the complex number x + iy and taking its

square, which doubles the argument. The condition for �r being
on a terminating curvature line is that the arguments of these
two vectors must match modulo π , which translates to ( x2 − y2

2xy )

and A( x
y ) being parallel to each other. This condition can be

mathematically expressed using the matrix A from before and
the cross product, giving

0 = 1

2
( −2xy x2 − y2 )A

(
x

y

)

= 1

2
( −2xy x2 − y2 )

(
(α − γ )x − (δ − β)y

2βx + 2γy

)
= βx3 − (α − 2γ )x2y + (δ − 2β)xy2 − γy3. (60)

Note that this equation describes lines passing through �r0,
whereas the curvature lines actually terminate on the defect.
On one side of �r0, this line corresponds with the line of
maximal curvature, on the other side with minimal curvature.
This is easily seen from Eq. (51), if one notes that the second
derivatives change sign when passing through �r0.

The number of straight lines passing through �r0 is thus equal
to the number of (real) roots of this cubic equation (that is, by
interpreting this as an equation in x/y). This is captured by
the discriminant: if it is positive, then there are three roots; if
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it is negative, there is only one. This results in (see also [7])

4[3γ (α − 2γ ) − (δ − 2β)2]
×[3β(δ − 2β) − (α − 2γ )2]
− [(δ − 2β)(α − 2γ ) − 9βγ ]2

{
> 0 for M, S,

< 0 for L.
(61)

According to the Poincaré-Hopf theorem, for any surface
the total sum of all topological indices equals the Euler char-
acteristic of the underlying manifold. For the two-dimensional
plane that we consider, this is simply zero. As a consequence,
the density of stars (with index + 1

2 ) equals the combined
density of lemons and monstars (with index − 1

2 ). In other
words, the star fraction, that is the density of stars divided by
the total density of umbilical points, is always 1

2 . There is,
however, no topological constraint on the lemon and monstar
fractions. For isotropic Gaussian random fields, however, it has
been shown that the monstar fraction is αM = 1

2 − 1/
√

5 =
0.053 [7,16], independent of the spectrum of the Gaussian
field. As a consequence, the monstar fraction promises to be a
good criterion to test the (non-)Gaussianity of a field. Should
one be given a random field, and find that the monstar fraction
is not equal to 0.053, one can immediately conclude that the
field is not an isotropic Gaussian one.

A. Monstar fraction

We take a non-Gaussian field h that can be described as a
Gaussian field H with a perturbation f (H ) added to it, and
calculate how much the monstar fraction αM deviates from the
universal value 0.053 as a function of the perturbation f (H ).
Our result also allows us to attack the reverse problem: when
given a non-Gaussian field of which the type of perturbation is
known, we can determine the monstar fraction and thus reveal
the size of the perturbation.

As we have seen in Eqs. (54), (59), and (61), the monstars
can be defined using the second and third derivatives of the
field h with respect to x and y. Determining the monstar
fraction thus boils down to determining how likely it is that at a
specific point �r the third derivatives α = hxxx(�r), β = hxxy(�r),
γ = hxyy(�r), and δ = hyyy(�r) are such that Eqs. (59) and (61)
prescribe a monstar, given that the second derivatives obey
hxx(�r) = hyy(�r) and hxy(�r) = 0.

In order to determine this, we require the joint probability
distribution of these seven stochastic variables. When we have
this, we can set hxx = hyy and hxy = 0 and integrate α, β, γ ,
and δ over the appropriate ranges to get the density of monstars
and all umbilical points, respectively. The ratio of these then
gives the monstar fraction.

The calculation is detailed in Appendix D. The final
result is

αM = 0.053 + 0.429μ〈f ′′′(H )〉 + O(f 2), (62)

where

μ ≡ K3
4

K2
6

(0 � μ � 1). (63)

There is an alternative expression for the term 〈f ′′′(H )〉
in Eq. (62). Since H is Gaussian, with mean 0 and deviation

√
K0 = 1, we can write

〈f ′′′(H )〉 =
∫

dz f ′′′(z)e−z2/2. (64)

Repeated partial integration yields

〈f ′′′(H )〉 =
∫

dz zf ′′(z)e−z2/2

=
∫

dz (z2 − 1)f ′(z)e−z2/2

=
∫

dz (z3 − 3z)f (z)e−z2/2

= 〈(H 3 − 3H )f (H )〉. (65)

The kurtosis of a stochastic variable is defined as the fourth
cumulant divided by the square of the second, which gives

κ ≡ 〈h4〉
〈h2〉2

− 3. (66)

If we enter h = H + f (H ), we find

κ = 〈H 4〉 + 4〈H 3f (H )〉
〈H 2〉 + 4〈Hf (H )〉 − 3 + O(f 2)

= 4〈H 3f (H )〉 − 12〈Hf (H )〉
1 + 4〈Hf (H )〉 + O(f 2)

= 4〈H 3f (H )〉 − 12〈Hf (H )〉 + O(f 2). (67)

We see that 〈f ′′′(H )〉 = κ/4 up to first order, which remains
true if K0 �= 1. Hence, an alternative form of Eq. (62) is

αM = 0.053 + 0.107μκ + O(f 2), (68)

where κ is the kurtosis of h.

B. Comparison with simulations

The most basic example of a non-Gaussian variable for
which Eq. (62) can be tested is h = H + εH 3, for which
〈f ′′′(H )〉 = 6ε. Then, we have

αM = 0.053 + 2.576με + O(ε2). (69)

−0.02 −0.01 0 0.01 0.02
0.03

0.04

0.05

0.06

0.07

ε

α M

FIG. 8. The monstar fraction αM of H + εH 3 as a function of ε,
where H has a disk spectrum (μ = 16

27 ). The data points stem from
simulations, the solid line is Eq. (69).
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0.06
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α M

FIG. 9. The monstar fraction αM of H + εH 3 as a function of
ε, where H has a Gaussian spectrum (μ = 2

9 ). The data points stem
from simulations, the solid line is Eq. (69).

Equation (62) was compared to results from simulations:
the procedure was analogous to the one outlined in Ap-
pendix B. We chose the same spectra as before: a disk
spectrum

A(k)2 ∼ θ (k0 − k), K2n = k2n
0

n + 1
, μ = 16

27
, (70)

and a Gaussian spectrum

A(k)2 ∼ exp
(− k2/2k2

0

)
, K2n = 2nn!k2n

0 , μ = 2
9 . (71)

A very good agreement between theory and simulation was
found for both spectra (see Figs. 8 and 9), for ε up to about
0.01. For larger values of ε, nonlinear terms start to dominate.

Another thing to note is the sensitivity: In Eq. (69), we
see that the prefactor of the perturbation term is very large
compared to the leading order. As a result, even for small
ε, the relative deviation from the universal 0.053 is quite
large, as can be seen in the graphs. Therefore, measuring
the monstar fraction of a given field proves to be a good
method for detecting and quantifying small deviations from
Gaussianity.

IV. CONCLUSIONS

For a random field given by h(�r) = FNL[H (�r)], where H

is a Gaussian field and FNL any (nonlinear) function, we find
that the densities of maxima and minima of h may differ.
We have shown what the imbalance is as a function of the
transformation FNL and the power spectrum of H . Our result
is exact, and does not rely on perturbation theory, a nice feature
since FNL does not have to be small for our result to apply.
This is confirmed by our simulations.

Furthermore, we have calculated how the density of mon-
stars changes in Appendix D, in the case that h = H + f (H ),
where f is a small perturbation. Comparing our formula to data
allows us to measure the parameter 〈f ′′′(H )〉 = κ/4 of the non-
Gaussian contribution. In the calculation we used cumulants to
derive the probability distribution for the derivatives of h. Even
though in general these have an infinite number of nonzero
cumulants up to first order in f , it turns out that the cumulants

of the variables which are relevant for the umbilics (hzz, hzzz,
and hzzz∗ at a single point) vanish beyond the fourth order due
to symmetry. As a result, we found the interesting result that
(up to first order) αM depends only on 〈f ′′′(H )〉.

For a more general type of non-Gaussian field, there
would be more independent variables and hence more nonzero
cumulants. However, it often still holds that the higher-order
cumulants are of less importance. In this case, one can consider
only the cumulants up to a specific order (e.g., fourth order), of
which still many would be zero due to symmetry. Applying the
same procedure as outlined here could then reveal the monstar
fraction up to first order.

While the imbalance between maxima and minima requires
a relatively large local perturbation to become nonzero,
the monstar fraction is quite sensitive to small ε. Another
striking difference between the two is seen from considering
a perturbation of the form h = H + εHn, where n > 1 is
an integer. The maxima and minima only differ when n

is even since for odd n the symmetry between h and −h

is not broken. On the other hand, the result for the monstar
fraction requires n to be odd, otherwise 〈f ′′′(H )〉 = 0. The
two tests of non-Gaussianity are thus truly independent
measures.
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APPENDIX A: PROPERTIES OF GAUSSIAN FIELDS

Let us start by calculating the mean and standard deviation
of a Gaussian field H , the equivalents of μ and σ of a Gaussian
variable. This involves expectation values, which are obtained
by integrating over all possible values of all random variables,
which in this case, are the uniformly distributed phases

〈. . .〉 ≡
⎛
⎝∏

�k

∫
dφ�k
2π

⎞
⎠ . . . . (A1)

The mean is then simply

〈H (�r)〉 =
〈
H0 +

∑
�k

A(k) cos(�k · �r + φ�k)

〉

= H0 +
∑

�k
A(k)〈cos(�k · �r + φ�k)〉

= H0 +
∑

�k
A(k)

∫
dφ�k
2π

cos(�k · �r + φ�k) = H0.

(A2)

012115-12



CRITICAL AND UMBILICAL POINTS OF A NON- . . . PHYSICAL REVIEW E 88, 012115 (2013)

For the variance (standard deviation squared) we find

〈(H − 〈H 〉)2〉 =
⎛̋
⎝∑

�k
A(k) cos(�k · �r + φ�k)

⎞
⎠

2˛

=
∑
�k �k′

A(k)A(k′)〈cos(�k · �r + φ�k)

× cos( �k′ · �r + φ �k′)〉. (A3)

Since the phases are uncorrelated, for �k �= �k′ we find

〈cos(�k · �r + φ�k) cos( �k′ · �r + φ �k′)〉
= 〈cos(�k · �r + φ�k)〉〈cos( �k′ · �r + φ �k′)〉 = 0. (A4)

Hence, the term in the double sum can only be nonzero for
�k = �k′. As a result, we get

〈(H − 〈H 〉)2〉 =
∑

�k
A(k)2〈cos2(�k · �r + φ�k)〉

=
∑

�k

1

2
A(k)2. (A5)

For simplicity, we will set 〈H 〉 = 0 and 〈H 2〉 = 1, which
translates to H0 = 0 and

∑
�k

1
2A(k)2 = 1.

While the vectors �k in Eq. (3) form a discrete set, usually
they are sufficiently finely spaced so that we can treat the
amplitude spectrum A(k) as a continuous function defined
over the positive reals. If we take our normalization condition,
and replace the sum with an integral, we get

1 =
∑

�k

1

2
A(k)2 =

∫
d�k 1

2
a(k)2 =

∫ 2π

0

∫ ∞

0
k dk dθ

1

2
a(k)2

=
∫ ∞

0
dk πka(k)2 =

∫ ∞

0
dk (k). (A6)

Here, a(k) indicates the continuous spectrum equivalent to
the discrete amplitudes A(k). The newly introduced function
(k) ≡ πka(k)2 is the power spectrum of H .

Some properties of a Gaussian field depend on the am-
plitude spectrum. In many cases, this dependence can be
expressed in terms of the moments of the spectrum

Kn =
∑

�k

1

2
A(k)2kn =

∫ ∞

0
dk (k)kn. (A7)

The normalization condition can be translated as K0 = 1.

1. Two-point correlation function

Correlation functions are often used to probe the Gaussian-
ity of a given random field. This is because for Gaussian fields,
they obey certain relations, as reviewed below. We will first
calculate the two-point correlation function. The two-point
correlation function C( �r1, �r2) of a field ψ is defined as

C( �r1, �r2) = 〈ψ( �r1)ψ( �r2)〉. (A8)

When ψ is homogeneous and isotropic, C depends only on the
distance between �r1 and �r2:

C(R) = 〈ψ(�r)ψ(�r + �R)〉, (A9)

where �r is any position and �R is any vector of length R. For
a Gaussian field H we find (if we set �r = 0 for convenience,
which we are free to do)

C(R) = 〈H (0)H ( �R)〉

=
˝⎛
⎝∑

�k
A(k) cos(φ�k)

⎞
⎠
⎛
⎝∑

�k
A(k) cos(�k · �R + φ�k)

⎞
⎠
˛

=
∑
�k �k′

A(k)A(k′)〈cos(φ�k) cos( �k′ · �R + φ �k′)〉. (A10)

Since the phases φ�k are uncorrelated, the correlation is
automatically zero when �k �= �k′, hence

C(R) =
∑

�k
A(k)2〈cos(φ�k) cos(�k · �R + φ�k)〉

=
∑

�k
A(k)2

〈
1

2
cos(�k · �R + 2φ�k) + 1

2
cos(�k · �R)

〉
.

(A11)

Since φ�k is uniformly distributed, the expectation value of the
first cosine is zero, and we are left with

C(R) =
∑

�k

1

2
A(k)2 cos(�k · �R) =

∫
d�k 1

2
a(k)2 cos(�k · �R).

(A12)

We thus find that the two-point correlation function of a
Gaussian field is the Fourier transform of its (two-dimensional)
power spectrum. Therefore, in essence, the correlation func-
tion is as much a complete description of a Gaussian field as
the power spectrum is. Also, by determining the correlation
function and taking the inverse Fourier transform, one obtains
the spectrum.

The moments, defined before in terms of the power
spectrum, can be related to the derivatives of the correlation
function at R = 0. Because of symmetry, we must have
C(R) = C(−R). Hence, C(R) is an even function and all its
odd derivatives at zero vanish. To obtain the even derivatives,
we must first eliminate the vector �R in the equation above. We
are free to choose its direction, so let us take �R = Rx̂. We then
get

C(2n)(R) =
(

d

dR

)2n ∫
d�k 1

2
a(k)2 cos(kxR)

=
∫

d�k 1

2
a(k)2(−1)nk2n

x cos(kxR), (A13)

C(2n)(0) = (−1)n
∫

d�k 1

2
a(k)2k2n

x

= (−1)n
∫ 2π

0

∫ ∞

0
k dk dθ

1

2
a(k)2k2n cos2n θ

= (−1)nK2n

1

2π

∫
dθ cos2n θ

= (−1)n
(2n − 1)!!

2nn!
K2n. (A14)

We thus find a one-to-one relation between the moments and
the derivatives of the correlation function. The derivative of
the correlation function C(2n)(0) is related to roughness in the
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field itself. In fact, C(2n)(0) is equal to (−1)n〈[H (n)(x)]2〉, the
fluctuations of the nth derivative (apart from a sign).

2. Higher-order correlation functions

In general, the n-point correlation function is defined as
the expectation value 〈ψ( �r1)ψ( �r2) . . . ψ( �rn)〉, as a function of
�r1 through �rn. For a Gaussian field, this correlation function
can be expressed in terms of two-point correlation functions,
analogous to Wick’s theorem. As a result, a non-Gaussian field
can be recognized by checking whether this relation holds. In
practice, this test can be applied to a single Gaussian field
if it is homogeneous. In that case, the correlation function
depends only on separations of the points �r2 − �r1 through �rn −
�r1. From a given homogeneous field ψ , one obtains (a good
approximation of) this correlation function by averaging over
all (or a lot of) configurations with fixed spacings but translated
to different �r1’s.

The simplest case of the relationship is

〈H1H2H3H4〉 = 〈H1H2〉〈H3H4〉 + 〈H1H3〉〈H2H4〉
+ 〈H1H4〉〈H2H3〉, (A15)

where we introduced the notation Hi ≡ H (�ri) for shortness.
In general, correlations between an even number of variables
with n > 2 can be reduced to the two-point correlations,
while correlations between an odd number of variables always
vanish. These properties follow from the definition of the
Gaussian field: the n variables H (ri) are described by a
correlated Gaussian distribution, and hence their correlation
functions can be calculated explicitly from Gaussian integrals.

We shall now show how this characteristic relation comes
about for our Fourier superposition. When we calculate the
four-point correlation in the same way as we did for the two-
point correlation, we bring the brackets inside the (quadruple)
sum, which gives us the term〈

cos
( �k1 · �r1 + φ�k1

)
cos

( �k2 · �r2 + φ�k2

)
× cos

( �k3 · �r3 + φ�k3

)
cos

( �k4 · �r4 + φ�k4

)〉
, (A16)

which is summed for all combinations of �k1 through �k4. The
first thing to note is that whenever, e.g., �k1 is not equal to
any of the other �ki , the correlation is automatically zero; this
is because cos( �k1 · �r1 + φ�k1

) is then independent of all other
factors, can therefore be separated, and gives zero. Hence, the
correlation can only be nonzero if each �ki is equal to (at least)
one other �ki . We can distinguish the cases �k1 = �k2, �k3 = �k4

and �k1 = �k3, �k2 = �k4 and �k1 = �k4, �k2 = �k3. Let us focus on
the first case; the sum of all these correlations gives∑

�k1, �k3

A(k1)2A(k3)2
〈
cos

( �k1 · �r1 + φ�k1

)
cos

( �k1 · �r2 + φ�k1

)

× cos
( �k3 · �r3 + φ�k3

)
cos

( �k3 · �r4 + φ�k3

)〉
. (A17)

This can be split into∑
�k1

A(k1)2
〈
cos

( �k1 · �r1 + φ�k1

)
cos

( �k1 · �r2 + φ�k1

)〉

×
∑

�k3

A(k3)2
〈
cos

( �k3 · �r3 + φ�k3

)
cos

( �k3 · �r4 + φ�k3

)〉
= 〈H ( �r1)H ( �r2)〉〈H ( �r3)H ( �r4)〉. (A18)

Applying the same to the other cases and adding them together
precisely gives Eq. (A15).

One may note that the case �k1 = �k2 = �k3 = �k4 has not been
treated correctly. However, since �ki can take on an infinite
number of values, and this case only provides one degree of
freedom instead of the two we had for the other cases, these
correlations only have an infinitesimal contribution.

From this example, it is not hard to see that in general, an
n-point correlation function can be factorized, that is, written
as the sum of products of two-point correlations, where the
sum features all possible ways in which the n variables can be
paired up.

APPENDIX B: COMPUTER SIMULATIONS

In order to verify our theoretical results, we use a large
number of computer-generated realizations of the Gaussian
field H (typically a few thousand), each with the same
spectrum A(k) but random phases φ�k . We then apply the
desired transformation FNL and extract the desired statistics.

The fields are defined on a square with periodic boundary
conditions, i.e., H (x,y) = H (x + L,y) = H (x,y + L), in or-
der to reduce finite size effects. This is accomplished by only
adding together waves [as in Eq. (3)] with wave vectors �k of
which the x and y components are multiples of 2π/L.

The summation in Eq. (3) is restricted to wave vectors with a
magnitude below a certain threshold kmax. In order to minimize
the potential effects of this cutoff, we choose spectra for which
A(k) decays very quickly or is zero for large k, such as the disk
spectrum

A(k)2 ∼ θ (k0 − k), (B1)

and the Gaussian spectrum

A(k)2 ∼ exp
(−k2/2k2

0

)
. (B2)

Finally, L is chosen in relation to kmax such that (1) the sum
in Eq. (3) features at least a few hundred waves (recall that L

influences this number via the periodic boundary conditions)
and that (2) L is at least a few times 2π/

√
K2, which is a

measure of the typical wavelength of the spectrum. An example
of a Gaussian field generated in this way is shown in Fig. 1.

The resulting formula for H is then evaluated at the grid
points only. The distance between neighboring grid points is
taken to be much smaller (by a factor of 50 roughly) than the
typical wavelength. Along with H itself, we also calculate its
first, second, and third derivatives at these grid points.

We use a very efficient approach to identifying critical and
umbilical points and their type. We will focus on the critical
points to illustrate the process; the umbilics are identified in
similar fashion. Every square of four neighboring grid points
is considered. If Hx or Hy has the same sign at all four points,
we infer that it is not zero anywhere inside the square, which
leads to the conclusion that the square does not contain a
critical point. Otherwise, there would necessarily be at least
two pairs of neighboring grid points with a different sign of
Hx . For each pair, it is assumed that Hx changes linearly
between the two points, which allows us to pinpoint two points
along the edges of the square where Hx = 0. The contour line
Hx = 0 is then assumed to be a straight line between these
two points. The same recipe is applied to Hy , after which
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Hx 2 Hx 4

Hx 2 Hx 1

H
x

0

Hy 1 Hy 1

Hy 1 Hy 2

H y 0

FIG. 10. (Color online) Identifying a critical point. The four black
squares are grid points at which Hx and Hy are known. At the red
(blue) dots, Hx = 0 (Hy = 0) under the assumption that Hx (Hy) is
linear between the two grid points. The two contour lines Hx = 0 and
Hy = 0 then intersect inside the square, indicating the existence of a
critical point.

it is determined whether the two contour lines crossed. The
intersection (if present) is then a critical point. This idea is
illustrated in Fig. 10.

It is also possible for all four neighboring points to have
opposite signs of Hx (or Hy). This results in four points
along the border of the square with Hx = 0, but without any
information about which two pairs should be connected by a
contour line. In combination with the two points with Hy = 0
it can, however, be established what the parity of the number
of intersections (i.e., critical points) is. We then simply assume
this number to be 0 or 1. This case is sufficiently rare (provided
the grid is small enough) to not have a noticeable effect on the
results.

Once established whether the square under consideration
contains a critical point, the type is determined by averaging
the values of Hxx , Hyy , and Hxy at the four grid points
and evaluating the signs of HxxHyy − H 2

xy and Hxx + Hyy .
Although this method clearly does not always correctly
determine the existence of a critical point or its type, it is
not biased toward one outcome. Therefore, the mistakes that
are made will get averaged out when statistics are taken over
a large number of critical points. With regard to getting good
statistics, the speed of this method is a big advantage.

This method, along with the proper values of kmax, L, and
the grid size, was thoroughly tested on Gaussian fields (for
which the statistical outcomes are known from theory) to verify
its validity, before applying it to the non-Gaussian fields under
investigation.

APPENDIX C: ASYMPTOTES FOR A VERY SMALL
NON-GAUSSIANITY

In the limit where z is very large and negative, g(z) can
be evaluated asymptotically. One can use the exact expression
for g(z), but returning to the original integral (35) gives more
insight (and makes the calculations shorter). The exponential
weight in the integral is peaked at s = 1

2 (Hxx + Hyy) = −K2z
2 .

Therefore, s almost certainly becomes large and positive when
−z is large since the width of the distribution remains fixed.
This allows us to extend the range of integration to all s’s and
to all r � 0 since the additional parts of the range have a very
small weight. Then, the integral can be worked out exactly,

giving g(z) ≈
√

6
π
λz2e− z2

2 apart from small corrections, when

−z is large and positive. We next substitute back in Eq. (8).
Noting that P dominates over Q and using integration by

parts to evaluate the integral asymptotically (
∫∞
A

z2e− z2

2 dx ≈
Ae− A2

2 when A → ∞) gives �n =
√

3
2π

λ
ε
e
− 1

8ε2 .

APPENDIX D: MONSTAR FRACTION: CALCULATION

We consider a field of the form h(�r) = H (�r) + f [H (�r)],
where H (�r) is a Gaussian field and f a small nonlinear
function of H (�r) only. The monstar fraction is the density of
the monstars divided by the total density of umbilical points.
An umbilical point is defined by Eq. (54), while the type of
umbilical point (lemon, monstar, or star) can be determined
by Eqs. (59) and (61). These equations involve the second and
third derivatives of the field h.

We consider an arbitrary point �r . Note that due to the
homogeneity of H and h, the following analysis does not
depend on the choice of �r . The monstar fraction is equal to the
probability that �r is a monstar, given that it is an umbilical
point. This can be calculated from the joint probability
distribution of the values of the derivatives of h at this point.

If h were a Gaussian field, then these derivatives would
form a set of correlated Gaussian random variables. We
can exploit the near-Gaussianity of h to find the probability
distribution perturbatively. This is achieved by determining the
corresponding characteristic function, which is defined as the
Fourier transform of the probability distribution [29].

1. Characteristic function

For a set of n correlated variables {hi}, the characteristic
function of their joint probability distribution p is defined as

χ (λ1, . . . ,λn)

=
∫

dh1 . . . dhn p(h1, . . . ,hn)ei(h1λ1+···+hnλn)

= 1 + i
∑

j

〈hj 〉λj + i2

2!

∑
j1,j2

〈
hj1hj2

〉
λj1λj2

+ i3

3!

∑
j1,j2,j3

〈
hj1hj2hj3

〉
λj1λj2λj3 + · · · . (D1)

Here, the coefficients 〈. . .〉 are the moments, or multivariable
correlations, defined by

〈hj1 . . . hjk
〉 ≡

∫
dh1 . . . dhn p(h1, . . . ,hn)hj1 . . . hjk

. (D2)

Equation (D1) is proved by expanding the exponential term by
term.

Upon taking the logarithm of χ and expanding, the
quantities known as the cumulants are revealed:

ln χ = i
∑

j

C1(hj )λj + i2

2!

∑
j1,j2

C2
(
hj1 ,hj2

)
λj1λj2

+ i3

3!

∑
j1,j2,j3

C3
(
hj1 ,hj2 ,hj3

)
λj1λj2λj3 + · · · . (D3)

The cumulants can be written in terms of the moments, as can
be seen by taking the logarithm of Eq. (D1) and expanding it.
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For example,

C(h1,h2,h3) = 〈h1h2h3〉 − 〈h1〉〈h2h3〉 − 〈h2〉〈h3h1〉
− 〈h3〉〈h1h2〉 + 2〈h1〉〈h2〉〈h3〉. (D4)

In reverse, the moments can be written in terms of the
cumulants, e.g.,

〈h1h2h3〉 = C(h1,h2,h3) + C(h1)C(h2,h3) + C(h2)C(h3,h1)

+C(h3)C(h1,h2) + C(h1)C(h2)C(h3). (D5)

If all the moments or all the cumulants are known, we can
construct the characteristic function and perform an inverse
Fourier transformation to obtain the probability distribution.

The defining characteristic of Gaussian random variables
Hi is that all cumulants are zero, with the exception of the
second-order ones C2(Hi,Hj ) = 〈HiHj 〉. In this case, the
characteristic function is thus

χ (λ1, . . . ,λn) = exp

⎛
⎝−1

2

∑
ij

C2(Hi,Hj )λiλj

⎞
⎠ . (D6)

The inverse Fourier transformation yields the standard distri-
bution for correlated Gaussian random variables Eq. (12).

For a Gaussian field H , the derivatives are themselves
Gaussian fields; therefore, the above formula gives their joint
distribution. For the non-Gaussian field h, there are some small
corrections to this distribution. To find these corrections to first
order, we need to determine the cumulants to first order in
f (H ). We will see that only a small number of cumulants are
nonzero up to this order. Before we proceed to derive them,
we switch to a complex coordinate system which allows for
optimal usage of translational and rotational symmetry, which
h has inherited from H for the type of perturbations under
consideration.

2. Complex coordinates representation

To find the distribution of umbilical points, we now have
to find the joint distribution of the seven second and third
derivatives of h. All these variables can be combined into
a more compact form by using complex coordinates. These
will make it easier to evaluate the integral that determines the
monstar density, and will help us to work out the probability
distribution with the help of symmetry.

The complex coordinates are given by

z = x + iy, x = 1
2 (z + z∗),

(D7)
z∗ = x − iy, y = 1

2 i(z∗ − z).

Of course, as complex numbers, z and z∗ are not independent;
however, we can formally define partial derivatives with
respect to each of them, using the chain rule, just like we
could if this transformation involved a real number instead of
i.

The derivatives with respect to z and z∗ are given by

∂

∂z
= 1

2

∂

∂x
− 1

2
i

∂

∂y
,

∂

∂z∗ = 1

2

∂

∂x
+ 1

2
i

∂

∂y
. (D8)

We see that the derivatives with respect to z and z∗ are each
other’s conjugate, but again, we consider both to be linear

transformations of ∂x and ∂y . The usefulness of using z and z∗
can be immediately seen from hzz:

hzz = ∂2
z h = 1

4 (∂x − i∂y)2h = 1
4 (hxx − hyy + 2ihxy). (D9)

We see that the definition of an umbilical point can be captured
in one equation: hzz = 0.

The various types of umbilical points were defined in
Eqs. (59) and (61) using the “normal” third derivatives hxxx =
α, hxxy = β, hxyy = γ , and hyyy = δ. In terms of hzzz, hzzz∗ ,
hzz∗z∗ , and hz∗z∗z∗ the two conditions for a monstar become

|hzzz∗ |2 − |hzzz|2 > 0, (D10a)

27|hzzz|4 − |hzzz∗ |4 − 18|hzzz|2|hzzz∗ |2
− 4

(
hzzzh

3
zz∗z∗ + hz∗z∗z∗h3

zzz∗
)

> 0. (D10b)

Here |hzzz|2 and |hzzz∗ |2 represent hzzzhz∗z∗z∗ and hzzz∗hzz∗z∗ ,
respectively.

The density of monstars will essentially be given by
integrating the probability distribution p(hzz = 0,hzzz,hzzz∗ )
over the range defined by these conditions. This probability
distribution is determined by the cumulants of combinations
of the three variables. Rotational and translational symmetry,
however, imply that only a small number of these combinations
yield a nonzero cumulant.

First, consider the consequences of the isotropy (rotational
symmetry) of the field h(�r) for a moment like 〈hz∗ (�r)hzz(�r)〉.
Note that, due to homogeneity (translational symmetry), this
moment does not depend on r; it will often be dropped from
now on. Isotropy implies that this moment should not change
if we rotate the field around �r , over any angle α. In terms of z

and z∗, this results in the transformation

z′ = eiαz, ∂z′ = e−iα∂z,
(D11)

z′∗ = e−iαz∗, ∂z′∗ = eiα∂z∗ .

As a result, we get 〈hz′hz′∗z′∗ 〉 = eiα〈hzhz∗z∗ 〉. Since we argued
that the two expectation values must be equal, for any α, we
must have 〈hz∗hzz〉 = 0.

In general, following a rotation expectation values pick up
a factor eikα , where k is the number of z∗ derivatives inside
the bracket minus the number of z derivatives. By the above
argument, the expectation value is zero if k �= 0. Therefore, an
expectation value can only be nonzero if the numbers of z and
z∗ derivatives inside the bracket are equal. Since a cumulant
is a sum of products of expectation values, featuring every
variable once in every product [compare Eq. (D4)], the same
property applies to cumulants.

The homogeneity (translational symmetry) of the fields
under consideration provides another useful trick that relates
different cumulants to one another. As already stated, a
moment like 〈h1(�r) . . . hn(�r)〉 does not depend on �r . Hence,
the derivative of this with respect to z or z∗ is zero. Applying
the product rule

0 = ∂z〈h1 . . . hn〉
= 〈(∂zh1)h2 . . . hn〉 + · · · + 〈h1h2 . . . (∂zhn)〉. (D12)

For n = 2, this gives the useful relation

〈(∂zh1)h2〉 = −〈h1(∂zh2)〉. (D13)
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In essence, for a two-point correlation it is possible to
“transfer” a z derivative from the one term to the other
at the cost of an overall minus sign. The same applies of
course to a z∗ derivative. For example, we find the relation
〈hzzhz∗z∗ 〉 = −〈hzhzz∗z∗ 〉.

Together, these two symmetries constrain the probability
distribution p(hzz,hzzz,hzzz∗ ). In particular, they explain why
the monstar fraction is always the same for any Gaussian
distribution [7]. A Gaussian distribution does not have many
degrees of freedom to start with; only the two-point correla-
tions between the variables are adjustable. In this case, the
two-point correlations between any two of these variables is
zero, by rotational symmetry, while the variances of hzzz and
hzzz∗ are equal by translational symmetry. Hence (after setting
hzz = 0 to identify the umbilical points), the distribution
p(hzz = 0,hzzz,hzzz∗ ) is always the same apart from a scale,
and that determines the monstar fraction. This argument can
be generalized to singularities in the polarization field of light
(even though the field might not be derived from a scalar field
h), and so Gaussian polarization fields have the same monstar
fraction as well, as shown in [16].

On the other hand, when h has non-Gaussian contributions,
there are many more cumulants, and symmetry is not enough
to constrain them any more. For the field h = H + f (H ) we
are studying, we proceed to calculate the cumulants explicitly.

3. Cumulants

Although the problem is now cast in terms of complex
derivatives, the recipe outlined in Sec. D 1 still applies. The
task is to determine the cumulants of hzz, hzzz, hzzz∗ and
their conjugates up to first order in the perturbation f . These
cumulants have the general form Cn(D1h, . . . ,Dnh), where
each Dj represents a number of z and z∗ derivatives. For
the moment, let us consider each Djh to be at a different
point �rj , i.e., Cn(D1h( �r1), . . . ,Dnh( �rn)). Later, we will set all
points equal again. For convenience, we shall drop the vector
notation, i.e., ri = �ri . Since now each derivative Dj acts only
at a specific point, we can bring them outside the cumulant:

Cn(D1h, . . . ,Dnh)

= D1 . . . DnCn(h(r1), . . . ,h(rn))|r1=···=rn
. (D14)

Let us write h(rj ) = hj for shortness, and focus on
Cn(h1, . . . ,hn). Inserting hj = Hj + f (Hj ), expanding the
cumulant, and keeping only terms up to first order in f yields

Cn(h1, . . . ,hn) = Cn(H1, . . . ,Hn)

+ Cn(f (H1),H2, . . . ,Hn)

+ Cn(H1,f (H2), . . . ,Hn) + · · · y
+ Cn(H1,H2, . . . ,f (Hn)). (D15)

The first term on the right-hand side is now simply the
cumulant of a set of Gaussian random variables, which, as
discussed before, is zero for n > 2. The other terms can be
evaluated perturbatively and are equivalent to each other.
Consider the second term as an example. For a cumulant
involving Gaussian variables and one function of a Gaussian,

we have (see Appendix E)

Cn(f (H1),H2, . . . ,Hn)

= 〈f (n−1)(H1)〉〈H1H2〉〈H1H3〉 . . . 〈H1Hn〉. (D16)

When we reinsert the derivatives D2 through Dn from
Eq. (D14) and set r2 = · · · = rn = r , we get

D1 . . . DnCn(f [H (r1)], . . . ,H (rn))|r1=···=rn

= D1〈f (n−1)(H1)〉〈H1D2H 〉 . . . 〈H1DnH 〉|r1=r . (D17)

Now we can reinsert D1 and then set r1 = r , as prescribed
by Eq. (D14). Remember that D1 only acts on H1. Due to the
product rule, we have to consider all possible ways in which
the derivatives in D1 can be distributed over all H1’s. Recall
from Sec. D 2 that, after setting r1 = r , each expectation value
can only be nonzero if the number of z and z∗ derivatives
inside are equal. Note also that 〈f (n−1)(H1)〉 does not depend
on r1, hence any derivative of it is zero. Therefore, the only
nonzero contributions stemming from the product rule are
those distributions that make the number of z and z∗ derivatives
equal inside each bracket.

We consider the cumulant C3(hzz,hzz∗z∗ ,hzz∗z∗ ) as an exam-
ple to demonstrate the procedure. First, we find

C3(hzz,hzz∗z∗ ,hzz∗z∗ )

= C3(Hzz,Hzz∗z∗ ,Hzz∗z∗ )

+ ∂z1z1
(〈f ′′(H )〉〈H1Hzz∗z∗ 〉〈H1Hzz∗z∗ 〉)

+ 2∂z2z
∗
2z

∗
2
(〈f ′′(H )〉〈H2Hzz〉〈H2Hzz∗z∗ 〉). (D18)

The first term is zero since all cumulants of Gaussian variables
are zero beyond second order. For the second term, we need
to consider how to distribute the two ∂z1 derivatives to make
all expectation values nonzero. The only possibility is to put
one ∂z1 in front of each H1. Note, however, that this term
appears twice in the product rule because there are two ways
of distributing the two derivatives. After setting r1 = r we thus
have

∂z1z1
[〈f ′′(H )〉〈H1Hzz∗z∗ 〉〈H1Hzz∗z∗ 〉]

= 2〈f ′′(H )〉〈HzHzz∗z∗ 〉2. (D19)

In the third term on the right-hand side of Eq. (D19) we have
one ∂z and two ∂z∗ ’s to distribute. The first H2 needs ∂z∗z∗ to
balance the derivatives and the other takes the ∂z derivative.
There are no multiple ways to distribute these derivatives in
this case and therefore

∂z2z
∗
2z

∗
2
[〈f ′′(H )〉〈H2Hzz〉〈H2Hzz∗z∗ 〉]

= 〈f ′′(H )〉〈Hz∗z∗Hzz〉〈HzHzz∗z∗ 〉. (D20)

Combining everything together results in

C3(hzz,hzz∗z∗ ,hzz∗z∗ )

= 2〈f ′′(H )〉〈HzHzz∗z∗ 〉(〈HzHzz∗z∗ 〉 + 〈Hz∗z∗Hzz〉). (D21)

Finally, due to translational symmetry, we have
〈HzHzz∗z∗ 〉 + 〈Hz∗z∗Hzz〉= ∂z〈HzHz∗z∗ 〉 = 0. We thus find
that C3(hzz,hzz∗z∗ ,hzz∗z∗ ) = 0.

Now, we will show that there are only a finite number of
nonzero cumulants (up to first order in f ). In fact, there are
none beyond the fourth order. Consider Eq. (D15) with n > 4.
The first term (zero order) is zero because it is the cumulant of
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TABLE I. All nonzero cumulants. The two asymmetric cumulants
have a conjugate twin in which all z’s and z∗’s are interchanged.

C2(hzz,hz∗z∗ ) = σ [1 + 2〈f ′(H )〉]
C2(hzzz,hz∗z∗z∗ ) = τ [1 + 2〈f ′(H )〉]
C2(hzzz∗ ,hzz∗z∗ ) = τ [1 + 2〈f ′(H )〉]
C3(hzz,hzzz∗ ,hz∗z∗z∗ ) + conj. = −3σ 2〈f ′′(H )〉
C4(hzzz∗ ,hzzz∗ ,hzz∗z∗ ,hzz∗z∗ ) = −8σ 3〈f ′′′(H )〉
C4(hzzz,hzz∗z∗ ,hzz∗z∗ ,hzz∗z∗ ) + conj. = −6σ 3〈f ′′′(H )〉

more than two Gaussian variables. For the other ones we apply
the recipe of Eq. (D17). We have n − 1 brackets in which the
z and z∗ derivatives need to be matched. Since we are only
considering the variables hzz, hzzz, hzzz∗ , and their conjugates,
each one has a mismatch to begin with. However, since D1 has
only three derivatives at most, it is not possible to balance the
derivatives in all n − 1 brackets.

This “lack of derivatives” also kills a lot of cumulants
of lower order, especially fourth order. For example, in
C4(hzz,hz∗z∗ ,hzzz∗ ,hzz∗z∗ ) the first two variables require two
derivatives to balance the derivatives and the other two require
one. Therefore, no matter from which variable the derivatives
are distributed, there is always a shortage.

All the nonzero cumulants are listed in Table I. Two
parameters were introduced:

σ ≡ 〈HzzHz∗z∗ 〉 = −〈HzHzz∗z∗ 〉, (D22a)

τ ≡ 〈HzzzHz∗z∗z∗ 〉 = 〈Hzzz∗Hzz∗z∗ 〉. (D22b)

Note that the trick based on translational symmetry was used
to equate the expectation values. In the second equation, it was
used twice (transferring a ∂z one way and a ∂z∗ the other way).

The parameters σ and τ are related to the moments Kn of
H . This is most easily accomplished by writing H in complex
variables:

H =
∑

�k
A(k) cos(�k · �r + φ�k)

=
∑

k

A(|k|) cos

[
1

2
(k∗z + kz∗) + φk

]
. (D23)

Here, k = kx + iky is the complex analog of �k = ( kx
ky

). With
this, we find

Hzzz =
∑

k

A(k)
1

8
(k∗)3 sin

[
1

2
(k∗z + kz∗) + φk

]
, (D24a)

Hz∗z∗z∗ =
∑

k

A(k)
1

8
k3 sin

[
1

2
(k∗z + kz∗) + φk

]
. (D24b)

Hence,

τ = 〈HzzzHz∗z∗z∗ 〉 =
〈

1

8
(k∗)3 1

8
k3

〉
= 1

64
K6. (D25)

Similarly, we have σ = 1
16K4.

4. Probability distribution

With the aid of the cumulants we can build the logarithm
of the characteristic function [see Eq. (D3)], provided that we
identify the appropriate variables in Fourier space. Consider

hzz and hz∗z∗ , for example. These complex variables represent
two real variables ξx and ξy , the real and imaginary parts of hzz.
Let λx and λy be their Fourier counterparts. The characteristic
function is

χ (λx,λy, . . .) =
∫

dξxdξy . . . p(ξx,ξy, . . .)e
i(ξxλx+ξyλy+··· )

= 〈ei(ξxλx+ξyλy+··· )〉. (D26)

The exponent can be written in terms of the complex variables

ξxλx + ξyλy = hzzλ
∗
zz + hz∗z∗λzz, (D27)

where we define λzz = 1
2 (λx + iλy). Then, λzz is the complex

Fourier variable corresponding to hz∗z∗ and we likewise
introduce λzzz and λzzz∗ , which are conjugate to hz∗z∗z∗ and
hzz∗z∗ . We will define integrals with respect to the complex
Fourier variables, e.g., with respect to d2hzz, as integrals over
the real and imaginary parts of hzz, and the inverse Fourier
transform will be performed by integrating over the real and
imaginary parts of the λ’s.

The characteristic function is thus

ln χ = − C2(hzz,hz∗z∗ )λz∗z∗λzz − C2(hzzz,hz∗z∗z∗ )λz∗z∗z∗λzzz

− C2(hzzz∗ ,hzz∗z∗ )λzz∗z∗λzzz∗

− iC3(hzz,hzzz∗ ,hz∗z∗z∗ )λz∗z∗λzz∗z∗λzzz

− iC3(hzz,hzzz∗ ,hz∗z∗z∗ )λzzλzzz∗λz∗z∗z∗

+ 1
4C4(hzzz∗ ,hzzz∗ ,hzz∗z∗ ,hzz∗z∗ )λ2

zz∗z∗λ
2
zzz∗

+ 1
6C4(hzzz,hzz∗z∗ ,hzz∗z∗ ,hzz∗z∗ )λz∗z∗z∗λ3

zzz∗

+ 1
6C4(hzzz,hzz∗z∗ ,hzz∗z∗ ,hzz∗z∗ )λzzzλ

3
zz∗z∗ . (D28)

Upon entering the cumulants from Table I,

ln χ = −σ̃ λzzλz∗z∗ − τ̃ (λzzzλz∗z∗z∗ + λzzz∗λzz∗z∗ )

+ 3iσ 2〈f ′′(H )〉(λzzλzzz∗λz∗z∗z∗ + λz∗z∗λzz∗z∗λzzz)

− σ 3〈f ′′′(H )〉(2λ2
zzz∗λ

2
zz∗z∗ + λzzzλ

3
zz∗z∗+λz∗z∗z∗λ3

zzz∗
)
.

(D29)

Here, σ̃ = σ (1 + 2〈f ′(H )〉) and τ̃ = τ [1 + 2〈f ′(H )〉] have
been introduced. The factors in front of the cumulants are
the factor ik/k! in Eq. (D3) multiplied with the number of
permutations of the λ’s.

To obtain the probability distribution, we take the expo-
nential and perform the inverse Fourier transformation [see
Eq. (D1)]. This gives an integral over the exponential of a
polynomial of degree 4. However, all terms of degree 3 and 4
are of order f , so we can expand the exponential and be left
with only square terms in the exponent. The result is

χ = exp[σ̃ λzzλz∗z∗ − τ̃ (λzzzλz∗z∗z∗ + λzzz∗λzz∗z∗ )]

× (1 + 3iσ 2〈f ′′(H )〉(λzzλzzz∗λz∗z∗z∗ + λz∗z∗λzz∗z∗λzzz)

− σ 3〈f ′′′(H )〉(2λ2
zzz∗λ

2
zz∗z∗ + λzzzλ

3
zz∗z∗+λz∗z∗z∗λ3

zzz∗
))

.

(D30)

Now we can take the inverse Fourier transform. Note that
λzz and λz∗z∗ are each other’s conjugate. Upon integrating the
real and imaginary parts of λzz and imposing λz∗z∗ = λ∗

zz (the
same procedure applies to the other two pairs of λ’s), one
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obtains

p(hzz,hz∗z∗ ,hzzz,hz∗z∗z∗ ,hzzz∗ ,hzz∗z∗ )

=
∫

d2λzzd
2λzzzd

2λzzz∗

π6
χ

× e−i(λzzhzz+λzzzhzzz+λzzz∗ hzzz∗ +conj.). (D31)

Note that the denominator is π6 rather than (2π )6 because of
the factor of 1

2 in the definitions of the λ’s [see Eq. (D27)].
The Fourier transform of a Gaussian function multiplied

with a polynomial is easy to perform by noting that multiplying
by λ in Fourier space is equivalent to taking a derivative in
normal space:∫

dλ λnf (λ)e−iλh =
(

i
∂

∂h

)n ∫
dλ f (λ)e−iλh. (D32)

The inverse Fourier transform of the Gaussian part of the
characteristic function is∫

d2λzzd
2λzzzd

2λzzz∗

π6
e−σ̃ |λzz|2−τ̃ (|λzzz|2+|λzzz∗ |2)e−i(...)

= 1

π3σ̃ τ̃ 2
exp

(
− 1

σ̃
|hzz|2 − 1

τ̃
(|hzzz|2 + |hzzz∗ |2)

)
,

(D33)

and the final result reads as

p(hzz,hz∗z∗ ,hzzz,hz∗z∗z∗ ,hzzz∗ ,hzz∗z∗ )

=
[

1 − 3σ 2〈f ′′(H )〉 1

σ̃ τ̃ 2
[2 Re(hz∗z∗hzz∗z∗hzzz)]

− σ 3〈f ′′′(H )〉
(

4

τ̃ 2
− 8|hzzz∗ |2

τ̃ 3

+ 2|hzzz∗ |4 + 2 Re
(
hzzzh

3
zz∗z∗

)
τ̃ 4

)]

× 1

π3σ̃ τ̃ 2
exp

(
− |hzz|2

σ̃
− |hzzz|2 + |hzzz∗ |2

τ̃

)
. (D34)

5. Monstar fraction

Once the joint probability distribution of the relevant
derivatives is obtained, we can set hzz = hz∗z∗ = 0, which
defines an umbilical point. The joint probability distribution
states how likely it is that hzz and hz∗z∗ are close to zero for a
certain point �r . What we need, however, is for hzz and hz∗z∗ to
be exactly zero for a point close to �r since we are looking for a
density with respect to the (x,y) plane. For this, we need to go
from a probability density with respect to hzz and hz∗z∗ to one
with respect to z and z∗. This is accomplished by multiplying
p with the Jacobian

J =
∣∣∣∣∂(hzz,hz∗z∗ )

∂(z,z∗)

∣∣∣∣ = ||hzzz|2 − |hzzz∗ |2|. (D35)

The last step is to integrate this product over hzzz and hzzz∗ ,
either over all possible values, or just over those satisfying
Eq. (D10), to get the density of umbilical points and the density

of monstars, respectively:

n =
∫

R

d2hzzzd
2hzzz∗p(hzz = 0,hzzz,hzzz∗ )J (hzzz,hzzz∗ ),

(D36)

where R represents the range of integration: the entire space
to get the density of all umbilical points, or Eq. (D10) for just
the monstars.

First, we simplify by introducing polar coordinates

hzzz = |hzzz|eiφ, hzzz∗ = |hzzz∗ |eiθ . (D37)

Next, we introduce

u ≡ |hzzz|
|hzzz∗ | , δ ≡ 3θ − φ

2
. (D38)

We find that we can rewrite the two conditions for monstars
[Eq. (D10)] in terms of u and δ only: the first one is simply
u > 1, while the other is

0 < 27 − u4 − 18u2 − 8u3 cos 2δ

= (3 − u)3(1 + u) − 16u3 cos2 δ

⇔ cos2 δ <
(3 − u)3(1 + u)

16u3
. (D39)

Since the fraction on the right-hand side is negative for u > 3,
we can extend the first condition to 1 < u < 3.

The fact that the monstar conditions depend only on u and
δ can be understood as follows: the type of umbilic should not
be affected by rescaling and/or rotating the plane. Rescaling
would add the same (real) factor to hzzz and hzzz∗ , hence the
type of umbilic should, as far as the moduli are concerned,
depend only on the ratio |hzzz|/|hzzz∗ |. A rotation introduces
phase factors as given by Eq. (D11). We see that a rotation
over an angle α causes hzzz to pick up a factor e−3iα while
hzzz∗ picks up e−iα . Therefore, the only combination of φ and
θ that is invariant under rotations is 3θ − φ.

Now, we return our attention to the probability distribution.
First, we rescale hzzz and hzzz∗ :

v ≡ hzzz√
τ̃

, w ≡ hzzz∗√
τ̃

. (D40)

This leads to

p(hzz = 0,v,w)J

∝
(

1 − σ 3

τ̃ 2
〈f ′′′(H )〉(4 − 8|w|2 + 2|w|4 + vw∗3 + v∗w3)

)

× e−|v|2−|w|2 ||v|2 − |w|2|.
Here, we dropped an overall coefficient, which is of no
importance since we are only interested in the ratio of the
densities of monstars and all umbilical points. Note that τ̃ now
only appears in the term proportional to f . Since we are not
interested in higher orders of f , we need only consider the
leading order of τ̃ , which is τ . For convenience, let us define

ε̃ ≡ σ 3

τ 2
〈f ′′′(H )〉. (D41)

Furthermore, note that multiplying p with the constant 1 + 4ε̃,
which we may do since we are only interested in the density
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of the ratios, causes the 4 inside the parentheses to be canceled
out (up to first order).

Next, we move to polar coordinates, as we did before [31]:

v ≡ ρeiφ, w ≡ reiθ , (D42)

and then substitute r = uρ and φ = 3θ − 2δ. With these
transformations we have

n ∝
∫

R

ρ3u dρ du dθ dδ e−ρ2(u2+1)ρ2|u2 − 1|

× (1 − ε̃[−8ρ2u2 + 2ρ4(u4 + u3 cos 2δ)]). (D43)

Finally, we integrate over ρ and θ to find the probability
distribution p(u,δ). The integration over θ simply gives a factor
of 2π , while the integral over ρ has the form of a polynomial
times a Gaussian. For this we can use∫ ∞

0
dρ ρ2n+1e−ρ2(u2+1) = n!

2(u2 + 1)n+1
. (D44)

The result is

p(u,δ) ∝ u|u2 − 1|
(u2 + 1)3

(
1 + 24ε̃

u2(1 − u cos 2δ)

(u2 + 1)2

)
. (D45)

The monstar density is proportional to the integral of p(u,δ)
over the range

1 < u < 3, cos−1

(√
(3 − u)3(1 + u)

16u3

)
< δ <

1

2
π,

(D46)

while the total density of umbilical points is proportional (with
the same prefactor) to the integral over the range 0 < u < ∞,
0 < δ < 1

2π (extending the integration range of δ from 1
2π to

2π would just add a factor of 4 to both integrals). The latter
can be done analytically: the integration over δ is trivial, while
the remaining integral over ρ can be split into two parts which,
apart from a factor sgn(u2 − 1), are both of the form

∫
du

u2 − 1

(u2 + 1)2

(
u

u2 + 1

)n

= − 1

n + 1

(
u

u2 + 1

)n+1

.

(D47)
With this, we find

ntot ∝ 1

2
π

[
1

2

u2

(u2 + 1)2
+ 24ε̃

1

4

u4

(u2 + 1)4

]1

u=0

+ 1

2
π

[
− 1

2

u2

(u2 + 1)2
− 24ε̃

1

4

u4

(u2 + 1)4

]∞

u=1

= 1

8
π (1 + 3ε̃). (D48)

For the monstar range, the integral over δ can be performed.
The integral over the cosine gives

∫ 1
2 π

cos−1(...)
dδ cos 2δ = − 1

16u3

√
(u2 − 1)(9 − u2)3. (D49)

All together,

nM ∝
∫ 3

1
du

u(u2 − 1)

(u2 + 1)3
sin−1

(√
(3 − u)3(1 + u)

16u3

)

+ ε̃

∫ 3

1
du

u(u2 − 1)

(u2 + 1)3

×
[

24u2

(u2 + 1)2
sin−1

(√
(3 − u)3(1 + u)

16u3

)

+ 3
√

(u2 − 1)(9 − u2)3

2(u2 + 1)2

]
≡ I1 + ε̃I2. (D50)

The integrals can be done numerically. The monstar fraction
is then

αM = nM

ntot
= I1 + ε̃I2

1
8π (1 + 3ε̃)

= 8

π
[I1 + ε̃(I2 − 3I1)] + O(ε̃2)

= 0.053 + 0.429μ〈f ′′′(H )〉 + O(f 2), (D51)

where

μ ≡ σ 3

τ 2
= K3

4

K2
6

(0 � μ � 1). (D52)

Note that the zeroth order result matches the one in [7].
Remember that we set K0 = 〈H 2〉 = 1 for convenience; if
we drop this condition, then K0 enters the denominator of the
expression above.

By comparing the fraction of monstars in a given field to
the formula just found, we can determine one parameter of the
deviation from a Gaussian distribution 〈f ′′′(H )〉. This assumes
that the field h is given by h = H + f (H ). To test this, one
could, if possible, also measure the distribution p(u,δ) to test
that it has the right form [Eq. (D45)]. Measuring p(δ) only
could also suffice. For a Gaussian field H , all values of δ

should be equally likely, whereas integrating Eq. (D45) shows
that the distribution we expect for h is

p(δ) = 1

π
(1 − 4ε̃ cos 2δ), (D53)

where we define δ to lie between −π/2 and π/2.

APPENDIX E: PROOF OF EQ. (D16)

In this section, we prove the identity

Cn(f (H1),H2, . . . ,Hn)

= 〈f (n−1)(H1)〉〈H1H2〉〈H1H3〉 . . . 〈H1Hn〉 (E1)

for Gaussian variables Hi .
Recall the definition of a cumulant [Eq. (D3)]. The charac-

teristic function χ is the Fourier transform of the probability
distribution [see Eq. (D1)], which for Gaussian variables is
Eq. (12). This leads to the identity

Cn(f (H1),H2, . . . ,Hn)

= (−i)n
∂

∂λ1
. . .

∂

∂λn

ln
∫

dh1 . . . dhne
i[λ1f (h1)+λ2h2+···+λnhn]

× exp
(− 1

2

∑
ij σ−1

ij hihj

)
(2π )n/2

√
det σ

∣∣∣∣
λ1=···=λn=0

. (E2)
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First, the integration over h2 through hn is performed. This
partial Fourier transform is not trivial. If h1 were included, the
answer would be simply Eq. (D6). We can, however, use this
result and take the inverse Fourier transform of it with respect
to λ1 to get the desired result:∫

dh2 . . . dhn ei(λ2h2+···+λnhn)
exp

(− 1
2

∑
ij σ−1

ij hihj

)
(2π )n/2

√
det σ

=
∫

dλ1

2π
e−iλ1h1 exp

⎛
⎝−1

2

∑
ij

σijλiλj

⎞
⎠

=
∫

dλ1

2π
exp

⎡
⎣−1

2
σ11λ

2
1 −

⎛
⎝ih1 +

∑
j�2

σ1jλj

⎞
⎠ λ1

− 1

2

∑
i,j�2

σijλiλj

⎤
⎦

= 1√
2πσ11

exp

⎡
⎢⎣ 1

2σ11

⎛
⎝ih1 +

∑
j�2

σ1j λj

⎞
⎠

2

− 1

2

∑
i,j�2

σijλiλj

⎤
⎦ . (E3)

The integration was performed by completing the square. Now,
we do the Fourier transform with respect to h1 and include the
logarithm present in Eq. (E2), which leads to

ln
∫

dh1 . . . dhne
i[λ1f (h1)+λ2h2+···+λnhn]

× exp
(− 1

2

∑
ij σ−1

ij hihj

)
(2π )n/2

√
det σ

= ln
∫

dh1e
iλ1f (h1) 1√

2πσ11

× e
1

2σ11
[ih1+

∑
j�2 σ1j λj ]2− 1

2

∑
i,j�2 σij λiλj

= −1

2

∑
i,j�2

σijλiλj + ln
∫

dh1e
iλ1f (h1) 1√

2πσ11

× e
1

2σ11
[ih1+

∑
j�2 σ1j λj ]2

. (E4)

In accordance with Eq. (E2), we must take the derivative of this
equation with respect to the λ’s and set them to zero. First, the
derivative with respect to λ1 is taken. This causes the first term
to vanish since it does not depend on λ1. This simplification
can be regarded as the main reason why the final result depends

on f in a rather simple way. What remains is

−i
∂

∂λ1
ln
∫

dh1e
iλ1f (h1) 1√

2πσ11
e

1
2σ11

[ih1+
∑

j�2 σ1j λj ]2
∣∣∣∣
λ1=0

=
∫

dh1 f (h1) exp
[

1
2σ11

(
ih1 +∑

j�2 σ1jλj

)2]
∫

dh1 exp
[

1
2σ11

(
ih1 +∑

j�2 σ1jλj

)2]
= 1√

2πσ11

∫
dh1 f (h1)e

1
2σ11

[ih1+
∑

j�2 σ1j λj ]2

. (E5)

For each λk with k � 2 the derivative yields

−i
∂

∂λk

e
1

2σ11
[ih1+

∑
j�2 σ1j λj ]2

= −i
σ1k

σ11

⎛
⎝ih1 +

∑
j�2

σ1jλj

⎞
⎠ e

1
2σ11

[ih1+
∑

j�2 σ1j λj ]2

. (E6)

Applying this for all k and subsequently setting all λk to zero
then gives

(−i)n−1 ∂

∂λ2
. . .

∂

∂λn

e
1

2σ11
[ih1+

∑
j�2 σ1j λj ]2

=
(

h1

σ11

)n−1
⎛
⎝∏

j�2

σ1j

⎞
⎠ e−h2

1/(2σ11). (E7)

This results in

Cn(f (H1),H2, . . . ,Hn)

=
⎛
⎝∏

j�2

σ1j

⎞
⎠ 1√

2πσ11

∫
dh1 f (h1)

(
h1

σ11

)n−1

e−h2
1/(2σ11).

(E8)

Integrating by parts n − 1 times leads to

Cn(f (H1),H2, . . . ,Hn)

=
⎛
⎝∏

j�2

σ1j

⎞
⎠ 1√

2πσ11

∫
dh1 f (n−1)(h1)e−h2

1/(2σ11).

(E9)

Finally, we identify the integral (along with the prefactor) as
the expectation value of f (n−1) and σ1j = 〈H1Hj 〉, which gives
us

Cn(f (H1),H2, . . . ,Hn)

= 〈f (n−1)(H1)〉〈H1H2〉〈H1H3〉 . . . 〈H1Hn〉, (E10)

the equation we set out to prove.
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