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Abstract
The photodissociation dynamics of awater molecule in crystallineice at 10 K is studied
computationally using classical molecular dynamics. Photodissociation in the first bilayer
leads mainly to H atoms desorbing (65%), while in the third bilayer trapping of H and
OH dominates (51%). The kinetic energy distribution of the desorbing H atoms is much
broader than that for the corresponding gas-phase photodissociation. The H atoms on
average move 11 A before becoming trapped, while OH radicals typically move 2 A. In

accordance with experiments a blueshift of the absorption spectrum is obtained relative to

gas-phase water.
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1. Introduction

Ultraviolet irradiation of iceis of great interest for understanding the chemistry in both
atmospheric [1] and astrophysical environments[2]. In interstellar space,
photodissociation of H,O molecules can be a driving force behind the chemistry onicy
‘dust’ grains in dense, cold (T = 10 K) molecular clouds even though the flux of UV
photons is extremely low (~ 10° photons cm™ s™%) [2]. The mechanisms of such
photoinduced processes are badly understood, however. For instance, it is not known if
there is a significant probability of release of H atoms and OH radicals from the
photodissociation of H,O molecules, since these fragments would be free to react with
other species in the ice. Other possibilities include the recombination and / or direct
desorption of H and OH. It is also interesting to understand the distribution of energy in
the ‘photofragments’, since this will affect their reactivity. Finally, it is important to
know how far the photofragments can travel upon photodissociation of the parent

molecule.

A number of experiments have been performed on the UV absorption spectra of H,O ice
[3], the formation of H, and other species [4-8], and the reconstruction (crystallization /
amorphization) of H,O ice under UV irradiation [9-10]. There are theoretical studies of
the excitation properties of liquid water [11-13] and water clusters [14,15], but there are
no reported theoretical studies of the dynamics of photodissociation of a H,O molecule in
ice. This paper is a first step in this direction, using a classical molecular dynamics (MD)

approach with forces derived from analytical potentials.



2. Computational details

2.1. Theice model

To treat the photodissociation dynamics of awater moleculein ice, amethod based on
classical mechanicsisused. A crystallineice surface (1) is modeled as 8 bilayers of 60
H>0 molecules each in aunit cell, using periodic boundary conditionsin the x and y
directions (in the surface plane). The unit cell is 22.4 A by 23.5 A in the xy-plane and the
ice slab extends 29.3 A in the z direction. The two lowest bilayers are kept fixed to
simulate bulk ice and the motion of the remaining 360 molecules in the six moving
bilayers is simulated using the molecular dynamics (MD) method [16]. The water
molecules are treated as rigid bodies, with the exception of one molecule that is chosen to
be dissociated (see Section 2.2). The three atoms of the dissociating molecule are able to
move without dynamical constraints. Note that the rigidity of the molecules excludes the
possibility of vibrational energy transfer to intramolecular vibrational modes and
reactions involving bond breaking in H>O molecules not initially photodissociated. Nor
can the ‘solvated electron’ observed after UV irradiation of liquid water and ice [17-20]
be treated explicitly. The initial ice configuration obeys the ice rules [21] and has a zero
dipole moment. The ice surface was prepared by equilibrating the motion of the water
molecules over a period of 100 ps. The basic methodology of simulating the ice surface

has been described in Ref. [22].

2.2. Potentials
The potentials used in this work are of three main types: (i) H,O-H,O potentials, (ii) H-

H>0 and OH-H0 potentials, and (iii) the intramolecular potential for the dissociating



H>0 molecule. The H,O-H,0 potential used in constructing the ice surface is the TIP4AP
pair potential [23], which consists of an O-O Lennard-Jones (LJ) potential and
electrostatic interactions based on charges on the H atoms and an additional charge site M
(M:-1.04 e H: 0.52 €). To avoid the difficulties of having amassless charge sitein a
fully flexible molecule, the TIP3P model [23] is used as a starting point for describing the
intermolecular interactions of the dissociating molecule. The TIP3P potential consists of
charges situated on the atoms (O: -0.834 €; H: 0.417 €) and an O-O LJ potential. To treat
the intermol ecular interactions of the excited H,O molecule, new atomic charges are used
(O: 0.4 € H: -0.2 €), which were set to reproduce the dipole moment of the gas-phase
excited-state H,O molecule [24], with the TIP3P LJ potential kept the same. A similar
approach was recently taken by Miller et a. [14] in their work on the excitation spectra of
water clusters. Note that during the equilibration of the ice surface all intermolecular
potentials are described using TIP4P, and only at the onset of the photodissociation
calculation (see Section 2.3) is the intermolecular interaction of the photoexcited H,O

changed.

The H-H,O potential is areparameterization of the Y ZCL2 H3O potentia energy surface
(PES) [25], using an expression consisting of atom-atom repulsive and dispersion
interactions and a H-O Morse potential [26]. Comparing with the previously available H-
H,0 potential [27], the long-range attractive part is roughly the same, but the short-range
repulsive interaction is clearly improved [26]. The OH-H,O potential was obtained by

fitting ab initio post-Hartree-Fock MP2 energiesto a pair potential model modelling



electrostatic interactions based on atomic charges that are dependent on the OH bond

length, repulsive interactions, and dispersion interactions [26].

To switch between the potentiasin different bonding situations (HOH and H+OH),
switching functions were devised, which depend on the OH distances in the dissociating
molecule. These functions are different from one or zero only in alimited region and

smoothly connect two regions of different bonding situations with each other [26].

The intramolecul ar interactions in the dissociating molecule are governed by the potential
energy surfaces devel oped by Dobbyn and Knowles (DK) for the ground and first excited
state of the gas-phase H,O molecule [28]. Initially the system is on the first excited state
PES, but when one of the OH bonds is between 3 A and 3.5 A, a switch is made to the
ground state PES (along with the corresponding intermolecular potentials) [26]. In the
switching region the potential is a linear combination of the excited-state and ground-
state potentials. The choice of distances for the switching region is based on the fact that
this is where the PESs become near degenerate. The reason for this is that both ground
state and first excited state correlate with H(?S) + OH(M) asymptotically. This switch
can therefore be made without introducing troublesome ‘kinks’ in the potential. The
procedure guarantees conservation of total energy since there is a smooth transition
between the PESs. Should the stretching of the OH bond be reversed before it reaches 3.5
A, the system will be on the excited state potential if the OH bond becomes shorter than 3
A again. Otherwise, the dynamics is thereafter solely governed by the ground state PES.

The justification of this admittedly ad hoc procedure is based on the assumptions that the



probability of electronic deexcitation due to collision-induced internal conversionis high
and that upon reencounters of H and OH the system is most likely to be on the ground-
state PES. This allows for the possibility of recombination. The amount of recombination
found in our calculations is expected to form an upper bound to the ‘real’ recombination
probability, since reencounters are in reality not guaranteed to occur on the ground-state
PES. The intermolecular potential of the recombined H,O molecule is described using

TIP3P.

To avoid interaction of molecules with their periodic images, the interaction of molecules
more than 10 A apart are switched off [26]. This was not done for the internal interaction
of the dissociating molecule, however, allowing for recombination of H (OH) with a

periodic image of OH (H).

2.3. The photodissociation model

Following equilibration of the ice, one molecule was chosen to be photodissociated. Only
molecules in the top three bilayers were considered. This is because photodissociation in
the lower bilayers would be more likely to lead to fragments leaving the surface through

the rigid ‘bottom’ than through the non-rigid top of the surface.

There are four distinct orientations of the molecules in a bilayer and three molecules of
each orientation were picked per bilayer. Thus 36 molecules in total, 12 per bilayer, were
chosen to be photodissociated to get a representative sample of starting configurations.

Following the approach of van Harrevelt et al. [29] for gas-phase H,O photodissociation,



aWigner (semiclassical) distribution function was fitted to the ground-state vibrational
wavefunction of the H,O molecule as calculated using the DK PES. From the Wigner
distribution the initial coordinates and momenta of the atoms in the dissociating molecule
are sampled using a Monte Carlo procedure. Note that the gas-phase vibrational
wavefunction is used as a basis for calculations in the condensed phase. Thisis assumed
to be aminor approximation, however. The excitation is taken to be of a Franck-Condon
type and therefore the atoms are given the coordinates and momenta taken from the
ground state as described above, their subsequent motion being governed by the excited
state potential energy surface (PES). Note that this procedure gives an initial phase-space
distribution of the dissociating molecule based on quantum mechanics. This has been
shown to give good agreement between classical and quantum treatments of gas-phase

photodissociation [30].

2.4. Trajectories

For each of the 36 molecules chosen, 200 traectories were run. The time step was 0.02 fs
and the maximum propagation time for the trgjectories was set to 20 ps. The trgjectories
were terminated if the three atoms of the dissociating molecule obeyed any of the
following criteria: (i) the atom was more than 10 A above the surface (in the positive z
direction) (desorption), (ii) the atom was at a negative z (below the ice slab), or (iii) the
Kinetic energy of the atom was smaller than the absolute value of the intermolecular
potential it experienced (given the potential was negative) (trapping). Note that the O and
H atoms in OH or H,0 are treated individually in this scheme. The potential evaluated in

(iii) does not include the intramolecular potential, but only the intermolecular part of the



potential, which governs the binding of the molecules within theice. Therefore, also a
highly vibrationally excited OH or H,O can be considered to be trapped when the
molecule is at the outer turning points of its vibrational motion, i.e. when the vibrationa
energy isvery low. The gas-phase results reported in Section 3 have been calculated by
sampling 1000 initial configurations in the same way as described in Section 2.3 and then
solving the classical equations of motion describing the dissociation of the H,O monomer

on the excited state PES.

2.5. Absor ption spectrum

The absorption spectrafor each bilayer that are discussed in Section 3.4 were calculated
by first taking the energy difference between the excited and ground state potentials
(including intramolecular and intermolecular potentials) for 1000 configurations of the
excited H,O for the 12 molecul es chosen as described in Section 2.3. The gas-phase
spectrum is calculated in the same way using 1000 configurations but with the
intermolecular interactions turned off. The transition dipole moment was taken to be
independent of the geometry of the water molecule and the absorption spectrum is
calculated as the number of times excitation energies occur within 0.1 eV wide energy

intervals.

3. Resultsand discussion
3.1. Direct desorption vs. trapping
In Figure 1 the outcome of the trgjectoriesis plotted in a bar diagram, presenting results

for each bilayer. Thefirst set of bars gives the probability of the H atom desorbing from



the surface with the OH becoming trapped on or in the ice. The second set shows the
probability of H and OH being trapped within or on top of the ice and the third one gives
the fraction of trajectories where H and OH recombine and remain trapped as H,O. In the
fourth set the remaining outcomes are collected together. In the first bilayer severa other
outcomes are possible: (i) the desorption of OH leaving the H atom trapped, (ii)
desorption of both H and OH, and (iii) desorption of the recombined H,O. For the rest,
thislast set contains events that are artefacts due to the adopted model. These include
penetration of the H atom through the bottom of the ice slab and recombination of the H
atom with a periodic image of the OH radical. In 3 out of the 7200 trajectories O(*D) and
H, were formed from recombination of OH and H and subsequent redissociation. The DK
PES gives a good description of O + H; configurations so thisis no artefact. Trajectories
that were not terminated after 20 ps also belong to the ‘other’ category. They constitute

less than 1% of the total number of trajectories.

Water molecules photodissociated in the first bilayer lead mainly to H atom desorption
(65%) with a smaller fraction (17%) giving trapping of H and OH. In the second bilayer
these two outcomes are roughly of equal importance (34% vs. 39%), while in the third
bilayer trapping of H and OH dominates (51%) and in only 17% of the cases an H atom
desorbs. It is interesting to note that the fraction of H atoms desorbing decreases by about
50% per bilayer going deeper into the ice. Recombination of H and OH and subsequential
trapping of the recombined molecules is insignificant in the first bilayer (3%), but due to
caging effects this fraction rises to 21% for molecules dissociated in the third bilayer. In a

model with flexible H-O molecules in the ice, the fraction of recombined H,O could



possibly increase since H,O-H,O vibrational energy transfer has been shown to be very
efficient in ice and liquid water [31-32]. Transfer of the excess vibrationa energy of the
recombined H,0O to the intramolecular vibrational modes of the surrounding H,O
molecules would lower the rate of redissociation (into H and OH) and therefore
stabilization of the recombined molecule could be more efficient than in the present

simulations.

3.2. Mobility of the photofragments

The mobility of H and OH has been monitored by cal culating the distances of the atoms
from their original positionsat t = 0 (see Figure 2). The results for the first bilayer (Fig.
2a) and the third bilayer (Fig. 2b) are quite similar and show that the H atoms can travel
over significant distances (up to 50 A). Motion over the surface facilitates the motion for
the H atoms originating in the first bilayer. The peak and average distances for the first
bilayer are 10 A and 12 A, while for the third bilayer these distances are 6 A and 11 A,

respectively.

The OH fragments are in general not as mobile as the H atoms. The average distance
travelled for OH originally in the first bilayer is only 2.7 A, but OH has been found to
move over the surface by up to 70 A. The reason for the higher mobility compared to the
H atoms is that the OH radical has a much stronger attractive interaction with the ice
surface than H does. Thus, whereas H atoms moving over the surface will most likely

desorb quickly, OH can keep moving parallel to the surface for much longer times. OH
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radicals from the third bilayer are of course more restricted by the surrounding molecules

and move on average only 1.9 A with a maximum distance of 5 A.

The mobility of the recombined H,O molecules is important for understanding the
reconstruction of the ice during UV irradiation. For molecules from the first bilayer the
average distance of the recombined H,O from the position of the *original’ H,O is 2.8 A.
For the third bilayer the average distance is 1.9 A. This clearly suggests the possibility of
reconstruction and phase transformation of UV irradiated ice, as has been observed by for

instance Leto and Baratta [10].

3.3. Energy distributions

In Figures 3 and 4 the energetics of the released fragments are presented. Figure 3 shows
the kinetic energies of the H atoms released following gas-phase photodissociation of
H,O and the H atoms that eventually desorb following photodissociation of H,O
molecules in the first and third bilayers. Results for the second bilayer are similar to those
of the third bilayer. From Fig. 3 it is seen that the kinetic energy distribution for
photodissociation in ice is broader than that from gas-phase photodissociation. For
photodissociation of water in the first bilayer, there is a peak intensity of the released H
atoms around 3.2 eV (compared to 1.8 eV for gas-phase photodissociation), but the
energy distribution has significant populations down towards zero kinetic energy and the
average energy is 2.1 eV (gas phase: 2.0 eV). The high-energy components correspond
mostly to atoms that are released directly to the gas phase without colliding with the

surrounding H2O molecules, while the lower-energy H atoms have lost part of their

11



Kinetic energy to the surroundings. It can be seen that the kinetic energy distribution for
the third bilayer peaks around 0.2 eV, the average kinetic energy being 1.0 eV. This
shows that energy loss due to inelastic collisions with the surrounding water moleculesis
almost inevitable for H atoms released following dissociation of H,O molecules

belonging to the lower bilayers.

Figure 4 compares the vibrational state distribution of trapped OH moleculesto that of
OH following gas-phase photodissociation. This distribution was computed by applying
box quantization to energy levels taken from a gas-phase Morse potentia fitted to
experiment [33]. It isclearly seen that the OH vibrational state distribution is colder for
the ice photodissociation than for the gas-phase counterpart, even though the excitation
energies are lower in the latter case (see Section 3.4). Differences between the bilayers
are small and the average OH vibrational energy is 0.4 eV for dissociation of H,O in all
three bilayers, compared to 0.6 eV for the gas phase. This differencein vibrational energy
Ismost likely connected to the repulsive intermolecul ar interactions, which the excited
state H,0 experiences. This will initially ‘slow down’ the OH vibrational motion. It
therefore seems that the “extra’ excitation energy experienced by the condensed-phase
molecules compared to the gas phase goes into translational energy of the H atoms, rather

than increased vibrational energy of OH.

The vibrational deexcitation of OH following H,O dissociation is insignificant on the

time scale of our trajectories. This is because the OH vibration is only weakly coupled to

the phonon modes of ice. If the H,O molecules in the ice were allowed to be flexible,

12



vibrational relaxation might be faster due to near-resonant intermolecular vibrational

energy transfer.

3.4. Absorption spectrum

The potentials adopted give a peak excitation energy of 9.3 eV for H,O moleculesin the
first bilayer and 9.6 eV for molecules in the second and third bilayers as seen in Figure 5.
Thisis aconsiderable blueshift from the gas-phase peak, whichisfound at 7.4-7.5 eV
both experimentally [34] and theoretically [35]. The experimental value of the peak
crystalline ice excitation energy (at 80 K) is8.6 eV [3] (Figure 5). Even though thereis
an apparent deviation of about 1 eV from experiment, the shape of the first absorption
band is reasonably well reproduced, taking the third bilayer as representative for the bulk.
This suggests that it should be possible to obtain better agreement with experiment by
modifying the intermolecular potential. The use of the gas-phase dipole moment in
determining the charges for the excited state molecule might not be a good
approximation. It has been used herein view of the lack of reliable estimates of the
condensed-phase effective dipole moment of the moleculein the first excited state. Due
toits very high dipole polarizability [24], the electronically excited molecule will
however most likely have asmaller or even reversed effective dipole moment in the
condensed phase (see e.g. Ref. [11]). The Rydberg character of this state also gives avery
delocalized charge distribution, which could lead to a significant exchange repulsion
Interaction with neighboring molecules. There will also be an effect on the intramol ecul ar

potential, but that is assumed to be minor compared to the intermolecular part. A refined
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model for the excited state inter- and intramolecul ar interactionsis currently being

developed.

4. Conclusions

A theoretical model of the dynamics of photodissociation of crystalline ice has been
explored. Even though it isasimplistic model based on classical dynamics and analytic
potentials, it gives valuable insight into the dynamics of photodissociation in the solid

phase.

The desorption of H atoms formed in the photodissociation of H,O strongly depends on
the bilayer to which the parent molecul e belonged, with 65% of the H atoms desorbing
from thefirst bilayer but only 17% from the third bilayer. The distribution of kinetic
energy of the H atoms desorbing from the ice surface is much broader than the
corresponding distribution from gas-phase H,O photodissociation. Whereas H atoms
originating in the first bilayer show apeak at 3.2 eV, it shiftsto 0.2 eV for the second and
third bilayers, indicating a considerable loss of kinetic energy to the surrounding
molecules. H atoms are a so able to move considerabl e distances through or over theice
(up to 50 A). The OH fragments are in general less mobile, with the exception of those
originating in the first bilayer which can move up to 70 A. This opens up the possibility
of reaction of H and OH with species not in the absolute vicinity of where
photodissociation took place.The OH vibrational state distribution from ice
photodissociation is predicted to be colder than that from the corresponding gas-phase

photodissociation.
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The theoretical absorption spectrum of water in ice shows a blueshift of 2 eV with respect
to the gas phase spectrum compared to an experimental value of about 1 eV. This
suggests that improvements in the model are needed. Loss of energy to intramol ecular
vibrational modes of the surrounding H,O molecules and reactive interactions of H and
OH with H,O molecules may also change results somewhat. Improvements of our model

will be explored in future research.
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Figure captions

Figure 1. Outcomes of photodissociation of H,O in the top three bilayers of ice. Error

bars correspond to 95% confidence intervals.

Figure 2. Distribution of the distances of trapped H atoms from their positionatt =0in

thefirst and the third bilayers. Error bars correspond to 95% confidence intervals.

Figure 3. Kinetic energy distributions of H atoms desorbing from the ice surface for
photodissociation in the gas phase, and in the first bilayer, and the third bilayers of ice.

Error bars correspond to 95% confidence intervals.

Figure 4. OH vibrational state distribution obtained using a box quantization procedure,
for photodissociation of gas phase H,O and for photodissociation of H,O in the first three

bilayers of ice.

Figure 5. Calcul ated absorption spectrafor the gas phase and the top three bilayers and

part of an experimental absorption spectrum of crystalline (Iy,) ice at 80 K (Ref. [3]).

(Color)
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