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We investigate the phase diagram of a two-species Bose-Hubbard model describing atoms and

molecules on a lattice, interacting via a Feshbach resonance. We identify a region where the system

exhibits an exotic super-Mott phase and regions with phases characterized by atomic and/or molecular

condensates. Our approach is based on a recently developed exact quantum Monte Carlo algorithm: the

stochastic Green function algorithm with tunable directionality. We confirm some of the results predicted

by mean-field studies, but we also find disagreement with these studies. In particular, we find a phase with

an atomic but no molecular condensate, which is missing in all mean-field phase diagrams.
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More than 80 years ago, Einstein predicted a remarkable
phenomenon to occur in a gas of identical atoms interact-
ing weakly at low temperature and high density [1]. Under
such conditions, when the de Broglie wavelength of the
atoms becomes larger than the interatomic distance, a
macroscopic fraction of the atoms accumulates in the low-
est energy state. This phenomenon, known as Bose-
Einstein condensation, remained in the archives for a
long time, and was reconsidered later with the discovery
of the superfluidity of Helium in 1937. It is only in 1995
with the advent of laser cooling techniques that the first
Bose-Einstein condensates of atoms were achieved [2,3].
At present, experiments trying to achieve ultracold and
degenerate molecular gases are creating considerable ex-
citement [4–6]. These experiments should lead to the
creation of long-lived molecular Feshbach-Einstein con-
densates, with applications in the fields of precision mea-
surements and quantum information [7].

Near a Feshbach resonance, molecules are formed from
atoms by tuning a magnetic field and bringing into reso-
nance scattering states of atoms with molecular bound
states [8]. In this way, conversions between atoms and
diatomic molecules are induced. A model Hamiltonian
that describes mixtures of atoms and molecules was intro-
duced and studied before [9–12]. In this Letter, we study
this model and analyze the presence or not of atomic and/or
molecular condensates, using the recently developed sto-
chastic Green function (SGF) algorithm [13] with tunable
directionality [14]. With this exact quantum Monte Carlo
(QMC) algorithm, momentum distribution functions,
which are the main indicators of condensation, are easily
accessible and allow direct comparisons with experiments.
We critically compare our results with the predictions of
mean-field (MF) studies [10,11].

We consider the model for bosonic atoms and molecules
on a lattice. The particles can hop onto neighboring sites,
and their interactions are described by intraspecies and
interspecies onsite potentials. An additional conversion
term allows two atoms to turn into a molecule, and vice

versa. This leads us to consider the Hamiltonian Ĥ ¼
T̂ þ P̂þ Ĉ with

T̂ ¼ �ta
X

hi;ji
ðayi aj þ H:c:Þ � tm

X

hi;ji
ðmy

i mj þ H:c:Þ; (1)

P̂ ¼ Uaa

X

i

n̂ai ðn̂ai � 1Þ þUmm

X

i

n̂mi ðn̂mi � 1Þ

þUam

X

i

n̂ai n̂
m
i þD

X

i

n̂mi ; (2)

Ĉ ¼ g
X

i

ðmy
i aiai þ ayi a

y
i miÞ: (3)

The T̂, P̂, and Ĉ operators correspond, respectively, to

the kinetic, potential, and conversion energies. The ayi and

ai operators (m
y
i and mi) are the creation and annihilation

operators of atoms (molecules) on site i, and n̂ai ¼ ayi ai
(n̂mi ¼ my

i miÞ counts the number of atoms (molecules) on
site i. Those operators satisfy the usual bosonic commuta-
tion rules. The sums hi; ji run over pairs of nearest-
neighbor sites i and j. We restrict our study to one dimen-
sion (1D), and we choose the atomic hopping parameter
ta ¼ 1 in order to set the energy scale, and the molecular
hopping parameter tm ¼ 1=2 [12]. The parameter D cor-
responds to the so-called detuning in Feshbach resonance
physics. In this Letter, we will systematically use the same
value U for the on site repulsion parameters and the
conversion parameter, U ¼ Uaa ¼ Umm ¼ Uam ¼ g, in
order to simplify our study. It is important to note that
the Hamiltonian does not conserve the number of atoms

Na ¼ P
ia

y
i ai, nor the number of molecules Nm ¼P

im
y
i mi because of the conversion term (3). However,

we can define the total number of particles, N ¼ Na þ
2Nm, which is conserved.
While our Hamiltonian is highly nontrivial, it has be-

come possible to simulate it exactly by making use of the
SGF algorithm [13]. In this algorithm, a Green operator is
considered,
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Ĝ ¼ Xþ1

p¼0

Xþ1

q¼0

gpq
X

fipjjqg

Yp

k¼1

Ây
ik

Yq

l¼1

Âjl ; (4)

where gpq is an optimization matrix, Ây
and Â are

normalized creation and annihilation operators, defined
as the operators that create and destroy particles without
changing the norm of the state they are applied to, and
fipjjqg represents two subsets of site indices in which all ip
are different from all jp. The Green operator is used to

sample an extended partition function,

Zð�; �Þ ¼ Tre�ð���ÞĤ Ĝe��Ĥ ; (5)

by propagating across the operator string obtained by ex-
panding the exponentials of expression (5) in the interac-

tion picture. When configurations in which Ĝ acts as an
identity operator occur, then (5) reduces to the partition

function Zð�Þ ¼ Tre��Ĥ , and measurements of physical
quantities can be performed. In addition, the directionality
of the propagation of the Green operator is tunable [14],
which improves considerably the efficiency of the
algorithm.

An important property of the SGF algorithm is that it
works in the canonical ensemble, the canonical constraint
being imposed on the total number of particles N. This is
essential for the efficiency of the simulations. Indeed, our
model describes a mixture of two different species of
particles, and would require two different chemical poten-
tials for a description in the grand-canonical ensemble.
Adjusting numerically two chemical potentials is cumber-
some because the number of particles of each species
depends on all parameters of the Hamiltonian. Working
in the canonical ensemble allows to set the total number of
particles, and the ratio between the number of atoms and
molecules is controlled via the detuning, mimicking what
is done in experiments.

In order to characterize the different phases encountered,
it is useful to consider the superfluid density �s. The SGF
algorithm samples the winding number W, so the super-
fluid density is simply given by �s ¼ hW2iL=2�. It turns
out to be more efficient to measure �s by using an im-
proved estimator Wext [13] for the winding number,

W2
ext ¼ 2j~jð!1Þj2 � j~jð!2Þj2

L2
; !1 ¼ 2�

�
;

!2 ¼ 4�

�
;

(6)

with

~jð!Þ ¼ Xn

k¼1

Dð�kÞe�i!�k ; (7)

where �k are the imaginary time indices of the interactions
appearing when expanding the partition function (5), and
Dð�kÞ equals 1 (� 1) if a particle jumps to the right (left)

at imaginary time �k. This improved estimator converges
faster to the zero temperature value of the winding number
[13]. In our case, we evaluate the atomic and molecular
winding numbers, Wa and Wm, and the corresponding
superfluid densities are given by �a

s ¼ hW2
aiL=2� and

�m
s ¼ hW2

miL=2�. In addition, it is useful to define the
correlated superfluid density �cor

s [12],

�cor
s ¼ hðWa þ 2WmÞ2iL

2�
: (8)

These quantities allow us to identify superfluid (SF) and
super-Mott (SM) [12] phases. SF phases are characterized
by nonzero values for �a

s , �
m
s , and �cor

s , while a vanishing
value for �cor

s with nonzero values for �a
s and �m

s is the
signature of a SM phase (see caption of Fig. 1). The SGF
algorithm allows to measure the atomic and molecular

Green functions hayi aji and hmy
i mji, from which the asso-

ciated momentum distribution functions naðkÞ and nmðkÞ
are computed by performing a Fourier transformation:

naðkÞ ¼ 1

L

X

pq

haypaqie�ikðp�qÞ (9)

nmðkÞ ¼ 1

L

X

pq

hmy
pmqie�ikðp�qÞ: (10)

Because we are considering 1D systems, we can expect
at most quasicondensates. These are characterized by a
diverging occupation of the zero-momentum state nðk ¼
0Þ as a function of the size L of the system, while the
condensate fraction nð0Þ=N vanishes in the thermodynamic
limit. As a result, knowing the value of the condensate
fraction for an arbitrary large system size is not sufficient
to determine if the system is quasicondensed or not. One
needs to perform a finite-size scaling analysis in order to
determine if nð0Þ diverges or not. In the following, all
denoted ‘‘condensate’’ phases are to be understood as
‘‘quasicondensate’’ phases. As a result, the quantities
naðkÞ and nmðkÞ allow us to identify phases with atomic
condensate (AC), molecular condensate (MC), or
atomicþmolecular condensates (ACþMC). It is also

L lattice sites, N=Na+2Nm=2L particles Extra particle

Molecule

Atom

Exchange

FIG. 1 (color online). Typical configuration in a SM phase.
The addition of an extra particle (atom or molecule) has a finite
energy cost because it creates either a triplet of atoms, or an
atom-atom-molecule triplet, or a pair of molecules, or an atom-
molecule pair. Thus, the phase is incompressible. However,
exchanging a pair of atoms with a molecule is free, thus allowing
anticorrelated supercurrents.
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useful to keep in mind that the areas below the curves naðkÞ
and nmðkÞ are exactly equal to Na and Nm, respectively,
thus allowing an evaluation of the population of atoms and
molecules.

We concentrate our study on systems with a total density
�tot ¼ N=L ¼ 2, which is one of the cases considered in
MF [11] and QMC [12] studies. We investigate the phase
diagram in the (1=U, D) plane. For sufficiently large
interactions U, depending on the detuning D, we find an
insulating phase characterized by a vanishing compressi-
bility and the absence of global superflow. This is in
agreement with MF studies. However, Ref. [11] denotes
this insulating phase as a regular Mott insulator (MI),
whereas we find that it is actually a more exotic SM phase
(see above). This can be seen in Fig. 2 for the caseU ¼ 1:5
and D ¼ �6. The momentum distribution functions for
atoms and molecules are plotted for different sizes of the
lattice. No divergence of the occupation of the zero-
momentum state is perceptible, so there is neither an
atomic nor a molecular condensate. Moreover, the inset
shows that the correlated superfluid density �cor

s vanishes
as the system size increases, as expected for an insulating
phase. However, we can see that the superfluid densities
associated with the individual atomic and molecular spe-
cies converge to a finite value, which is the signature of a
SM phase (a similar phase is also present in the case of
Bose-Fermi mixtures [15]). This is the first qualitative
difference between MF results and ours.

Starting from the above SM phase, reducing the inter-
actions will eventually break the solid structure. ForU ¼ 1
and negative detuning D ¼ �6, the system undergoes a
molecular condensation, as can be seen in Fig. 3. No
divergence of the occupation of the zero-momentum state
nað0Þ occurs. However, nmð0Þ diverges and shows the
presence of a molecular condensate. This transition from
an insulator to a MC phase is in agreement with MF theory.

The SM phase persists when going from negative to
positive detuning with large interactions. For sufficiently

large detuning D, MF studies predict a direct transition
from a MI (actually SM) phase to an ACþMC phase, as
the interactions are reduced. However, our remarkable
result is that we find an intermediate AC phase in a small
region of the phase diagram. This can be seen in Fig. 4 for
the caseU ¼ 5 andD ¼ 4. We can see that a divergence of
nað0Þ occurs while nmð0Þ remains constant as the system
size increases. Thus, we are in the presence of a phase in
which the atoms are condensed, but not the molecules.
Such an AC phase is missing, to our knowledge, in all
phase diagrams coming from MF theory [10,11]. Our
evidence for the AC phase in Fig. 4 is comparable to that
for the MC phase in Fig. 3.
While it is hard to give a phase diagram with precise

borders delimiting the different phases (because each point
of the diagram requires a heavy finite-size scaling analy-

-π -π/2 0 π/2 π
k

0

5

10

15
n(

k)
L=24   40*na(k)

L=36   40*na(k)

L=48   40*na(k)

L=60   40*na(k)

L=24   nm(k)

L=36   nm(k)

L=48   nm(k)

L=60   nm(k)
0.02 0.03

1/L

0

0.02

0.04

0.06

0.08

0.1

ρ s

ρ
s
a

ρs
m

ρs
cor

U
aa

=U
mm

=U
am

=g=1.5

D=-6 ρ=2

t
a
=1   t

m
=0.5

FIG. 2 (color online). Identification of the SM phase. No
divergence of nað0Þ or nmð0Þ is perceptible. The error bars are
smaller than the L ¼ 60 symbol size.
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FIG. 3 (color online). Identification of the MC phase. The
occupation of the zero-momentum state of molecules diverges
as the size L of the system increases. The error bars are smaller
than the L ¼ 60 symbol size, except in k ¼ 0 for molecules for
which the error is about 2 times the size of the symbol.
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FIG. 4 (color online). Identification of the AC phase. The
occupation of the zero-momentum state of atoms diverges as
the size L of the system increases. The error bars are smaller than
the L ¼ 60 symbol size, except in k ¼ 0 for atoms for which the
error is about 4 times the size of the symbol.
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sis), we give a qualitative diagram in Fig. 5 based on
simulations for considerably more values of the detuning
D and the interaction U than in Fig. 2–4. In addition, we
provide connection with future experiments by showing on
Fig. 6 how the atomic and molecular visibilities V a and
Vm [16] behave when entering the AC phase from the SM
phase along the vertical line D ¼ �2. In the present case,
V a reaches unity before Vm as the interactions decrease,
showing again that the system is entering an AC phase.

To conclude, we have studied a two-species Bose-
Hubbard Hamiltonian for atoms and molecules on a lattice,
interacting via a Feshbach resonance. We have shown that

the MI phase identified in MF studies is actually a SM
phase. For large negative detuning, we find a transition
from this insulating phase to a MC phase, in agreement
with MF theory. For smaller negative or positive detuning,
however, while MF theory predicts a direct transition from
MI to ACþMC, we find that an AC phase occurs and that
the system undergoes phase transitions from SM to AC to
ACþMC. The AC phase was not found in previous
studies. The phase diagram we provide may serve as a
guide for the investigation of atomic and molecular quan-
tum matter now that condensation of Feshbach molecules
is beginning to be achieved experimentally.
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FIG. 5 (color online). The qualitative phase diagram in the
(1=U, D) plane for �tot ¼ 2. We identify regions with super-
Mott (SM), atomic condensate (AC), molecular condensate
(MC), and atomicþmolecular condensate (ACþMC) phases.
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FIG. 6 (color online). The atomic and molecular visibilities
V a and Vm. Because of the divergence of nað0Þ or nmð0Þ, V a

(and/or Vm) must converge to unity when an atomic (and/or a
molecular) condensate occurs.

PRL 102, 015301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

015301-4


