
Semi-partitioned scheduling and task migration in dataflow networks
Cannella, E.

Citation
Cannella, E. (2016, October 11). Semi-partitioned scheduling and task migration in dataflow
networks. Retrieved from https://hdl.handle.net/1887/43469

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/43469

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/43469

Cover Page

The handle http://hdl.handle.net/1887/43469 holds various files of this Leiden University
dissertation

Author: Cannella, Emanuele
Title: Semi-partitioned scheduling and task migration in dataflow networks
Issue Date: 2016-10-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43469

Chapter 7

Summary and Discussion

7.1 Thesis Summary

The improvements in the semiconductor technology and the demand from the in-
dustry to provide more and more advanced functionalities to the end user have lead
to a sharp increase in the complexity of embedded multiprocessor systems on chip
(MPSoCs). In order to exploit the parallelism available in MPSoCs, applications have
to be decomposed in portions that can be executed in parallel. The de-facto solution
to achieve this decomposition is to use parallel Models of Computation (MoCs) dur-
ing system design. By using parallel MoCs, applications are divided into tasks (or
processes) that can be executed in parallel. Each of these tasks is assigned to a certain
processing element (PE) of the system. This assignment of tasks to processor is called
spatial scheduling, or task mapping.

In the first part of this thesis, namely Chapters 3 and 4, we have proposed a middle-
ware layer that lays in between the tasks of the applications and the operating system.
Our proposed middleware allows to dynamically change the task mapping at run-
time, i.e., it allows certain tasks to migrate from one PE of the system to another. The
goal of our approach is to exploit the ability to migrate certain tasks in order to achieve
system adaptivity. The middleware layer presented in Chapters 3 and 4 is aimed
at best-effort systems and considers two main assumptions. The first assumption is
that the application to be executed on the MPSoC is specified as a Polyhedral Process
Network (PPN). The second assumption is that the MPSoC execution platform is
based on a Network-on-Chip (NoC) communication infrastructure. Both of these
assumptions are beneficial to our goal of achieving system adaptivity by allowing
task migration.

In particular, in Chapter 3, we have described the first component of the middle-
ware layer mentioned earlier. This component allows PPN processes to communicate
on NoC-based MPSoCs with completely distributed memories. We propose and
compare different approaches (referred to as communication approaches) to implement
communication among PPN processes on NoCs. Our evaluation shows that one of

136 Chapter 7. Summary and Discussion

the communication approaches achieves higher performance when mapping com-
munication dominant applications to NoC-based MPSoCs. Most importantly, for our
goal of allowing process migration, all of the proposed communication approaches
guarantee correct communication among PPN processes even when the mapping of
certain processes is changed at run-time.

Chapter 4 describes the second component of our proposed middleware layer.
This component is in charge of performing the actual migration of the processes
among PEs of the system. That is, it implements the process migration mechanism
used by our middleware. Our proposed migration mechanism is based on one of the
communication approaches described in Chapter 3, and guarantees the following two
important properties.

1. It is time predictable, that is, when a migration is triggered, it will be completed
within a certain time frame.

2. It allows a migration to be triggered at any time during the execution of a
PPN process, except when the status of the input/output FIFO buffers and the
iterator set of the process are updated. Note that these updates take negligible
time compared to the total execution time of the PPN process.

In the second part of this thesis, namely Chapters 5 and 6, we have targeted hard
real-time systems. To this end, we consider applications modeled as Cyclo-static
Dataflow (CSDF) graphs and we have proposed two approaches to schedule such
applications using a semi-partitioned scheduling algorithm. Similar to the approach
presented in Chapters 3 and 4, semi-partitioned scheduling algorithms also allow
certain tasks to migrate. However, in the approach proposed in Chapters 3 and 4
task migrations can occur at any time, triggered by an input event from the user or
from the environment (e.g., a hardware fault). By contrast, under semi-partitioned
schedulers task migrations follow a precise temporal and spatial pattern known at
design-time.

Chapters 5 and 6 use the scheduling framework proposed in [BS11, BS12] as a
basis and research driver. That scheduling framework converts an input application,
specified as a CSDF graph, to a set of real-time periodic tasks. Then, by using any
partitioned hard real-time scheduling algorithm on the derived task set, a designer can
obtain in a fast and analytical way the minimum number of processors that guarantee
the required application performance and the mapping of tasks to processors.

The approach proposed in Chapter 5 extends the scheduling framework of [BS11,
BS12] by allowing also the soft real-time, semi-partitioned scheduling algorithm EDF-
fm [ABD08] to schedule the periodic task set derived from the input application model.
We recall that, by contrast, in the scheduling framework of [BS11, BS12] only hard
real-time, partitioned schedulers are considered. In Chapter 5, we have shown that
our semi-partitioned scheduling approach reduces the number of processors required
to schedule certain applications, compared to a pure partitioned scheduling approach.
However, our proposed semi-partitioned approach incurs an overhead in terms of
memory requirements and latency of the application. As an additional contribution
of Chapter 5, we have proposed a task allocation heuristic that tries to minimize the
mentioned memory and latency overhead incurred by our semi-partitioned approach.

7.2. Discussion 137

Finally, in Chapter 6, we have proposed a novel soft real-time (SRT) semi-partitioned
scheduling algorithm, called EDF-ssl, that can be used instead of the EDF-fm sched-
uler employed in Chapter 5. EDF-ssl is designed to be used in combination with
Voltage/Frequency Scaling (VFS) techniques, and exploits the presence of stateless
tasks to achieve an even distribution of the utilization of tasks among the available
processors and, in turn, improve the energy efficiency of the system. Our proposed
semi-partitioned scheduling achieves the same throughput, at a significantly lower en-
ergy consumption, compared to a purely partitioned scheduling approach. However,
the mentioned energy savings come at the cost of increased memory requirements
and latency of applications.

7.2 Discussion

In Section 7.2.1 and Section 7.2.2, we provide examples of how the techniques pre-
sented in this thesis can be applied in practice to the design of embedded multi-
processor systems. In particular, Section 7.2.1 describes how the process migration
mechanism proposed in Chapter 4 has been applied to an industrially-relevant case
study within the EU FP7 project MADNESS [CGF+11,MTR+12,DCT+13]. In addition,
Section 7.2.2 explains how the semi-partitioned scheduling techniques proposed in
Chapters 5 and 6 can be integrated within the existing DaedalusRT [BZNS12, Bam14]
system-level design flow. Finally, in Section 7.2.3, we explain why we restricted the
contributions of Chapters 3 to 6 to certain application models.

7.2.1 Assessing the migration mechanism in an industrially- rel-
evant case study

In Chapter 4, we have presented our proposed process migration mechanism ex-
ploiting a PPN model with rather simple topology as a running example (see the
upper part of Figure 4.2 on page 77). The topology of the case study considered in
Section 4.6.1, an M-JPEG encoder, is also rather simple.

As a proof that our proposed process migration mechanism can handle more
complex PPN topologies, we applied the migration technique presented in Chapter 4
to an industrially relevant case study, an H.264 decoder. The PPN model of this
application is shown in Figure 7.1. This proof-of-concept has been carried out within
the EU FP7 project MADNESS [CGF+11, MTR+12, DCT+13] and showcased in a live
demonstration at the project’s booth at the DATE’13 conference [Mac13]. Hereafter,
we will refer to the implemented live demonstration as our demo.

In order to describe the kind of process migrations allowed in our demo, we first
provide an abstraction of the PPN topology shown in Figure 7.1. This abstracted PPN
topology is given in Figure 7.2.

By comparing Figure 7.1 and Figure 7.2 we note that, in the latter figure, nodes
get_data and parser have been merged into a single node, denoted by H0. Each of the
other nodes in Figure 7.1 is represented by one unique node in Figure 7.2 and denoted
by H1 to H5.

138 Chapter 7. Summary and Discussion

get_data

parser

Sps: 1 Sh: 1 first_mb_flag: 1 Pps: 1 nal: 1 currBitPos: 1

cavlc

nal: 1Sps: 1 Sh: 1first_mb_flag: 1Pps: 1nal: 1

currBitPos: 1 cavlcIps: 1

Idct

idctIps: 1

intra_prediction

intraPredIps: 1

deblocking_filter

dbIps: 1

currBitPos: 1

nal: 1

coeffs: 1

residual_mb: 1

reconst_mb: 1

printMB

op_mb: 1

Figure 7.1: PPN model of the H.264 decoder application.

get_data

parser

cavlc idct deblock
intra

pred

H0 H1 H2 H3

printMB

H4

Figure 7.2: Abstracted PPN specification of the H.264 decoder application. Compared to Figure 7.1,
nodes get_data and parser are merged into a single node, H0.

The execution platform of our demo is represented in Figure 7.3. It consists of
6 tiles connected by the ×pipes NoC [BB04] and organized as a 2x3 mesh. This
execution platform is implemented onto a Virtex-6 FPGA prototyping board.

In addition to the structure of the execution platform, Figure 7.3 shows the map-
ping of the replicas of the PPN processes which comprise the H.264 application. A
process can be executed on a tile only if a replica of that process is allocated to that
tile. In Figure 7.3, process replicas which are active at system startup are filled in dark

7.2. Discussion 139

tile0

tile3

tile1

tile5tile4tile3

tile2

H2

H3 H4H2

H0 H1

H2

H3 H4

H2

H3 H4

H2

H3 H4

H5

H3 H4

Figure 7.3: Structure of the execution platform used in our demo and allocation of process replicas
to tiles. Process replicas which are active at system startup are filled in dark gray. Input and output
interfaces are not shown.

gray. All the other replicas are inactive, but ready to by activated in case a process
migration requires so.

Our demo includes one input and one output interface (which are not shown
in Figure 7.3). The input interface allows the user to provide inputs to the system
by pushing the buttons available on the FPGA prototyping board. Each button
corresponds to one tile of the system. When a button get pressed by the user, the
system is requested to disable the corresponding tile. The output interface visualizes
the frames generated by the H.264 decoder on an external screen.

Figure 7.4 shows an example of a process migration performed in our demo. In this
example, the user requires the system to deactivate tile3. Then, the resource manager
(RM) which is executed on tile2 triggers the migration of process H2 from tile3 to
tile4 in order to keep the application running. The process migration is executed
using the mechanism described in Chapter 4 of this thesis. Our demo allows the
user to deactivate several tiles, provided that at least one replica of each process of
the H.264 decoder application is allocated onto one of the active tiles. In the most
resource-constrained scenario, the whole application can be executed by tile0 and tile2
alone. However, this results in a much lower frame rate of the application compared
to the initial mapping which uses six active tiles.

A simplified setup of the hardware and software implementation of our demo is
available to download at:
http://daedalus.liacs.nl/demos/MADNESS_adaptivity.tar.gz.
In this prototype, the input and output hardware interfaces of our demo are replaced
(and emulated) by software components.

7.2.2 Application of Chapters 5 and 6 to DaedalusRT

The scheduling framework proposed in [BS11, BS12] (shown in Figure 5.1 on page 88)
has led to the implementation of DaedalusRT [BZNS12,Bam14]. DaedalusRT combines

http://daedalus.liacs.nl/demos/MADNESS_adaptivity.tar.gz

140 Chapter 7. Summary and Discussion

tile0

tile3

tile1

tile5tile4tile3

tile2

H2

H3 H4H2

H0 H1

H2

H3 H4

H2

H3 H4

H2

H3 H4

H5

H3 H4

RM

Figure 7.4: Example of a process migration performed in our demo. The user requires the system to
deactivate tile3. Then, the resource manager (RM) which executes on tile2 triggers the migration of
process H2 from tile3 to tile4 in order to keep the application running.

the hard real-time scheduling analysis of [BS11,BS12] with the initial Daedalus system-
level design flow [NSD08, NTS+08]. The research contributions of Chapters 5 and 6
of this thesis extend the scheduling framework of [BS11, BS12], therefore they can be
directly applied to DaedalusRT, as described in this section.

DaedalusRT allows designers to generate a complete hardware and software plat-
form, with guaranteed hard real-time behavior, starting from a sequential application
specification. An overview of the DaedalusRT design flow is shown in Figure 7.5. The
design process starts by providing the input application(s), written in C/C++ in the
form of a Static Affine Nested Loop Program (SANLP) [VNS07] (see the Application
block in the upper-right part of the figure).

Then, in Step 1 , Parallelization, the pn compiler [VNS07] converts each input
SANLP to an equivalent PPN application specification. Each function call of the
SANLP is converted to a separate process of the derived PPN. Moreover, if two
functions of the SANLP access the same data array through their input/output
arguments, pn derives data dependencies between the corresponding processes in
the PPN.

Based on the derived PPN specification and on the WCET analysis (Step 2) of
each function of the input SANLP, the Analysis Model Derivation (Step 3), performed
by pntools, derives the analysis model of the application. This model is a CSDF
graph, annotated with the WCET of each actor of the graph.

All the parts of DaedalusRT described so far lay outside the dashed box in Figure 7.5
and are used to derive the application specification in the form of a PPN and the
analysis model in the form of a CSDF graph. The derivation of these two models is
not influenced by the contributions of this thesis.

However, the findings of Chapters 5 and 6 do extend the parts of Figure 7.5
enclosed by the dashed box and in particular the HRT Analysis (Step 4) of DaedalusRT.
This analysis is performed by the DARTS (Dataflow Analysis for Real Time Systems)

7.2. Discussion 141

System Synthesis (ESPAM)

No. of

Processors

Task

Mapping

Temporal and

Buffering Spec.

HRT Analysis

(DARTS)
Parallelization

(pn)

User Input

(e.g., scheduler type)
WCET Analysis

Analysis Model (CSDF)Application Spec.:

PPN

Application

Analysis Model

Derivation

(pntools)

Analysis

Model: CSDF
1

2

34

5

Figure 7.5: Overview of the DaedalusRT design flow (adapted from [BZNS12]). Steps 1 , 2 and
3 of the design flow are used to convert the input sequential application to the corresponding PPN

specification and CSDF analysis model. Then, based on this analysis model and on the scheduler chosen
by the user, Step 4 derives the number of processors required to schedule the application, the task
mapping, and the temporal and buffering specification. At the end of Step 4 the system is completely
specified and ready for system synthesis, performed in Step 5 . The parts enclosed by the dashed box
have been extended/modified by the contributions of Chapters 5 and 6 of this thesis.

tool. In fact, the dashed box in Figure 7.5 abstracts the scheduling framework shown
in Figure 5.1 on page 88. We briefly recall the operations performed by this scheduling
framework in the next paragraph.

Step 4 uses the CSDF model of the application as input. The CSDF graph is
then converted to a set of real-time periodic tasks using the scheduling analysis
of [BS11, BS12] (described in Section 2.3). Based on the scheduler type selected by the
user (see upper-left corner of Figure 7.5), DARTS derives: (i) the number of processors
required to schedule the input application(s); (ii) the task mapping, which associates
each task of the application to the processor responsible for its execution; (iii) the
temporal and buffering specification, which consists of parameters that regulate the
scheduling of tasks on the system (namely, WCET, period, and start times of tasks),
together with the size of the buffers used to implement inter-task communication.

The System Synthesis (Step 5) finalizes the design flow by generating the RTL spec-
ification of the target MPSoC platform, together with the software running on each
processor. Step 5 is performed by the ESPAM tool [NSD08] and uses the following
inputs:

∙ the number of required processors, the task mapping, and the temporal and
buffering specification provided by Step 4 ;

∙ the PPN application specification derived by Step 1 .
Note that the whole DaedalusRT design flow, including the tools pn, pntools,

DARTS, and ESPAM, is available to download at http://daedalus.liacs.nl/

http://daedalus.liacs.nl/download.html
http://daedalus.liacs.nl/download.html

142 Chapter 7. Summary and Discussion

download.html.

As mentioned earlier, Step 4 of DaedalusRT uses the the scheduling analysis
of [BS11, BS12] and therefore, so far, has considered only hard real-time partitioned
scheduling algorithms. The contributions of Chapters 5 and 6 allow designers to
exploit soft real-time semi-partitioned scheduling algorithms in the systems generated
by DaedalusRT, with the benefits summarized in Section 1.4.2. In order to do so, the
parts of DaedalusRT enclosed by the dashed box in Figure 7.5 can be simply replaced
by the scheduling frameworks proposed in Figure 5.2 and Figure 6.1, which represent
the contributions of Chapters 5 and 6, respectively. Although the contributions of these
chapters have been proven to be correct, the schedulers considered in these chapters
have still not been implemented in DaedalusRT. That is, the actual deployment of
EDF-fm (see Section 2.2.7) and EDF-ssl (see Section 6.7) on the systems generated by
DaedalusRT is left as future work.

7.2.3 Application models considered in Chapters 3 to 6

In this section, we explain why Chapters 5 and Chapters 6 consider only applications
modeled as acyclic (C)SDF graphs, and why Chapters 3 and 4 consider applications
modeled as PPNs, instead.

Analysis of Chapters 5 and 6 restricted to acyclic (C)SDF graphs

The restriction on the application models considered in the semi-partitioned schedul-
ing techniques proposed in Chapters 5 and 6 follows naturally from the dependencies
of these techniques from the scheduling analysis of [BS11, BS12]. As explained in
Section 2.3, such scheduling analysis can only handle applications modeled as acyclic
(C)SDF graphs. In turn, this restriction applies also to the scheduling techniques
proposed in Chapters 5 and 6.

Choice of the PPN MoC in Chapters 3 and 4

Chapters 3 and 4 consider applications modeled using the PPN Model of Computation
(MoC) (see Section 2.1.3). We recall that these chapters propose an approach aimed at
achieving system adaptivity in the context of best-effort systems. In order to achieve
system adaptivity, the proposed approach provides a mechanism by which application
processes can migrate among processors at run-time. In such a context, PPNs are a
suitable MoC. This is because in PPNs, memory, control, and synchronization are
completely distributed, which allows to change the mapping of processes to PEs at
run-time with low effort.

As explained in Section 2.1.3, any sequential application specified as a Static Affine
Nested Loop Program (SANLP) can be automatically converted to an equivalent
parallel PPN specification [VNS07]. Moreover, from this specification, it is possible to
efficiently generate the code that will run on the actual MPSoC [NSD08] for process
execution, communication, and synchronization. For these reasons, the PPN model
of the input application is used as Application Specification also in DaedalusRT (see

http://daedalus.liacs.nl/download.html
http://daedalus.liacs.nl/download.html
http://daedalus.liacs.nl/download.html

7.2. Discussion 143

one of the inputs of Step 5 in Figure 7.5). This application specification is also called
Implementation Model of the application, that is, the model that is close to the final
code to be executed on the MPSoC.

In principle, it would have been possible to base the approach proposed in Chap-
ters 3 and 4 of this thesis on the CSDF MoC (see Section 2.1.2) instead of PPNs. This
is because it has been proven that a PPN is equivalent to a CSDF graph where the
production/consumption sequences of actors consist of only zeros and ones [DSBS06].
However, we did not choose the CSDF MoC for Chapters 3 and 4 due to the following
two reasons.

∙ First, as mentioned earlier, the PPN MoC works well as an implementation
model (see page 16 of [Zha15]), because code can be efficiently generated from
it. This is the reason why DaedalusRT uses the PPN MoC as the implementation
model of an application and CSDF only as the analysis model, i.e., the model
used to perform non-functional analysis (see one of the inputs of Step 4 in
Figure 7.5). Since the approach proposed in Chapters 3 and 4 acts at the level
of the implementation model of the application, the PPN MoC is a natural
foundation for the approach presented in these chapters.

∙ Second, as mentioned earlier, given any application specified as a SANLP, its
equivalent PPN specification can be automatically derived. In turn, this PPN
specification could be converted to an equivalent CSDF specification. However,
in the approach proposed in Chapters 3 and 4, this additional conversion would
not add any benefit. This is because these chapters are aimed at best-effort
systems, and do not require a separate analysis model (in the form of a CSDF
graph) to perform hard real-time analysis as in DaedalusRT. Moreover, in
most cases the PPN application model is more succint (or compact) than the
equivalent CSDF model. If this CSDF application specification were to be
mapped to actual code running on the MPSoC, the lesser compactness of this
specification may result in execution time and/or code size overhead for each
actor of the application, compared to the code generated from the equivalent
PPN specification.

144 Chapter 7. Summary and Discussion

