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Chapter 6

Energy Efficient
Semi-Partitioned Scheduling of
SDF Graphs

Most of the work presented in this chapter has been published in [CS16].

AS mentioned in Section 1.2.4, energy efficiency is one of the emerging challenges
of the modern embedded MPSoCs design, for several reasons. For instance,

in battery-powered devices, energy efficiency can guarantee longer battery life. In
general, energy-efficient design decreases heat dissipation and, in turn, improves
system reliability.

To address the energy efficiency challenge many techniques have been proposed
in the past decade in the embedded system community. As explained in Section 1.2.4,
these techniques exploit Voltage/Frequency Scaling (VFS) of processors and have
been applied to both streaming applications and periodic independent real-time tasks
sets. These VFS techniques can be classified as offline and online. Offline VFS uses
parameters such as the worst-case execution time (WCET) and the period of tasks
to determine, at design-time, appropriate voltage/frequency modes for processors
and how to switch among them, if necessary. Online VFS exploits the fact that at
run-time some tasks can finish earlier than their WCET and determines, at run-time,
the voltage/frequency modes to obtain further energy savings.

In this chapter, we devise an approach to exploit VFS of processors, to minimize
the energy consumption of streaming applications with throughput constraints. We
do so by reusing the scheduling analysis proposed in Chapter 5, which considers
the soft real-time (SRT) EDF-fm scheduling algorithm. However, in this chapter we
propose a novel SRT semi-partitioned scheduling algorithm, different from EDF-fm,
which allows an even distribution of the utilization of tasks among the available
processors. In turn, this enables processors to run at a lower frequency, which yields
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to lower energy consumption. In particular, our proposed SRT semi-partitioned
algorithm is based on restricted migrations, for the practical reasons explained in the
introduction of Chapter 5.

Although the scheduling algorithm used in our VFS scheduling approach is SRT,
our proposed approach can provide HRT guarantees to the input/output interfaces
of the application with the environment. This property is ensured by the scheduling
analysis proposed in Chapter 5, which is reused in this chapter. Therefore, the results
of this chapter can be applied in the context of hard real-time streaming systems.

6.1 Problem Statement

To the best of our knowledge, the potential of semi-partitioned scheduling with
restricted migrations together with VFS techniques to achieve lower energy con-
sumption has not been completely explored. Therefore, in this chapter, we study
the problem of energy minimization when mapping streaming applications with
throughput constraints using such semi-partitioned approach. Our technique consid-
ers homogeneous multiprocessor systems in which voltage and frequency scaling is
supported with a discrete set of operating voltage/frequency modes.

6.2 Contributions

As the main contribution of this chapter, we propose a VFS semi-partitioned schedul-
ing technique aimed at streaming applications with throughput constraints. Our
proposed schedling technique is depicted in Figure 6.1. As mentioned earlier, our
technique builds upon the results of Chapter 5. In that chapter, we showed that a
SRT semi-partitioned scheduler (EDF-fm) can be used to schedule actors of a (C)SDF
graph as real-time periodic tasks.

The dependencies of the technique proposed in this chapter with the scheduling
analysis of Chapter 5 are highlighted by dashed boxes in Figure 6.1. These boxes
include steps that are identical to the scheduling framework in Figure 5.2. In particular,
in both figures:

∙ In Step 1 , we use the scheduling analysis of [BS11, BS12] to derive the WCET
( I ) and period ( II ) of each task, based on the characteristics of the input
application model. Throughout this chapter, we will refer to such derivation as
scheduling analysis of [BS11, BS12]. Recall, from Chapter 5, that parameters I
and II do not depend on the (potential) tardiness of tasks.

∙ In Step 3 , we assume that the periodic tasks will be scheduled by a SRT
scheduling algorithm, which provides a certain tardiness bound ∆i of each task
τi. Then, based on these tardiness bound values, Step 3 derives valid start
times of tasks (III), and sizes of the buffers (IV) which implement inter-task
communication.

The differences of our VFS semi-partitioned technique shown in Figure 6.1, with
regard to semi-partitioned approach of Chapter 5, are the following.
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Figure 6.1: Energy-efficient scheduling technique proposed in this chapter. Our proposed scheduling
technique starts with Step 1 , where the scheduling analysis of [BS11, BS12] is used to derive the
WCET ( I ) and period ( II ) of each task, based on the characteristics of the input application model.
Step 2 uses as input the derived WCET and period of tasks, together with the considered number of
active processors and VFS scheme (parameters provided by the designer). This step derives the Task
Mapping and the tardiness bound of each task, based on the EDF-ssl scheduling algorithm proposed
in this chapter. In turn, given the tardiness bound of tasks, Step 3 derives valid start times of tasks
( III ) and sizes of the buffers IV that implement inter-task communication. Therefore, after Step 3 , the
complete Temporal and Buffering Specification is known. The steps enclosed in the dashed boxes reuse
part of the scheduling framework shown in Figure 5.2 and represent the dependency of this chapter from
the theoretical results of Chapter 5.

1. The scheduling algorithm used to schedule the tasks on the system is different.
Chapter 5 uses the EDF-fm SRT semi-partitioned scheduling algorithm. By
contrast, in this chapter, we propose a novel semi-partitioned scheduling algo-
rithm, called EDF-ssl (Earliest Deadline First based semi-partitioned stateless),
which is targeted at streaming applications where some of the tasks may be
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stateless1. In the presence of stateless tasks, our proposed EDF-ssl scheduler
can be effectively used to achieve higher energy efficiency compared to existing
partitioned and semi-partitioned approaches.

2. The scheduling framework shown in Figure 6.1 does not support VFS (i.e., all
processors run at the highest frequency), and provides as output the minimum
number of processors required to schedule the application. By contrast, in
Figure 6.1, the number of available processors, and the VFS mode used in the
system, are provided by the designer (see inputs of Step 2 ). This is because, to
achieve higher energy efficiency, it may be beneficial to distribute the tasks of
the application on a number of processors greater than the minimum required.

3. The scheduling analysis described in Chapter 5 can accept, as input, applica-
tions modeled as CSDF graphs (see Analysis Model in Figure 5.2). By contrast,
we restrict the VFS scheduling approach presented in this chapter only to
SDF graphs, which are a subset of CSDF graphs. This is because our semi-
partitioned technique can only be beneficial if there are actors for which succes-
sive invocations can be executed in parallel. Actors that possess such property
are, by definition, not allowed in the CSDF model of computation. However,
they are allowed in the SDF model.

Note that, in order to perform the SRT Analysis of Step 3 in Figure 6.1, the
tardiness bound of each task is required. Therefore, in this chapter we derive the
tardiness bounds guaranteed by our proposed EDF-ssl scheduler. In particular, we
derive these bounds in two cases. First, when using the lowest frequency which
guarantees schedulability and is supported by the system. Second, when using a
periodic frequency switching scheme that preserves schedulability and can achieve
higher energy savings. In general, our EDF-ssl allows an even distribution of the
utilization of tasks among the available processors. In turn, this enables processors
to run at a lower frequency, which yields to lower power consumption. Moreover,
compared to a purely partitioned scheduling approach, our experimental results show
that our technique achieves the same application throughput with significant energy
savings (up to 64%) when applied to real-life streaming applications. These energy
savings, however, come at the cost of higher memory requirements and latency of
applications.

6.3 Scope of work

The assumptions and limitations which define the scope of our work are listed in
what follows.

6.3.1 Assumptions

Our work is built on some assumptions that we describe and motivate below.

1See Definition 2.3.6 on page 47.



6.3. Scope of work 109

First, we consider systems with distributed program and data memory. As men-
tioned in Section 1.1.2, this choice of memory subsystem is needed to ensure pre-
dictability of the execution at run-time (since PEs do not have to access shared re-
sources to perform the computation), and scalability.

Second, we consider semi-partitioned scheduling, which is a hybrid between two
extremes, partitioned and global scheduling. As shown in Chapter 5, semi-partitioned
scheduling can ameliorate the bin-packing issues of partitioned scheduling when
applied to streaming applications. At the same time, semi-partitioned scheduling
does not incur the excessive memory and migration overheads of global scheduling.

Third, we assume that the system’s communication infrastructure is predictable,
i.e., it provides guaranteed communication latency. This assumption is needed be-
cause Step 1 in Figure 6.1 uses the scheduling analysis of [BS11,BS12] (see Section 2.3)
to derive WCET and period of each task, based on the characteristics of the input
analysis model. This derivation requires the worst-case communication latency to
compute the WCET of a task. The WCET of a task includes the worst-case time
needed for the task’s computation, the worst-case time needed to perform inter-task
data communication on the considered platform and the worst-case overhead of the
underlying scheduler, as explained in Section 2.3 (see, in particular, Equation (2.26)
on page 43).

6.3.2 Limitations

The research problem addressed in this chapter, described in Section 6.1, is extremely
complex. In order to make it more tractable, our approach considers certain limitations.
However, we argue that even under these limitations many hardware platforms and
applications can be handled by our proposed VFS scheduling technique. In what
follows, we list the limitations considered in our proposed approach.

First, we assume that applications are modeled as acyclic SDF graphs. Although
this assumption limits the scope of our work, our analysis is still applicable to the
majority of streaming applications. In fact, a recent work [TA10] has shown that
around 90% of streaming applications can be modeled as acyclic SDF graphs.

Second, we assume that the hardware platform supports a discrete set of operat-
ing VFS modes. Moreover, we assume that the operating voltage/frequency mode can
only be changed globally over the considered set of processors. Our technique, there-
fore, finds applicability in hardware platforms that apply the same voltage/frequency
mode to all the processors of the system (e.g., the OMAP 4460, as in [ZR13]). Note
that our proposed technique does not consider per-core VFS, therefore it may be less
beneficial for systems which support this kind of VFS granularity. However, per-core
VFS is deemed unlikely to be implemented in next generation of many-core systems,
due to excessive hardware overhead [DA10].

Third, our technique uses offline VFS because we do not exploit the dynamic slack
created at run-time by the earlier completion of some tasks. This choice is motivated
by the following two reasons. (i) Online VFS may require VFS transitions for each
execution of a task. Since we consider applications in which tasks execute periodically,
with very short periods, online VFS would incur significant transitions overhead. For
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instance, the period of tasks in the applications that we consider can be as low as 100
µs. Since the VFS transition delay overhead of modern embedded systems is in the
range of tens of µs [P+13], the overhead of online VFS would be substantial with such
short task periods. (ii) Moreover, the existence of a global frequency for the whole
voltage island renders online VFS less applicable. This is because online VFS would
only be effective if all cores in the voltage island have dynamic slack at the same time.

6.4 Related work

Several techniques addressing energy minimization for streaming applications have
already been proposed in the literature. Among these, the closest to our work are
[WLL+11, SDK13, HMGM13]. [WLL+11] considers applications modeled as Directed
Acyclic Graphs, applies certain transformation on the initial graph and then generates
task schedules using a genetic algorithm, assuming per-core VFS. [SDK13] assumes
that applications are modeled as SDF graphs, and is composed of an offline and
online VFS phases, to achieve energy optimization. As shown in Section 6.7, our
approach exploits results from the real-time scheduling theory that allow, in the
presence of stateless tasks, to set the global system frequency to the lowest value
which guarantees schedulability and is supported by the system. Both [WLL+11]
and [SDK13] cannot in general make the system execute at the lowest frequency
that supports schedulability because they use pure partitioned assignment of tasks
to processors and non-preemptive scheduling. Finally, [HMGM13] considers both
per-core and global VFS but assumes applications modeled as Homogeneous SDF
graphs, and that the task mapping and the static execution order of tasks is given. By
contrast, our approach handles a more expressive MoC and does not assume that the
initial task mapping is given.

In addition, several techniques to achieve energy efficiency for systems executing
periodic independent real-time tasks have been proposed. Among these techniques,
the ones presented in [DA10] and [SJPL08] are closely related to our approach be-
cause they consider global VFS. The authors in [DA10] study the problem of energy
minimization when executing a periodic workload on homogeneous multiprocessor
systems. Their approach, however, considers pure partitioned scheduling. As we
show in this chapter, pure partitioned scheduling can not achieve the highest possible
energy efficiency. In our approach, instead, we consider semi-partitioned scheduling
and we show that this approach yields significant energy savings compared to a pure
partitioned one. The authors in [SJPL08] also address the problem of energy minimiza-
tion under a periodic workload with real-time constraints. However, their approach
allows migration of tasks at any time and to any processor. Therefore, their approach
considers global scheduling of tasks. As explained earlier, in distributed memory
systems global task scheduling entails high overheads, in terms of required memory
and number of required preemptions and migrations of tasks. Our approach consid-
ers semi-partitioned scheduling in order to reduce such overheads, while obtaining
higher energy efficiency than pure partitioned approaches.

Similar to our work, other related approaches exploit task migration to achieve
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energy efficiency, such as [HXW+10] and [Zhe07]. In [HXW+10], the authors re-
allocate tasks at run-time to reduce the fragmentation of idle times on processors.
This in turn allows the system to exploit the longer idle times by switching the
corresponding processors off. As explained earlier, in our approach we do not exploit
run-time processor transitions to the off state because such transitions incur high
overheads, especially when running dataflow tasks which have short periods.

The approach presented in [Zhe07] is closely related to ours because it leverages
a semi-partitioned approach, where tasks migrate with a predictable pattern, to
achieve energy efficiency. The author in [Zhe07] presents a heuristic to assign tasks
to processors in order to obtain an improved load balancing. When tasks cannot
entirely fit on one processor, they are split in two shares which are assigned to two
different processors. Our work differs from [Zhe07] in two main aspects. First, we
allow tasks with heavy utilization to be divided in more than two shares. This can
yield to much higher energy savings compared to the technique proposed in [Zhe07].
Second, we allow job parallelism, i.e., we allow the concurrent execution on different
processors of jobs of the same task. This, in turn, contributes to an improved balancing
of the load among processors, which allows us to apply voltage and frequency scaling
more effectively, as will be shown in Section 6.7. Moreover, the applicability of the
analysis proposed in [Zhe07] to task sets with data dependencies, as in our case, is
questionable. In fact, the semi-partitioned scheduling algorithm underlying [Zhe07]
is identical to the one proposed by Anderson et al. in [ABD08]. As the latter paper
shows, under this semi-partitioned scheduling algorithm tasks can miss deadlines
by a value called tardiness, even when VFS is not considered. Since in our case tasks
communicate data, to guarantee that data dependencies among tasks are respected
this tardiness must be analyzed. However, an analysis of task tardiness is not given
by [Zhe07].

As mentioned earlier, the approach we propose in our work exploits the concurrent
execution on different processors of jobs of the same task. In a similar fashion, related
works that exploit parallel execution of a task on different processors to achieve
energy efficiency are [W+10] and [Lee09]. In [W+10] the authors exploit the data
parallelism available in the input application. That is, jobs of an application are
divided in sub-jobs which process independent subsets of the input data. These sub-
jobs can therefore be executed independently and concurrently on different processors,
obtaining a more balanced load on processors, which in turn allows a more effective
scaling of voltage and frequency of processors. The approach presented in [W+10],
however, incurs a drawback in the case of distributed memory architectures. In fact,
the mentioned sub-jobs of the application can be seen as separate instances of the
input application, which execute independent chunks of input data. This means
that, in distributed memory architectures, the code of the whole application has to
be replicated on all the processors which execute these sub-jobs. By contrast, in
our approach only certain tasks of the input application have to be replicated (only
migrating tasks), which reduces significantly the memory overhead of our approach
compared to the one in [W+10]. An approach similar to [W+10] has been proposed by
the authors in [Lee09]. The technique presented in [Lee09] also divides computation-
intensive tasks to sub-tasks which can be concurrently executed on multiple cores.
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As in [W+10], this yields to a more balanced load on processors, and in turn allows
the system to run at a lower frequency. Moreover, the authors in [Lee09] consider
systems with discrete set of operating frequencies. Similar to our technique, when the
lowest frequency which guarantees schedulability is not supported by the system,
the analysis in [Lee09] employs a processor frequency switching scheme to obtain
this lowest frequency and still meet all deadlines. However, our analysis is different
from [Lee09] in several aspects. First, when assigning sub-tasks load to the available
processors, [Lee09] considers only symmetric distribution of the load of a task to
different processors. In contrast, in our proposed approach, as shown in Example
6.7.2 in Section 6.7, in order to obtain optimal energy savings we allow an asymmetric
distribution of the load of certain tasks to the available processors. Second, two
major differences concern the derivation of the periodic VFS switching scheme that
guarantees schedulability. The first difference is that the analysis in [Lee09] does not
account for the overheads incurred when performing VFS transitions. By contrast,
our analysis take this realistic overhead into account. The second difference is that
in [Lee09] such periodic VFS switching scheme is derived in order to meet all the
deadlines of tasks. This requires the system to perform very frequent VFS transitions,
especially when tasks have short periods as in our case. Conversely, in our approach
we allow some task deadlines to be missed, by a bounded amount. This allows our
approach to perform much fewer VFS transitions. As VFS transitions incur time and
energy overhead in realistic systems, our approach guarantees higher effectiveness
compared to [Lee09].

The semi-partitioned scheduling that we propose, EDF-ssl, allows only restricted
migrations. Notable examples of existing semi-partitioned scheduling algorithms
with restricted migrations are EDF-fm [ABD08] and EDF-os [AEDC14], which are
described in Sections 2.2.7 and 2.2.8 of this thesis. Our EDF-ssl algorithm inherits
some properties from EDF-fm and EDF-os. The closest to our EDF-ssl is EDF-os
because it allows migrating tasks to run on two or more processors, not strictly on
two as in EDF-fm. The fundamental difference between EDF-os and our proposed
EDF-ssl lays in the kind of applications that are considered by these two scheduling
algorithms. In EDF-ssl we consider applications in which some of the tasks may
be stateless and therefore can execute different jobs of the same task in parallel, if
released on different processors. By contrast, EDF-os considers applications modeled
as sets of tasks where all tasks are stateful. This means that different jobs of the same
task cannot be executed concurrently. As explained in detail in Section 6.7, this fact
prevents EDF-os from achieving energy-optimal results when streaming applications
have stateless tasks with high utilization. This phenomenon is also described in the
experimental results section (Section 6.9.3). Similar to our work, analyses of schedul-
ing algorithms that allow jobs within a single task to run concurrently are presented
in [EA11, YA14]. However, both these works consider global scheduling algorithms
which, as mentioned earlier, entail high overheads especially in distributed memory
architectures. In addition, in both [EA11] and [YA14] the potential of exploiting job
parallelism to achieve higher energy efficiency is not explored.
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6.5 System Model

In this section, we define the system model used in this chapter. As in Chapter 5,
we consider a system composed of a set Π = {π1, π2, · · · , πM} of M homogeneous
processors. In this chapter, however, we assume that processors are endowed with
VFS capability. In particular, as explained in the beginning of this chapter, we consider
the problem of mapping applications to systems in which all the cores belong to the
same voltage/frequency island. This means that any processor in the system either
runs at the same “global” frequency and voltage level, or is idle. Each idle processor
has no tasks assigned to it and consumes negligible energy. We assume that the
system supports only a discrete set Φ = {F1, F2, · · · , FN} of N operating frequencies,
where the maximum frequency is FN = Fmax. To ease the explanation of our analysis,
based on this maximum frequency Fmax we define the normalized system speed as
follows.

Definition 6.5.1. (Normalized speed). Given a frequency F at which the system runs,
this system is said to run at a normalized system speed α = F/Fmax.

This definition creates a one-to-one correspondence between any frequency at
which the considered system runs and its normalized speed. We will exploit this
correspondence throughout this chapter. Given the set of supported frequencies
Φ, by applying Def. 6.5.1 we obtain a set of supported normalized system speeds
𝒩𝒮 = {α1, α2, · · · , αN}, where αN = αmax = 1.

6.6 Example of SRT Scheduling of an SDF Graph

In this section, we provide an example of the scheduling technique shown in Figure 6.1.
This example will be used in the remainder of this chapter. We recall that the dashed
boxes in Figure 6.1 represent the dependencies of the scheduling analysis proposed
in this chapter from the theoretical results of Chapter 5. Based on the characteristics
of the input application model, the steps contained in the dashed boxes are used to
obtain the complete temporal and buffering specification of the task set, i.e., the WCET,
period, and start time of actors, together with the size of the buffers that implement
inter-task communication. Altogether, these steps convert the SDF model of the input
application to a set of real-time periodic tasks which can be scheduled by an SRT
scheduler.

In particular, Step 1 in Figure 6.1 uses the scheduling analysis of [BS11, BS12]
(described in Section 2.3) to derive the WCET and period of tasks. More in detail, it
uses Equation (2.26) on page 43 to derive the WCET of tasks and Equation (2.29) on
page 44 to calculate their periods.

Step 2 in Figure 6.1 requires as input the obtained WCET and period of actors.
In addition, it assumes that the number of available processors in the system and
the VFS scheme are given (for instance, by the designer). Using these inputs, Step 2
derives the mapping of tasks to processors and the tardiness bound of each task. In
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the next sections, we will describe how the task mapping and tardiness bound of
tasks are derived under our proposed EDF-ssl scheduler.

Assuming that the tardiness bound of each task is known, Step 3 applies the the-
oretical results from Chapter 5 to derive the earliest start times of tasks and minimum
sizes of the buffers that implement inter-task data communication.

In the example provided below, we describe in greater detail how periods and
start times of tasks are derived, in Step 1 and Step 3 in Figure 6.1, respectively.

Example 6.6.1. Consider the SDF graph shown in Figure 6.2(a), which has three
actors (A1, A2, A3) with WCET indicated between parentheses (C1=2, C2=3, C3=2)
and production/consumption rates indicated above the corresponding edges. In
Step 1 in Figure 6.1, using Equation (2.27) on page 43, we derive the following
minimum periods: T1=T3=6 and T2=3, as shown in Figure 6.2(b). Then, suppose that
the underlying SRT scheduling algorithm guarantees tardiness bounds ∆1=1, ∆2=2
(as indicated in Figure 6.2(a) and visualized in Figure 6.2(b)), whereas ∆3=0.

In Step 3 in Figure 6.1, using these tardiness bounds, we apply Proposition 5.5.1
on page 95 and derive the earliest start times Si shown in Figure 6.2(b). For instance,
note that S2=7 ensures that any invocation of A2 will always have enough data to
read as soon as it is released. This holds even when all the invocations of A1 incur the
largest tardiness ∆1, i.e., they execute according to the ALAP completion schedule
(see Definition 5.5.1 on page 95).

6.7 Proposed Semi-partitioned Algorithm: EDF-ssl

In this section we describe our proposed semi-partitioned scheduler, called EDF-ssl.
In EDF-ssl, only stateless tasks (recall Definition 2.3.6 on page 47) are allowed to be
migrated. We enforce this condition because migrating the internal state of a stateful
task can be prohibitive in a distributed memory system. Note that under EDF-ssl
task migrations can only happen at job boundaries. Once a job is released on a certain
processor, it cannot migrate to another one. Moreover, EDF-ssl exploits the fact that
migrating tasks are stateless by allowing successive jobs to execute in parallel on
different processors. For instance, in Figure 6.4(b), jobs τ1,0 and τ1,1 are executed on
two different processors and can execute in parallel.

With our EDF-ssl we want to show that, in the presence of stateless tasks, semi-
partitioned scheduling can be used to improve energy efficiency, while achieving the
same application throughput compared to purely partitioned scheduling. To achieve
better energy efficiency it may be beneficial to run processors at voltage/frequency
levels lower than the maximum. The following example shows that under certain
conditions the classical partitioned VFS techniques (e.g., [AY03]) are not effective.
Moreover, existing semi-partitioned approaches do not exploit the presence of some
stateless tasks in the considered applications and therefore cannot be applied to
achieve energy efficiency, if these stateless tasks have high utilization.

Example 6.7.1. Consider a single stateless task τ1 = (C1 = 3, T1 = 3). The task
utilization is u1 = 1. In this case, existing partitioned VFS techniques can not be
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Figure 6.2: Example of the approach proposed in Chapter 5 to schedule an SDF graph with a scheduler
that provides SRT guarantees. The SDF actors in sub-figure (a) are scheduled as real-time periodic tasks
in sub-figure (b). Task periods (T1, T2, T3) are derived using the methodology of [BS11,BS12]. Then, the
analysis proposed in Chapter 5 considers the tardiness bounds guaranteed by the SRT scheduler to each
task. In this figure, the tardiness bounds of actors τ1 and τ2 are ∆1 and ∆2, respectively. Using these
bounds, the analysis proposed in Chapter 5 derives valid start times (S1, S2, S3) of actors such that all
tasks can be released periodically without any buffer underflow.

effective, because τ1 can only be assigned to one processor and this processor must
run at its highest voltage/frequency level, because u1 = 1. Moreover, even existing
semi-partitioned approaches cannot distribute the utilization of τ1 over more than
one processor, as shown in the following. Assume that to improve energy efficiency
the utilization of τ1 has to be split over two cores, π1 and π2, running at half of the
maximum frequency, i.e., at normalized processors speed α = 1/2. Note that under
these conditions the schedulability test given by Inequality (2.23) on page 42 has to be
changed according to the current normalized processor speed.

We enforce therefore σ1 ≤ α and σ2 ≤ α. The resulting assignment of shares of τ1
is shown in Figure 6.3.

In this scenario, the problem of EDF-os is that it does not consider job parallelism.
This means that job τi,k+1 of a migrating task τi has to wait for the completion of the
previous job τi,k. For instance, in Figure 6.4(a), job τ1,0 is released on π1 at time 0. Since
α = 1/2, τ1,0 finishes at time 6. Therefore job τ1,1, although released at time 3 on π2,
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Figure 6.3: Share assignment considered in Example 6.7.1. The utilization u1 = 1 of a single migrating
task τ1 is split into two shares s1,1 = 1/2 and s1,2 = 1/2. Shares s1,1 and s1,2 are assigned to processors
π1 and π2, respectively.
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(a) Job executions according to EDF-os rules. Since EDF-os does not
consider job parallelism, the tardiness of successive jobs of task τ1 grows
unboundedly, as shown in red in this figure.
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(b) Job executions according to EDF-ssl rules. EDF-ssl does consider
job parallelism, allowing jobs released by migrating task τ1 to execute in
parallel. This leads to bounded tardiness for all jobs of τ1.

Figure 6.4: Job executions of τ1 = (C1 = 3, T1 = 3), as defined in Example 6.7.1, according to the
share assignment of Figure 6.3. Up arrows indicate job releases, down arrows indicate job deadlines.
Black rectangles indicate job completion. Although the WCET of τ1 is 3 time units, each job of τ1 takes 6
time units to complete because processors π1 and π2 run at normalized processor speed α = 1/2.

has to wait until time 6 to start executing. As shown in Figure 6.4(a), although jobs of
τ1 are assigned alternatively to π1 and π2, the tardiness ∆ incurred by successive jobs
of τ1 increases unboundedly. Our EDF-ssl avoids this linkage between processors by
allowing jobs released by a migrating task to execute in parallel, exploiting the fact
that migrating tasks are assumed to be stateless. As depicted in Figure 6.4(b), this
leads to bounded tardiness for all jobs of τ1.

Under our EDF-ssl, necessary (but not sufficient) conditions to guarantee schedu-
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lability are the following. First, the total utilization of the task set Γ cannot be higher
than the total available utilization on processors: UΓ ≤ α · M, where M is the number
of available processors in the system and assuming that they all run at the same
normalized speed α ≤ 1. Second, α must be greater than the utilization of any stateful
task in Γ: α ≥ us,max, where us,max is the utilization of the heaviest stateful task in
Γ. This is because stateful tasks are fixed, and any processor to which the utilization
us,max > α is assigned will be overloaded. We merge the above two conditions in the
following expression, which provides necessary higher and lower bounds for α:

max{UΓ/M, us,max} ≤ α ≤ 1 (6.1)

We now proceed with a detailed description of our EDF-ssl. As in all semi-
partitioned approaches (e.g., [ABD08, AEDC14]), EDF-ssl is composed of two phases,
an assignment phase and an execution phase, which are described in Section 6.7.1 and
Section 6.7.2, respectively. Tardiness bounds guaranteed under EDF-ssl are derived in
Section 6.7.3, for the case of processors running at a fixed normalized speed α. Finally,
Section 6.7.4 presents a processor speed switching technique, called “Pulse Width
Modulation (PWM) scheme”, that provides a certain normalized speed in the long
run. Tardiness bounds are derived also for the latter scenario.

6.7.1 Assignment Phase

The assignment phase of EDF-ssl tries to find an assignment of tasks to processors
that reduces the number of tasks with tardiness. This is because, as described in
Chapter 5, many tasks with tardiness result in high overheads in terms of application
latency and buffer sizes.

Note that under EDF-ssl processors can run at a normalized speed α lower than 1.
Therefore, to avoid overloading processors in the long run, we modify the schedula-
bility test given by Condition (2.23) on page 42 as follows:

σk ≤ α, ∀πk ∈ Π (6.2)

where σk is the total share assignment on any processor πk. Expression (6.2) implies
that σk cannot exceed the normalized processor speed. Moreover, note that searching
a valid assignment makes only sense if Condition (6.1) is satisfied.

The assignment phase of EDF-ssl consists mainly of 3 steps, which we explain
below.

First step. In this step, we find the set of stateful tasks Γs within the original task
set Γ. Then, we use the First-Fit Decreasing Heuristic (FFD) [Joh73] (see Section 2.2.6)
to allocate these stateful tasks as fixed tasks over the available processors. This means
that if τi ∈ Γs is assigned to processor πk, its share on πk should be equal to the whole
task utilization: si,k = ui. On all the other processors, task τi has no shares.

Second step. This step tries to assign all the remaining (stateless) tasks as fixed
tasks over the remaining available processor utilization, using FFD. The tasks which
can not be assigned as fixed are added to a set of tasks Γna (not assigned), which are
assigned in the next step.
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Algorithm 3: Share assignment heuristic.

Input: A set of M processors Π = {π1, π2, · · · , πM}, their normalized speed α,
a set of N periodic tasks Γ = {τ1, τ2, · · · , τN}.

Result: An M-partition describing the share assignment onto M processors if Γ
is schedulable, False otherwise.

Find Γs = {τ : τ ∈ Γ ∧ τ is stateful};1

for τi ∈ (Γs, sorted by decreasing utilization) do2

Try to assign si,k = ui of task τi on a single πk using FF;3

if FF fails for all πk ∈ Π then4

return False;5

Γna = ∅ (the set of unassigned tasks, initially empty)6

for τi ∈ (Γ − Γs, sorted by decreasing utilization) do7

Try to assign si,k = ui of task τi on πk using FF;8

if FF fails for all πk ∈ Π then9

Γna = Γna ∪ τi;10

k = M (start share assignment from processor πM to π1);11

for τi ∈ Γna do12

uremaining = ui;13

while uremaining > 0 do14

si,k = min(uremaining, (α − σk));15

σk = σk + si,k;16

uremaining = uremaining − si,k);17

if σk = α then18

k = k-119

Third step. The final step assigns all the remaining tasks, which could not be allo-
cated as fixed tasks. Considering the processor list in reversed order {πM, πM−1, · · ·π1},
task τi ∈ Γna is allocated a share on successive processors, considering the remaining
utilization on each processor, in a sequential order. (The remaining utilization on
processor πk is given by (α − σk)). The assignment of task τi finishes when the sum of
its shares over the processors equals the task utilization ui. The third step considers
the processor list in reversed order as a way to minimize the number of processors,
which already have fixed tasks, that are utilized to assign migrating shares. This can
lead to a lower number of tasks with tardiness.

The three steps described above are implemented in Algorithm 3. In particular,
the first step is represented in lines (1-5), the second step in lines (6-10), the third and
final step in lines (11-17).

Example 6.7.2. Consider the SDF graph example in Figure 6.2(a). In Example 6.6.1, we
derived the corresponding task set Γ = {τ1 = (2, 6), τ2 = (3, 3), τ3 = (2, 6)}. Tasks τ1
and τ2 are stateful, whereas task τ3 is stateless. The total utilization of the task set is
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Figure 6.5: Share assignments considered in Example 6.7.2. Values of the normalized system speed α are
denoted by a dashed line. Migrating tasks are indicated in gray. In sub-figure (a), the normalized system
speed α is set to the lowest value that guarantees schedulability and is supported by the system, i.e.,
α = 0.75. In sub-figure (b), we use the periodic frequency switching technique described in Section 6.7.4
to get the normalized speed α = αopt = 5/9 in the long run. The technique represented in sub-figure (b)
leads to additional energy savings due to an even distribution of tasks shares among processors.

UΓ = 1/3 + 1 + 1/3 = 5/3. Assume that we want to execute this task set on M = 3
processors. By Condition (6.1), α ≥ UΓ/M = 5/9, therefore the lowest α which could
provide schedulability is αopt = 5/9. Running the system at this lowest speed αopt
minimizes the energy consumption. Now, if the system supports the speed αopt, we
can simply set the system speed to that value. In this case, we can derive tardiness
bounds using the result in Section 6.7.3, which considers fixed processors speed.

However, suppose that the considered system supports a set of normalized speeds
𝒩𝒮 = {0.25, 0.5, 0.75, 1}. Note that αopt ̸∈ 𝒩𝒮 . In this case, we have two choices.
Choice 1) We set the system speed to the lowest α ∈ 𝒩𝒮 such that α > αopt, condition
which could provide schedulability: α = 0.75. We can then refer again to Section 6.7.3
to derive tardiness bounds in this scenario. Figure 6.5(a) shows the share assignment
of tasks in Γ, when α = 0.75 and assuming that input and output actors (τ1, τ3)
are stateful. Choice 2) We use the periodic speed switching technique described in
Section 6.7.4 to get the normalized speed αopt in the long run, and we derive the
corresponding tardiness bounds. Figure 6.5(b) shows the assignment obtained when
α = αopt = 5/9.

6.7.2 Execution Phase

At run-time, EDF-ssl follows the simple rules defined below.
Job releasing rules. Jobs of a fixed task τf are released periodically, every Tf , on a

single processor. Jobs of a migrating task τm are distributed over all the processors
on which τm has non-zero shares. Our EDF-ssl inherits from EDF-os (and, in turn,
from EDF-fm) the job releasing techniques for migrating tasks (see Section 2.2.8). In
particular, the job releasing technique uses the concept of task fraction, defined in
Definition 2.2.12 on page 39, to avoid overloading the processors in the long run. For
an example, refer to Figure 2.5 on page 41. That figure shows the job release pattern
of tasks τ3 on processors π1 and π2. Since task τ3 has task fractions ϕ3,1 = 3/4 on
processor π1, and ϕ3,2 = 1/4 on processor π2, in the long run the number of jobs
of τ3 released on π1 is three times the number of jobs released on π2. Moreover,



120 Chapter 6. Energy Efficient Semi-Partitioned Scheduling of SDF Graphs

Inequality (2.24) on page 42, which provides an upper bound of the number of jobs
released on a processor as a function of the migrating task fraction, is still valid. This
result will be instrumental to the derivation of tardiness bounds under our EDF-ssl.

Job prioritization rules. Jobs of fixed and migrating tasks released on a certain
processor are scheduled using a local EDF scheduler. As shown in Example 6.7.1,
under our EDF-ssl when a task migrates from a processor to another one, the job re-
leased on the latter processor does not wait until the completion of the job released on
the former processor. This is in contrast with what happens under EDF-os. Moreover,
contrary to our EDF-ssl, under EDF-os certain tasks are statically prioritized over
others.

6.7.3 Tardiness Bounds under Fixed Processor Speed

Given the rules and properties of our EDF-ssl, described in Section 6.7.1 and Sec-
tion 6.7.2, we now derive its tardiness bounds, which are provided by Theorem 6.7.1
below. Note that due to the way task shares are assigned in the third step of the
assignment phase, each processor runs at most two migrating tasks.

Theorem 6.7.1. Consider a processor πk running at a fixed normalized speed α. Assume two
migrating tasks, τi and τj, are assigned to πk. Then, jobs of fixed and migrating tasks released
on πk may incur a tardiness of at most

∆πk =
2 (Ci + Cj)

α
(6.3)

where Ci and Cj are the worst-case execution time of τi and τj, respectively, and α follows
Definition 6.5.1.

Proof. We prove Theorem 6.7.1 by contradiction. We focus on a certain job τq,l , be-
longing to either a fixed or a migrating task, assigned to πk . Let assume that this job
incurs a tardiness which exceeds ∆πk . We define the following time instants to assist
the analysis: td is the absolute deadline of job τq,l ; tc = td + ∆πk ; and t0 is the latest
instant before tc such that no migrating or fixed job released before t0 with deadline at
most td is pending at t0. By definition of t0, just before t0 πk is either idle or executing
a job with deadline later than td. Moreover, t0 cannot be later than rq,l , the release
time of job τq,l . Note that since we assume that job τq,l incurs a tardiness exceeding
∆πk , it follows that τq,l does not finish at or before tc.

We denote as γ the total set of tasks, fixed and migrating, assigned to πk. We first
determine the demand (see Definition 2.2.1) placed on πk by γ in the time interval
[t0, tc). By the definitions of t0, td, and tc, any job of any task that places a demand
in [t0, tc) on πk is released at or after t0 and has a deadline at or before td. Therefore,
the demand of any task τi in [t0, tc) is given by the number of jobs released in this
interval multiplied by the job execution time.

The number of jobs released on πk in [t0, tc), by a fixed task τf , is at most c = ⌊ td−t0
Tf

⌋
because fixed tasks release all of their jobs on πk. By contrast, a migrating task τm
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releases c = ⌊ td−t0
Tm

⌋ jobs, but only part of them are assigned to πk. An upper bound
of the amount of jobs assigned to πk, out of every c consecutive jobs, is given by
Inequality (2.24) on page 42.

We can now compute the total demand from tasks assigned to πk. We denote as
γ f and γm the fixed and migrating sets of tasks mapped on πk, respectively. Note
that γm = {τi, τj}.

Given the total number of released jobs c, from Inequality (2.24) the demand2 dmd
from migrating tasks in [t0, tc) is upper bounded by:

dmd(γm, t0, tc) ≤
(

ϕi,k

⌊
td − t0

Ti

⌋
+ 2
)

Ci +

(
ϕj,k

⌊
td − t0

Tj

⌋
+ 2

)
Cj

≤ (td − t0)

(
ϕi,k

Ci
Ti

+ ϕj,k
Cj

Tj

)
+ 2(Ci + Cj)

Given the definition of task fraction ϕi,k (see Definition 2.2.12 on page 39), we obtain:

dmd(γm, t0, tc) ≤ (td − t0)(si,k + sj,k) + 2(Ci + Cj) (6.4)

At the same time, the demand from fixed tasks in [t0, tc) is upper bounded by:

dmd(γ f , t0, tc) ≤ ∑
τf ∈γ f

⌊
td − t0

Tf

⌋
C f ≤ (td − t0) ∑

τf ∈γ f

C f

Tf

From Condition (6.2), we obtain:

dmd(γ f , t0, tc) ≤ (td − t0)(α − si,k − sj,k) (6.5)

Combining Inequality (6.4) and (6.5), we derive an upper bound for the total demand
of fixed and migrating tasks in [t0, tc):

dmd(γ f ∪ γm, t0, tc) ≤ α(td − t0) + 2(Ci + Cj) (6.6)

To ease our analysis, we now express the total demand from tasks in clock cycles.
In fact, any requirement in processor time can be converted to clock cycles. For
instance, for any task τa, its worst-case clock cycles requirement is CCa = Ca · Fmax.
This is because the worst-case execution time Ca of τa is obtained at the maximum
processor frequency, Fmax (see definition of Fmax in Section 6.5).

Then, from Inequality (6.6) we get:

dmd_cc(γ f ∪ γm, t0, tc) ≤ Fmax
(
α(td − t0) + 2(Ci + Cj)

)
(6.7)

Now, from our initial assumption that the tardiness of job τq,l exceeds ∆πk , it
follows that the amount of clock cycles provided by the processor in the interval

2See Definition 2.2.1.
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[t0, tc) is less than the total demand from tasks dmd_cc in the same time interval. In the
considered interval, the total demand from tasks is upper bounded by Inequality (6.7),
whereas the amount of clock cycles provided by processor πk is α · Fmax(tc − t0),
because πk runs at frequency α · Fmax. Therefore, we have:

α · Fmax(tc − t0) < Fmax
(
α(td − t0) + 2(Ci + Cj)

)
(6.8)

Dividing both sides by α · Fmax:

tc < td + 2(Ci + Cj)/α ⇒ tc < td + ∆πk (6.9)

Expression (6.9) contradicts the earlier definition of tc = td + ∆πk , therefore Theo-
rem 6.7.1 holds. �

Note that the tardiness bound given by Equation (6.3) differs from the tardiness
bounds of EDF-os given by Equation (3) and (10) in [AEDC14]. This is caused by the
differences in the execution phase between the two scheduling algorithm described in
Section 6.7.2.

6.7.4 Tardiness Bounds under PWM Scheme

The optimal normalized speed αopt, which can minimize the energy consumption
while guaranteeing schedulability, is derived from the lower bound in Expression (6.1).
This αopt, however, often may not be supported by the system. Example 6.7.2 shows
such a case. Recall that by Def. 6.5.1, αopt corresponds to the optimal frequency
Fopt that can guarantee schedulability. Although running constantly at this optimal
frequency Fopt may not be supported by the system, it is possible to achieve this
optimal frequency value in the long run, exploiting a “Pulse Width Modulation” (PWM)
scheme, where the system switches periodically between two supported frequencies,
FL and FH , with FL < Fopt < FH . In particular, we consider the PWM technique
presented in [B+09], which we summarize in the following subsection. Note that other
research works have considered the problem of providing the optimal processor speed
in processors that only provide a discrete set of frequencies. See, for instance, [IY98].
However, in our work we choose the technique proposed in [B+09] because it is
accurate (it considers the overheads incurred during voltage/frequency switching)
and it uses the real-time periodic task model (contrary to [IY98]).

PWM Scheme

The PWM scheme presented in [B+09] is aimed at uniprocessor systems with HRT
constraints. The execution of the scheme at run-time is sketched in Figure 6.6. The
PWM scheme switches periodically between a lower frequency FL and a higher
frequency FH . The period of the PWM scheme is denoted by P.

The duration of the interval of the low-frequency (high-frequency) mode is QL

(QH). Note that QL + QH = P. Moreover, [B+09] defines λL = QL
P and λH = QH

P , the
fraction of time spent running at low and high modes, respectively.
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Figure 6.6: Execution of the PWM scheme. The scheme switches periodically between a lower frequency
FL and a higher frequency FH , in order to provide an effective frequency Feff in the long run. The period
of the PWM scheme is denoted by P.
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Figure 6.7: Supply function Z(t). This function provides the minimum number of cycles executed by
the processor under the PWM scheme in every time interval of length t.

As shown in Figure 6.6, the scheme considers time overheads due to frequency
switching. These overheads are denoted by oLH for transitions between lower to
higher frequencies, and by oHL for the opposite transitions. In addition, [B+09]
denotes the amount of clock cycles lost during frequency transitions as ∆LH = FL ·
oHL + FH · oLH.

Under the above definitions, the effective frequency obtained by running the
processor at FL for QL time and FH for QH time is given by expression (8) in [B+09]:

Feff = λLFL + λH FH − ∆LH/P (6.10)

To ensure HRT execution on the system, in their analysis the authors leverage the
processor supply function Z(t), defined as the minimum number of cycles that the pro-
cessor can provide in every interval of length t. From the parameters of the PWM scheme,
Z(t) is depicted with a solid red line in Figure 6.7, with omax = max{oLH, oHL} and
omin = min{oLH, oHL}. Function Z(t) is zero in [0, omax]; grows linearly with slope
FL in [omax, omax + QL − oHL]; stays constant in [omax + QL − oHL, omax + QL − oHL +
omin]; finally, grows with slope FH until the end of the period P. Note that Z(t) is
periodic with period P.
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Tardiness Bounds Derivation

In our approach, we leverage the processor supply function Z(t) to derive tardiness
bounds for any task running on a processor under our EDF-ssl scheduling algorithm.
These tardiness bounds are given by the following theorem.

Theorem 6.7.2. Consider a processor πk, on which the PWM scheme described in Sec-
tion 6.7.4 is applied to obtain an effective frequency Feff. Assume that two migrating tasks,
τi (with WCET Ci) and τj (with WCET Cj), are assigned to πk. Then, jobs of fixed and
migrating tasks released on πk may incur a tardiness of at most

∆πk
PWM =

2(Ci + Cj)

αeff
+

ρ

Feff
(6.11)

with ρ = (Feff − FL)QL + FL · oHL + Feff · oLH and αeff is derived from Feff using Defini-
tion 6.5.1.

Proof. To prove Theorem 6.7.2, we first derive a lower bound for Z(t). We define the
following parameter:

ρ = maxt∈R+{Feff · t − Z(t)}
which represents the maximum difference between the “optimal” number of cycles,
provided in the interval [0, t] by a processor running at Feff, and Z(t). From Figure 6.7
we get:

ρ = (Feff − FL)QL + FL · oHL + Feff · oLH (6.12)

from which we can express a lower bound for Z(t) as:

Ž(t) = Feff · t − ρ (6.13)

Ž(t) is depicted in Figure 6.7 with a dashed red line. We can then express Z(t) as
Z(t) = Ž(t) + e(t), with e(t) ≥ 0, ∀t ≥ 0.

Now, we follow the proof of Theorem 6.7.1. This time, the instant tc is defined
as tc = td + ∆πk

PWM, and we assume that a certain job τq,l does not complete by time
tc. The definitions of t0 and td are the same as in the proof of Theorem 6.7.1. The
demand from fixed and migrating tasks, expressed in clock cycles, is still bounded by
Expression (6.7). However, we have to change the left-hand side of Inequality (6.8)
with Z(tc − t0), obtaining:

Feff · (tc − t0)− ρ + e(tc − t0) < Fmax
(
αeff(td − t0) + 2(Ci + Cj)

)
(6.14)

Since Feff = αeff · Fmax, dividing both sides by αeff · Fmax we get:

(tc − t0)−
ρ − e(tc − t0)

Feff
< (td − t0) +

2(Ci + Cj)

αeff

therefore:

(tc − td) <
2(Ci + Cj)

αeff
+

ρ − e(tc − t0)

Feff
= ∆πk

PWM − e(tc − t0)

Feff
(6.15)

Even with e(tc − t0) = 0, which represents the worst case, Expression (6.15) contra-
dicts the definition of tc, therefore Theorem 6.7.2 holds. �
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Figure 6.8: SDF actors As (source) and Ad (destination) with dependency over edge eu. The production
rate of As over eu is denoted by xu

s . The consumption rate of Ad over eu is denoted by yu
d .

Note that by Equation (6.11) it follows that tardiness can be experienced even on
processors with no migrating tasks, given the fact that the term ρ depends only on
the parameters of the PWM scheme.

6.8 Start times and buffer sizes under EDF-ssl

As mentioned in Section 6.6, the analysis described in this chapter leverages the results
of Chapter 5 to schedule the applications using our EDF-ssl soft real-time scheduler.
However, compared to the EDF-fm scheduling algorithm used in Chapter 5, our
EDF-ssl is different in certain aspects. In order to maintain the scheduling analysis
valid for our proposed EDF-ssl, we must take into account these differences between
our EDF-ssl and EDF-fm.

Let us consider the data-dependent actors As (source) and Ad (destination) shown
in Figure 6.8. We recall that in our analysis As and Ad are converted into two periodic
tasks τs and τd using the methodology described in Section 2.3. Assume, for instance,
that the system runs at a certain constant normalized speed α, and both τs and τd are
assigned to the processors as migrating tasks, with the share assignment shown in
Figure 6.9(a). Shares ss,1 and ss,2 of τs are assigned to π1 and π2, whereas shares sd,2
and sd,3 of τd are assigned to π2 and π3. In Figure 6.9(a), the dashed areas in each
processor represent processor utilization assigned to tasks other than τs and τd. These
other tasks are assumed to be of fixed type (i.e., not migrating). Since π1 and π3 run
only one migrating tasks, by Equation (6.3) we derive the following tardiness bounds:
∆π1 = 2Cs/α, ∆π2 = 2(Cs + Cd)/α, ∆π3 = 2Cd/α, where Cs and Cd are the WCETs of
τs and τd, respectively. It follows that under our EDF-ssl jobs of the same migrating
task have different tardiness bounds, depending on which processor the jobs are
released. For instance, jobs of τs will incur a tardiness of at most ∆π2 when released
on π2, and ∆π1 when released on π1, with ∆π2 > ∆π1 . By contrast, under EDF-fm
used in Chapter 5, jobs of a migrating task experience no tardiness at all, because
tardiness can only be experienced by fixed tasks. In addition, under our EDF-ssl jobs
of the same migrating task can execute in parallel. This cannot happen under EDF-fm.

In the remainder of this section we define a way to guarantee a correct schedule
of τs and τd, with no buffer underflow or overflow, under our EDF-ssl. As shown in
Figure 6.9(b), we assume that processors running communicating tasks have access
to a shared memory where data communication buffers are allocated. Note that
our approach allows data and instruction memory of all processors to be completely
distributed, therefore contention can only occur when accessing the shared communi-
cation memory. In Figure 6.9(b), buffer bu of size B implements the communication
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(a) Considered share assignment of τs and τd.
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Figure 6.9: Analysis of the communication between data-dependent actors when both source (τs) and
destination (τd) actors are implemented as migrating tasks. In sub-figure (a), shares ss,1 and ss,2 of τs
are assigned to π1 and π2, whereas shares sd,2 and sd,3 of τd are assigned to π2 and π3. Sub-figure (b)
represents the access to the shared communication buffer bu by jobs of τs and τd. Under our EDF-ssl,
jobs of τs may execute in parallel if released onto different processors and be affected by a different
tardiness depending on which processor execute them. The same holds for jobs of τd. It follows that jobs
of τs may write out-of-order to buffer bu. Similarly, jobs of the destination task τd may read from bu
out-of-order. This phenomenon is taken into account by our analysis.

over edge eu of Figure 6.8. Our analysis to guarantee a correct scheduling of τs and τd
comprises two parts. First, we guarantee valid start times of τs and τd and buffer size
B by adapting the analysis in Chapter 5 to our EDF-ssl. Second, we define a pattern
that τs and τd use when reading/writing from/to bu to ensure functional correctness.
These two parts are described below.

Part 1 - Valid start times and buffer sizes. As mentioned earlier, under our EDF-
ssl jobs of the same migrating task can have different tardiness bounds, if released on
different processors. According to Definition 2.2.10 on page 38, the tardiness bound
∆i of a certain task τi must be valid for all its jobs. Therefore, we set the value of ∆i to
the maximum tardiness bound among the processors which are assigned (non-zero)
shares of τi, as follows:

∆i =

{
maxk | si,k>0{∆πk} under fixed processor speed
maxk | si,k>0{∆πk

PWM} under PWM scheme
(6.16)

where ∆πk and ∆πk
PWM are the tardiness bounds calculated for processor πk under

fixed processor speed and under the PWM scheme described in Section 6.7.3 and
Section 6.7.4, respectively. For each processor πk, ∆πk and ∆πk

PWM are obtained us-
ing Equation (6.3) and Equation (6.11), respectively. Finally, in Equation (6.16), si,k
represents the share of τi on πk.

By using the tardiness bound ∆i expressed by Equation (6.16), we can represent
the ALAP completion schedule (see Definition 5.5.1 in Section 5.5.1) of actor Ai
(corresponding to task τi) as a fictitious actor Ãi, which has the same period as Ai, no
tardiness, and start time S̃i = Si + ∆i. From Equation (6.16) it follows that at run time
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Algorithm 4: Write pattern of job j of source task τs.
Input: Number of produced tokens xu

s , job index j, buffer size B.
bgn = [(xu

s · j) mod B] + 1;1

end = (xu
s · (j + 1)) mod B;2

if bgn < end then3

write xu
s tokens from bu[bgn] to bu[end]4

else5

write (bgn-B+1) tokens from bu[bgn] to bu[B];6

write remaining tokens from bu[1] to bu[end];7

any invocation Ai,j of actor Ai will never be completed later than the corresponding
invocation Ãi,j of actor Ãi, regardless of which processor is executing that invocation.
Therefore, the analysis for start times and buffer sizes in the presence of tardiness
described in Chapter 5 can be applied considering the tardiness bounds given by
Equation (6.16) and it is correct for our EDF-ssl.

Part 2 - Reading/writing pattern to/from bu. Let us focus on the source actor As
in Figure 6.8, and let assume the share assignment shown in Figure 6.9(a). Under our
EDF-ssl, jobs of τs, which correspond to invocations of As, may execute in parallel
if released onto different processors. Moreover, as mentioned earlier, jobs of τs may
experience different tardiness, depending on which processor the job is released.
It follows that jobs of τs may write out-of-order to buffer bu in Figure 6.9(b). This
is because job τs,k+a, for some a > 0, may finish before job τs,k if they are released
on different processors. Similarly, jobs of the destination task τd may read from bu
out-of-order.

In the scenario described above, it is clear that bu is not a First-in First-out (FIFO)
buffer. Thus, every job of τs/τd (invocation of As/Ad) must know where it has to
write/read to/from bu. Part 1 of our analysis (described above) ensures that B, the
size of bu, is large enough to guarantee that tokens produced by τs will never overwrite
locations which contain tokens still not consumed by τd.

Then, given xu
s , the amount of tokens produced on eu by every job of τs, we enforce

that job j of τs (with j ∈ N0) writes tokens to bu in the memory locations that would
be written if the jobs of τs wrote in-order to a FIFO buffer of size B implemented as
a circular buffer. This writing pattern is implemented in Algorithm 4. Lines 5-7 in
the algorithm handle the case in which the xu

s tokens are “wrapped” in the buffer.
Note that by replacing, in Algorithm 4, xu

s with yu
d and write operations with read

operations we obtain the reading pattern corresponding to job j of destination task τd.

Finally, note that under EDF-ssl, as in EDF-os, the job index j is maintained by
the scheduling algorithm in order to release a migrating task on the right processor,
in order to follow the job releasing rules mentioned in Section 6.7.2. Therefore, the
value of j, used in Algorithm 4, is known when a job is executed on a processor.
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6.9 Evaluation

In this section, we evaluate the effectiveness of our EDF-ssl semi-partitioned schedul-
ing approach in terms of energy savings. We compare our results with the heuristic-
based partitioned approach which guarantees the most balanced distribution of
utilization of tasks among the available processors, and therefore the least energy
consumption, as shown in [AY03]. The authors in [AY03] also show that the most
balanced distributions are derived when Worst Fit Decreasing (WFD) heuristic (see
Section 2.2.6) is used to determine the assignment of tasks to processors. Each pro-
cessor then schedules the tasks assigned to it using a local EDF scheduler. In the
rest of this section, we will refer to this partitioned approach with the acronym PAR.
Note that under PAR all tasks meet their deadlines. By contrast, our proposed semi-
partitioned approach will be denoted in the rest of this section with SP when fixed
processor speed is used, and with PWM when the periodic speed switching scheme is
adopted. Note that although under our approach tasks may experience tardiness, this
has no effect on the guaranteed throughput, which remains constant among all the
considered approaches (PAR, SP, PWM). However, task tardiness has an impact on
buffer sizes and start times of tasks (and, in turn, on the latency of applications), as de-
scribed in Chapter 5. Note that although the PAR approach provides HRT guarantees
to all tasks in the system, whereas both SP and PWM only provide SRT guarantees,
our comparison remains fair. This is because:

∙ As shown in Chapter 5, also SP and PWM can guarantee HRT behavior at the
input/output interfaces with the environment, although some of the tasks of
the application may experience tardiness.

∙ Both SP and PWM, adopting the soft real-time scheduling technique of Chap-
ter 5, guarantee the same throughput as PAR.

These two conditions are sufficient for the kind of applications that we consider, in
which throughput constraints are more relevant than application latency and memory
overheads. Note also that in our scheduling framework, since actors are released
strictly periodically, the application latency is the elapsed time between the start of
the first firing of the input actor and the worst-case completion of the first firing of
the output actor.

6.9.1 Power Model

As mentioned in Section 6.5, we consider homogeneous multiprocessor systems,
in which any core can be either idle or running at a global (normalized) speed α.
We assume that the system supports a discrete set of operating voltage/frequency
modes. In our experiments, we refer to the operating modes of a modern System-
on-Chip, the OMAP 4460, as in [ZR13]. This SoC comprises two ARM Cortex-A9
cores that can operate at ΦA9 = {0.350, 0.700, 0.920, 1.200} GHz, at a supply voltage
of {0.83, 1.01, 1.11, 1.27} V, respectively. From ΦA9 we can derive the set of supported
normalized speed:

𝒩𝒮A9 = {0.292, 0.583, 0.767, 1.0}
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We use the power model of a similar dual Cortex-A9 core system, considered in [P+13],
which we normalize to a single core:

pcpu = pdyn + psta = (0.223V2
cpuFcpu) + (K1Vcpu + K2) (6.17)

where K1 = 0.08965, K2 = 0.07635, Vcpu represents the voltage supplied to the CPU in
Volts, and Fcpu represent the CPU frequency in GHz. Note that the power model given
in Expression (6.17) has been validated with actual power measurements in [P+13].
The model comprises dynamic power pdyn and static power psta, and the value of
pdyn assumes that the core is fully utilized. Note also that Expression (6.17) assumes
that the processor runs at one of the supported normalized speeds αi ∈ 𝒩𝒮A9. From
this αi, we can derive the processor frequency Fcpu = Fi by Definition 6.5.1. Similarly,
to a normalized speed αi corresponds an unique voltage level Vcpu. Therefore, the
power consumption pdyn and psta depend uniquely on αi. We make this relation
explicit by using the notation pdyn(αi), psta(αi), and pcpu(αi).

6.9.2 Energy per Iteration Period

Based on the power model expressed by Equation (6.17), we now proceed by deriving
the energy consumption under PAR, SP, and PWM. In particular, we derive the
energy consumed by the system during one iteration period (H) of the graph (recall
Equation (2.28) on page 44). Note that the iteration period of the graph is the same and
constant among PAR, SP, and PWM, because the periods of all tasks do not change
depending on the considered scheduling approach. Note also that, regardless of the
application latency, every task τi executes qi times during one iteration period H (recall,
again, Equation (2.28)). We assume that α is sufficient to guarantee schedulability,
therefore α ≥ σk, for any active processor πk. In the following, we denote the number
of active cores with MON.

Static energy of (PAR, SP). Both these approaches run at a fixed speed αi, and the
static energy consumed in one iteration period H is given by:

EH,FIX
sta = H · pFIX

sta = H · MON · psta(αi) (6.18)

Dynamic energy of (PAR, SP). We derive the dynamic energy consumption in one
iteration period H. During one iteration period, each task τj executes qj = H/Tj times.
Each worst-case execution takes Cj/αi time, at dynamic power pdyn(αi). Therefore,
the dynamic energy consumed by task τj during one iteration period H is:

EH,FIX
dyn (τj) = qj

Cj

αi
pdyn(αi) (6.19)

From Equation (6.19) we derive the dynamic energy consumed in one iteration period
H by the whole task set as follows:

EH,FIX
dyn = ∑

τj∈Γ
qj

Cj

αi
pdyn(αi) =

pdyn(αi)

αi
∑

τj∈Γ
qjCj (6.20)
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Total energy of (PAR, SP). From Equation (6.18) and (6.20) we derive the total
energy consumed during one iteration period H under (PAR, SP) by:

EH,FIX
tot = H · MON · psta(αi) +

pdyn(αi)

αi
∑

τj∈Γ
qjCj (6.21)

Total energy of PWM. Under PWM, the system switches periodically between
normalized speeds αL and αH to guarantee a certain αeff in the long run. Therefore,
we cannot use Equation (6.21) to model the energy consumption per iteration period
under the PWM scheme, because that expression is only valid when the system runs
constantly at one of the supported normalized speeds αi. For the sake of clarity, we
will denote pcpu(αL) and pcpu(αH), obtained from Equation (6.17), with pL and pH ,
respectively. In this scenario, the total power of a single core of the system is provided
by expression (9) in [B+09], reported below.

pPWM
cpu = λL pL + λH pH + ESW/P (6.22)

where ESW = eLH − pH · oLH + eHL − pL · oHL, which represents the energy wasted
during two speed transitions. The terms λL, λH , oLH, oHL, P, are parameters of the
PWM scheme defined in Section 6.7.4, whereas eLH and eHL represent the energy
overhead incurred in the speed transition from αL to αH and vice versa. We assume
that eLH = eHL = 1 µJ and oLH = oHL = 10 µs. Note that these values are compatible
with the findings in [P+13], where the time and energy overheads due to frequency
switching have been derived using actual measurements. Now, given the number of
active cores MON, we can express the total energy per iteration period H under PWM
as:

EH,PWM
tot = H · MON · pPWM

cpu (6.23)

Note that Equation (6.23) depends on Equation (6.22), which in turn depends on the
parameters of the PWM scheme. In particular, we have to find an appropriate value
for the PWM scheme period P. Since we assume that speed changes can only happen
at the granularity of the operating system tick (which has period TOS), we enforce
P to be a multiple of TOS. From Equation (6.10), we derive the shortest P, multiple
of TOS, that makes the overhead-induced clock cycles loss less than ε = 0.01 times
the desired Fopt. Thus, P ≥ ∆LH/(εFopt). Given P, we find the shortest QH , multiple
of TOS, that guarantees an effective frequency Feff greater than or equal to Fopt (from
Equation (6.10); note that QL = P − QH). At this point, all the parameters of the
PWM scheme are known and the total energy consumption per iteration period can
be derived using Equation (6.23).

6.9.3 Experimental Results

In Table 6.1, we show the results obtained using the considered approaches (PAR, SP,
PWM) on a set of real-life applications (see column App). For each application, col-
umn UΓ reports the cumulative utilization of the corresponding task set. In addition,
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column R shows the throughput obtained for each application. For a certain applica-
tion, given xout which is the number of tokens produced by its output actor at every
invocation, the application throughput can be computed as R = xout/Tout where Tout
is the period of the output actor. Therefore, the application throughput R is given
in tokens per second [tkns/s]. Note that the throughput R and the total utilization
UΓ of each application remain constant among all considered allocation/scheduling
approaches (PAR, SP, PWM). The reason is that the WCET of each task τi, derived
using Equation (2.26) on page 43, does not depend on the actual assignment of tasks
to processors, because it considers the worst-case communication time among all
possible assignments of tasks.

Each row in Table 6.1 corresponds to results obtained considering a system com-
posed of M̂ available cores, with M̂ ∈ {4, 8, 12}. Note that column M̂ shows only
meaningful values, those which satisfy M̂ ≥ ⌈UΓ⌉. For each of the considered ap-
proaches (PAR, SP, PWM), and for each value of M̂, we consider each possible number
of active processors MON in the range [⌈UΓ⌉, M̂] and look for the lowest energy con-
sumption, thereby exploring the design space exhaustively. For every value of MON
in that range, we follow a different procedure depending on the considered approach.
In PAR, we simply assign the utilization of tasks to the MON active cores using the
WFD heuristic. Then, if WFD is successful, we derive the lowest αi ∈ 𝒩𝒮A9 which
guarantees schedulability (minαi∈𝒩𝒮A9{αi ≥ σk, ∀ active πk}). Knowing MON and αi,
we determine the total energy per iteration period EH

PAR by Equation (6.21).
In SP, we find the necessary minimum speed αopt = UΓ/MON. We round this speed
value to the closest greater or equal value in 𝒩𝒮A9, which we denote with αi. We run
Algorithm 3 with this speed value αi and M = MON. If Algorithm 3 is successful,
we determine the total energy per iteration period EH

SP by Equation (6.21) with the
considered αi and MON.
In PWM, we calculate αopt = UΓ/MON and we run Algorithm 3 with speed value αopt
and M = MON. If Algorithm 3 is successful, we use αH = minαi∈𝒩𝒮A9{αi ≥ αopt}
and αL = maxαi∈𝒩𝒮A9{αi ≤ αopt} and derive the total energy per iteration period
EH

PWM by Equation (6.23).

For each valid task share assignment, we derive earliest start times of actors and
buffer size requirements by using the formulas derived in Chapter 5 with, for each
task τl , one of the following tardiness bound values: ∆l = 0 in PAR; ∆l obtained by
Equation (6.16) in SP and PWM.

At the end of the design space exploration, for PAR and SP, we report in Table 6.1
the values of MON ∈ [⌈UΓ⌉, M̂] that yielded to the lowest energy consumption. For
PAR (SP), these values are shown in column Mo

PAR (Mo
SP). Note that the optimal

values of MON for PWM are identical to Mo
SP, therefore they are not included.

In the following discussion, we will identify rows in Table 6.1 with the couple
(App, M̂). For each of these rows, under PAR, the table shows: the optimal number
of active processors Mo

PAR; the total memory requirement TMPAR (including code,
stack, buffers); the application latency LPAR, calculated using the latency analysis
described in Section 4.7 of [Bam14]; the energy consumption EH

PAR. In particular, the



6.9. Evaluation 133

total memory requirement in the PAR approach is calculated as follows.

TMPAR =
N

∑
i=1

CSS(τi) +
|E|

∑
i=1

bHRT
u (6.24)

where N is the number of tasks, CSS(τi) is the code and stack size of task τi (which
represents actor Ai of the input CSDF graph G), E is the set of edges in G, bHRT

u is
the size of the buffer that implements the communication over edge eu. The value of
bHRT

u assumes no task tardiness and is obtained using Equation (2.31) on page 46.
By contrast, for the semi-partitioned approach SP, the total memory requirement

TMSP is derived using the following expression.

TMSP =
Mo

SP

∑
i=1

∑
τj∈Γi

CSS(τj) +
|E|

∑
i=1

bSRT
u (6.25)

where Mo
SP is the number of processors (derived in the design space exploration), Γj is

the set of tasks with non-zero shares on processor πj, and bSRT
u is the size of the buffer

that implements the communication over edge eu, calculated using Equation (5.2).
Note that Equation (6.25) differs from Equation (6.24) because in the SP approach
a task can have shares on different processors. In addition, in order to derive the
application latency under SP, denoted by LSP, we use the analysis in Section 4.7
of [Bam14], considering the task start times obtained by our SRT approach. Then, we
add to that latency value the tardiness (which can be potentially null) of the output
actor of the application.

For the PWM approach, the total memory requirement TMPWM and application
latency LPWM are derived following the same procedure used for the SP approach.

We see from Table 6.1 that SP consumes significantly lower energy than PAR, see
column EH

SP/EH
PAR. On average, we obtain an energy saving of 36%. The energy saving

goes up to 64%, see row (JP2, 8). These energy savings, however, come at a cost. The
total memory requirements (see column TMSP/TMPAR) and application latencies (see
column LSP/LPAR) are increased. Memory requirements increase due to i) more task
replicas (with their code and stack memory) needed by the semi-partitioned approach
and ii) more buffers due to task tardiness. Similarly, application latency increases
because task tardiness postpones the start times of the tasks of the application.

The rightmost part of Table 6.1 presents the results under PWM. It shows that
this approach can provide higher energy savings compared to SP (compare columns
EH

PWM/EH
PAR and EH

SP/EH
PAR). The additional energy saving can grow up to 18% (see

rows (JP2,4) and (MJPEG,4)) compared to SP. Rows with na (not applicable) values
indicate that the value of αopt (see the corresponding column) is lower than the
minimum speed in 𝒩𝒮A9. Therefore, the PWM scheme is not applicable. Note that
in three rows the value of EH

PWM/EH
PAR is higher than EH

SP/EH
PAR. This means that, in

those cases, PWM is less effective than SP. The largest inefficiency is obtained in
row (MPEG2,12). In all these cases, the value of αopt is extremely close to one of the
speeds in 𝒩𝒮A9, therefore the energy overhead incurred by the PWM scheme renders
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PWM disadvantageous. Finally, note that PWM incurs more total memory and latency
overheads compared with SP, see columns TMPWM/TMPAR and LPWM/LPAR. This
is due to the higher number of task replicas, and higher values of tardiness, incurred
under PWM.

Note that our experimental results, summarized in Table 6.1, evaluate our pro-
posed approaches SP and PWM using PAR as a reference point. However, we also
made a second comparison, by evaluating our SP and PWM against the results that
can be obtained by using the EDF-os scheduling algorithm as a reference. We do
not show the results of the comparison against EDF-os in a separate table because
that table would be nearly identical to Table 6.1. This is because PAR and EDF-os
achieve nearly the same results, for the following reason. Since our designs are aimed
at achieving the maximum throughput of the considered applications, the utilization
of at least one of the tasks of each application is close to one. In this scenario, as
shown in Section 6.7, EDF-os cannot distribute the utilization of such “heavy” tasks
on multiple processors, therefore the operating frequency of the system cannot be low-
ered without compromising the schedulability of the system. Because of this, EDF-os
does not outperform the PAR approach in our experiments, with the exceptions of
the (MPEG2,8) and (MPEG2,12) cases. In both these two cases, EDF-os requires 7
processors to schedule the tasks set (one processor less than PAR) which results in a
slightly reduced total energy of 2.67 · 10−4 J (compared to EH

PAR = 2.70 · 10−4 J). Since
the difference between PAR and EDF-os involves only the MPEG2 benchmark, and is
in fact minimal, we choose not to show explicitly in a separate table the comparison
of our proposed SP and PWM against EDF-os to avoid redundancy.

6.10 Discussion

In this chapter, we have proposed EDF-ssl, a soft real-time semi-partitioned schedul-
ing algorithm aimed at reducing the energy consumption of embedded multiprocessor
streaming systems with throughput constraints. Our EDF-ssl exploits the presence of
some stateless tasks in the application, allowing the execution of different jobs of the
same task in parallel, and achieving an even distribution of the utilization of tasks
among the available processors. In turn, this enables processors to run at a lower
frequency, which yields to lower energy consumption.

As shown in Section 6.9, our semi-partitioned scheduling approach achieves sig-
nificant energy savings compared to a purely partitioned scheduling approach and
an existing semi-partitioned one, EDF-os. The energy savings are on average 36%
(and up to 64%) when using the lowest frequency which guarantees schedulability
and is supported by the system. By using a periodic frequency switching scheme
that preserves schedulability, instead of this lowest supported fixed frequency, an
additional energy saving up to 18% is obtained. Although the throughput of appli-
cations is unchanged by the proposed semi-partitioned approach, the mentioned
energy savings come at the cost of increased memory requirements and latency of
applications.


