
Semi-partitioned scheduling and task migration in dataflow networks
Cannella, E.

Citation
Cannella, E. (2016, October 11). Semi-partitioned scheduling and task migration in dataflow
networks. Retrieved from https://hdl.handle.net/1887/43469

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/43469

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/43469

Cover Page

The handle http://hdl.handle.net/1887/43469 holds various files of this Leiden University
dissertation

Author: Cannella, Emanuele
Title: Semi-partitioned scheduling and task migration in dataflow networks
Issue Date: 2016-10-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43469

Chapter 5

Semi-partitioned Scheduling of
CSDF-modeled Streaming
Applications

Most of the work presented in this chapter has been published in [CBS14].

THIS chapter and the following one, Chapter 6, present two methodologies that
exploit semi-partitioned scheduling algorithms, in the context of hard real-time

streaming systems, using the scheduling analysis proposed in [BS11, BS12] as a
basis and research driver. In particular, the semi-partitioned approach proposed
in this chapter is aimed at reducing the number of processors required to schedule
those applications which incur bin-packing issues under the partitioned scheduling
approach of [BS11, BS12]. We recall that by bin-packing issues we mean that those
applications require, using a partitioned scheduling approach, more processors than
the minimum achievable by a global optimal scheduler.

In order to clarify the contributions of this chapter, we depict in Figure 5.1 the
scheduling framework proposed in [BS11, BS12]. As input to this framework, the
designer provides the application model, in the form of a (C)SDF graph with N
actors (see Analysis Model in Figure 5.1). Then, Step 1 converts the N actors of the
input application into N periodic real-time tasks and derives the minimum size of
the buffers which implement inter-task communication. Throughout this chapter,
we refer to this conversion as scheduling analysis of [BS11, BS12]. This conversion is
described in Section 2.3, and assumes that a hard real-time (HRT) scheduler will be
used to execute the derived task set. In particular, Step 1 derives:

I The worst-case execution time (WCET) Ci of each task, using Equation (2.26)
on page 43.

II The period Ti of each task, using Equation (2.27) on page 43.

88 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Scheduling Analysis

of [BS11,BS12]

Analysis

Model:

(C)SDF

Complete Task Set and Buffers Specification:

({Ci}, {Ti}, {Si}, {bu})

Designer Input

(HRT scheduler)
Task Assignment

No. of

Processors

Task

Mapping

Temporal and

Buffering Spec.

1

2

I IVIIIII

Figure 5.1: Scheduling framework proposed in [BS11, BS12]. Step 1 of the framework converts the
input application, modeled as a CSDF graph, to a corresponding set of real-time periodic tasks. The
obtained real-time periodic task set is completely specified, i.e., the WCET I , period II , and start
time III of each task are known, together with the required size of buffers IV through which the tasks
communicate. Then, based on the WCET and period of tasks, and on the designer’s choice of HRT
scheduling algorithm, Step 2 derives the required number of processors and the assignment of task to
processors. At this point, the system is completely specified.

III The start time Si of each task, using Equation (2.29) on page 44.
IV The size bu of each buffer, which implements the communication over edge eu

= (Ai, Aj). This size is obtained using Equation (2.31) on page 46.

The next step, Step 2 (Task Assignment), derives the minimum number of proces-
sors required to schedule the application and the assignment of tasks of the application
to processors, using the HRT partitioned approach (see Section 2.2.5) chosen by the
designer. The assignment is based on the WCET and period of each task (parameters
I and II above) derived in Step 1 .

At the end of Step 2 , the system is completely specified. The system specification
consists of the following components.

∙ Number of Processors. It represents the number of processors required to sched-
ule the application (obtained in Step 2).

∙ Task Mapping. It describes the assignment of application’s tasks to processors
(obtained in Step 2).

∙ Temporal and Buffering Specification. It describes the parameters of the task
set, together with the size of buffers which implement inter-task data communi-
cation (all of which are obtained in Step 1).

5.1. Proposed Extension of the Scheduling Framework of [BS11,BS12] 89

5.1 Proposed Extension of the Scheduling Framework
of [BS11,BS12]

So far, the scheduling framework of [BS11, BS12] (see Figure 5.1) considers only
hard real-time partitioned scheduling algorithms. Partitioned scheduling algorithms
incur neither migration overhead nor memory overhead because each task is statically
allocated to a single processor. However, these algorithms are affected by bin-packing
issues [Joh73], as described in Section 2.2.5. That is, if no limit on the maximum task
utilization of a task set is imposed, partitioned algorithms may require twice as many
processors compared to an optimal global scheduler [LDG04]. Therefore, for some
applications, the number of processors required by partitioned approaches is larger
than the number of processors required by optimal global schedulers.

However, also optimal global schedulers present drawbacks. Recall, from Sec-
tion 2.2.5, that under optimal global scheduling algorithms all the tasks can migrate
among all the processors. Such algorithms can fully exploit the available computa-
tional resources (refer again to Section 2.2.5, and in particular to Expression (2.13) on
page 34). However, their optimality comes at the cost of high scheduling overheads
due to excessive task preemptions and migrations. Moreover, modern MPSoCs typi-
cally have distributed memories in order to avoid the unpredictability of accessing
shared resources. Therefore, using a global scheduler on such distributed memory
systems implies that the code of each task has to be replicated1 on all the processors,
incurring a large memory overhead.

Semi-partitioned algorithms represent a middle ground between global and par-
titioned scheduling algorithms. In fact, under semi-partitioned approaches, most
of the tasks are statically allocated to processors, and only a subset of the tasks is
allowed to migrate among different processors. Migrating tasks follow a migration
pattern derived at design-time. By allowing a (usually small) subset of tasks to mi-
grate, semi-partitioned scheduling algorithms can mitigate the bin-packing effects
that affect partitioned approaches. As a result, semi-partitioned algorithms require
less processors than partitioned algorithms to schedule certain task sets. At the
same time, these algorithms do not incur large memory overheads and task migra-
tion/preemption overheads like global algorithms. For these reasons, in this chapter
we extend the scheduling framework of [BS11, BS12] in order to support a semi-
partitioned approach. In the next section we explain the reasons why, among the
various semi-partitioned schedulers, our proposed approach uses EDF-fm [ABD08].
We recall that the name EDF-fm comes from the fact that the algorithm is based on
EDF and allows tasks to be either fixed or migrating.

5.1.1 Choice of the EDF-fm Semi-partitioned Algorithm

Several semi-partitioned scheduling algorithms have been proposed [ABD08,DYGR10,
GCS11, KY08, AT06]. These algorithms can be classified based on when migrations

1We assume task migration using code replication, as shown in Chapter 4, because in distributed
memory MPSoC systems it guarantees faster completion of the migration procedure.

90 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

are allowed to occur. In restricted-migration approaches [ABD08, DYGR10, GCS11]
migrations can happen at job boundaries only. In unrestricted-migration (or portioned)
approaches, migrations can happen at any time during a job execution. We argue that
the restricted-migration class of semi-partitioned schedulers is the most suitable for
distributed memory MPSoCs. This is because migrating at job boundaries reduces
the amount of data (state) to be transferred from one processor to the next. Moreover,
if the task does not keep an internal state between two successive jobs (i.e., it corre-
sponds to a stateless dataflow actor, as defined in Definition 2.3.6 on page 47), no state
migration is needed.

Within the class of restricted-migration semi-partitioned approaches, EDF-fm
[ABD08] is particularly suited to distributed memory systems because in that ap-
proach a migrating task is allowed to migrate only between two processors (contrary
to [DYGR10, GCS11], in which migrating tasks may span among all the processors).
This property reduces substantially the memory overhead caused by replicating
the task code. In addition, EDF-fm uses a fast utilization-based schedulability test
(contrary to [DYGR10, GCS11]), that can be easily executed at run-time for incom-
ing applications. For the reasons explained above we employ EDF-fm in the work
presented in this chapter.

5.1.2 Implications of Using EDF-fm

Although EDF-fm can have great benefits for distributed memory MPSoCs, it provides
hard real-time guarantees only for migrating tasks and soft real-time (SRT) guarantees
for fixed tasks. Recall that, by Definition 2.2.9 on page 38, this means that fixed tasks
can miss their deadlines by a bounded value called tardiness. As a consequence, the
scheduling analysis of [BS11, BS12] can not be used directly because it assumes that a
hard real-time (HRT) scheduler will schedule the derived task set, such that all task
deadlines are met. It follows that the scheduling framework depicted in Figure 5.1
has to be modified.

Although our proposed semi-partitioned approach uses a SRT scheduling algo-
rithm, in this chapter we provide a technique which ensures that the input/output
interfaces with the environment are not affected by the deadline misses which may
occur to the tasks of the application. That is, we can provide HRT guarantees to the
input and output interfaces of the application with the environment.

5.2 Problem Statement

The scheduling analysis of [BS11, BS12] shows that an application, modeled as an
acyclic CSDF graph, can be scheduled using a hard real-time partitioned scheduling
algorithm as a set of real-time periodic tasks. In this chapter, we investigate the
applicability of the soft real-time semi-partitioned scheduling algorithm EDF-fm
to the scheduling analysis of [BS11, BS12]. In order to do so, we need to modify
that scheduling analysis in a way that soft real-time scheduling algorithms can be
supported. Overall, our semi-partitioned approach is aimed at reducing the number

5.3. Contributions 91

Scheduling Analysis

of [BS11,BS12]

Analysis

Model:

(C)SDF

WCET and Period of Tasks:

({Ci}, {Ti})

Task Start Times

and Buffer Sizes

({Si}, {bu})

EDF-fm Task Assignment

Task

Mapping

No. of

Processors

Temporal and

Buffering Spec.

Tardiness

Bound of

Tasks {Di}

SRT Analysis

1

2

3

I

IVIII

II

I II

Figure 5.2: Scheduling framework proposed in this chapter, which assumes that the SRT scheduling
algorithm EDF-fm will schedule the derived task set, instead of the HRT partitioned schedulers considered
in Figure 5.1. The part of the scheduling framework above the dashed line is identical to the scheduling
framework in Figure 5.1. However, in Step 1 only the WCET I and period II of each task are
derived. This is because the start times III of tasks and required size of buffers IV through which the
tasks communicate can only be derived when the tardiness bound ∆i of each task τi is known. Step 2
of the scheduling framework derives the minimum number of processors, the assignment of tasks to
processors, and the tardiness bounds of tasks. Based on these tardiness bounds, Step 3 derives the task
start times and buffer sizes. At this point, the system is completely specified.

of processors required to schedule the applications that incur bin-packing issues under
the partitioned scheduling approach of [BS11, BS12]. We recall that by bin-packing
issues we mean that these applications require more processors under the partitioned
scheduler compared to a global optimal scheduler.

5.3 Contributions

In order to address the problem stated in Section 5.2, we propose the scheduling
framework shown in Figure 5.2. This scheduling framework is a modification of the
one used in [BS11, BS12] and reported in Figure 5.1. The changes in the design flow
are necessary in order to use the SRT semi-partitioned scheduler EDF-fm instead of a
HRT partitioned approaches, as assumed in [BS11, BS12].

92 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Consider Step 1 of the design flow in Figure 5.1. That step converts the input
application, modeled as a CSDF graph, into a set of real-time periodic tasks. In par-
ticular, it derives the complete specification of the tasks set (WCET I , period II ,
start time III of each task) and the size of the buffers IV which implement inter-task
data dependencies. This analysis assumes that the derived periodic task set will be
scheduled by a HRT scheduling algorithm, i.e., no task will miss any deadline. There-
fore, as shown in Figure 5.1, the scheduling analysis of [BS11, BS12] can derive the
complete Temporal and Buffering Specification of the system - composed of parameters
I , II , III , and IV - in a single step. In what follows, we will refer to such scheduling

analysis, which assumes hard real-time scheduling, as HRT approach.
As a first contribution of this chapter, we show that this scheduling analysis can

be extended to support SRT schedulers, once the tardiness bound2 ∆i of each task τi
is known. In practice, the components of the Temporal and Buffering Specification of the
system (I , II , III , and IV) cannot be derived in a single step, but in the following
three steps of Figure 5.2.

∙ Step 1 derives the WCET and period of tasks (components I and II), based
on the input application model. These components are not affected by the
tardiness of tasks.

∙ Step 2 assigns the tasks to processors, according to the rules of the chosen SRT
scheduling algorithm (in this case, EDF-fm). The outputs of this step are the
required number of processor, the assignment of tasks to processors, and the
tardiness bound ∆i of each task τi.

∙ Step 3 , given the value of ∆i of each task τi, derives the earliest task start times
and minimum buffer sizes (III and IV in Figure 5.2) that guarantee the existence
of a valid schedule of the given application. Valid schedule means that, even in
presence of task tardiness, tasks can be released periodically and neither buffer
underflow nor overflow can occur.

In what follows, we will refer to the scheduling analysis which assumes a SRT
scheduler as SRT approach. In this chapter, we show that the SRT approach achieves the
same throughput of the HRT approach, albeit requiring larger buffers and increased
application latency. In Figure 5.3 we compare the HRT and SRT approaches. The
mentioned increase in the size of buffers is visualized in Figure 5.3(b) using red color.
By appropriately increasing the size of buffers, the analysis presented in this chapter
guarantees that the interfaces of the environment with the application (see I and O
in Figure 5.3(b)) can execute in a strictly periodic way with neither underflow nor
overflow on input and output buffers (see bin and bout in Figure 5.3(b)), also when SRT
schedulers are used. This means that the input/output interfaces are not affected by
the deadline misses which may occur to the tasks of the application, i.e., I and O
in Figure 5.3(b) can execute with HRT guarantees.

Then, using the result of the first contribution, we focus on a specific SRT semi-
partitioned scheduling algorithm, namely EDF-fm [ABD08]. As mentioned in Sec-
tion 5.2, we consider EDF-fm instead of the partitioned approaches adopted in
[BS11,BS12] because we want to reduce the number of processors required to schedule

2See Definition 2.2.10 on page 38.

5.3. Contributions 93

HRT scheduler

Asrc I O Asnk

A1

A2

bin bout

(a) Analysis under HRT schedulers (e.g., [BS11,
BS12])

SRT scheduler

Asrc I O Asnk

A1

A2

bin bout

(b) Analysis under SRT schedulers (our ap-
proach)

Figure 5.3: Scheduling framework under HRT (a) and SRT (b) schedulers. Sub-figure (a) represents
the scheduling analysis of [BS11, BS12] which considers only HRT schedulers. By contrast, sub-figure
(b) depicts the scheduling analysis when SRT schedulers are used. This kind of schedulers allow tasks
to miss their deadlines up to a certain value. As shown in this chapter, real-time guarantees can be
still provided to the interfaces with the environment (denoted by I and O). However, the SRT approach
requires larger size of buffers (as highlighted in red in sub-figure (b)).

the applications that incur bin-packing issues under that partitioned approach. As a
second contribution of this chapter, we propose a novel task assignment heuristic,
called FFD-SP (First Fit Decreasing followed by semi-partitioning), that replaces the
ones proposed in [ABD08] that are intended for independent task sets. FFD-SP is
executed in Step 2 in Figure 5.2. We propose this novel task assignment heuristic for
the reason described in the following paragraph.

As shown in Figure 5.2, the derivation of task start times and buffer sizes in Step 3
depends on the value of the tardiness bounds of tasks. In general, the more tasks
are affected by tardiness, the more task start times need to be postponed. This has
a direct effect on the latency of the application. Moreover, as the number of tasks
with tardiness increases, so does the size of buffers required to implement inter-task
communication. To summarize, the number of tasks affected by tardiness has a direct
impact on the overhead in application latency and buffer sizes of the SRT approach
compared to the HRT approach. This effect is not considered by the task assignment
heuristics proposed in [ABD08] because those heuristics are intended for independent
tasks. Our proposed FFD-SP heuristic is aimed at reducing the number of required
processors, compared to the HRT approach, while keeping a low buffer size and
latency overhead when the EDF-fm algorithm is used.

Finally, as a third contribution, we show on a set of real-life benchmarks that our
SRT approach can lead to significant benefits by reducing the number of processors
required to schedule the applications that incur in bin-packing issues under the HRT
approach of [BS11, BS12]. At the same time, both our SRT approach and HRT ap-
proaches achieve the same application throughput. However, our experiments show
that the SRT approach incurs an increase in memory requirements and application
latency. Therefore, our SRT semi-partitioned approach is especially appealing for sys-
tems in which the throughput constraint is more important than memory or latency
constraints.

94 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

5.4 Related Work

To the best of our knowledge, real-time semi-partitioned scheduling algorithms have
never been studied when mapping streaming applications with inter-task data de-
pendencies to MPSoCs. In fact, existing semi-partitioned solutions [ABD08, DYGR10,
GCS11, KY08, AT06] only consider sets of independent tasks. In the real-time commu-
nity, however, techniques different from pure partitioning to assign data-dependent
application tasks to a multiprocessor platform have already been devised. Existing
approaches which are close to our work are [LA09] and [LA10] by Liu and Anderson.
These approaches use a global scheduler which, similar to our case, satisfies soft
real-time requirements. In particular, [LA09] describes a way to guarantee bounded
tardiness of an application specified as a pipeline of tasks under a SRT global sched-
uler. A strong limitation in [LA09] is that only simple pipeline application topologies
are handled, contrary to our approach that can handle more complex topologies
like CSDF graphs. In [LA10], the same authors extend their analysis to guarantee
bounded task tardiness in more complex application graph topologies, such as Pro-
cessing Graph Method (PGM) graphs. However, the work in [LA10] does not address
the calculation of minimum buffer sizes, which is an important metric to evaluate the
practicability of the approach. In contrast, the calculation of buffer sizes is supported
by our approach.

5.5 Soft Real-time Scheduling Analysis

In this section, we present the first main contribution of this chapter. Our contribution
is based on the scheduling analysis of [BS11, BS12] (see Section 2.3), which converts a
CSDF to a set of periodic tasks, assuming that a HRT scheduler is used to schedule
the derived task set. We show that such scheduling analysis can be modified in a
way that SRT schedulers can be used to execute the derived periodic task set. The
SRT scheduler considered in this chapter is the EDF-fm algorithm, whose per-task
tardiness bound is given by Equation (2.22) on page 40. Note, however, that the results
obtained in this section are valid for any SRT scheduler which provides bounded task
tardiness. Our solution extends the analysis of [BS11, BS12] by deriving new earliest
start times for each task (Section 5.5.1) and minimum buffer sizes (Section 5.5.2) that
can handle task tardiness and still allow a periodic release of each task. Within the
design flow proposed in Figure 5.2, this derivation of task start times and buffer sizes
is performed in Step 3 .

5.5.1 Earliest Start Times in Presence of Tardiness

In order to derive the earliest start times in presence of tardiness, we leverage some
concepts which are explained in Chapter 2 of this thesis. We summarize these concepts
below.

∙ Under hard real-time scheduling of acyclic CSDF graphs (Section 2.3), when
computing the earliest start times of actors we use the cumulative produc-

5.5. Soft Real-time Scheduling Analysis 95

tion/consumption functions defined in Definitions 2.3.1 and 2.3.2 on page 44,
namely:

– prdS
[ts ,t f)

(Ai, eu), which represents the total number of tokens produced

by actor Si to edge eu during the time interval [ts, t f);
– cnsS

[ts ,t f]
(Aj, eu), which represents the total number of tokens consumed

by actor Aj from edge eu during the time interval [ts, t f].
∙ By Definition 2.2.10 on page 38, under a SRT scheduler, a task τi does not miss

each of its deadlines by more than its tardiness bound ∆i.
In what follows, we will use the concept of as late as possible (ALAP) completion

schedule in case of tardiness, which is defined below.

Definition 5.5.1. (ALAP completion schedule in case of tardiness). The ALAP completion
schedule considers that all invocations Ai,j (jobs τi,j) of an actor Ai (task τi) incur the
maximum tardiness ∆i, therefore complete at zi,k = di,k + ∆i (where di,k represents
the absolute deadline of job τi,j, as defined in Section 2.2.1).

Then, consider that actor Aj has a data dependency from actor Ai through edge
eu. In addition, assume that both Ai and Aj may be affected by tardiness. In order to
derive the earliest start time of actor Aj, Equation (2.30) on page 44 has to be modified
in order to capture the worst-case schedule of Ai and Aj, as shown in the following
proposition.

Proposition 5.5.1. In presence of task tardiness, bounded by ∆i for source actor Ai and by
∆j for destination actor Aj, the earliest start time Si→j of actor Aj due to its dependency from
Ai through edge eu, under a valid schedule, is given by:

Si→j = min
t∈[0,Si+∆i+H]

{
t : prdS

[Si+∆i ,max(Si+∆i ,t)+k)
(Ai, eu) ≥ cnsS

[t,max(Si+∆i ,t)+k]
(Aj, eu)

∀k = 0, 1, · · · , H
}

(5.1)

where H is the iteration defined by Equation (2.28).

Proof. If actors Ai and Aj may be affected by tardiness, Equation (2.30) on page
44 can not be applied in its original form to derive earliest actor start times. In
order to illustrate this fact, we copy in Figure 5.4(a) the CSDF graph used as an
example in Chapter 2. The corresponding hard real-time schedule, derived using the
methodology of Section 2.3 in absence of tardiness, is shown in Figure 5.4(b). Note
that in Figure 5.4(b) the start times of actors are calculate using Equation (2.29), which
in turn exploits Equation (2.30).

Now, for instance, assume that actor A1 may be affected by tardiness because it
is scheduled by a SRT scheduler. Then, if invocation A1,2 in Figure 5.4(b) completes
later than its deadline, invocation A2,1 of A2 (that depends on the completion of A1,2)
cannot be released at time t = 6. It follows that the start time of actor A2 has to be
changed.

96 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

A1 A2 A3
[1] [1,2] [0,3]

e1 e2

[1]

(a) Example of a CSDF graph (extracted from Sec-
tion 2.1.2).

3

8

43

0

t

A2

A1

A3

5

S1

T1

0 10 15

1 2 3 4 5

0 1 2

0 1 2

S2 T2

S3

6 7

job

release

job

deadline

A1,2

A2,1

(b) Real-time periodic task set (extracted from Section 2.3)) obtained from
the above CSDF graph.

Figure 5.4: Example of the conversion of a set of CSDF actors to a real-time periodic task set using the
methodology proposed in [BS11, BS12]. As explained in Section 2.3, the three actors of the CSDF graph
depicted in sub-figure (a) can be scheduled as three real-time periodic tasks, as shown in sub-figure (b).

The worst-case scenario of the execution of Ai and Aj to derive the earliest start
time Si→j in case of tardiness occurs when the source actor Ai completes its jobs as
late as possible, i.e., according to its ALAP completion schedule (see Definition 5.5.1).

As shown in Figure 5.5, the ALAP completion schedule of actor Ai can be repre-
sented by a fictitious actor Ãi, which has the same period as Ai, no tardiness, and
start time S̃i = Si + ∆i. At run-time, any invocation of Ai, even if delayed by the
maximum allowed tardiness ∆i, will never complete later than the corresponding
invocation of Ãi. Notice that invocations Ãi,k of Ãi are strictly periodic, because they
incur no tardiness.

By contrast, in the worst-case scenario to determine Si→j, Aj is executed as early
as possible, so we assume that all invocations Aj,k of Aj are not affected by tardiness.
Then, the earliest start time that guarantees the absence of blocking of Aj in its
execution, even for the worst-case production and consumption patterns of Ai and Aj,
is found by evaluating Equation (2.30) with Ãi as source actor and Aj as destination
actor. This scenario is captured by Equation (5.1). Note that any completion of an
invocation Ai,k of Ai earlier than its corresponding worst-case Ãi,k results in an earlier
production of tokens, such that the inequality in Equation (5.1) still holds for all
k ∈ [0, 1, · · · , H]. Similarly, if any of the invocations of Aj is affected by tardiness,
the token consumption is executed later and Equation (5.1) guarantees that enough

5.5. Soft Real-time Scheduling Analysis 97

~

tSi

Ai

Ai
Di

Si
~

job release job deadline

Ai,0 Ai,1 Ai,2 Ai,3 Ai,4

Figure 5.5: Worst-case scheduling of source actor Ai, with tardiness ∆i, when deriving the start time
Si→j of destination actor Aj. In the worst case, all invocations of actor Ai incur the maximum tardiness
∆i. This schedule can be represented by a fictitious actor Ãi, which has the same period as Ai, no
tardiness, and start time S̃i = Si + ∆i.

tokens will be available to be read. �

Note also, from Equation (5.1), that the start time Si→j of actor Aj due to its
dependency from Ai is only affected by the tardiness bound ∆i of the source actor.
In addition, when actor Aj has several predecessors, the start time Sj has to be set
to the maximum of the start times Si→j given by Equation (5.1) considering each
predecessor in isolation, as captured by Equation (2.29) on page 44.

5.5.2 Minimum Buffer Sizes in Presence of Tardiness

Similarly to Section 5.5.1, in order to derive minimum buffer sizes we also utilize the
concept of tardiness bound under a SRT scheduler, defined in Definition 2.2.10 on
page 38. In addition, we use the cumulative production and consumption functions
of CSDF actors defined in Definitions 2.3.3 and 2.3.4 on page 46, namely:

∙ prdB
[ts ,t f]

(Ai, eu), which represents the total number of tokens produced by

actor Ai to edge eu during the time interval [ts, t f];
∙ cnsB

[ts ,t f)
(Aj, eu), which represents the total number of tokens consumed by

actor Aj from edge eu during the time interval [ts, t f).
Then, similar to Section 5.5.1, consider that actor Aj has a data dependency from

actor Ai through edge eu, and both Ai and Aj may be affected by tardiness. Based on
the above definitions, and given the actor start times calculated leveraging Proposi-
tion 5.5.1, the following proposition captures the worst-case scheduling of Ai and Aj
when deriving the minimum buffer sizes in case of task tardiness.

Proposition 5.5.2. In presence of task tardiness, bounded by ∆i for source actor Ai and
by ∆j for destination actor Aj, the minimum buffer size bu of a communication channel eu
connecting Ai and Aj, under a valid schedule, is given by:

bu(Ai, Aj) = max
k∈[0,1,··· ,H]

{
prdB

[Si ,max(Si ,Sj+∆j)+k]
(Ai, eu) −

cnsB

[Sj+∆j ,max(Si ,Sj+∆j)+k)
(Aj, eu)

}
(5.2)

98 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Proof. To get the minimum buffer size in presence of task tardiness, we consider the
worst-case scenario that would result in the maximum buffer requirement for channel
eu. This worst-case scenario occurs when: (i) all the invocations Aj,k of the destination
actor Aj complete with the maximum tardiness (i.e., Aj is executed according to its
ALAP schedule, see Definition 5.5.1); (ii) none of the invocations of the source actor
are affected by tardiness.

We can then prove Proposition 5.5.2 with a procedure similar to the one used
in the proof of Proposition 5.5.1. We associate the worst-case completion of all the
invocations Aj,k to a fictitious actor Ãj. Actor Ãj is strictly periodic, with no tardiness,
constant period T̃j = Tj and start time S̃j = Sj + ∆j. Then, the minimum buffer
requirement of the communication channel eu is found by evaluating Equation (2.31)
on page 46 with Ai as source actor and Ãj as destination actor. This scenario is
captured by Equation (5.2).

Note that any earlier completion of any of the iterations of Aj would not increase
the buffer size requirement. This is because an earlier completion of Aj would re-
sults in an earlier consumption of tokens from channel eu. Similarly, any delayed
completion of an iteration of Ai would result in a delayed production of tokens to the
considered channel. Thus, the derived value of bu is sufficient. �

Note that Equations (5.1) and (5.2) can also be used to analyze the interfaces
between the external data provider and consumer (I and O in Figure 5.3(b)) and the
input and output actors of the application (Ain, Aout). Compared to the HRT approach
shown in Figure 5.3(a), in the SRT approach of Figure 5.3(b) Ain and/or Aout may
experience tardiness. In this case, Equations (5.1) and (5.2) derive delayed start time
of the external consumer O and larger buffer sizes of bin and bout such that both I
and O can execute strictly periodically with neither buffer overflow nor underflow
occurring on bin and bout.

5.6 FFD-SP Task Assignment Heuristic

The analysis provided in Section 5.5 extends the scheduling framework of [BS11,
BS12] by calculating different task start times and buffer sizes, depending on the
tardiness bounds of tasks. This way, the derived task set can be scheduled by any
SRT scheduling algorithm. In this section, we present the second main contribution
of this paper, which is focused on a particular SRT scheduling algorithm, namely
EDF-fm [ABD08]. We recall that the most of the theoretical results regarding the
EDF-fm algorithm are summarized in Section 2.2.7 of this thesis.

In our contribution, we propose a task assignment heuristic that does not follow
the sequential approach common to all the heuristics proposed in [ABD08]. In fact,
as explained in Section 2.2.7, the heuristics in [ABD08] assign tasks to processors
in a sequential way, which means that in most cases processors have migrating
tasks assigned to them. In turn, this makes most tasks in the system affected by
tardiness. Actor tardiness imposes larger buffer sizes (according to Proposition 5.5.2)
and postponed start times of successor actors (according to Proposition 5.5.1). Overall,

5.6. FFD-SP Task Assignment Heuristic 99

this leads to larger memory requirements and increased application latency. Our
proposed heuristic is executed in Step 2 of the design flow in Figure 5.2.

In contrast to the heuristics in [ABD08], our proposed heuristic, called FFD-SP,
starts to consider semi-partitioning only when the First-fit Decreasing (FFD) heuristic
[Joh73] (see Section 2.2.6) fails to assign a certain task in the system. The proposed
task assignment heuristic accepts as input the number of processors M onto which the
task set Γ has to be assigned. Then, the assignment of tasks to processors in FFD-SP
proceeds as follows. At first, the set of stateful actors Γs is constructed and tried to
be assigned to the processors using FFD. Stateful actors are considered first in our
heuristics because this way they are fixed to a processor and at run-time there is no
need to migrate their state.

Then, FFD-SP tries to assign the remaining (stateless) actors using FFD. Only
when FFD fails, semi-partitioning is considered. This way, the number of processors
with migrating tasks is likely to be less. Recall from Section 2.2.7 that, under EDF-
fm, on processors which runs migrating tasks, fixed tasks are affected by tardiness.
Therefore, by reducing the number of processors with migrating tasks, FFD-SP tries
to reduce the number of fixed tasks with tardiness. When a task τ has to be semi-
partitioned, its utilization is divided into two shares, s1(τ) and s2(τ). In particular,
FFD-SP tries to assign the largest share possible s1(τ) from the remaining available
utilization on processors; then, it tries to find the best fit for the remaining share s2(τ),
in order to leave larger “chunks” of processor available utilizations to remaining
(unallocated) tasks.

Our proposed FFD-SP assignment heuristic is reported in Algorithm 1. As men-
tioned earlier, at first Algorithm 1 builds Γs, the set of stateful actors, which are then
assigned using the FFD heuristic (lines 1-4).

Then, considering task τ ∈ (Γ − Γs), the algorithm tries to assign task τ to one of
the processors using FFD (lines 6-8). If FFD does not succeed, the algorithm tries to
divide the utilization of task τ in two shares, s1(τ) and s2(τ). Traversing the processor
list in decreasing order of available utilization, a share s1(τ) = 1 − σ(π′) is tried to
be mapped on processor π′ (lines 9-12). In line 10, the term σ(π′) denotes the total
utilization assigned to π′. For the sake of clarity, this notation is slightly different from
the one given in Equation (2.20) on page 39. If the assignment of s1(τ) is successful,
the algorithm attempts to map share s2(τ) = u(τ)− s1(τ) by traversing the list of
processors in increasing order of available utilization (lines 13-17).

Note that our FFD-SP heuristic may fail to assign tasks to the considered set of
processors. In fact, at the first execution of Algorithm 1, the number of processors
M is set to MOPT, the number of processors required by an optimal scheduler (see
Equation (2.14) on page 34). If the task set cannot be assigned to M processors, M is
increased by one and Algorithm 1 is executed again until a successful assignment is
found.

The algorithm makes use of the sp_assign function to try and assign task shares.
As shown in Algorithm 2, this function checks three conditions (see line 1):

1. There must be enough available utilization on the processor to accommodate
the share. Similarly to Algorithm 1, the term σ(π) denotes the total utilization
assigned to π.

100 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Algorithm 1: FFD-SP task assignment heuristic.
Input: The number of processors M, a task set Γ = {τ1, τ2, · · · , τN} of N periodic tasks.
Result: True and an M-partition describing the task assignment onto M processors if Γ is

schedulable, False otherwise.
Find Γs = {τ : τ ∈ Γ ∧ τ is stateful};1
Assign tasks in Γs using FFD;2
if Γs cannot be assigned then3

return False;4

for τ ∈ (Γ − Γs, sorted in decreasing utilization) do5
Try to assign task τ using First-Fit heuristic;6
if First-Fit is successful then7

continue;8

for π′ ∈ (Π sorted in decr. available utilization) do9
s1(τ) = 1 − σ(π′);10
Assigned = False;11
if sp_assign(s1(τ), π′)==True then12

s2(τ) = u(τ)− s1(τ);13
for π′′ ∈ (Π sorted in incr. available utilization) do14

if sp_assign(s2(τ), π′′)==True then15
Assigned = True;16
break;17

if Assigned==False then18
Revert assignment of s1(τ) to π′;19

else20
break;21

if Assigned==False then22
return False;23

Optimize the obtained partition;24
return True;25

Algorithm 2: sp_assign function.
Input: The share s of task τ to be assigned, a processor π.
Result: True if s can be assigned to π, False otherwise.
if (σ(π) + s ≤ 1) and (σmig

current(π) + u(τ) ≤ 1) and (nmig_tasks < 2) then1
Assign s to π;2
return True;3

else4
return False;5

2. In case another migrating task has already been mapped on processor π, Con-
dition (2.21) in Section 2.2.7 must be satisfied. Note that in Algorithm 2 the
term σ

mig
current(π) denotes the total utilization of migrating tasks assigned to π.

3. The number of migrating tasks nmig_tasks assigned to processor π must be less
than 2 (as required by the EDF-fm algorithm).

When an M-partition (see Definition 2.2.6 on page 35) has been successfully found,

5.7. Evaluation 101

the FFD-SP heuristic tries to optimize it (line 24 in Algorithm 1). The optimization
consists in re-assigning the migrating task shares, whenever possible, to processors
to which less fixed tasks are assigned. This way, less fixed tasks are affected by
tardiness, leading to lower application latency and buffer size requirements. Note
that in Algorithm 1 the first share of a migrating task s1(τ) is set to the largest possible
value, given the current available utilization of processors. This in turns makes the
second share of each migrating task s2(τ) as small as possible, making the process of
optimization of the partition more effective.

5.7 Evaluation

We evaluate our semi-partitioned scheduling approach using the StreamIt bench-
marks considered in [ZBS13], for which we employ the unfolding technique described
in [ZBS13] to derive larger CSDF graphs with improved throughput. Among these
benchmarks, seven applications require, under the partitioned FFD allocation scheme,
more processors than an optimal scheduler. This set of applications is listed in Ta-
ble 5.1. In this section we compare the number of required processors, memory require-
ments, and application latencies obtained with three different allocation/scheduling
approaches: (i) Partitioned EDF with FFD heuristic; (ii) Semi-partitioned EDF-fm, with
our proposed FFD-SP heuristic; (iii) Semi-partitioned EDF-fm, with the LUF (Lowest
Utilization First) heuristic proposed in [ABD08]. These approaches are denoted in
Table 5.1 with FFD, FFD-SP, and LUF, respectively.

Note that all the approaches in Table 5.1 lead to the same application throughput.
This is because the throughput of an application depends on the period of its sink actor,
which is unchanged in our analysis even in presence of task tardiness. In addition, we
choose to compare the results of the LUF heuristic with our FFD-SP heuristic because,
among the heuristics proposed in [ABD08], LUF achieves the smallest number of
processors.

The MOPT column in Table 5.1 lists the number of processors required by an
optimal scheduler (for instance [BCPV96]) to execute the considered applications.
MOPT is obtained using Equation (2.14).

Let us focus on the comparison between the partitioned approach (FFD, described
in Section 2.2.6) and our proposed semi-partitioned approach (FFD-SP, proposed in
Section 5.6). We note that the FFD approach results in a number of processors (MFFD)
which is on average 17.6% greater than the number required by an optimal scheduler
(see column MFFD

MOPT
). In contrast, our FFD-SP algorithm requires on average only

2.1% more processors (see column MSP
MOPT

), while maintaining the same throughput.
This means that our proposed approach can exploit the available processors more
efficiently, getting significantly closer to the results obtained by optimal schedulers
(see columns MSP and MOPT). However, this comes at two costs.

The first cost is the increase of memory requirements. For each benchmark, column
memFFD reports the memory required by the partitioned approach, expressed in bytes.

102 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

Table
5.1:C

om
parison

ofdifferentallocation/scheduling
approaches.

B
enchm

ark
O

PT
Partitioned

(FFD
)

Sem
i-partitioned

(FFD
-SP)

Sem
i-partitioned

(LU
F)

M
O

P
T

M
FFD

M
FFD

M
O

P
T

m
em

FFD
[B]

L
FFD

[c.c.]
M

S
P

M
S

P
M

O
P

T

m
em

S
P

m
em

FFD

L
S

P
L

FFD
M

L
U

F
m

em
L

U
F

m
em

FFD

L
L

U
F

L
FFD

FFT
24

30
1.25

144680
192512

26
1.083

1.413
1.483

26
1.485

1.676
B

eam
form

er
26

28
1.077

14492
60912

26
1.0

1.145
1.474

26
1.229

1.606
TD

E
20

25
1.25

516282
1127175

20
1.0

1.560
1.396

21
1.722

1.860
D

E
S

26
33

1.269
3381

33088
27

1.038
1.138

1.218
28

1.684
1.862

M
P

E
G

2
8

9
1.125

61909
138240

8
1.0

1.290
1.217

9
3.014

3.432
B

itonic
11

13
1.182

2374
2275

11
1.0

1.139
1.185

11
1.413

1.395
S

erpent
39

42
1.077

59815
370296

40
1.026

1.012
1.074

39
1.068

1.479
average

-
-

1.176
-

-
-

1.021
1.243

1.292
-

1.659
1.902

5.7. Evaluation 103

It is derived using the following expression:

memFFD =
N

∑
i=1

CSS(τi) +
|E|

∑
i=1

bHRT
u (5.3)

where N is the number of tasks, CSS(τi) is the code and stack size of task τi (which
represents actor Ai of the input CSDF graph G), E is the set of edges in G, bHRT

u is
the size of the buffer that implements the communication over edge eu. The value
of bHRT

u assumes no task tardiness and is obtained using Equation (2.31) on page 46.
Compared to FFD, in FFD-SP the memory requirements increase due to both the size
of buffers, that have to be enlarged to handle task tardiness, and the code and stack
size overhead of task replicas, which are necessary in case of migrating tasks. The
memory requirement in FFD-SP is denoted by memSP and calculated as follows.

memSP =
MSP

∑
i=1

∑
τj∈Γi

CSS(τj) +
|E|

∑
i=1

bSRT
u (5.4)

where MSP is the number of processors required by the semi-partitioned approach,
Γj is the set of tasks with non-zero shares on processor πj, and bSRT

u is the size of the
buffer that implements the communication over edge eu, calculated using Equation 5.2.
Note that Equation (5.4) differs from Equation (5.3) because in the SP approach a task
can have shares on different processors.

In Table 5.1 the overhead of our proposed FFD-SP over FFD, in terms of memory
requirements, is expressed by the ratio memSP

memFFD
. On average, our proposed approach

requires 24.3% more memory compared to FFD.
The second cost is the increase in applications’ latency, due to the postponement of

task start times needed to handle task tardiness. Column LFFD shows the applications’
latency, expressed in clock cycles, under FFD. These values are derived using the
latency analysis described in Section 4.7 of [Bam14]. In order to derive the application
latency under FFD-SP, denoted by LSP, we use the same analysis from [Bam14], con-
sidering the task start times obtained by our SRT approach (described in Section 5.5.1).
Then, we add to that latency value the tardiness (which can be potentially null) of the
output actor of the application. The latency increase of our FFD-SP over FFD is on
average 29.2% (see column LSP

LFFD
).

Finally, to evaluate the efficiency of our proposed FFD-SP heuristic, we compare
its results with LUF. The memory requirements and application latencies under
LUF are derived following the same procedures used for FFD-SP. We can see from
the last two columns of Table 5.1 that over the considered benchmarks the EDF-fm
approach with the LUF heuristic incurs a much larger memory overhead (on average
+65.9%, see column memLUF

memFFD
) and latency increase (on average +90.2%, see column

LLUF
LFFD

) compared to FFD. Moreover, we note that for most applications the number
of required processors is equal or greater when using LUF (MLUF) compared to our
FFD-SP (MSP), with the exception of the Serpent application. Only in that example,
the LUF outperforms our FFD-SP due to the characteristics of the task set. This means

104 Chapter 5. Semi-partitioned Scheduling of CSDF-modeled Streaming Applications

that for most of the benchmarks our FFD-SP heuristic is equally or more efficient
than LUF in exploiting the available processing resources.

5.8 Discussion

The theoretical analysis provided in Section 5.5 proves that streaming applications
modeled as acyclic CSDF graphs can be scheduled using any soft real-time scheduler,
providing hard real-time guarantees on the input/output interfaces between the
application and the environment.

Using the theoretical results of Section 5.5, in Section 5.6 we propose a novel
heuristic that is aimed at reducing the number of required processors while keeping a
low buffer size and latency overhead when the EDF-fm SRT scheduling algorithm is
used. Section 5.7 shows that on a set of real-life applications, our approach can reduce
the number of processors required to schedule these applications, guaranteeing the
same throughput. However, compared to a HRT partitioned approach, our semi-
partitioned SRT approach incurs an overhead in terms of memory requirements (on
average, 24.3%) and application latency (on average, 29.2%).

