Universiteit

4 Leiden
The Netherlands

Semi-partitioned scheduling and task migration in dataflow networks
Cannella, E.

Citation
Cannella, E. (2016, October 11). Semi-partitioned scheduling and task migration in dataflow
networks. Retrieved from https://hdl.handle.net/1887/43469

Version: Not Applicable (or Unknown)

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/43469

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/43469

Cover Page

The handle http://hdl.handle.net/1887/43469 holds various files of this Leiden University
dissertation

Author: Cannella, Emanuele

Title: Semi-partitioned scheduling and task migration in dataflow networks
Issue Date: 2016-10-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43469

Chapter 4

Process Migration Mechanism
in a Mapped PPN

Most of the work presented in this chapter has been published in [CDM*12].

N Chapter 3 we investigated several approaches that allow to execute applications

specified as PPNs on Network-on-Chip (NoC) based MPSoCs. The approaches
presented in Chapter 3 represent alternative implementations of the first component
of our proposed middleware!, introduced in Section 1.4.1 and depicted in the software
stack of Figure 1.6 on page 20. The first component of our middleware, PPN Commu-
nication, allows PPN processes to communicate in NoC based MPSoCs, regardless
of the mapping of processes to the available PEs. This is a necessary property in
order to achieve system adaptivity by means of process migration. However, it is also
necessary to define how to perform the transition between the current mapping and
the next desired one. That is, we have to provide a mechanism to perform process
migration. In our approach, this mechanism is implemented by the second component
of our proposed middleware shown in Figure 1.6, namely Process Migration, which
is proposed in this chapter. We recall that the techniques proposed in Chapter 3 and
this chapter are aimed at best-effort systems.

4.1 Problem Statement

In this chapter, we address the problem of defining and implementing a process
migration mechanism, targeted at PPN processes on NoCs, that satisfies the following
three requirements:

IWe recall that the proposed middleware is aimed at achieving system adaptivity in embedded NoC
based MPSoCs by exploiting process migration.

72 Chapter 4. Process Migration Mechanism in a Mapped PPN

1. Once the process migration is triggered, it has to be completed within a certain,
known time frame. We refer to this property as predictability.

2. The process migration can be triggered in the system at any time. We consider
this requirement because we want to cover the scenario in which process
migration is needed in response to a hardware fault, for which the moment of
occurrence is unknown.

3. The code used to allow process migration has to be generated automatically,
without the manual intervention of the designer. This is needed to relieve
designers from the time-consuming and error-prone task of inserting the code
necessary to allow task migration by hand.

4.2 Contributions of this Chapter

We devise and develop a predictable process migration mechanism that allows run-
time process remapping among the tiles of the NoC, which is a fundamental require-
ment for system adaptivity. The peculiarity of our solution is that, leveraging the
PPN operational semantics and process structure, the migration can actually start at
any point during the execution of the main body? of a process without the need of
moving a large state. Moreover, an upper bound of the process migration overhead
can be found, based on the PPN topology and FIFO buffer sizes. Finally, the code
used to allow process migration is minimally invasive with respect to the original
code structure and can be generated in a completely automated way.

4.3 Related Work

Run-time resource management is a widely studied topic in general purpose dis-
tributed systems scheduling [CJK88]. In particular, process migration mechanisms
[Smi88, MDP*00], have been developed and evaluated in this context to enable dy-
namic load distribution, fault resilience, and improved system administration and
data access locality. In recent years, run-time management is gaining popularity and
finding applications also in multiprocessor embedded systems. This domain imposes
tight constraints, such as cost, power, and predictability, that run-time management
and process migration mechanisms must consider carefully. [NVC10] provides a
survey of run-time management examples in state-of-the-art academic and industrial
MPSoCs, together with a generic description of run-time manager features and design
space.

Our work is focused on a specific component of run-time management strategies,
namely the process migration mechanism. Papers which specifically address process
(or task) migration implementation in MPSoCs can also be found in the literature.
The closest to our work is [Gab09], in which the goals of scalability and system
adaptivity are achieved through a distributed task migration decision policy over a

2With the term “main body” we mean that a migration can happen during most of the execution time
of a process. This concept will be explained in greater detail in Section 4.5.1.

4.3. Related Work 73

purely distributed-memory multiprocessor. Similar to our approach, their platform
is programmed using a process network MoC. However, in their approach the
actual task migration can take place only at fixed points, which correspond to the
communication primitive calls. Our approach, instead, enables migration at any point
in the execution of the main body of processes. This leads to a faster response time to
migration decisions, which is preferable for instance in case of hardware faults.

Other task migration approaches are explained and quantitatively evaluated
in [BABP06] and [AACPO08]. Dynamic task re-mapping is achieved at user-level
or middleware/OS level, respectively. In both these approaches, the user needs to
define checkpoints in the code where the migration can take place. This can require
a consistent manual effort from the designer which is not needed in our approach.
Moreover, a relevant difference with respect to our work is the inter-task communi-
cation implementation, which exploits a shared memory system. We argue that our
approach, which uses purely distributed memory, can perform better in emerging
MPSoC platforms since it provides better scalability.

Finally, the authors in [NKG™02] propose an MPSoC hardware and software
architecture template that allows the system to change the mapping of applications’
tasks at run-time. Compared to the work presented in this chapter, their approach
uses a distributed shared memory to implement inter-task communication. That is,
in their execution platform a process can read data tokens directly from the memory
of a different processor. As mentioned earlier, by contrast, our approach uses com-
pletely distributed memories, with the goal of providing better scalability in emerging
MPSoCs.

It is worth noting that the process migration mechanism presented in this chapter
has been devised and implemented within the MADNESS EU FP7 Project, in close
cooperation with DIEE, University of Cagliari, and ALaRI, Faculty of Informatics,
University of Lugano. The mentioned migration mechanism, initially presented in
[CDM™12], has been used as base infrastructure for other works within the MADNESS
project [MTR 12, DCT*13]. In particular, in his PhD dissertation [Der15], Derin has
proposed migration techniques that are complementary to the one described in this
chapter. In Chapter 5 of [Der15], the author makes the following contributions which
are closely related to the process migration mechanism of [CDM*12].

- First, he shows how software self-testing routines, capable of detecting faults,
can be coupled with the migration mechanism of [CDM*12].

- Second, he devises a task migration hardware module that is included in each
tile of the NoC-based MPSoC. In case of a fault, this task migration hardware
is in charge of extracting the state of processes from the faulty tile to make it
available to the resource manager of the MPSoC.

- Third, he proposes an alternative way of handling faults at the PPN application
level. In [CDM*12], when a PPN process is interrupted by a fault, the execution
is resumed on another tile by rolling back to the beginning of the interrupted
iteration of the PPN process. Chapter 5 of [Der15] provides also a different way
of fault recovery, that resumes the execution on a different tile by rolling forward
to the PPN process iteration that follows the interrupted iteration. This yields to

74 Chapter 4. Process Migration Mechanism in a Mapped PPN

a simpler task migration hardware implementation, although the application
output can be temporarily incorrect.

The remainder of the chapter is organized as follows. In Section 4.4, we summarize
the assumptions of our system adaptivity approach and we provide an overview of
our proposed process migration mechanism. Then, in Section 4.5, we describe the
proposed process migration mechanism in greater detail. Finally, Section 4.6 con-
cludes this chapter reporting the experiments performed to test our process migration
mechanism, and the achieved results.

4.4 Proposed Migration Approach

In the following paragraphs we recall some assumptions, related to the structure of
the MPSoCs that are considered by our approach, that have an important influence
on our proposed process migration mechanism. Then, we provide an overview of the
migration mechanism itself.

The starting assumption of our system adaptivity approach, as depicted in the right
part of Figure 1.6 on page 20, is that we target an MPSoC composed of tiles, connected
by a NoC, with completely distributed memories and no direct remote memory access.
This means that the processing element of a tile can only directly access the content of
its own local memory. All the communication and synchronization between processes
mapped on different tiles can only happen using messages sent over the NoC.

Our approach for realizing system adaptivity consists of deploying the processes
of the application(s) modeled as PPNs over the NoC-based MPSoC and allowing their
run-time remapping to adapt the system to the changing operating conditions such as
variation in quality of service requirements, availability of resources, or power budget
constraints. In particular, system adaptivity in our system is supported by using the
dedicated middleware highlighted in the software stack in the left part of Figure 1.6
on page 20. For reasons of convenience, we copy Figure 1.6 on page 20 in Figure 4.1.

o @ PPN
Application(s) Processes
tilep — tiles
Middleware AT sl [~ \
communication | migration =
Operating System ,/’/ tile; | — ftiles
| J
Software Stack Hardware Platform

Figure 4.1: Software stack (left) proposed to achieve adaptivity in BE systems. The middleware layer is
denoted by the shaded area. The stack is deployed on each tile of the hardware platform (right).

At the top of the software stack, applications are specified as a set of PPN processes,
which are implemented as separate threads. An example of a thread representing a

4.5. Process Migration 75

PPN process is given in Figure 2.3(b) on page 29. However, in our work the basic
structure of PPN processes will be modified to ease the realization of a predictable
process migration mechanism, as described in Section 4.5.

At the bottom of the software stack in Figure 1.6 on page 20, the operating system
(OS) is responsible for all kinds of process management (process creation, deletion,
setting its priority, suspending or resuming it). These features are essential for the
run-time management of the system, and in particular to perform process migrations.
Moreover, each processor has multi-tasking capabilities thanks to the OS. In case
of many-to-one mapping, i.e., when more than one process are mapped on the same
processing element (PE), the scheduling is data-driven. This means that a process
keeps executing successive iterations until it blocks in reading or writing (recall the
PPN process structure of Figure 2.3(b) on page 29). When the process blocks, it yields
the processor control to the next process in the ready queue in a round-robin fashion.

In between the applications and the operating system, in this thesis we propose the
middleware which is highlighted in Figure 1.6 on page 20, which comprises two main
components. The first one is PPN communication, which realizes the communication
and synchronization between processes located in separate tiles, according to the PPN
semantics. This middleware component has been already described in Chapter 3. The
second component is Process migration, which is mainly responsible for the following
activities, performed during the migration of processes:

- Coordinates the creation and deletion of processes among different tiles;
- Guarantees the correct transfer of the process’ state during process migration.

The second component of our proposed middleware is the main subject of this chapter.

4.5 Process Migration

This section details the proposed mechanism to perform migrations of PPN processes
over NoC-based MPSoC systems. It is a fundamental part of the middleware depicted
in Figure 1.6 on page 20 because it defines how to perform run-time remapping of
processes. This, in turn, allows designers to implement system adaptivity strategies.

The migration mechanism depends on the considered communication approach.
As a starting assumption to devise the migration mechanism, we consider the request-
driven (R) communication approach described in Section 3.4.3. This choice is made
because the R approach leads to a considerably easier implementation of the migra-
tion mechanism since it requires less synchronization points. At the same time, it
gives performance comparable to the other approaches for computation-dominant
applications, as shown in Section 3.6.1.

We recall that to take into account the run-time remapping of processes over the
NoC, each PE stores in its local memory a middleware table which is used during
the conversion of the generic PPN communication primitives (i.e., READ, WRITE in
Figure 2.3(b) on page 29) to the corresponding hardware platform primitives, such
that the messages are sent to the right tiles in the system. A simple diagram showing
the migration of a PPN process is depicted in Figure 4.2. An example of a middleware
table generated for the initial mapping in Figure 4.2 is given in Table 4.1. For each

76 Chapter 4. Process Migration Mechanism in a Mapped PPN

Table 4.1: Middleware table example

ch | prod(ch), cons(ch) | map(prod(ch)), map(cons(ch))
P, P tiley, tileq
2 P, P3 tiley, tiley

—_

channel of the PPN, the table lists which processes are the producer and consumer of
that channel, together with the current mapping of producer and consumer processes
in the system. Auxiliary information, for instance requests that are pending when a
process migration is triggered, is also saved for each channel.

Mainly two kinds of process migration mechanism are considered in the literature,
namely process replication and process recreation. In process replication, the program
code of a migratable process is copied in each tile that may execute it, thereby creating
replicas of the process. When a process needs to be migrated from one tile to another,
the process is suspended on the first tile and restarted on the second. The state of the
process must be copied from the first tile to the second because the process cannot be
just restarted from scratch.

The second kind of process migration mechanism is based on the so-called process
recreation. In this case, if a migration is needed, the process is killed on the initial tile
(it runs) and created on another tile by moving both the process code and state. The
OS/middleware in this case must support dynamic loading of processes to processors.
This way, only one instance of the process code exist at a given time in the system.

The process replication mechanism is less efficient in terms of memory usage,
compared to process recreation. Yet, it offers significant advantages such as easier
implementation and faster migration procedure. Thus, for our proposed process
migration mechanism we choose process replication because we aim at guaranteeing
a quick completion of the migration procedure. Moreover, the memory constraint in
our system is not critical.

Consider again the simple diagram in Figure 4.2, which shows the migration of a
PPN process. Even though it is a simple example, it can be easily generalized for more
complex PPN topologies. The diagram highlights the tiles involved in the process
migration procedure, which are referred to as:

- the source tile, namely the tile which runs the process before the migration
takes place;

- the destination tile, which is the tile that will execute the process after the
migration;

- the predecessor tile(s), which run(s) the predecessor process(es);

- the successor tile(s), which execute(s) the successor process(es).

The structure of PPN processes, modified to allow migration at any point dur-
ing the execution of the process main bodies, and the proposed process migration
mechanism are presented in the following two subsections.

4.5. Process Migration 77

PPN Ch1 Ch2
topology @ (T T T] @ (T TT1

F————————

Resource

|
I
: Manager

> w _ Source tile Successor tile
Bf BY [~
(TTT} (TTT}
i — tiley
/
|
{ migration
\

Destination tile

Figure 4.2: Example of a migration procedure. The PPN topology considered in this example is shown
in the top part of the figure. The initial mapping of this PPN is the following: process Py on tiley, P>
on tiley, P3 on tile tiley. The resource manager (denoted by a dashed box) triggers the migration of P,
from tileq to tiles by sending a specific control message to tiley. This control message is forwarded by
tiley to all the tiles involved in the migration. Control messages are represented by dashed arrows. To
perform the actual migration, a few more steps are required. First, process Py is suspended on tiley and
its iteration vector is transferred to tiles. Second, the state of the input and output channels of P, on
tiley (the content of BlC and BY) are also moved to tiles. Finally, the migration procedure is completed
by starting the replica of Py on tiles. This replicas is denoted by P5.

4.5.1 Migratable PPN process structure

Our goal is to allow the migration to occur at any time during the execution of the
process main body, which means that a migration can happen during most of the
execution time of a process, as will be explained later in this section. In turn, this
improves the latency incurred from the moment that a migration is triggered to its
completion. To this end, we extend the NI of a tile with the ability to generate an
interrupt for the processing element when a message with a specific tag is received.
This extension is made because the detection of migration commands by polling at
specific migration points in the code may cause undesired latency in the migration
procedure.

In the scenario depicted in Figure 4.2, process P, is migrated from tile; to tiles.
The original structure of the code of P, as generated by the pn compiler, is reported
in Figure 4.3(a). This structure of process P, hides all the details of the actual mapping
of P, onto the execution platform.

In particular, to perform such mapping, the PPN communication primitives of P,

78 Chapter 4. Process Migration Mechanism in a Mapped PPN

Mapped Process P,

(for (i=0; i<M; i++){ \

for (j=0; j<N; j++){

Process P, ch, cd(chy);

/for (i=0; i<M; i++){ AN —9 Id(in, chy);

for (1=0; j<N; j++){ srichi):

chi ¢ READ(in, IP1); out = Fy(in1);
out = Fa(in1); cr(chy); ch,
ch st(out, chy); *—>»
WRITE(out, OP1); ¢— 2 sd(chy);
} }
\J) \J)
(a) Structure of PPN process P;. (b) Basic code structure of the mapped process P,.

Figure 4.3: Sub-figure (a) shows the structure of PPN process P, in Figure 4.2. Sub-figure (b) depicts
the basic code structure used to map P, onto the considered execution platform. Notice that PPN
communication primitives have been refined into several execution platform primitives.

must be converted to (a set of) communication primitives of the execution platform.
This conversion is a problem already studied in the literature [LvdWDO1]. Typical
communication and synchronization primitives of an execution platform are the
following>:

e Check Data (cd): Checks if there are available data tokens in the considered

FIFO buffer. Otherwise, it stalls the calling process.

o Check Room (cr): Checks if there is available space in the considered FIFO

buffer. Otherwise, it stalls the calling process.

e Load Data (1d): Transfers a token from the considered FIFO buffer to the local

space of the process.

o Store Data (st): Transfers a token from the local space of the process to the

considered FIFO buffer.

e Signal Room (sr): After a Id operation, it signals that (additional) room is

available in the considered FIFO buffer.

e Signal Data (sd): After a st operation, it signals that (additional) data is available

in the considered FIFO buffer.

To derive an efficient mapping of PPN processes to an execution platform, design-
ers have to consider the structure of the execution platform itself. For instance, it is
fundamental to know whether the FIFO buffers which implement the channels of a
certain process are located in a shared memory or in the local memory of the PE that
executes that process.

In our approach, as shown in Figure 4.2, each process can only access the local
memory of its tile. The transfer of tokens among tiles of our execution platform is

3Using the notations of [LvdWDO01].

4.5. Process Migration 79

handled by the request-driven middleware approach, as mentioned earlier. Therefore,
each process reads and writes tokens only from/to its local memory. In this scenario,
the READ and WRITE PPN communication primitives are typically converted to the
aforementioned primitives of the execution platform in the following way.

READ = cd — Id — sr 4.1)

WRITE = cr — st — sd (4.2)

Using the above conversion of communication primitives, we derive the imple-
mentation of PPN process P, onto the considered execution platform. The structure of
such implementation is shown in Figure 4.3(b). We will refer to the structure shown
in Figure 4.3(b) as basic mapped process structure. Since we require that migration may
happen at any point within the execution of the processes main body, a modification
of the process structure is required. In the rest of this section, we will explain why
this modification is required and in what it consists.

In order to maintain correct functionality of the application, the state of the whole
PPN must be consistent before and after a process migration has occurred. We divide
the state of the PPN in two components, as follows:

1. State of PPN processes. As explained in Section 2.1.3, the only internal state of

a PPN process is its iteration vector I, which represents the value of the for-loop
iterator variables.

2. State of PPN channels. The state of a channel in the PPN is represented by the

tokens which are currently stored in the FIFO buffers which implement that
communication channel.

Regarding the second component of the PPN state listed above, note that a PPN
channel ch is actually implemented by two FIFO buffers in the request-driven com-
munication approach which is considered in this chapter. One of these buffers reside
on the tile on which the producer of ch is mapped, whereas the other resides on the
tile in which the consumer of ch is mapped (recall Figure 3.4 on page 56). Therefore,
when migrating a process P from its source tile to its destination tile, two components
of the PPN state have to be migrated:

ST1: The iterator vector of P. For instance, the iterator vector of the process depicted
in Figure 4.4 is T = [i, j].

ST2: The state of the input and output channels of P residing on the source tile of
P. This state is in fact represented by the content of the input and output FIFO
buffers connected to P. For example, refer to Figure 4.2, which illustrates the
migration of process P, from tile; to tiles. If, when the migration is performed,
FIFO buffers Bf and Bg on tile; contain tokens, their content has to be moved
to the destination tile, tiles, into the corresponding FIFO bulffers.

Having defined the state that has to be transferred during a process migration, we
comment and describe the migratable PPN process structure shown in Figure 4.4 in
the following. We denote this migratable process as Pnjg. When Ppyg starts, in line 1
of Figure 4.4, it checks if the migration flag is set. If the checking is positive, then this
means that a migration has been performed, so the process state is reloaded.

80 Chapter 4. Process Migration Mechanism in a Mapped PPN

Migratable Process Ppjg
ﬁ if (migration) resumeStata

2 for (i=io; i<M; i++){ migration
3 for (=jo; j<N; j++) * disabled
4 cd(chy);

5 Id(in, chy);

main body:
migration —»
allowed

o

out = Fy(in1);

7 cr(chy);

8 st(out, chy);

9 sd(chy);

; /
1

0 sr(chy);
1 J

} reset jo;
Figure 4.4: Structure of migratable process Py;o. Compared to the basic mapped process structure of
Figure 4.3(b), the order of the execution platform communication and synchronization primitives is
changed. This allows migrations to be performed at any point within the main body of the Py,;, (lines
4-8).

Both state components listed above (ST1, ST2) are transferred from the source tile
to the destination tile upon migration. If the migration flag is false, then this means
that the process Ppig starts from scratch, with empty input and output FIFOs and
ig = jo = 0.

Lines 2 and 3 differ from the basic mapped process structure in Figure 4.3(b)
because the iterators inside the for loops do not start from zero in case of migration.
Instead, they start from the values iy and jy, which represent the iteration at which
the process was interrupted by the migration while running on the source tile. After
the first complete execution of the inner for loop, starting from jy, the value of jj is set
to zero in line 11 such that the next execution of the inner loop starts correctly with
j=0.

Moreover, the order in which communication and synchronization primitives are
executed in Py;g differ from the one used in the basic mapped process structure of
Figure 4.3(b). In fact, the execution platform primitives that implement the PPN READ
primitive of Pn;g (i.e., cd, Id, and sr) are not executed in a continuous sequence. They
are, instead, executed in lines 4, 5, and 10, respectively, with several other operations
occurring between Id and sr.

The reordering of execution platform communication primitives has already been
studied in [LvdWDO01]. The work in [LvdWDO01] defines rules by which the reordering
preserves the correctness of the execution of the mapped PPN process. The migratable
process structure Pp;g in Figure 4.4 complies with the rules defined in [LvdWDO01].

Recall that the actual release of memory locations is performed by the sr operation,
which consumes the data token from the FIFO by increasing the read pointer. This
operation takes place only outside the main body of Py;¢, in line 10. Then, if a
migration is triggered before the sr operation, Py,;, can be correctly resumed on the
destination tile since it will read again the same input token, because the read pointer
is unchanged. Similarly, the sd operation that concludes the WRITE primitive is
executed at the end of the mapped PPN process, outside its main body. Finalizing the

4.5. Process Migration 81

READ and WRITE operations at the end of an iteration allows the process migration
to happen anywhere within lines 4-8 correctly. Note that, in case of multiple input
or output channels, the sd and sr operations of all channels are performed together
right after the main body of the process, in order to update the state of Py;g and of
the FIFO buffers in the shortest possible time.

Process migration cannot happen in the migratable process Ppjg within the lines
9-11 and 2-3 because that will cause an inconsistency in the state of the PPN. This
is because lines 9 and 10 can be considered as an update of the output and input
FIFOs state, while lines 11, 2 and 3 represent an update of the state of Prig- If, for
instance, a migration happens after the FIFO state update but before the iterator
set update, the following scenario will occur: (i) the state of the input and output
FIFOs connected to Ppig are modified as if the current iteration was successfully
completed; (ii) Pm;g restarts the current iteration from the beginning, because the
iteration vector was not updated accordingly. This condition will certainly cause a
deadlock. Although the process migration cannot happen within lines 2-3 and 9-11,
note that these sections represent a minimal part of the process execution, because
performing the sd and sr operations and updating the iterator set is a matter of a few
simple instructions. Therefore, disabling the migration within these sections does not
increase the migration latency significantly.

The principle behind the proposed migratable process structure is that the state
of the PPN must be consistent and up-to-date when a migration is performed. This
allows the PPN to correctly resume its execution, with the migrated process mapped
on the destination tile. Leveraging the PPN process structure, our approach does not
require the designer to specify the context that has to be transferred upon migration
as in [BABP06]. This burden is neither moved to the OS/middleware level as in
[AACPO08]. Determining the state to be migrated is not needed because the PPN
state simply consist of the two components (ST1, ST2) described above. Moreover,
our approach does not need designer-generated checkpoints/migration points. The
resource manager in Figure 4.2 can interrupt the process execution at any time during
the execution of the process main body. The migrated process will then resume its
execution from the beginning of the interrupted iteration. On the one hand, this
implies that if the migration is triggered in the middle of the function execution, the
time spent in computation since the start of the iteration is lost. On the other hand,
this approach leads to a more efficient implementation and predictable migration
response time, which we consider more important for our goals.

4.5.2 Process migration mechanism

The migration mechanism requires actions from all the tiles depicted in Figure 4.2.
Note that, in the figure, a resource manager is in charge of taking the migration decision.
How the resource manager makes this decision is out of the scope of this thesis
because we focus only on the process migration mechanism itself. Our contributions
are in fact complementary to other research works (see [DKF11, AK09, LKwP* 10,
Gab09, SSHT06]) which provide techniques to determine if a process migration is
necessary and/or beneficial and, in that case, the actual destination tile of the process

82 Chapter 4. Process Migration Mechanism in a Mapped PPN

that has to be migrated.

When a migration decision is taken by the resource manager, it initiates the
migration by sending a specific control message to the source tile. The source tile then
forwards this control message to the destination, predecessor and successor tiles to
inform them that the migration procedure has been initiated.

The control messages which notify the involved tiles for the start of the process
migration contain the ID of the migrated process and the new mapping of that process.
On all of the involved tiles, and on the resource manager, the middleware tables are
then updated taking into account the new mapping of the migrated process.

For each of the tiles involved in the migration procedure, the detailed list of
required actions are explained below.

Actions on the source tile

The behavior of the source tile depends on whether the tile is functional or faulty.

o In case the source tile is functional, the migrating process is stopped on the PE
of the tile and the two state components, ST1 and ST2 mentioned in Section 4.5.1,
are moved to the destination tile. These state components are transferred by
means of dedicated messages sent over the NoC. Moreover, the middleware ta-
ble is updated as described above. The source tile takes also care of propagating
the migration decision to the other tiles involved in the migration procedure.
This propagation is depicted by the dashed arrows in Figure 4.2.

o In case the source tile is faulty, the actions described in the previous point are
emulated by a dedicated hardware IP, as proposed in [DCT+13].

Actions on the destination tile

The destination tile receives a specific message for process activation. The migration
procedure is handled by creating the required software FIFOs and by activating the
replica of the migrated process using the corresponding OS call. Before the process
replica is started, the migration flag is set to 1 so that the state of the migrated process
is resumed (see line 1 in Figure 4.4). This implies that the input and output FIFOs
connected to the migrated process are copied, and the iterator set (in the figure, iy and
jo) are set such that the execution starts from where it was suspended on the source
tile. The middleware table is also updated in the way described above.

Actions on predecessor tile(s)

On these tiles, the only required step is the update of the middleware tables according
to the new mapping of the migrated process. This way, new tokens meant for the
migrated PPN process will be sent to the destination tile.

A corner case of the communication between the migrated process and its pre-
decessor processes may happen when the migrating process has sent a request for
new tokens just before the migration command arrives. For instance, it may happen
that process P, in Figure 4.2 has sent a request for tokens to P; just before receiving

4.6. Experiments and Results 83

the migration command from the resource manager. If that request has been served,
before the migration command reached the predecessor tile, it means that new tokens
are either traversing the NoC or they are already stored in the source tile. The prede-
cessor tile in this case has to send another interrupt-generating message to the source
tile, in order to force the forwarding of these data tokens to the destination tile.

Actions on successor tile(s)

Similarly, the successor tiles have to update their middleware tables so that successors
of the migrating process will send new requests for data tokens to the destination
tile. A particular case in the protocol between successor processes and the migrated
process is represented by requests which are sent to the source tile just before the
migration command arrives at the source tile. Each successor process checks if its
requests have been served before the arrival of the migration command. If this is not
the case, the successor tile has to send an interrupt-generating message to the source
tile, in order to force the redirection of requests from the source tile to the destination
tile.

4.6 Experiments and Results

In this section, we assess the benefits and overhead of the process migration mecha-
nism proposed in this chapter. We perform our experiments on the same hardware
platform setup used in Chapter 3, which is described in Section 3.5.3.

The setup of this experiment is shown in the left part of Figure 4.6. We use as a
case study the M-JPEG application described in Section 3.5.2. Tile; initially runs all
M-JPEG processes, which are listed in Figure 3.15, in a sequential way. P; is derived
by merging initVideoln and videoln processes, P, and P; represent respectively the
DCT and Q processes, and Py is obtained by merging the VLE and videoOut processes.
We use the M-JPEG application as a case study because, compared to the Sobel appli-
cation, M-JPEG processes are coarse-grained with high computation/communication
ratio and therefore M-JPEG represents better the kind of applications which are likely
to be mapped on a NoC-based MPSoC. The scheduling of the M-JPEG processes on
Tile; before the migration is represented in Figure 4.5. Scheduling charts have been
obtained using the GRASP [HvdHBL10] trace visualization tool to plot the informa-
tion gathered at run-time. The trace shows the periodic scheduling which is obtained
when all the processes are mapped on one tile and the scheduling policy is round-
robin with yielding (yielding occurs when a process is blocked on reading or writing).
The buffer size of each FIFO channel is set to two tokens in this experiment. In this
scenario, the process scheduling iterates in the following way. First, P; executes two
times, until it blocks on writing because its output buffer is full. Then P, is scheduled.
It completes two iterations, consuming the tokens created by P; and producing two
tokens for P;. It then blocks while reading its input FIFO which is empty by then.
Similarly, P; and P4 execute twice before blocking on read. This scheduling repeats
until the end of the application execution if no migration is performed.

84 Chapter 4. Process Migration Mechanism in a Mapped PPN

P4 LT 1]
F3 [e
P2 d_* dﬁ
2N | I
lussis sl doindbaan s o Jusalassdssedesd o ond sl bl
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

(x103 c.c.)

Figure 4.5: M-JPEG process scheduling when running on a single tile. The scheduling policy is round-
robin, with yielding when a process is blocked on reading or writing. The buffer size of each FIFO
channel is two. These conditions lead to the periodic schedule (Py, Py, Py, P>, P3, P3, Py, Py), which
continues indefinitely until the end of the application if no migration is performed.

tile,

Resource
Manager Y | (] 1 1

0 50 100 150 200 250 | 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150

T T2 (x10% c.c.)

Figure 4.6: M-JPEG process scheduling while migrating P, using the proposed migration mechanism.
Until time Ty, all processes are mapped on tiley. At time Ty, the resource manager requires process Py to
migrate from tiley to tiley. By using our interrupt-driven migration mechanism, the migration request
is handled promptly. Process P, can be restarted on tiley within a predictable amount of time, in this
case represented by the time interval (T7p — 11).

4.6.1 Process migration benefits and overhead

System adaptivity requires the ability to change the process mapping at runtime in
a predictable and efficient way. To illustrate the benefits of our migration approach
presented in Section 4.5, we compare our proposed migration mechanism, driven
by interrupt-generating control messages, with a migration approach based on fixed
migration points.

In the latter case, process migration can take place only at fixed points in the code.

For instance, referring again to Figure 4.5, the arrows over the bars of process P,
represent the start of an iteration of that process (for the sake of clarity, see line 4 in
Figure 4.4). Assume that these points correspond to migration points, namely where
the process checks if migration-messages have been sent by the resource manager.
Given that the migration request can reach Tile; at any time, the latency of the actual
process migration can vary. In the best case, the migration request reaches the tile
right before the migration check point. In the worst case, the migration request arrives

4.6. Experiments and Results 85

just after the migration check point, for instance the one which is reached around
clock cycle 275,000 in Figure 4.5. The actual migration would not take place until the
next migration check point of P,, which happens to be after 2 executions of Pz, P4
and Pj, and one execution of P,. In this simple case, an upper bound of the process
migration response time can be found, based on the process scheduling, which in
turn depends on the workload of processes, the buffer sizes and the scheduling policy.
In more complex cases, where the scheduling on one tile is affected by the scheduling
on other tiles because of data dependencies, even finding an upper bound for the
response time practically would not be possible.

By contrast, the interrupt-driven migration mechanism that we propose in Sec-
tion 4.5 has a predictable behavior. As shown in Figure 4.6, the system has a faster
response time to migration requests. At time 71, which is the worst case for the
fixed point migration strategy discussed above, the resource manager sends a control
message which triggers the migration of process P, to Tile;. The process can be
restarted on the destination tile within a predictable amount of time represented by
the difference (7» — 11). This is the time it takes the source tile and the destination tile
to execute the steps described in Section 4.5.2, such as the movement of the iteration
vector of P, and the content of the FIFO connected to P,, followed by the activation
of P, on the destination tile. This migration overhead in time, (7, — 77), as shown in
Figure 4.6, is much smaller than a single execution of the DCT function in process
P,. The migration procedure in this example actually takes less than 12% of a single
execution of the DCT process.

Note that an upper bound of the migration procedure overhead can be derived for
guaranteed throughput (GT) NoCs. In fact, the migration duration T, of a process
P € P can be split in two main components:

Tmig(P) = TstuteMig(StatffSize(P)) + TprocAct 4.3)

TprocAct is a constant value which represents the time required to activate the migrated
process using OS system calls, to update the middleware table, and complete all the
actions described in Section 4.5.2 on the destination tile. Ty tenmiq is the time it takes to
transfer the state from the source to the destination tile. Its worst case, for GT NoCs,
depends only on the state size. The largest state size occurs when both the input and
output FIFO buffers connected to the migrating process P are full. This worst-case
value can then be derived from the PPN topology and buffer sizes:

max(stateSize(P)) = Y_ size(B(ch)) (4.4)
chelOCp

where IOCp = ICp U OCp as defined in Section 2.1.3, size(B(ch)) is the size of the
buffer which represents the channel ch on the source tile. The value size(B(ch)) is
obtained by multiplying the number of tokens of B(ch) by the token size of a channel
ch. An upper bound of the migration time T,;, of a process P can be calculated using
max(stateSize(P)) in Equation (4.3).

Our interrupt-driven migration mechanism incurs the worst-case overhead when
a migration request arrives just before the end of a function execution in a process that

86 Chapter 4. Process Migration Mechanism in a Mapped PPN

has to be migrated. In this case, the migration still takes place in a predictable amount
of time but the process execution has to roll back to the beginning of the interrupted
iteration. In this scenario, all the time spent in the function execution is wasted.

4.7 Discussion

From the experimental results and analysis provided in Section 4.6.1 we can con-
clude that the migration mechanism proposed in this chapter complies with the
requirements set in the problem statement of Section 4.1. In particular, our proposed
migration mechanism possess the following properties:

e lItis predictable, that is, when a migration is triggered, it will be completed within
a certain time frame given by Equation (4.3);

e Thanks to the modified code structure of PPN processes proposed in Sec-
tion 4.5.1, a migration can be triggered at any time during the process main
body.

o Referring again to Section 4.5.1, the code needed to allow the proposed migra-
tion mechanism can be generated in a completely automated way.

Finally, note that the experimental results of Section 4.6.1 show that our proposed
process migration mechanism is efficient. In fact, the overhead incurred to complete a
process migration is experimentally shown to be negligible compared to the overall
execution time of the application.

