
Semi-partitioned scheduling and task migration in dataflow networks
Cannella, E.

Citation
Cannella, E. (2016, October 11). Semi-partitioned scheduling and task migration in dataflow
networks. Retrieved from https://hdl.handle.net/1887/43469

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/43469

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/43469

Cover Page

The handle http://hdl.handle.net/1887/43469 holds various files of this Leiden University
dissertation

Author: Cannella, Emanuele
Title: Semi-partitioned scheduling and task migration in dataflow networks
Issue Date: 2016-10-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43469

Chapter 3

PPN Communication on
Networks-on-chip

Most of the work presented in this chapter has been published in [CDS11].

IN this chapter and in the following one, Chapter 4, we present techniques which
are aimed at achieving system adaptivity1 in the context of best-effort systems. In

order to make the system adaptive, our approach provides a mechanism by which
application processes can migrate among processors at run-time.

Our approach takes into account the emerging trends in the design of embedded
MPSoCs that are described in Sections 1.1.1 and 1.1.2. That is, we base our technique
on the following two assumptions:

1. As the methodology used to specify applications is concerned, we consider
an approach based on a Model of Computation. In particular, we adopt the
PPN MoC, which is presented in Section 2.1.3. In PPNs, memory, control,
and synchronization are completely distributed, which allows to change the
mapping of processes to PEs at run-time with minor effort.

2. Regarding the choice of communication infrastructures, we assume that PEs
in our systems are interconnected by a Network-on-Chip (NoC). Some of the
advantages of NoCs are described in Section 1.1.2. In the context of system
adaptivity, in particular, we argue that NoCs are appropriate because NoCs are
generic, i.e., the same NoC-based platform can be used to run different applica-
tions or to run the same application with a different mapping of processes. As
mentioned in Section 1.1.2, we consider NoC-based platforms which comprise
several processing elements, organized in tiles.

From the above discussion, it follows that the PPN MoC and NoC-based intercon-
nections, among other advantages, can favor system adaptivity in embedded MPSoCs.

1Recall the explanation of our understanding of the term “system adaptivity”, given in Section 1.2.1 on
page 10.

50 Chapter 3. PPN Communication on Networks-on-chip

However, there is a mismatch between the communication primitives allowed in
NoC-based execution platforms and the semantics of the PPN MoC. Therefore, in this
chapter we investigate and propose several approaches to overcome this mismatch.
All of the proposed approaches are aimed at implementing PPN communication on
NoCs considering system adaptivity as a driving objective. Moreover, they do not
require specific hardware support from the NoC-based platform to realize inter-tile
communication among PPN processes. The approaches presented in this chapter
represent different possible implementations of the first component of the middleware
layer that is proposed in this thesis (see Figure 1.6 on page 20) to achieve system
adaptivity on NoC-based MPSoCs.

The remainder of this chapter is organized as follows. Section 3.1 continues
the introduction by stating the addressed research problem. A summary of the
contributions of this chapter and a list of related work is provided in Sections 3.2 and
3.3, respectively. The proposed and investigated approaches for PPN communication
on NoCs are described in detail in Section 3.4. The applications used to evaluate the
different approaches are explained in Section 3.5 followed by the performance results
in Section 3.6. Note that in the rest of this chapter, for the sake of brevity, we will
refer to an “approach for implementing PPN communication on NoCs” as a “PPN
communication approach”.

3.1 Problem Statement

The main problem addressed in this chapter is the implementation of an efficient
approach to implement PPN communication on Network-on-Chip platforms. The
first requirement that we consider is that this approach must respect the PPN commu-
nication semantics (recall Section 2.1.3). That is, processes must block on read, when
trying to get data tokens from an empty FIFO, and block on write, when trying to write
data tokens to a full FIFO. Moreover, we want our communication approach to be
application-independent and oriented to system adaptivity.

The communication and synchronization problem when mapping PPNs on a NoC
is depicted in Fig. 3.1, showing a producer P and a consumer C connected through a
communication FIFO buffer B. We denote the size of buffer B as size(B). Unless oth-
erwise specified, throughout this thesis we will express the size of buffers in number
of tokens. If both producer and consumer can directly access the status register of
this FIFO buffer, to check if it is empty or full, implementing the PPN semantics is
straightforward. However, in this chapter we consider NoC implementations with
no direct remote memory access, that is, those NoCs in which a processing element
has direct access only to the local memory of its tile. In this scenario, processes P
and C, if mapped onto different tiles, cannot access the same piece of memory and
they can only exchange tokens through the network. Thus, the FIFO buffer B has
to be split on the producer tile and/or on the consumer tile. We denote the buffer
allocated on the producer tile and consumer tile as BP and BC, respectively. Note
that, as will be shown in one of our proposed PPN communication approaches (see
Section 3.4.1), it is not necessary that both these buffers actually exist. However, in

3.1. Problem Statement 51

Figure 3.1: The top part of the figure illustrates a producer-consumer pair which communicates through
FIFO buffer B. The bottom part of the figure shows how this pair of processes can be mapped onto a
NoC-based platform. The FIFO buffer B has to be split on the producer tile and/or on the consumer
tile using two software FIFOs, namely BP and BC. Note that the approach presented in this chapter is
independent of the considered NoC structure.

general, if size(B) is the minimum buffer size that guarantees deadlock-free execution
of the original PPN graph, the size of BP and BC must be necessarily set such that
size(BP) + size(BC) ≥ size(B). In this expression, if either BP or BC does not exist, its
size is set to zero.

We aim at implementing the PPN semantics without a dedicated support from the
underlying hardware architecture that allows checking for the status of the remote
FIFO buffers. For instance, in Figure 3.1, process P cannot check the status of BC,
and process C cannot check the status of BP. Moreover, we do not require support
for multiple hardware FIFOs on each NoC tile. Each tile is endowed with only two
hardware FIFOs2, one for incoming messages and one for outgoing messages, both
of which reside in the Network Interface (NI). However, we rely on the ability to
transfer data, in both directions, from these hardware FIFO buffers to the software
FIFOs (e.g., BP and BC in Figure 3.1) which implement the channels of our PPN and
are accessed by the PPN processes.

As the consumer can access the status of BC, implementing the blocking read is
trivial because every time C wants to access BC and this buffer is empty, the consumer
just has to wait until tokens arrive from the producer tile. However, since the producer
can only access the status of BP, implementing the blocking on write behavior is more
difficult. The producer must know that the remote buffer BC is not full before sending
tokens to C over the NoC. Several techniques can be considered to inform the producer
about the status of the buffer on the consumer side. We compare the communication
approaches that we have investigated in Section 3.4.

As a final requirement of our proposed techniques, we demand that our PPN
communication approaches allow processes to be mapped on any tile of the system,
without the need to change the actual code structure of the PPN application processes.

2These hardware FIFOs are not shown in Figure 3.1 to avoid clutter.

52 Chapter 3. PPN Communication on Networks-on-chip

An example of such structure is shown in Fig. 2.3(b) on page 29. In particular, we
want the communication primitives of PPN processes (READ, WRITE) to remain
generic, without the notion of process mapping or hardware platform primitives. At
run-time, these generic PPN primitives are then converted by the PPN communication
approaches to corresponding hardware platform primitives which take into account
the actual mapping of processes in the system. This is because the mapping of
processes in the system can change due to a task migration.

3.2 Contributions

The contribution of this chapter is two-fold. First, we propose different PPN communi-
cation approaches that allow applications specified as PPNs to be executed efficiently
on NoC-based platforms. The PPN communication approaches support any possible
mapping of PPN processes in the system. Second, we ensure that these PPN commu-
nication approaches allow the run-time remapping capability of processes among the
tiles of the NoC, thus enabling system adaptivity as considered in this thesis.

3.3 Related Work

Kahn Process Networks (KPNs) [Kah74] is a widely studied model of computation
used to specify concurrent stream-based applications. The KPN MoC is a superset of
the PPN MoC considered in this chapter, therefore in the following paragraphs we
list some works, which target KPNs, that are related to the problem addressed in this
chapter.

Previous research on the use of KPNs in multiprocessor embedded systems has
mainly focused on the design of frameworks which employ that MoC as a model for
application specification [NSD08, NKG+02, KKJ+08], and which aim at supporting
and optimizing the mapping of KPN processes on the nodes of a reference plat-
form [BHHT10, HSH+09]. In [NSD08, NKG+02], different methods and tools are
proposed to generate, in an automated way, KPN application specifications from
sequential programs written in C/C++. Design space exploration tools and per-
formance analysis are then usually employed for optimizing the mapping of the
generated KPN processes on a reference platform. Then, in the successive design
phase, software synthesis for multi-processor systems [KKJ+08, HSH+09] and/or
architecture synthesis for FPGA platforms [NSD08] is performed.

The approaches described above, which map applications modeled as KPNs to
hardware platforms tailored to the application KPN specification, have a strong
coupling between the application and the hardware platform. Running a different ap-
plication on the generated platform would not be possible or, even if possible, would
give bad performance results. In this chapter, we adopt a different approach because
we start with the assumption that we have a platform equipped with homogeneous
cores well interconnected with a NoC. We provide a PPN API for this platform which
implements inter-tile communication among PPN processes. Most importantly, the

3.3. Related Work 53

PPN processes’ code remains the same in all possible mappings of the processes. This
is achieved by the proposed PPN communication approaches, that convert the generic
PPN communication primitives to corresponding hardware platform primitives that
follow the actual mapping of processes in the system.

This approach, where software synthesis relies on the high level APIs provided by
the reference platform for facilitating the programming of a multiprocessor system,
can be seen in other works in the literature. In fact, the trend from single core design
to many core design has forced the research community to consider inter-processor
communication issues for transferring data among the cores. One of the emerged
message passing communication API is Multicore Association’s Communication
API (MCAPI) [MCA] that targets the inter-core communication in a multicore chip.
MCAPI is the light-weight (low communication latencies and memory footprint)
implementation of message passing interface APIs such as Open MPI [ope]. However,
these MPI standards do not allow an efficient implementation of KPN (or PPN)
semantics [DDF11] because building these semantics on top of their primitives incurs
an additional overhead that may be disadvantageous.

The communication and synchronization problem when implementing KPNs
on multi-processor platforms without hardware support for FIFO buffers has been
considered in [NMSD09] and [HSH+09]. In [NMSD09] the receiver-initiated method
has been proposed and evaluated for the Cell BE platform. On the same hardware
platform, [HSH+09] proposes a different protocol, which makes use of mailboxes and
windowed FIFOs. The difference with our work presented in this chapter is that we
actually compare a number of approaches to implement the KPN semantics, and that
we deal with a different kind of platform, with no Direct Memory Access support.

In [DDF11] the active virtual connector approach has been proposed and evaluated
analytically, whereas our results are obtained by experiments on a real implementation.
Moreover, in this chapter we propose yet another approach, namely virtual connector
with variable rate.

The authors in [NGWK09] address the problem of implementing the KPN seman-
tics on a NoC. However, in their approach the NoC topology is customized to the
needs of the application at design time and network end-to-end flow control is used
to implement the blocking write feature. In [NGWK09] no run-time task remapping
is allowed, because the hardware platform is generated assuming a specific (fixed)
mapping of KPN tasks. By contrast, in our work the PPN communication approaches
allow run-time remapping of processes and, in turn, system adaptivity.

An approach to guarantee blocking write behavior for KPN processes on NoCs
is also used in [Gab09]. In that work, a FIFO buffer that implements a KPN channel
is allocated on the tile of the consumer process. Then, before sending data tokens,
the producer process uses a dedicated operating system communication primitive
which guarantees that the remote FIFO buffer is not full. Compared to this kind of
protocol, the communication approaches described in this chapter assume a more
active behavior of the consumer processes to guarantee the blocking on write behavior.
That is, in our approaches the consumer process actively sends back to the producer
some messages to inform the producer about the status of the remote FIFO buffer. We
actually propose and evaluate three kinds of communication approaches, which re-

54 Chapter 3. PPN Communication on Networks-on-chip

Figure 3.2: Producer-consumer pair using the virtual connector method. Compared to Figure 3.1, notice
that the producer tile does not contain any software FIFO for the considered channels. However, the
producer process P uses a credit variable for each channel to keep track of the status of the FIFOs residing
on the consumer tile.

quire the consumer process to be active to a different extent (in terms of the amount of
messages sent back to the producer process). The experimental results of Section 3.6.1
show that the communication approach which requires the most proactive behavior
of the consumer achieves higher performance compared to the others.

3.4 PPN Communication Approaches

This section presents the different approaches that we have explored for the implemen-
tation of PPN processes communication and synchronization on a tiled NoC-based
hardware platform. Three PPN communication approaches are proposed and inves-
tigated: Virtual Connector approach (VC), Virtual Connector with Variable Rate ap-
proach (VRVC), and Request-driven approach (R). Basically, the proposed approaches
differ in the frequency of acknowledgment messages sent from the consumer process
to the producer process regarding the status of the consumer FIFO buffers.

In all of the approaches described in what follows, system adaptivity is taken into
account by using dedicated tables that list, among other information, the current3

mapping of producer and consumer processes for each channel of the PPN graph.
We refer to such tables as middleware tables. The current mapping of producer and
consumer processes is checked when the PPN primitives (i.e., READ, WRITE in
Figure 2.3(b) on page 29) are converted to the corresponding hardware platform
primitives, such that tokens and synchronization messages are sent to the right tiles
in the system. The middleware tables can be updated at run-time, ensuring correct
communication in case of remapping of processes.

3.4. PPN Communication Approaches 55

3.4.1 Virtual Connector approach (VC)

In the Virtual Connector approach, which is depicted in Fig. 3.2, for each channel
in the original PPN graph we add a virtual4 one in the opposite direction. This
virtual connector is used for acknowledging the producer about the status of the
FIFO buffer on the consumer tile. We adapted this approach, previously proposed
in [DDF11], to the needs of our system implementation. In [DDF11], the proposed
communication approach is active, meaning that it is implemented using separate
threads which deal with the PPN communication, while our approach is static, with
no separate threads dedicated to communication. Although a comparison of the
static and active implementations may be worthwhile to do, in this chapter we adopt
the static approach with the argument that the scheduling and synchronization of
an additional thread dedicated to PPN communication will introduce an additional
overhead due to the scheduling and context switching times.

For each channel in the original PPN graph we instantiate a software FIFO buffer
on the consumer tile. The size of this buffer is set to the value of the original buffer size
in the PPN graph. On the producer tile there are no software FIFOs when using this
approach because tokens can be directly sent over the network via the NI. The PPN
blocking write behavior is implemented by using a credit-system which guarantees that
enough locations are free in the FIFO buffers of the consumer processes. Therefore,
referring back to Fig. 3.1, in this approach for each channel i, size(BC

i) = size(Bi) and
size(BP

i) = 0.
In our implementation, we store on the producer side a variable for each channel,

called credit, which represents the number of free slots in the remote FIFO buffer
implementing that channel. At startup, the credit is set to the size of the remote FIFO
(crediti = size(BC

i)), because all of its slots are free5. For each token sent over the
network by the producer, the credit of the corresponding channel is decreased by one.
The producer is allowed to send tokens over the network only if the credit is positive,
otherwise it blocks. This implements the blocking write behavior. At the consumer
side, for every token consumed from that channel, a virtual token (VT) is sent back
to the producer via the virtual connector. For every virtual token received on the
producer tile, the credit of the corresponding channel is increased by one. This way
the producer is constantly updated about the status of the remote FIFO buffers.

Read and Write communication primitives

The read and write primitives use an auxiliary function called process_NI_msgs(). This
function is used in the read primitive when the calling process is blocked on read,
and in the write primitive when it is blocked on write. The process_NI_msgs() function
checks the status of the NI buffer for incoming messages. If the buffer is not empty, it

3Although a task migration mechanism is not provided in this chapter, our proposed PPN communica-
tion approaches must allow the spatial mapping of tasks to change at run-time.

4These channels are said to be virtual because they are not used to communicate actual data.
5This holds unless there are initial tokens in BC . In such a case, the value of crediti is decreased by the

number of initial tokens.

56 Chapter 3. PPN Communication on Networks-on-chip

for (i=0; i<M; i++) {

 for (j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);

}}

PPN Process

1 while (fifo[CH1] is empty)

2 process_NI_msgs();

3 fifo_get(in1, fifo[CH1]);

4 send_virtual_token(CH1);

read(token,ch)

1 while (credit[CH3]==0)

2 process_NI_msgs();

3 decrease_credit[CH3];

4 send_token(out,CH3);

write(token,ch)

Figure 3.3: Pseudocode of the VC approach. The left part of the figure shows an example of structure of a
PPN process. The right side provides the pseudocodes of read and write PPN primitives as implemented
in the VC communication approach.

Figure 3.4: Producer-consumer implementation: when using the VRVC approach, the producer receives
back virtual tokens (a); when using the R approach, it receives requests (b).

processes one message at a time, until all the incoming messages are consumed, in the
following way. If the message is an incoming token for channel i, it stores the token
in the software FIFO which implements channel i. If, instead, it is a virtual token for
channel j, it consumes the token and increases the credit of channel j.

Read primitive. In the VC approach, the read primitive (used to read a token from
channel ch) performs the following sequence of actions.

1. It checks if the FIFO buffer corresponding to ch contains data tokens (blocking
read behavior). If the FIFO is empty, it keeps executing the auxiliary function
process_NI_msgs() until the FIFO is no longer empty.

2. At this point, the FIFO corresponding to ch contains data tokens. Then, the
read primitive gets a token from the FIFO.

3. Finally, a virtual token is sent back to the consumer process to acknowledge
that a token has been read from the FIFO.

These actions are implemented in the read primitive in Fig. 3.3. Lines 1-2 imple-
ment the blocking read. If the FIFO buffer corresponding to the calling channel (in

3.4. PPN Communication Approaches 57

the example, CH1) is empty, process_NI_msgs() is executed until new tokens for that
channel reach the NI input buffer. Lines 3 and 4 complete the read primitive: the token
is transferred from the software FIFO to in1, and a virtual token is sent back to the
producer side of CH1. This is actually performed by putting in the NI outgoing buffer
a message representing a virtual token for channel CH1.

Write primitive. In the VC approach, the write primitive (used to write a token to
channel ch) performs the following sequence of actions.

1. It checks if the credit corresponding to channel ch is equal to zero (blocking
write). In this case, it keeps executing the auxiliary function process_NI_msgs()
until the the credit is no longer zero.

2. At this point, the credit corresponding to ch is greater than zero. Then, the
credit is decreased by one to consider the fact that in the next step a token will
be sent, over the NoC, to the consumer.

3. Finally, the token is sent to the consumer over the NoC.
These actions are implemented in the write primitive in Fig. 3.3. Lines 1-2 imple-

ment the blocking write behavior. If the credit is zero, process_NI_msgs() is executed.
If virtual tokens for the blocked channel are received, the credit is then increased
and this condition unblocks the write to that channel. Lines 3-4 complete the write
procedure. The credit for the considered channel is decreased, and the token is sent
over the network, which is done by putting in the NI outgoing buffer a message
representing this token, and then letting the NI to perform the actual transfer over
the NoC6.

3.4.2 Virtual Connector with Variable Rate approach (VRVC)

This approach represents a variant of the virtual connector described in Section 3.4.1.
The basic idea is that instead of sending one virtual token to the producer for every
token consumed from channel i, the consumer sends it after ni consumed tokens,
where ni is a parameter that can be set such that 1 ≤ ni ≤ size(Bi), where size(Bi) is
the buffer size in the original PPN graph. The credit variable for channel i will then
be increased by ni for every virtual token received for that channel. This approach
leads to a reduced traffic on virtual connectors, which can be beneficial in NoC
implementations to avoid congestion of messages.

Since the sending back of virtual tokens does not happen for every consumed
token, in some cases the PPN graph properties require to store, also at the producer
side, tokens for the channels in order to avoid deadlocks. We provide an explanation
of this phenomenon in Example 3.4.1.

Example 3.4.1. Consider the scenario depicted in Figure 3.5, where producer process
P is connected to consumer process C through a channel ch, implemented by a FIFO
buffer B. Assume that, for channel ch, the parameter n of the VRVC approach is set to
size(B), the size of buffer B in the original PPN graph. As mentioned earlier, FIFO
buffers are required both on the producer and on the consumer tile. We denote these
FIFO buffers as BP and BC, respectively. Assume that the size of these buffers are

6For a brief description of how messages are sent over the NoC, please refer to Section 1.1.2.

58 Chapter 3. PPN Communication on Networks-on-chip

size(BP) = (size(B)− 1) and size(BC) = size(B). We will eventually show that this
assumption is necessary.

We recall that, in the original PPN graph, the size of a certain FIFO buffer B is
computed by the pn compiler [VNS07] such that deadlocks cannot occur due to a lack
of space in B. The size of buffer B derived by pn is minimum, that is, at run-time it
may happen that B is required to store a number of token equal to its size to avoid a
deadlock. Therefore, since FIFO buffer B in the VRVC approach is split over BP and
BC, in order to avoid deadlocks it is necessary that at any time up to size(B) tokens
can be stored over BP and BC. Denoting the number of tokens stored in buffer BP

and BC at time instant t as tkns(BP, t) and tkns(BC, t), respectively, we have that, over
time,

(
tkns(BP, t) + tkns(BC, t)

)
can grow up to size(B).

At run-time, the communication between producer process P and consumer pro-
cess C may follow the sequence of macro-steps shown in Figure 3.5 and explained
below.

- Step (1). This step represents system startup. The credit variable of channel
ch is initialized to size(B). The number of tokens stored in BP and BC are both
zero.

- Step (2). After a series of size(B) tokens sent by P, and not consumed by C
(recall that, in PPNs, control is completely distributed, so this scenario may
occur), the credit variable for channel ch is zero and tkns(BC) = size(B).

- Step (3). Consumer C consumes size(B)− 1 tokens, such that, at time instant
t3, tkns(BC, t3) = 1. However, no virtual token is sent back to P because the
parameter n of the VRVC approach is set to size(B) and only size(B)− 1 tokens
have been consumed.

At the end of Step (3) the total number of tokens stored in BP and BC is 1, that is,(
tkns(BP, t3) + tkns(BC, t3)

)
= 1. However, as mentioned earlier, over time the total

number of tokens stored over BP and BC should be able to grow up to size(B), to
avoid deadlocks. Now, if consumer process C does not consume the last token present
in BC, producer process P cannot send tokens to C. Therefore, P must be able to store
up to size(B)− 1 tokens in BP, a scenario which is considered in the next step.

- Step (4). This step represents the scenario in which P, at time instant t4 > t3,
has stored size(B)− 1 tokens in BP, and C has only one token left in BP. Now,
since

(
tkns(BP, t4) + tkns(BC, t4)

)
= size(B), we are sure that process P cannot

cause a deadlock due to lack of space in tkns(BP) and tkns(BC). Eventually, C
will consume the last token left in BC and send a virtual token back to P, which
will increase the credit variable for the corresponding channel and allow new
token transfers over the NoC from P to C.

From the scenario described in Example 3.4.1 it follows that FIFO buffers are
needed on both the producer and the consumer side. Note that Example 3.4.1 con-
siders a worst-case scenario in the communication between producer and consumer
processes. Therefore, the derived size of the buffers, (size(B)− 1) for BP and size(B)
for BC, is sufficient for all possible scenarios which may arise at run-time.

The pseudocode of the VRVC communication approach is shown in Fig. 3.6.
Compared to the VC approach, the behavior of process_NI_msgs(), which is used in

3.4. PPN Communication Approaches 59

original PPN:

VRVC approach:

P Cch

P Cch
BP BC

tkns(BP)

0

0

0

size(B)-1

credit(ch)

size(B)

0

0

0

Step

(1)

(2)

(3)

(4)

Time

t1

t2

t3

t4

tkns(BC)

0

size(B)

1

1

B

Figure 3.5: Communication sequence of a producer-consumer pair, using the VRVC approach, requiring
storing of tokens on both the producer and consumer tile. The table in the lower part of the figure shows,
at different steps of the communication sequence, the credit value associated to the considered channel,
and the number of tokens stored in the producer FIFO buffer BP and consumer FIFO buffer BC.

both the read and write primitives, changes with regard to the processing of virtual
tokens. The first difference is that whenever a virtual token for channel i is received,
process_NI_msgs() consumes it and increases the credit of channel i by the parameter ni.
The second difference is that when a virtual token is received and the corresponding
FIFO buffer is not empty, as many available tokens as possible are sent to the consumer
tile, until the credit for that channel allows so. The credit variable is decreased,
accordingly, by the number of tokens sent to the consumer tile.

In the read primitive shown in Fig. 3.6, lines 1-2 implement the blocking read
behavior, similarly to the VC approach. However, the rest of the primitive is different.
In line 3, a token is read from the FIFO buffer which implements channel CH1. Line 4
uses an auxiliary variable, tkns_cns[CH1], which keeps track of the number of tokens
consumed from CH1 since the last virtual token sent back (for the corresponding
channel) to the producer tile. This auxiliary variable is initialized to zero at startup
and is increased for every token consumed by the process from channel CH1. In lines
5-7, when this variable reaches the parameter nCH1, a virtual token is sent back to the
producer tile and tkns_cns[CH1] is reset to zero.

Similarly to the VC approach, in the write primitive of VRVC shown in Fig. 3.6,
lines 1-2 implement the blocking write behavior. When the control reaches line 3,
we are sure that the corresponding FIFO is not full. Then, in the auxiliary function
store_or_send, the token is either stored in the FIFO buffer corresponding to CH3 (if
the credit variable associated to CH3 is zero) or sent over the NoC to the consumer

60 Chapter 3. PPN Communication on Networks-on-chip

for (i=0; i<M; i++) {

 for (j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);

}}

PPN Process

1 while (fifo[CH1] is empty)

2 process_NI_msgs();

3 fifo_get(in1, fifo[CH1]);

4 tkn_cns[CH1]++;

5 if (tkn_cns[CH1]==nCH1) {

6 send_virtual_token(CH1);

7 tkn_cns[CH1]=0; }

read(token,ch)

1 while (fifo[CH3] is full)

2 process_NI_msgs();

3 store_or_send(out, CH3);

write(token,ch)

Figure 3.6: Pseudocode of the VRVC approach. The left part of the figure shows an example of structure
of a PPN process. The right side of the figure provides the pseudocodes of read and write PPN primitives
as implemented in the VRVC communication approach.

tile (if the credit variable is greater than zero).

3.4.3 Request-driven approach (R)

This method is very similar to the approach used in [NMSD09] for realizing communi-
cation among KPN processes on the Cell BE platform [KDH+05]. In the request-driven
approach, the transfer of tokens from the producer tile to the consumer tile is initiated
by the consumer. This means that every time the consumer is blocked on a read at a
given FIFO channel, it sends a request to the producer to send new tokens for that
channel. The producer, after receiving this request, sends as many tokens as it has in its
software FIFO implementing that channel.

Since also in this case we need to store tokens both on the producer side and on
the consumer side, we need software FIFO structures on both sides. The size of these
buffers is set, for each channel i, to match the size of the buffer in the original PPN
graph (Bi), therefore ∀i ∈ {1, · · · , |𝒞|} size(BP

i) = size(BC
i) = size(Bi). This condition

guarantees deadlock-free execution on the NoC because: (i) the FIFO buffer residing
on the producer tile (BP) is large enough to avoid deadlocks caused by block on write
on the producer side; (ii) after a request sent by the consumer process, BC is large
enough to store the maximum amount of tokens stored in BP. The structure of a
producer-consumer pair using the R approach is shown in Fig. 3.4, case (b). Since
the consumer buffer of a channel is empty when a request is made, and given that
the FIFO buffers for that channel have the same size on both sides, there is always
enough space to store tokens sent by the producer as a consequence of the request.

Fig. 3.7 shows the pseudocode of this PPN communication approach. Similarly
to the other communication approaches, it makes use of the auxiliary function pro-
cess_NI_msgs() to process incoming messages of tokens or requests. In the R approach,
this function is in charge of reacting to a received request message for a channel

3.5. Case Studies 61

for (i=0; i<M; i++) {

 for (j=0; j<N; j++) {

 read (in1, CH1);

 out = F(in1);

 write (out, CH3);

}}

PPN Process

1 if (fifo[CH1] is empty)

2 send_request(CH1);

3 while (fifo[CH1] is empty)

4 process_NI_msgs();

5 fifo_get(in1, fifo[CH1]);

read(token,ch)

1 while (credit[CH3]==0)

2 process_NI_msgs();

3 fifo_put(out, fifo[CH3]);

4 process_NI_msgs();

write(token,ch)

Figure 3.7: Pseudocode of the Request-driven (R) approach. The left part of the figure shows an example
of structure of a PPN process. The right side of the figure provides the pseudocodes of read and write
PPN primitives as implemented in the request-driven communication approach.

with the immediate sending of all the tokens contained in the software FIFO that
implements that specific channel.

The blocking on read behavior is implemented in lines 1-4 of the read primitive in
Fig. 3.7. When the software FIFO of the calling channel is empty, a request is sent to
the producer tile of that channel, and the processor keeps executing process_NI_msgs()
until a message of tokens for the calling channel arrives. The blocking on write is
implemented in lines 1-2 of the write primitive. When the FIFO of the calling channel
(in the example, CH3) is full, the processor keeps executing process_NI_msgs() until a
request for that channel arrives. Line 4 of the write primitive allows a faster response
to requests for tokens from consumer processes. In fact, if line 2 of the write primitive
is not executed, i.e, if the calling channel is not full, process_NI_msgs() is anyway
executed in line 4, leading to a faster response to token requests.

3.5 Case Studies

We evaluate the three PPN communication approaches presented in Section 3.4 on two
applications, specified as PPNs, with extremely different communication/computation
characteristics. The reason is that we want to compare the overhead of the PPN
communication approaches between two extremes. The application described in Sec-
tion 3.5.1 represents the first extreme, when the computation/communication ratio is
low and the PPN topology is complicated. The case study described in Section 3.5.2,
on the other extreme, is computation dominant and with relatively simple PPN topol-
ogy. We describe briefly the two case studies in order to get a better understanding of
the obtained results. In Section 3.5.3 we also provide an overview of the platform that
we use to run the experiments.

62 Chapter 3. PPN Communication on Networks-on-chip

readPixel

gradientX gradientY

absValue

writePixel

1
3

399
2

397
398

139
7

39
9

19
9320

1

1 1

1

Figure 3.8: PPN specification of the Sobel filter.

Table 3.1: Execution times (in clock cycles) of Sobel functions

Process Execution time (c.c.)
readPixel 5
gradientX 31
gradientY 31
absValue 118

writePixel 5

3.5.1 Sobel filter

The Sobel application is an edge-detection algorithm for digital images. Its PPN
graph is shown in Fig. 3.8, where the number written over each edge indicate the
minimal buffer sizes (expressed in data tokens) needed for that channel, in order
to process a 200x122 pixel input image without deadlocks. The PPN processes of
this application are very lightweight in terms of computation. The numbers of clock
cycles (c.c.) required for one execution of each function are summarized in Table 3.1.
The most computationally intensive process is absValue, which sums the absolute
values of the outputs of the gradientX and the gradientY processes and normalizes
the result. For all of the channels in the graph, the size of exchanged tokens is 4
bytes, and the number of written tokens is 23760. From these metrics it is clear that
the Sobel application is largely communication-dominant. Therefore, even before
running the actual experiments, we expect this application to perform poorly on NoC-
based hardware platforms, where communication is more costly than on platforms
with dedicated, point-to-point interconnections. However, we use this example
to represent the class of applications in which the communication dominates the
computation.

3.5. Case Studies 63

Figure 3.9: PPN specification of the M-JPEG encoder.

Table 3.2: Execution times (in clock cycles) of M-JPEG functions

Process Execution time (c.c.)
initVideoIn 18

videoIn 1910
DCT 126386

Q 69238 (avg)
VLE 46688 (avg)

videoOut 1292 (avg)

3.5.2 M-JPEG encoder

The PPN specification of this application is shown in Fig. 3.9. The size of tokens,
corresponding to different channels, ranges between 16 and 1024 bytes. All of the
channels are written 128 times, except the output of initVideoIn which is written only
once. The numbers of clock cycles required for the execution of each function of the
M-JPEG application are summarized in Table 3.2. This application shows a much
simpler communication and synchronization pattern compared to Sobel, and it also
has a much higher computation/communication ratio.

3.5.3 Platform setup

The system on which we evaluate our PPN communication approaches is based on
a 2x2 mesh of tiles, connected via a custom-built Network-on-Chip. We choose this
kind of NoC because, as mentioned in Section 1.1.2, it is the most common and widely
studied topology of NoC. However, note that our proposed PPN communication
approaches do not depend on the topology of the NoC. Each tile is composed of a
MicroBlaze processor, with its program and data memories, and a Network Interface.
The platform does not support remote memory access. The system runs at the
frequency of 100 MHz.

Each processor has multi-tasking capabilities thanks to the use of the Xilkernel
operating system, a lightweight, customizable kernel provided by Xilinx. In case
of many-to-one mapping, i.e. when more than one process are mapped on the same
processor, the scheduling is data-driven. This means that a process keeps executing
successive iterations until it blocks in reading or writing (recall the PPN process
structure of Figure 2.3(b) on page 29). When the process blocks, it yields the processor
control to the next process in the ready queue, using round-robin.

64 Chapter 3. PPN Communication on Networks-on-chip

Figure 3.10: (Part of) the NoC platform structure. The full structure of the adopted NoC structure is a
2x2 mesh of tiles.

MW-level

messages

message(CH)

request(CH)

n_tokensCH tkn_n...tkn_1

n_tokens

-CH

token(CH)

virtual token(CH)

tokenCH

-CH

R approach

VC approach

NoC-level

messages
n_flitsdest_tile MW_message

Figure 3.11: Structure of middleware- and network- level messages.

As shown in Fig. 3.10, the Network Interface contains only two hardware FIFOs,
one for messages which are incoming from the NoC, and one for messages that
have to be injected in the NoC. The processor is able to quickly access the status of
the incoming hardware FIFO, via a dedicated signal, to see if there are messages to
be forwarded from the NI buffer to the software FIFO buffers that implement the
channels of the PPN graph. In the opposite direction, when a message has to be sent
over the NoC, the processor forwards data from its data memory to the outgoing NI
hardware FIFO, then the NI injects the message in the network, with the appropriate
header (destination tile and payload size fields). The messages are sent over the NoC
using wormhole switching (as in [BB04]). As shown in Fig. 3.10, routers (R0 and R1)
use input buffering to store incoming flits (flow control digits, which represent the
granules into which messages are split). Moreover, in our implementation the routers
use a simple round-robin arbitration policy.

The actual structure of the different kind of messages that are sent over the NoC
is represented in Fig. 3.11, for the VC and R approaches. At NoC-level, the message
comprises a NoC header, that indicates the destination tile and the size of the payload,
and the payload itself, which we refer to as the middleware (MW)-level message. The

3.6. Experimental Results 65

Figure 3.12: Fixed mappings for Sobel (a) and M-JPEG (b) to test the different PPN communication
approaches.

structure of MW-level messages depends on the PPN communication approach. In
R, a request for channel number i is implemented as a single flit, with value −i. A
message used for transferring tokens, instead, has a header composed of two flits
(channel number, number of sent tokens) and a payload with the sent tokens. The
field that indicates the number of sent tokens (n_tokens) is necessary because this
number is determined at run-time, when a request for that channel is received. The
structure of MW-level messages in VC is very similar, the only difference being that
there is no need for a n_tokens field because in this method sending several tokens in
one message is not allowed, i.e. n_tokens is always equal to one.

3.6 Experimental Results

The platform described in Section 3.5.3 has been implemented on a Xilinx Virtex-5
FPGA prototyping board. We run the two application case studies of Sections 3.5.1
and 3.5.2, with all the PPN communication approaches proposed in Section 3.4, and
obtain the results described below.

3.6.1 Inter-tile communication efficiency

In order to compare the efficiency of inter-tile communication of the different PPN
communication approaches, we execute the two case study applications with the
fixed mappings shown in Fig. 3.12. We chose these mappings because they expose
the maximum amount of inter-tile communication, therefore the obtained results are
largely dependent on the efficiency of the considered PPN communication approach.

We found, experimentally, that the parameter ni of the VRVC approach gives the
best performance when set to its maximum value, i.e. when ∀i ∈ {1, · · · , Nch} ni =
BC

i . The performance results, summarized in Fig. 3.13(a), show a large difference of
execution time for the Sobel application when using different PPN communication
approaches. However, in the M-JPEG case all of the communication approaches yield
similar results, due to the much higher computation over communication ratio of

66 Chapter 3. PPN Communication on Networks-on-chip

VC VRVC R
0

10

20

30

40

50

60
M-JPEG
Sobel

communication approaches

to
ta

l e
xe

cu
tio

n
tim

e
(M

 c
.c

.)

(a) Total execution time for different MW ap-
proaches.

VC VRVC R
0
2
4
6
8

10
12
14
16
18

M-JPEG
Sobel

communication approachessl
o

w
do

w
n

co
m

pa
re

d
to

 P
-2

-P

(b) Slowdown for different MW approaches.

Figure 3.13: Sub-figure (a) shows the total execution time of the M-JPEG and Sobel applications obtained
with different MW approaches. Notice the large difference of execution time for the Sobel application
depending on the used MW approach. By contrast, the execution time for M-JPEG is not affected by
the choice of MW approach. Sub-figure (b) compares the performance obtained using our NoC-based
platform, together with the proposed MW approaches, with the performance of a customized systems
based on point-to-point connections. Notice the large slowdown of the NoC-based implementation for
the communication-dominant application, Sobel.

that application. The VC approach performs much better, compared to the others, in
the Sobel application, because its implementation does not require storing of tokens
on the producer tile. This leads to a faster communication process, because it avoids
the double copy (output variable → software FIFO → NI buffer) that is necessary in
the other cases. We argue that the obtained results may change for NoC platforms
with Direct Memory Access (DMA) cores, that can benefit more from sending several
tokens with one message, as allowed in the VRVC and R approaches.

In order to evaluate the overhead occurred by using the NoC interconnection and
our PPN communication approaches, we implemented customized point-to-point
systems, for both Sobel and M-JPEG applications, as a baseline reference. In point-to-
point systems, generated using the ESPAM tool [NSD08], a dedicated hardware FIFO
is instantiated for each channel of the PPN graph. In this way, the hardware platform
perfectly matches the PPN MoC semantics. Obviously, customized point-to-point
implementations do not allow for system adaptivity, because all the design decisions
(e.g.: process mapping) have to be made at design time. It is clear that in our NoC
system we sacrifice performance (especially for communication intensive applications)
for adaptivity, the ability of managing the system at run-time, and generality, since the
system is able to execute any kind of PPN application. The performance slowdown,
when comparing the NoC-based systems with the point-to-point systems is shown in
Fig. 3.13(b). It is noticeable that while the Sobel application is highly penalized in the
execution on our NoC system, the M-JPEG application performs well because of its
higher computation/communication ratio and its regular communication pattern. The
reason why the PPN communication on the NoC platform is less efficient, compared
to customized point-to-point systems, is mainly twofold. The first reason is that in

3.6. Experimental Results 67

VC VRVC R
0

500

1000

1500

2000

2500

3000 Total NoC traffic
Application data
traffic

communication approaches

T
ot

al
 e

xc
ha

ng
ed

 tr
af

fic
 (

kf
lit

s)

Figure 3.14: Traffic injected into the NoC by executing Sobel with different MW approaches.

communicating on the NoC, several PPN channels have to share the same physical
channel (the NoC link). The second reason is that in the NoC case we have to use
software FIFOs on the producer and on the consumer side, which require additional
memory copy operations which would be unnecessary in the case of adoption of
hardware FIFOs.

Another important metric when executing applications on a NoC is the amount
of generated control traffic overhead. In the VC case, for instance, this overhead is
represented by the NoC-level and MW-level headers, together with all the traffic
generated by the virtual tokens. Ideally, a PPN communication should be designed to
generate as less control traffic overhead as possible.

Focusing on the Sobel application, since it has the most complex communication
pattern, we profiled the amount of traffic injected in the network, depending on the
PPN communication approach that is used. The results, depicted in Fig. 3.14, show
that the amount of traffic injected in the NoC (that is, including message headers,
messages sent over virtual channels, or requests messages) is much larger than the
actual application data traffic. This is because the size of tokens in the Sobel applica-
tion is extremely small, i.e., only 4 bytes. Note also that the VC approach injects much
more total traffic into the NoC compared to the R approach. This large difference can
be explained by two factors. The first factor is the overhead of message headers. On
the one hand, in the VC method, each token travels in the NoC with its own header.
On the other hand, in the R case, the producer sends as many token as present in
its software FIFO, in the same message and therefore with the same header. The
second factor is that the traffic on virtual channels in VC is much more than the traffic
generated by requests in R. This is because in the VC approach a virtual token is sent
back to the producer for every consumed token, while in the R approach the requests
are made less frequently, just when the consumer is blocked on reading.

3.6.2 System adaptivity support

All the proposed PPN communication approaches (VC, VRVC, R) allow to change at
run-time the mapping of PPN processes to tiles of the system. Process remapping is

68 Chapter 3. PPN Communication on Networks-on-chip

Figure 3.15: Execution time and generated traffic as a function of the process mapping. Only inter-tile
communication links are depicted.

allowed because all the PPN communication approaches exploit a middleware table,
which keeps track of the source and destination tiles of each channel of the PPN. We
recall that these tables are used to convert the generic PPN primitives (see for instance
READ, WRITE in Figure 2.3(b) on page 29) to the corresponding hardware platform
communication primitives, where the source tile and destination tile of a channel are
precisely specified. When a remapping of processes is performed, the middleware
tables are changed accordingly.

Note that the actual mechanism used to perform run-time remapping of processes
is proposed and explained in the next chapter, Chapter 4. However, the approaches
presented in this chapter ensure that, once the remapping procedure is completed,
PPN processes can communicate correctly also in the new spatial mapping.

The possibility of choosing a different mapping at run-time can be exploited
by run-time management algorithms, or simply by the user of the system, to trade
between performance and other metrics, such as power. For instance, in Fig. 3.15
we show the performance results obtained with different mappings of the M-JPEG
application. For each mapping, Fig. 3.15 shows the total execution time (Texe) and
total exchanged traffic over the NoC (NoC traffic). Mapping (a) in the figure has only
one active tile, whereas mapping (b) requires two active tiles. Therefore, we can infer
that mapping (a) is more power efficient than mapping (b), also because the former
uses no power to communicate over the NoC. However, Texe achieved by mapping
(b) is almost half of the one of mapping (a), thus mapping (b) is preferable when the
system has to provide high performance. Finally, by comparing mapping (b) and (c)
in Fig. 3.15, we see that exploring more than two tiles when mapping the M-JPEG
application has only marginal performance benefits.

3.7. Discussion 69

3.7 Discussion

From the experimental results reported in Section 3.6.1 we can quantitatively compare
the three PPN communication approaches proposed and evaluated in this chapter. For
each communication approach, we summarize the advantages (+) and disadvantages
(−) in the following list.

∙ Virtual Connector (VC):
+ Outperforms all the other approaches (VRVC, R) for applications with low

computation over communication ratio;
− Requires a credit-based system, with frequent synchronization between

producer and consumer processes.
∙ Virtual Connector with Variable Rate (VRVC):

+ Achieves slightly higher performance than the R approach for applications
with low computation over communication ratio;

− Requires a credit-based system, and synchronization between producer
and consumer processes with a frequency which depends on a parameter
that can be tuned.

∙ Request-driven (R):
+ Simpler implementation compared to the other approaches, without a

credit-based system and with less synchronization points;
+ Achieves performance nearly identical to VC and VRVC when the compu-

tation over communication ratio is high;
− Achieves low performance for applications in which the computation over

communication ratio is low.
From the above comparison, it follows that if a designer needs to map a PPN ap-

plication with low computation over communication ratio on a NoC based execution
platform and with a static mapping, the VC approach is preferable.

However, when run-time remapping of processes is necessary, the VC approach is
less appealing because it requires frequent synchronization between producer and
consumer processes. This is especially true when process remapping is needed to
achieve fault tolerance, with process migrations that can be triggered at any time
by hardware faults. Note that with our proposed middleware we want to address
also this kind of scenario. Therefore, in Chapter 4, we propose a process migration
mechanism which is based on the R approach. In fact, as mentioned above, R has
two main advantages. First, it has less synchronization points between producer
and consumer processes, and it is easy to implement. Second, it achieves identical
performance for applications with high computation over communication ratio, the
kind of applications which are more likely to be executed on NoC platforms.

70 Chapter 3. PPN Communication on Networks-on-chip

