
Semi-partitioned scheduling and task migration in dataflow networks
Cannella, E.

Citation
Cannella, E. (2016, October 11). Semi-partitioned scheduling and task migration in dataflow
networks. Retrieved from https://hdl.handle.net/1887/43469

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/43469

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/43469

Cover Page

The handle http://hdl.handle.net/1887/43469 holds various files of this Leiden University
dissertation

Author: Cannella, Emanuele
Title: Semi-partitioned scheduling and task migration in dataflow networks
Issue Date: 2016-10-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/43469

Chapter 2

Background

IN this chapter, we introduce the mathematical notations, definitions, concepts,
and existing theoretical results that are necessary to understand the contributions

of this thesis.

We first provide in Table 2.1 a summary of the mathematical notations used in this
thesis.

Symbol Meaning
N The set of natural numbers excluding zero
N0 N ∪ {0}
Z The set of integers
|x| The cardinality of a set x
x̂ The maximum value of x

mod The integer modulo operator
xV An x-partition of a set V (see Definition 2.2.6)

Table 2.1: Summary of mathematical notation.

Then, in Section 2.1, we describe in further detail the MoCs used in this disserta-
tion. A preliminary introduction of these MoCs was given earlier in Section 1.1.1. In
addition, in Section 2.2 we present results and definitions from hard real-time schedul-
ing theory that are instrumental to understand our contributions in the context of
HRT systems (Chapters 5 and 6). Finally, in Section 2.3 we describe the methodology
for hard real-time scheduling of CSDF graphs proposed by [BS11, BS12]. In fact, our
contributions presented in Chapters 5 and 6 represent an extension of the framework
proposed in [BS11, BS12], therefore a thorough introduction to that framework is
necessary.

24 Chapter 2. Background

2.1 Dataflow Models of Computation

As mentioned in Section 1.1.1, dataflow MoCs represent a good match for streaming
applications because they allow to express the parallelism available in these kind
of applications in a natural way. In this thesis we consider the MoCs described in
Sections 2.1.1-2.1.3, namely (H)SDF, CSDF, and PPN. In both (C|H)SDF1 and PPN
MoCs applications are specified in the form of directed graphs in which graph nodes
represent the tasks (active entities) of the application and graph edges represent inter-
task data dependencies. In (C|H)SDF, nodes of the application graph are called actors,
whereas nodes in a PPN are called processes. The actor-based MoCs considered in this
thesis, (H)SDF and CSDF, are presented in Sections 2.1.1 and 2.1.2, respectively. These
MoCs are used to specify the input applications in the techniques for HRT systems
proposed in Chapters 5 and 6. The process-based MoC considered in this thesis, PPN,
is described in Section 2.1.3 and is used to specify applications in the approaches
proposed for best-effort (BE) systems, which are presented in Chapters 3 and 4.

2.1.1 (Homogeneous) Synchronous Dataflow ((H)SDF)

The Synchronous Dataflow (SDF) MoC is introduced in [LM87b]. Under this MoC,
an application is modeled as a directed multigraph G = (A, E) where A is the set of
actors and E is the set of edges. Actors represent tasks of the application and edges
represent inter-task data dependencies. Actors communicate over edges generating a
stream of data, which is divided in atomic data objects called tokens. An edge eu ∈ E
represents a first-in first-out (FIFO) buffer and is defined by a tuple eu = (Ai, Aj).
This tuple means that the edge is directed from actor Ai (called source) to actor Aj
(called destination). We define input and output actors of graph G as follows.

Definition 2.1.1. (Input actor). An input actor of graph G is an actor that receives the
input stream of the application from the environment.

Definition 2.1.2. (Output actor). An input actor of graph G is an actor that produces
the output stream of the application to the environment.

An execution of an actor Ai ∈ A is called a firing or invocation. In this thesis we
denote the jth invocation (with j ∈ N0) of actor Ai as Ai,j. Invocation Ai,j can begin
its execution only if enough input data is present on all its input edges. During one
invocation, actor Ai consumes input data from all its input edges, processes this data
according to a function fi, and writes the output data to its output edges. The amount
of data read/written from/to each input/output edge is fixed, known at compile-time
and it is called consumption/production rate. For each Ai ∈ A we can define a set of
predecessor and successor actors, denoted by prec(Ai) and succ(Ai), respectively. These
sets are defined as follows.

prec(Ai) = {Aj ∈ A : ∃eu = (Aj, Ai)} (2.1)
succ(Ai) = {Aj ∈ A : ∃eu = (Ai, Aj)} (2.2)

1For the sake of brevity, we identify CSDF, SDF and HSDF MoCs with the acronym (C|H)SDF.

2.1. Dataflow Models of Computation 25

A1 A2 A3
24 1 2e1 e2

Figure 2.1: Example of an SDF graph composed of actors A1, A2, A3 and edges e1, e2. Numbers over the
edges indicate the production/consumption rates of source/destination actors of that edge. For instance,
each invocation of actor A2 consumes 2 tokens from e1 and produces 1 token to e2.

We assume that any input actor Ain has no predecessors and any output actor Aout
has no successors, i.e., prec(Ain) = ∅ and succ(Aout) = ∅. Moreover, we can define
for each Ai ∈ A a set of input and output edges, denoted by inp(Ai) and out(Ai),
respectively.

An example of an SDF graph is shown in Figure 2.1. The numbers over the edges
indicate the production/consumption rates of source/destination actors of that edge.
Consider edge eu = (Ai, Aj). The production rate of source actor Ai over edge eu is
denoted by xu

i . Conversely, the consumption rate of destination actor Aj over edge eu
is denoted by yu

j . For instance, each invocation of actor A1 in Figure 2.1 produces 4
tokens to e1, and each invocation of actor A2 consumes 2 tokens from the same edge.
Therefore, x1

1 = 4 and y1
2 = 2.

A special case of the SDF MoC is the Homogeneous SDF (HSDF), that is an
SDF in which all the production/consumption rates of all the actors are equal to
one. An example of an HSDF graph is given in Figure 1.2(a) on page 5, where
production/consumption rates of actors are omitted because they are all equal to one.

Since streaming applications process continuous streams of data, we are interested
in determining a schedule of the SDF graph that can continue indefinitely, using a
finite amount of memory to implement the FIFO channels corresponding to the edges
of the graph. Such a schedule can be derived at compile-time if the SDF graph is
consistent and deadlock-free.

An SDF graph G is consistent [LM87a] if its balance equation, given below, has a
positive integer solution.

ΓG ·~q =~0 (2.3)

In the expression above, ΓG ∈ Z|E|×|A| is called topology matrix and ~q is called
repetition vector. The topology matrix is constructed as follows:

Γuj =


xu

j if actor Aj produces on edge eu

−yu
j if actor Aj consumes from edge eu

0 otherwise.

(2.4)

In particular, the repetition vector with the smallest norm is called basic repetition
vector. In this thesis, unless otherwise specified, we will utilize the basic repetition
vector of a graph to perform our analyses. The meaning of the repetition vector
is the following. If every actor Ai of the graph is fired qi times, where qi is the ith
component of the repetition vector, then the net change of the number of tokens in
the FIFO channels is zero.

26 Chapter 2. Background

For the example in Figure 2.1, the topology matrix ΓG is given below.

ΓG =

[
4 −2 0
0 1 −2

]
Its (basic) repetition vector ~qG, derived using Equation (2.3), is:

~qG =
[
qA1 , qA2 , qA3

]T

= [1, 2, 1]T

Note that any vector~q′ obtained by multiplying the basic repetition vector ~qG by a
positive natural number is also a repetition vector of G, i.e., it satisfies Equation (2.3).
Note also that the existence of a positive integer solution to Equation (2.3) is only a
necessary condition to execute an SDF graph indefinitely with a periodic schedule.
Another condition that must be satisfied is the absence of deadlocks, which can be
verified by constructing a periodic admissible schedule [LM87a] of the graph. An
SDF graph that has no deadlock is called deadlock-free, or live. An important property
of the SDF MoC is that the consistency and liveness of an SDF graph can be verified
at compile-time. In this thesis we consider only consistent and live SDF graphs.

2.1.2 Cyclo-Static Dataflow (CSDF)

The Cyclo-static Dataflow (CSDF) MoC [BELP96] is a generalization of SDF. Similar
to SDF, a CSDF graph G = (A, E) also consists of a set of actors A and a set of edges
E. However, contrary to SDF, the behavior of CSDF actors is cyclic, as explained in
the following.

Each CSDF actor Ai has a certain number of phases, denoted by Ωi. The execution
of each phase ϕ is associated with a certain function fi(ϕ). Therefore, we can define
an execution sequence [fi(0), fi(1), · · · , fi(Ωi − 1)] which links each phase to the
corresponding executed function. Moreover, production/consumption rates for each
output/input edge are also defined for each phase. Thus, for each actor Ai, the
following sequences can be defined.

∙ Consumption sequence for each input edge eu:

[yu
i (0), yu

i (1), · · · , yu
i (Ωi − 1)]

∙ Production sequence for each output edge eu:

[xu
i (0), xu

i (1), · · · , xu
i (Ωi − 1)]

Notice that the length of all these sequences is Ωi, the number of phases.
Phases of a CSDF actor Ai are executed in a cyclic fashion. That is, during invoca-

tion Ai,n (with n ∈ N) of actor Ai, function fi((n) mod Ωi) is executed. Similarly, for
each input edge eu, yu

i ((n) mod Ωi) tokens are consumed and for each output edge eu,

2.1. Dataflow Models of Computation 27

A1 A2 A3
[1] [1,2] [0,3]

e1 e2

[1]

Figure 2.2: Example of a CSDF graph.

xu
i ((n) mod Ωi) tokens are produced. The cumulative number of tokens consumed

by invocations Ai,0 to Ai,n of actor Ai from its input edge eu is denoted by:

Yu
i (n) =

n

∑
l=0

yu
i (l) (2.5)

Similarly, the cumulative number of tokens produced by invocations Ai,0 to Ai,n of
actor Ai to its output edge eu is denoted by:

Xu
i (n) =

n

∑
l=0

xu
i (l) (2.6)

Similar to the SDF case, we are interested in finding an indefinite, periodic schedule
of a CSDF graph G. As shown in [BELP96], a repetition vector~q of G is given by:

~q = Θ ·~r, with Θik =

{
Ωi if i = k
0 otherwise

(2.7)

where~r = [r1, r2, · · · , r|A|]
T is a positive integer solution of the balance equation

Γ ·~r =~0 (2.8)

and where the topology matrix Γ ∈ Z|E|×|A| is defined by

Γuj =


Xu

i (Ωj − 1) if actor Ai produces on edge eu

−Yu
i (Ωj − 1) if actor Ai consumes from edge eu

0 otherwise.
(2.9)

Example 2.1.1. An example of a CSDF graph is shown in Figure 2.2. The graph
indicates the production/consumption sequences of the actors over the edges of the
graph. For instance, actor A2 has consumption sequence [1, 2] over e1 and production
sequence [0, 3] over e2. From Equations (2.7)-(2.9), we derive the repetition vector~q as
shown below.

Γ =

[
1 −3 0
0 3 −1

]
,~r =

3
1
3

 , Θ =

1 0 0
0 2 0
0 0 1

 , and~q =

3
2
3


Based on this repetition vector~q, we can derive a static non-preemptive schedule

for the CSDF graph in Figure 2.2 that can be repeated forever using bounded buffers.
The following schedule possess this property.

Schedule 1: A1 A1 A1 A2 A2 A3 A3 A3 = 3A1 2A2 3A3 (2.10)

28 Chapter 2. Background

Note that alternative schedule exists.
For a consistent and live (H)SDF or CSDF graph G = (A, E), given the repetition

vector~q of the graph, we can define the concept of actor iteration and graph iteration
as shown below.

Definition 2.1.3. (Actor iteration). An actor iteration is the invocation of an actor Ai
for qi times.

Definition 2.1.4. (Graph iteration). A graph iteration is the invocation of every actor
Ai for qi times.

Stateless Actors

In this thesis, we will use the concept of stateless and stateful actors. This concept
is common to both the (H)SDF and CSDF MoCs. Formally, any (C|H)SDF actor is
stateless because the relation between tokens consumed and produced during an
invocation is defined by a function, as mentioned earlier. Needless to say, a function
does not have a state. However, sometimes it is necessary to model actors for which
the result of the current invocation is dependent from the data produced in the
previous invocations. In the (C|H)SDF MoC, these dependencies from previous
invocations are modeled using self-edges. On these self-edges, an invocation can
write data tokens that represent the actor “state” and that can be read by successive
invocations. A formal definition of stateless actors is given below.

Definition 2.1.5. (Stateless actor). A (C|H)SDF actor is called stateless if it has no
self-edges used to model its state.

Consequently, stateful actors are defined as follows.

Definition 2.1.6. (Stateful actor). A (C|H)SDF actor is called stateful if it has self-edges
used to model its state.

2.1.3 Polyhedral Process Network (PPN)

The Polyhedral Process Network (PPN) [VNS07] MoC is used in this thesis mainly in
the context of best-effort systems (Chapters 3 and 4). The PPN MoC is a special case
of the Kahn Process Network (KPN) MoC proposed in [Kah74]. A PPN is a directed
multigraph G defined as a tuple G = (𝒫 , 𝒞), where:

∙ 𝒫 = {P1, P2, · · · , P|𝒫|} is a set of processes;
∙ 𝒞 = {ch1, ch2, · · · , ch|𝒞|} is a set of FIFO channels.

Processes in 𝒫 represent tasks of an application and they communicate among each
other using FIFO channels in 𝒞. An example of PPN is depicted in Figure 2.3(a). Each
PPN process has a set of input ports (for instance, process P2 has input ports IP1 and
IP2) and a set of output ports (P2 has only one output port, OP1), through which the
process reads and writes data. Channels connected to the input and output ports
of a process P are called input and output channels, and denoted by ICP and OCP,
respectively.

2.1. Dataflow Models of Computation 29

for (i=0; i<M; i++){

 for (j=0; j<N; j++){

 if (condition)

 READ(in1, IP1);

 else

 READ(in1, IP2);

 out = F(in1);

 WRITE(out, OP1);

}}

IP1

IP2

OP1

(a) (b)

P1

P2

P3

ch1

ch2
ch3

OP1

OP2

OP1

IP1

IP2

IP1

Process P2

Figure 2.3: In sub-figure (a), an example of a PPN topology composed of processes P1, P2, P3 and FIFO
channels ch1, ch2, ch3. Processes read/write data tokens from/to channels using input/output ports,
which are denoted by dots. Sub-figure (b) shows the internal structure of process P2 of sub-figure (a). As
in all PPN processes, the structure of P2 is based on nested for-loops.

Similar to KPN processes, PPN processes are synchronized through the FIFO
channels, that is, processes that attempt to read from an empty FIFO will block
(blocking read). However, contrary to KPNs, in PPNs FIFO buffers have bounded
size, therefore processes are also forced to block when trying to write to a full FIFO
(blocking write).

Note that in PPNs control and synchronization are completely distributed, which
allows to change the mapping of processes to PEs at run-time with minor effort.
We leverage this advantage in our proposed techniques aimed at achieving system
adaptivity in NoC based MPSoCs, see Chapters 3 and 4.

Another restriction with respect to the KPN MoC is that in PPNs processes have
a precise structure. As shown in Figure 2.3(b) for process P2, the execution of a
PPN process is defined using nested for-loops. Each execution of a PPN process
corresponds to a certain value of the for-loop iterators. The value of these iterators
can be represented as a vector~I, called iteration vector. For P2, the iteration vector is
~I = [i, j].

Each PPN process executes as follows. First, the process reads data from (a subset
of) its input ports. The subset of input ports from which data is read depends on
the value of the iteration vector. For instance, process P2 reads data from IP1 if the
condition2 in Figure 2.3(b) is satisfied, otherwise data is read from IP2. Then, the input
data is processed by a function (in P2, this is represented by the line out = F(in1)).
This function represents the computational behavior of the process. Finally, the
process writes the produced data to (a subset of) its output ports. The subset of output
ports to which data is written depends, again, on the value of the iteration vector.

2Conditions used to determine whether an input/output port has to be read/written can contain any
affine relation of the loop iterators, static parameters, and constants.

30 Chapter 2. Background

Note that, similar to the actor-based MoCs presented in Sections 2.1.1 and 2.1.3, the
relation between input and output data of a process is defined by a function, which is
by definition stateless. In order to model processes for which the result of the current
iteration is dependent from the data produced in the previous iterations, one can use
self-channels. On these self-channels, an iteration can write data tokens that represent
the process “state” and that can be read by successive iterations. This state is therefore
stored outside the process itself. However, note that the set of input/output ports
which is read/written by the PPN process is derived based on its iteration vector~I.
Therefore, the iteration vector is in fact the only state of the PPN process.

Automatic derivation from SANLPs

The restrictions imposed by the PPN MoC compared to the KPN MoC lead to the
following important property: any sequential application specified as a Static Affine
Nested Loop Program (SANLP) can be automatically converted to an equivalent
parallel PPN specification [VNS07]. An SANLP can be defined as follows (from
[Mei10]).

Definition 2.1.7. (Static Affine Nested Loop Program (SANLP)). An SANLP is a program
where each program statement is enclosed by one or more loops and if-statement,
and where:

- loops have a constant step size;
- loops have bounds that are affine expressions of the enclosing loop iterators,

static program parameters, and constants;
- if-statements have affine conditions in terms of the loop iterators, static program

parameters, and constants;
- index expression of array references are affine expressions of the enclosing loop

iterators, static program parameters, and constants;
- data flow between statements in the loop is explicit, which prohibits that two

statements that contain function calls communicate through shared variables
invisible at the SANLP level.

In particular, in this thesis we use the pn compiler [VNS07] to automatically
convert static affine nested loop programs (SANLPs) to parallel PPN specifications and
to determine the buffer sizes that guarantee deadlock-free execution. Although the
pn compiler imposes some restrictions on the specification of the input application, a
large set of streaming applications can be effectively specified as SANLPs. In addition
to the case studies considered in Chapters 3 and 4, SANLPs can model applications
from various domains, such as image/video processing (JPEG2000, H.264), sound
processing (FM radio, MP3), and scientific computation (QR decomposition, stencil,
finite-difference time-domain). Moreover, a recent work [TA10] has shown that most
of the streaming applications can be specified using the Synchronous Data Flow (SDF)
model [LM87b]. The PPN model is more expressive than SDF, thus it can as well be
used effectively to model most streaming applications.

2.2. Real-time Scheduling Theory 31

2.2 Real-time Scheduling Theory

In this section, we introduce in a formal way the real-time periodic task model and
important schedulability results for multiprocessor systems. This task model and
analysis techniques are instrumental to the approaches we present in Chapters 5 and
6. Finally, we describe the notation and theoretical results of two semi-partitioned
scheduling algorithms which are leveraged in our work: EDF-fm [ABD08] and EDF-
os [AEDC14].

2.2.1 Real-time periodic and sporadic task models

Under the real-time periodic task model, a task is defined by a 4-tuple τi = (Ci, Ti, Si, Di),
where Ci is the worst-case execution time (WCET) of the task, Ti is the task period, Si
is the start time of the task, and Di is the deadline of the task. A periodic task τi starts
at time Si and is recurrent, with a constant inter-arrival time Ti. That is, a periodic
task τi is invoked at time instants ri,k = Si + kTi, for all k ∈ N0. Each invocation
of τi is called a job. The kth job of τi is denoted by τi,k. Job τi,k must complete its
execution before time di,k = ri,k + Di. In this thesis, we assume that tasks have implicit
deadlines, i.e., Di = Ti for each task τi. In this case, the absolute deadline of job τi,k is
di,k = Si + (k + 1)Ti is coincident with the arrival of job τi,k+1. We denote the actual
completion time of τi,k as zi,k. We assume that tasks can be preempted at any time.
The demand of a real-time periodic task is defined as follows.

Definition 2.2.1. (Demand of a periodic real-time task). The demand of a periodic real-
time task τi in the interval [t0, tc) is the total time in which jobs of τi are executed in
[t0, tc). This demand is denoted by dmd(τi, t0, tc).

In Section 2.3, we summarize the scheduling technique [BS11, BS12] on which our
proposed approaches aimed at HRT systems are based. That scheduling technique
considers an input application modeled as an acyclic (C)SDF graph with N actors.
Then, this (C)SDF model of the application is converted to a set Γ = {τ1, τ2, · · · , τN}
of N real-time periodic tasks. In general, tasks in Γ do not have the same start time,
i.e., Γ is an asynchronous task set. The utilization of task τi ∈ Γ is ui = Ci/Ti and the
total utilization of the task set Γ is UΓ = ∑τi∈Γ ui.

The sporadic task model is a generalization of the periodic task model. Jobs
released by a sporadic task must be separated in time by a minimum inter-arrival
interval Ti.

2.2.2 System model

In this thesis, we consider homogeneous multiprocessor systems. That is, in the con-
sidered systems all the processors are identical and the speed of execution of tasks
on processors is the same. In particular, we consider a system composed of a set
Π = {π1, π2, · · · , πM} of M homogeneous processors.

32 Chapter 2. Background

2.2.3 Multiprocessor Real-Time Scheduling Algorithms

In this section we describe some concepts and results from real-time scheduling
analysis which are instrumental to the approaches proposed in this thesis. We focus
on scheduling algorithms which handle periodic real-time task sets.

Multiprocessor scheduling algorithms try to solve two problems [DB11]:
1. The allocation problem, namely on which processor(s) jobs of a task should

execute;
2. The priority problem, or when, and in what order with respect to jobs of other

tasks, each job should execute.
Based on the way in which scheduling algorithms approach the allocation problem,
they can be categorized in:

∙ No migration. Each task is allocated to only one processor, and no migration is
allowed.

∙ Task-level migration. Different jobs of the same task can execute on different
processors. However, each job can only be executed on one processor. These
approaches are said to have restricted migrations.

∙ Job-level migration. A single job can migrate and be executed on different pro-
cessors. However, parallel execution of a job is not allowed, i.e., the same job
cannot be executed in parallel on two or more processors.

Algorithms that allow any task to migrate, either at task-level or at job-level, are
termed global. By contrast, the algorithms that do not allow migration at any level
are called partitioned.

Depending on how scheduling algorithms solve the priority problem, they can
be classified in:

∙ Fixed task priority. Each task has a single fixed priority applied to all of its jobs.
∙ Fixed job priority. The jobs of a task may have different priorities, but each job

has a single static priority. An example of this class is the Earliest Deadline First
(EDF) [LL73] scheduling described in Section 2.2.4.

∙ Dynamic job priority. A single job may have different priorities during its execu-
tion. An example of this class is Least Laxity First (LLF) scheduling.

We proceed our discussion by introducing some useful definitions from [DB11].

Definition 2.2.2. (Feasibility of a task set). A task set is said to be feasible with respect to
a given system if there exist some scheduling algorithm that can schedule all possible
sequences of jobs that may be generated by the task set on that system without missing
any deadline.

Definition 2.2.3. (Optimal scheduling algorithm). A scheduling algorithm is said to be
optimal with respect to a system and a task model if it can schedule all of the task sets
that comply with the task model and are feasible on the system.

Definition 2.2.4. (Schedulability of a task and of a task set). A task τ is referred to as
schedulable according to a given scheduling algorithm 𝒜 if its worst-case response
time under 𝒜 is less than or equal to its deadline. Similarly, a task set is referred to as
schedulable under a given scheduling algorithm if all of its tasks are schedulable.

2.2. Real-time Scheduling Theory 33

Real-time scheduling theory provides analytical schedulability tests to verify the
schedulability of a task set Γ under scheduling algorithms 𝒜. A schedulability test
is termed sufficient if all task sets that are deemed schedulable according to the test
are in fact schedulable [DB11]. Similarly, a schedulability test is termed necessary
if all the task sets that are deemed unschedulable according to the test are in fact
unschedulable. Finally, a schedulability test that is both sufficient and necessary is
called exact.

For implicit deadline periodic task sets, an useful performance metric of both
uniprocessor and multiprocessor scheduling algorithms is the worst-case utilization
bound, as defined below.

Definition 2.2.5. (Worst-case utilization bound (from [DB11])). The worst-case utilization
bound U𝒜 for a scheduling algorithm 𝒜 is the minimum utilization of any implicit
deadline task set that is only just schedulable under 𝒜.

From this definition, it follows that every implicit deadline task set Γ with total
utilization UΓ ≤ U𝒜 is schedulable under 𝒜. Therefore, the condition:

UΓ ≤ U𝒜 (2.11)

can be used as a sufficient (not necessary) schedulability test for task set Γ under
scheduling algorithm 𝒜.

2.2.4 Uniprocessor Schedulability Analysis

Arguably, the two most popular scheduling algorithms for uniprocessor systems
are Earliest Deadline First (EDF) and Rate Monotonic (RM). These two scheduling
algorithms are described below.

Earliest Deadline First (EDF)

The EDF scheduling algorithm was proposed in the seminal paper [LL73] of Liu
and Layland. Under EDF a task is assigned the highest priority if the deadline of
its current job is the nearest. Ties are broken arbitrarily. An exact schedulability test
under EDF for implicit deadline periodic task sets is given in the following theorem.

Theorem 2.2.1. Under EDF, an implicit deadline periodic task set Γ is schedulable on one
processor if the total utilization of Γ is less than or equal to one:

UΓ = ∑
τi∈Γ

ui ≤ 1 (2.12)

Note that EDF is optimal on uniprocessor systems. That is, if a task set is feasible
on such a system, it is also schedulable under EDF.

34 Chapter 2. Background

Rate Monotonic (RM)

Under the Rate Monotonic (RM) scheduling algorithm, each task has a fixed priority.
In particular, for any two tasks τi and τj, if the period of τi is shorter than the period
of τj then the priority of τi is higher that that of τj.

Such a priority assignment is optimal in the sense that no other fixed task priority
assignment rule can schedule a task set which cannot be scheduled by RM [LL73].
However, contrary to EDF, RM is in general not optimal on uniprocessors (see Defini-
tion 2.2.3) for real-time periodic task sets.

2.2.5 Multiprocessor Schedulability Analysis

As mentioned in Section 1.2.2, the scheduling problem on multiprocessors is much
more complex than on uniprocessor systems. In order to find a solution to this prob-
lem, a plethora of scheduling algorithms for hard real-time multiprocessor systems
have been proposed in the literature [DB11, BBB15]. Each scheduling algorithm has
its advantages and its drawbacks compared to the others, and in fact there is no
scheduling algorithm that outperforms the rest in all aspects.

Optimal Global Scheduling Algorithms

On a system comprised of M homogeneous processors, hard real-time scheduling
algorithms that achieve a worst-case utilization bound of M exploit job-level mi-
grations and dynamic job priority (recall the classification of scheduling algorithms
given in Section 2.2.3). Examples of such algorithms include PFAIR [BCPV96] and
LLREF [CRJ06]. Under these optimal global scheduling algorithms, an exact schedu-
lability test for an implicit deadline periodic task set Γ on M processors is:

UΓ = ∑
τi∈Γ

ui ≤ M (2.13)

that is, any implicit deadline periodic task set with total utilization less than or equal
to M is schedulable on M processors. Based on the above equation, we can derive the
minimum number of processors MOPT required by an optimal scheduling algorithm
to schedule an implicit deadline periodic task set Γ:

MOPT = ⌈UΓ⌉ (2.14)

Note that other global scheduling algorithms do not achieve optimality, for in-
stance Global EDF (GEDF).

Partitioned Scheduling Algorithms

Unfortunately, optimal global scheduling algorithms entail high migration and pre-
emption overheads. To avoid such overheads, designers often choose partitioned
approaches, where no migration is allowed. Partitioned scheduling approaches are

2.2. Real-time Scheduling Theory 35

composed of two phases, an assignment phase and an execution phase. Under parti-
tioned approaches, as the name suggests, in the first phase a schedulable partition of the
initial task set is created. In general, a partition of a set V is defined as a grouping of
its elements into non-empty subsets, in such a way that every element is included in
one and only one of the subsets. We provide a definition using mathematical notation
below.

Definition 2.2.6. (Partition of a set). Let V be a set. An x-partition of V is a set, denoted
by xV, where:

xV = {xV1, xV2, · · · , xVx},

such that each subset xVi ⊆ V, and:

xVi ̸= ∅ ∀ xVi and
x⋂

i=1

xVi = ∅ and
x⋃

i=1

xVi = V.

As mentioned earlier, in the case of partitioned scheduling algorithms, we are
interested in obtaining a schedulable partition of a task set, which is defined below.

Definition 2.2.7. (Schedulable partition of a task set). Let Γ be a set of periodic real-time
tasks. A schedulable partition xΓ is a partition of Γ that complies with Definition 2.2.6
and guarantees that each subset of xΓ is schedulable on one processor under the
considered local scheduling algorithm.

In particular, consider a task set Γ and an x-partition xΓ of Γ. Assume that each
subset xΓj ∈ xΓ is assigned to a separate processor and it is scheduled by a local
uniprocessor scheduler 𝒜. Then, using the schedulability test provided by Condi-
tion (2.11), we have that Γ is schedulable using 𝒜 on each processor if:

∑
τi∈xΓj

ui ≤ U𝒜, ∀ xΓj ∈ xΓ (2.15)

where U𝒜 is the worst-case utilization bound of 𝒜, as defined in Definition 2.2.5. For
instance, the worst-case utilization bound of EDF is UEDF = 1 [LL73], therefore we
have that Γ is schedulable using Partitioned EDF (PEDF) if:

∑
τi∈xΓj

ui ≤ 1, ∀ xΓj ∈ xΓ (2.16)

Then, in the second phase, at run-time, the local (uniprocessor) scheduler 𝒜 is
used to schedule the subset of the partition which is assigned to each processor.

From the above discussion, it is clear that the first phase of a partitioned scheduling
approach is in fact an instance of the classical bin-packing problem [Joh73]. In the
bin-packing problem, items of different sizes must be packed into the least amount of
bins, which have a certain capacity. In partitioned scheduling, in an analog way, tasks
with different utilizations must be partitioned into the least amount of processors.
The “capacity” of each processor is determined by the worst-case utilization bound

36 Chapter 2. Background

U𝒜 of the local scheduling algorithm. The equivalence of partitioning schemes and
the bin-packing problem leads to the following two limitations.

Limitation 1. An optimal solution to the bin-packing problem is one that min-
imizes the number of bins required to pack the items. Analogously, an optimal
partitioning of the set of tasks is one that requires the least amount of processors to
assign all tasks, while guaranteeing schedulability on all processors. In both cases,
finding an optimal solution is NP-hard [GJ79]. In order to tackle the NP-hardness of
the problem, several heuristics have been proposed [Joh74] to find approximate solu-
tions. We provide an overview of the most commonly used heuristics in Section 2.2.6.
These heuristics are rather simple and fast, but they do not guarantee the optimality
of the provided solution.

Limitation 2. Consider a system composed of M processors. Even if we determine
the optimal partitioning of tasks to processors, no partitioned scheduling algorithm
can guarantee the worst-case utilization bound of M (recall Equation (2.13)) provided
by optimal global algorithms. In general, the worst-case utilization bound of a
partitioned scheduling algorithm on M processors can reach at most (M + 1)/2
[ABD08]. This phenomenon is termed utilization loss and implies that partitioned
algorithms cannot, in general, exploit the available processing resources in an optimal
way. In fact, a partitioned approach may require twice as many processors to schedule
certain task sets compared to an optimal global scheduler.

In the rest of this dissertation, we refer to the two above limitations as bin-packing
issues.

2.2.6 Partitioning Heuristics

Consider a set Γ of N tasks (items) and a set Π of M homogeneous processors (bins).
Each processor uses a local scheduler 𝒜 with worst-case utilization bound U𝒜, and
each task τi has utilization ui. As mentioned in Limitation 1 of Section 2.2.5, an
optimal partitioning of the task set Γ is a partitioning that uses the least amount of
processors and satisfies Condition (2.15). Deriving such optimal partitioning, which
is an instance of the bin-packing problem, is NP-hard. Given the complexity of
this problem, several heuristics have been proposed to solve it. In the following,
we summarize some of the most common heuristics used to solve the partitioning
problem. These heuristics assign each task τi ∈ Γ to a certain processor πk ∈ Π by
considering one task at a time, following a certain sequence. For First-Fit, Best-Fit and
Worst-Fit, in particular, the current task to be assigned is determined by following the
order of tasks appearance in Γ, e.g., τ1 is assigned first and τN last.

All the partitioned heuristics described in what follows utilize the concept of
processor utilization, defined below.

Definition 2.2.8. (Utilization of a processor). Let Γk denote the set of tasks currently
assigned to processor πk. Then, the utilization σk of processor πk is equal to the sum
of the utilizations of the tasks assigned to πk, i.e.:

σk = ∑
τi∈Γk

ui (2.17)

2.2. Real-time Scheduling Theory 37

Note that, in the beginning of all partitioned heuristics listed below, Γk = ∅ and
σk = 0 for each πk.

∙ First-Fit (FF). A task τi is assigned to the lowest-indexed processor πk that can
contain it. That is, the index k of πk is determined by:

k = min{j | ui + σj ≤ U𝒜}

If the condition enclosed by the braces is not satisfied by any processor, a new
processor is instantiated and τi is assigned to it.

∙ Best-Fit (BF). A task τi is assigned to a processor πk such that πk will have the
minimal residual utilization (U𝒜 − σk) after the assignment. That is, the index k
of πk is determined by:

k = min{j |
(
ui + σj

)
is closest to, without exceeding, U𝒜}

If the condition enclosed by the braces is not satisfied by any processor, a new
processor is instantiated and τi is assigned to it.

∙ Worst-Fit (WF). A task τi is assigned to a processor πk such that πk will have
the maximal residual utilization (U𝒜 − σk) after the assignment.

k = min{j |
(
ui + σj

)
is minimal and does not exceed U𝒜}

If the condition enclosed by the braces is not satisfied by any processor, a new
processor is instantiated and τi is assigned to it.

Recall that for EDF the worst-case utilization bound U𝒜 is UEDF = 1 (see Equa-
tion (2.16)).

As shown in [Joh73], these heuristics achieve better performance if they are pre-
ceded by a sorting of the input task set. Usually, the input task set is sorted by
decreasing utilization. The approaches composed of a first phase, which sorts the
input task set by decreasing utilization, and a second phase, which applies one of
the aforementioned heuristics (FF, BF, WF), are termed First-Fit Decreasing (FFD),
Best-Fit Decreasing (BFD), and Worst-Fit Decreasing (WFD), respectively.

The performance of a partitioning heuristic can be measured by its approximation
ratio. Let OPT(Γ) be the number of processors needed by an optimal partitioning
scheme to assign a certain task set Γ. Consider a certain partitioning heuristic H,
which requires H(Γ) processors to assign the same task set Γ. Then, the approximation
ratio of H, denoted by ℛH , ensures that for any task set Γ:

H(Γ) ≤ ℛH · OPT(Γ) (2.18)

The approximation ratios for FF, BF, and FFD are 17/10, 17/10, and 11/9, respec-
tively [CGJ96, GJ79, Yue91].

2.2.7 EDF-fm Semi-partitioned Algorithm

As summarized in Section 2.2.5, global scheduling algorithms can be optimal for
multiprocessor systems leading to a full exploitation of the available processors.

38 Chapter 2. Background

However, they incur high migration and preemption overheads, which may limit
their applicability. Moreover, they incur significant memory overhead in distributed
memory systems, as explained in Section 1.3.2. By contrast, partitioned approaches as
PEDF show low preemption overheads and neither migration nor memory overheads.
However, they are affected by bin-packing issues and in general may not exploit the
available processing resources in an optimal way.

In Chapters 5 and 6 of this thesis we consider semi-partitioned scheduling algo-
rithms, which represent a middle ground between global and partitioned algorithms.
As mentioned in Chapter 1, under semi-partitioned algorithms most of the tasks are
statically allocated to processors and only a subset of the tasks is allowed to migrate
among different processors. Migrating tasks follow a migration pattern derived at
design-time. Semi-partitioned algorithms aim at ameliorating the bin-packing issues
of partitioned scheduling without incurring the excessive overheads of global schedul-
ing. In particular, in Chapter 5 we exploit the EDF-fm scheduling algorithm [ABD08],
which is described in the rest of this section. We recall that the name EDF-fm comes
from the fact that the algorithm is based on EDF and allows tasks to be either fixed
or migrating. By contrast, in Chapter 6 we propose a novel scheduling algorithm,
EDF-ssl which is based on some concepts and properties of the EDF-os scheduling
algorithm [AEDC14] summarized in Section 2.2.8.

As mentioned in Section 1.4.2, EDF-fm can have great benefits for distributed
memory MPSoCs. However, it provides only soft real-time guarantees to the sched-
uled tasks. Since many definitions of soft real-time behavior exist, we provide below
the definition of a SRT algorithm adopted in this thesis.

Definition 2.2.9. (Soft Real-Time (SRT) scheduling algorithm). A scheduling algorithm
is said to be SRT when it allows tasks to miss their deadlines by a bounded value
called tardiness.

Note that EDF-fm falls into this definition of SRT algorithm. In particular, under
EDF-fm we can compute a bound of the tardiness of each task. A definition of
tardiness bound is given below.

Definition 2.2.10. (Tardiness bound). A task τi is said to have a tardiness bound ∆i if
each job τi,k of τi does not miss its deadline di,k by more than ∆i. That is, denoting the
completion time of job τi,k by zi,k:

zi,k ≤ (di,k + ∆i), ∀k ∈ N0

We describe now the EDF-fm scheduling algorithm, as presented in [ABD08], in
greater detail. In EDF-fm, tasks can be either fixed or migrating. Migrating tasks
migrate between exactly two processors, with the restriction that migration can
only happen at job boundaries. The EDF-fm approach consists of two phases: the
assignment phase and the execution phase, which are summarized in what follows.

Assignment phase

Consider the following definitions:

2.2. Real-time Scheduling Theory 39

Definition 2.2.11. (Task share). A task τi is said to have a share si,k on πk when a part
si,k of its utilization ui is assigned to πk.

In turn, the task fraction of task τi on processor πk is defined as follows.

Definition 2.2.12. (Task fraction). Given si,k, πk executes a fraction ϕi,k =
si,k
ui

of τi’s
total execution requirement.

In the assignment phase each task is assigned to either one processor (fixed task)
or two processors (migrating task). In particular, the assignment phase assigns tasks
in sequence to processors. Since EDF-fm uses EDF as local scheduling algorithm, the
capacity of each processor πk (the maximum utilization that can be assigned to it) is 1
(see Equation (2.12) on page 33), therefore the condition:

σk ≤ 1, ∀πk ∈ Π (2.19)

must be satisfied.
In particular, in the assignment phase tasks are assigned to a processor πk until its

capacity is exhausted. Recall that σk denotes the total utilization assigned to processor
πk (see Definition 2.2.8). In the case of EDF-fm, σk is equal to the sum of shares assigned
to πk:

σk , ∑
τi∈Γk

si,k (2.20)

where Γk is the set of tasks with non-zero shares on πk.
If a task τi cannot entirely fit on processor πk, then a share si,k = 1 − σk of its

utilization is assigned to πk. This makes sure that, after this assignment, σk = 1, i.e.,
πk is fully utilized. The remaining utilization si,k+1 = (ui − si,k) of τi is assigned to
the next processor, πk+1. The assignment phase of EDF-fm ensures that at most two
migrating tasks are assigned to any processor (see an example in Figure 2.4).

Moreover, on a processor with two migrating tasks (τi and τj), EDF-fm requires

that the sum of the migrating tasks’ utilization (denoted by σ
mig
k) does not exceed one:

σ
mig
k = ui + uj ≤ 1, (2.21)

This condition is automatically satisfied if the maximum utilization of any task is
limited to 1/2, given the fact that at most two migrating tasks can be assigned to a
single processor. However, tasks that exceed this utilization limit can still be scheduled
by EDF-fm, provided that Condition (2.21) is respected on all the processors. Note
that if no limit on maximum task utilizations is set, EDF-fm is not optimal, because it
cannot fully exploit the available processors for all possible input task sets.

Example 2.2.1. Given the task set {τ1 = (C1=3, T1=10), τ2 = (2, 5), τ3 = (2, 5), τ4 =
(1, 2), τ5 = (1, 2), τ6 = (2, 5), τ7 = (1, 2)}, the EDF-fm algorithm derives the task
assignment shown in Fig. 2.4. For instance, task τ3 cannot entirely fit onto π1 in
Fig. 2.4, thus its utilization is split between π1 and π2 with shares s3,1 = 3/10 and
s3,2 = 1/10, respectively.

40 Chapter 2. Background

S1,1=3/10

S3,1=3/10

S3,2=1/10

S4,2=1/2

S5,2=2/5

S5,3=1/10

Processor p1 Processor p2 Processor p3

S2,1=2/5

S6,3=2/5

S7,3=1/2

1

0

Figure 2.4: EDF-fm assignment of the task set considered in Example 2.2.1. Tasks τ1, τ2, τ4, τ6, and τ7
are fixed, i.e., their whole utilization is assigned to a single processor. For instance, task τ1 has utilization
u1 = 3/10 and the share s1,1 of τ1 on π1 is equal to its whole utilization, that is, s1,1 = u1. By contrast,
tasks τ3 and τ5 are migrating tasks. Their shares on processors are highlighted with a shaded area. For
instance, τ3 cannot entirely fit onto π1, thus its utilization is split between π1 and π2 with shares
s3,1 = 3/10 and s3,2 = 1/10, respectively.

Execution phase

The execution phase employs a simple online scheduling algorithm that is derived
from EDF and ensures bounded tardiness with a minimal overhead compared to a
canonical EDF scheduler. Let τi be a migrating task that migrates between processor
πk and πk+1. Then, jobs belonging to a task τi are assigned at run-time such that in
the long run the fraction of τi’s workload executed on πk (πk+1) is close to ϕi,k (ϕi,k+1).
This result is achieved by leveraging results from PFAIR scheduling [BCPV96]. We
recall that EDF-fm allows only restricted migrations. As explained in Section 2.2.3,
this means that different jobs of the same task can execute on different processors.
However, each job can only be executed on one processor.

For instance, according to the share assignment depicted in Figure 2.4, task τ3
releases its jobs on processors π1 and π2 according to the pattern shown in Figure 2.5.
Task τ3 releases a job every period T3, either to π1 or to π2. On average 1 out of 4
jobs of τ3 are assigned to π2 and the remaining 3 jobs are assigned to π1. In the long
run (the release pattern continues indefinitely), the number of jobs released on π1 are
three times the number of jobs released on π2. This is due to the fact that the share
s3,1 of τ3 assigned to π1 is three times larger than the share s3,2 of τ3 assigned to π2.

Jobs released on a processor are prioritized among each other using a local EDF
scheduler. The job release pattern of migrating tasks under EDF-fm, mentioned above,
prevents the overloading on processors in the long run. However, it creates temporary
overloading on processors, which in turn leads to tardiness. In particular, when two
migrating tasks, τi and τj, are assigned to πk, the tardiness bound under EDF-fm for a
fixed task τu assigned to the same processor is given by:

∆(τu) =
Ci · (ϕi,k + 1) + Cj · (ϕj,k + 1)− Tu · (1 − σk)

1 − si,k − sj,k
(2.22)

where Ci and Cj are the worst-case execution times of τi and τj (as defined in Sec-
tion 2.2.1), and Tu is the period of task τu. Finally, σk is the total utilization assigned

2.2. Real-time Scheduling Theory 41

t

p2

p1

50 10 15 20 25 30 35 40

T3

. . .

. . .

job release

Figure 2.5: Release pattern of jobs of task τ3 between processors π1 and π2, according to the share
assignment of τ3 in Figure 2.4.

to πk, i.e., the sum of fixed tasks’ utilization and migrating tasks’ shares allocated to
πk (see Equation (2.20)). Note that in Equation (2.22) the tardiness bound of EDF-fm
is denoted as ∆(τu), whereas in Definition 2.2.10 we denote the tardiness bound of
a task τu as ∆u. Throughout this thesis, we will use the latter notation if the context
makes clear that ∆u is the tardiness bound of task τu.

In contrast with fixed tasks, in EDF-fm migrating tasks do not miss any deadline,
therefore their tardiness bound is zero.

2.2.8 EDF-os Semi-partitioned Algorithm

In order to tackle the sub-optimality of the EDF-fm scheduling algorithm, Anderson
et al. in [AEDC14] propose EDF-os (EDF-based optimal semi-partitioned scheduling).
In what follows, we summarize the features of EDF-os which are leveraged in our
EDF-ssl scheduling algorithm presented in Chapter 6.

Similar to EDF-fm, EDF-os is also a SRT scheduling algorithm (see Definition 2.2.9).
These two algorithms share some definitions and concepts, but EDF-os introduces
modifications to both the assignment and execution phases of EDF-fm to achieve
optimality. As in EDF-fm, under EDF-os tasks can be either fixed or migrating, with
migrations only allowed at job boundaries. However, in EDF-os migrating tasks
are allowed to migrate among any number of processors, not only between two
processors as in EDF-fm. Each task τi is assigned a (potentially zero) share si,k of the
available utilization of a processor πk, following Definition 2.2.11.

If task τi is migrating, it has non-zero shares on several processors. If τi is fixed, it
has non-zero shares on a single processor. The assignment phase in EDF-os ensures
that the cumulative sum of the shares of a task over all the processors equals the task
utilization, that is:

ui =
M

∑
k=1

si,k

where M is the total number of processors in the system. Similar to EDF-fm, the total
utilization assigned to processor πk is denoted by σk and derived using Equation (2.20).

42 Chapter 2. Background

Also under EDF-os, the total utilization assigned to a processor must always be equal
to or lower than the available processor utilization (which is 1). That is, for each
processor πk:

σk ≤ 1 (2.23)

Condition (2.23) above is ensured by the assignment phase of EDF-os to avoid the
over-utilization of any processor in the long run. In fact, Condition (2.23) is identical
to Condition (2.12) used in EDF-fm.

In the execution phase, EDF-os enforces that, in the long run, the fraction of
workload generated by task τi on πk is equal to the task fraction ϕi,k, given by Def-
inition 2.2.12. Similar to EDF-fm, this long-run workload distribution according to
task fractions is obtained by leveraging results from Pfair scheduling [BCPV96]. In
particular, out of the first ν consecutive jobs released by τi, EDF-os ensures that the
number of jobs released on processor πk is between ⌊ϕi,k · ν⌋ and ⌈ϕi,k · ν⌉ (Property 1
in [AEDC14]). In turn, out of any c consecutive jobs of a migrating task τi, the number
of jobs released on πk (indicated as ci,k) is bounded by the following expression:

ci,k ≤ ϕi,k · c + 2 (2.24)

The above expression is given by Property 6 in [AEDC14]. For a more detailed
explanation of assignment rules for jobs of migrating tasks, the reader is referred
to [ABD08] and [AEDC14].

Tardiness bounds for both fixed and migrating tasks under EDF-os are derived
in [AEDC14]. We do not report these bounds because they are not relevant for the
contributions of this thesis.

2.3 HRT Scheduling of Acyclic CSDF Graphs [BS11,
BS12]

As mentioned in Section 1.2.2 (on page 15, under Class III of scheduling algorithms),
several approaches that bridge the gap between dataflow MoCs and real-time task
models have been proposed in recent years. In this thesis, in particular, among these
approaches we consider the scheduling technique proposed in [BS11, BS12].

Bamakhrama and Stefanov in [BS11, BS12] consider applications specified as
acyclic CSDF graphs and show that the set of N actors A = {A1, A2, · · · , AN} of
an input CSDF graph G can be converted to a set of N real-time periodic tasks
ΓG = {τ1, τ2, · · · , τN}. This conversion allows a designer to apply algorithms from
hard real-time scheduling theory to derive in a fast and analytical way the minimum
number of processors that guarantee the required performance of an application and
the partitioning of tasks to processors.

In particular, for each actor Ai ∈ A of the input CSDF graph, the analysis in
[BS11, BS12] derives the parameters of the corresponding real-time periodic task
τi = (Ci, Ti, Si), where Ci is the WCET of the task, Ti is the task period, Si is the start
time of the task (as described in Section 2.2.1). In the rest of this section, we describe
how these parameters (Ci, Ti, Si) are derived. Then, we show how the size of buffers

2.3. HRT Scheduling of Acyclic CSDF Graphs [BS11,BS12] 43

which implement inter-task communication over edges can be derived. Finally, we
summarize the correspondence between the dataflow notation for the input CSDF
graph G and the real-time theory notation for the derived periodic task set ΓG.

WCET of Actors (Ci)

The analysis in [BS11,BS12] begins with the computation of the WCET Ci of each CSDF
actor Ai. The value of Ci is derived as follows. First, the WCET Ci,k of each phase k of
actor Ai is computed. This WCET includes both the worst-case communication and
computation time required by phase k of Ai, and is calculated using the following
equation:

Ci,k = CR · ∑
el∈inp(Ai)

yl
i(k) + CW · ∑

er∈out(Ai)

xr
i (k) + CC

i (k) (2.25)

In Equation (2.25), CR (CW) represents the worst case time needed to read (write) a
single token from (to) an input (output) channel in the considered hardware platform;
yl

i(k) (xr
i (k)) is the number of tokens read (written) by actor Ai from (to) edge el (er) by

phase k of Ai; inp(Ai) (out(Ai)) is the set of input (output) edges of Ai; and CC
i (k) is

the worst-case computation time of phase k of actor Ai. Note that CC
i (k) includes also

the worst-case overhead incurred by the underlying scheduler (e.g., EDF), following
the analysis of [Dev06].

The WCET Ci of actor Ai is derived by finding the maximum value among the
WCET Ci,k of each phase k of Ai, that is:

Ci =
Ωimax

k=1
(Ci,k) (2.26)

where Ci,k is obtained using Equation (2.25).
Given the WCET Ci of each actor Ai in G, we can represent the WCETs of all actors

in G using the WCET vector ~C, where each component Ci of ~C is the WCET of actor
Ai.

Minimum Period of Actors (Ti)

Based on the properties of the graph and on the WCET of actors given by Equa-
tion (2.26), the minimum period Ti ∈ N of actor Ai can be calculated using the
following expression:

Ti =
Q
qi

⌈
η

Q

⌉
(2.27)

where qi is the number of repetitions of actor Ai per graph iteration, η = maxAi∈A{Ci qi}
(recall that Ci is the WCET of Ai), and Q = lcm{q1, q2, · · · , qN}.

The period Ti of actor Ai, obtained using Equation 2.27, is minimum. However, in
some cases a designer may want longer periods of actors. These longer periods can
be derived by multiplying the minimum period of each actor by a positive integer
factor constant among all actors.

44 Chapter 2. Background

Given the period Ti of each actor Ai in G, we can represent the periods of all actors
in G using the period vector ~T, where each component Ti of ~T is the period of actor
Ai.

Example 2.3.1. Consider again the CSDF graph shown in Figure 2.2 on page 27. We
have already derived in Section 2.1.2 the repetition vector of the graph ~q = [3, 2, 3].
Assume that its WCET vector is ~C = [C1, C2, C3] = [1, 2, 2]. Then, it follows that η = 6
and ~T = [T1, T2, T3] = [2, 3, 2].

In general, the derived period vector ~T satisfies the condition:

q1T1 = q2T2 = · · · = qNTN = H (2.28)

where H is referred to as iteration period, and represents the duration needed by the
graph to complete one iteration (recall Definition 2.1.4 on page 28).

Earliest Start Times of Actors (Si)

The earliest start time Sj ∈ N0 of an actor Aj is derived using the following expression:

Sj =

{
0 if prec(Aj) = ∅
maxAi∈prec(Aj)

(
Si→j

)
if prec(Aj) ̸= ∅

(2.29)

where:

Si→j =

min
t∈[0,Si+H]

{
t : prdS

[Si ,max(Si ,t)+k)
(Ai, eu) ≥ cnsS

[t,max(Si ,t)+k]
(Aj, eu), ∀k = 0, 1, · · · , H

}
(2.30)

where:
∙ H is the iteration period as defined by Equation (2.28);
∙ Si is the start time of a predecessor actor Ai;

and the two functions (prdS, cnsS) used in Expression 2.30 are defined as follows.

Definition 2.3.1. (Cumulative production function for start times calculation). The cumu-
lative production function used to derive start times is denoted by prdS

[ts ,t f)
(Ai, eu)

and represents the total number of tokens produced by actor Si to edge eu during the
time interval [ts, t f).

Definition 2.3.2. (Cumulative consumption function for start times calculation). The cumu-
lative consumption function used to derive start times is denoted by cnsS

[ts ,t f]
(Aj, eu)

and represents the total number of tokens consumed by actor Aj from edge eu during
the time interval [ts, t f].

Note that, for the purpose of computing the start times of actor Aj, the cumulative
production function prdS(Ai, eu) assumes that token production happens as late as

2.3. HRT Scheduling of Acyclic CSDF Graphs [BS11,BS12] 45

3

8

43

0

t

A2

A1

A3

5

S1

T1

0 10 15

1 2 3 4 5

0 1 2

0 1 2

S2 T2

S3

6 7

job

release

job

deadline

Figure 2.6: Hard real-time scheduling of the CSDF graph in Figure 2.2 on page 27 derived using the
methodology of [BS11, BS12]. For instance, the derived period of A1 is T1 = 2 and the start time of A1
is S1 = 0. This means that the first invocation of A1 is released at time 0, and the successive invocations
are released periodically, every 2 time units. The schedule continues indefinitely, only its initial part is
shown.

possible, i.e., at the deadline of each invocation of predecessor actor Ai. Conversely,
the cumulative consumption function cnsS(Aj, eu) assumes that token consumption
happens as early as possible, i.e., at the release of each invocation of actor Aj. These
assumptions, which make the calculation of actor start times safe, are emphasized by
the superscript S in prdS and cnsS.

Given the start time Si of each actor Ai in G, we can represent the start times of all
actors in G using the start time vector ~S, where each component Si of ~S is the start
time of actor Ai.

Example 2.3.2. In Example 2.3.1, assuming a WCET vector ~C = [1, 2, 2] we derived the
period vector ~T = [2, 3, 2] of the graph G shown in Figure 2.2 on page 27. Then, based
on Expression (2.29) we derive the earliest start time vector ~S = [0, 3, 9]. Therefore,
the real-time periodic task set corresponding to G is completely defined as:

ΓG = {τ1 = (C1 = 1, T1 = 2, S1 = 0), τ2 = (2, 3, 3), τ3 = (2, 2, 9)}

Given the complete specification of the obtained real-time periodic task set, a designer
can apply algorithms from hard real-time scheduling theory to derive in a fast and
analytical way the minimum number of processors that guarantee the required perfor-
mance of an application and the partitioning of tasks to processors. For instance, the
total utilization UΓG is 13/6, therefore even an optimal global scheduling algorithm
would require at least 3 processors to schedule ΓG (see Equation (2.14)).

The periodic schedule of G, resulting from the derived task set ΓG, is visualized in
Figure 2.6. In the figure, notice that the first invocation of each actor Ai is released at
the start time Si, obtained using Expression (2.29). Then, successive invocations of
each actor Ai are released periodically, according to the actor’s period Ti.

46 Chapter 2. Background

Minimum Buffer Sizes

Given the period Ti and start time Si of each actor Ai ∈ A, the minimum size bu of
the buffer which implements the communication over edge eu = (Ai, Aj) is given by:

bu = max
k∈[0,1,··· ,H]

 prdB

[Si ,max{Si ,Sj}+k]
(Ai, eu)− cnsB

[Sj ,max(Si ,Sj)+k)
(Aj, eu)

 (2.31)

where:
∙ H is the iteration period as defined by Equation (2.28);
∙ Si and Sj are the start times actors Ai and Aj, respectively;

and the two functions (prdB, cnsB) used in Expression 2.30 are defined as follows.

Definition 2.3.3. (Cumulative production function for buffer sizes calculation). The cumu-
lative production function used to derive buffer sizes is denoted by prdB

[ts ,t f]
(Ai, eu)

and represents the total number of tokens produced by actor Si to edge eu during the
time interval [ts, t f].

Definition 2.3.4. (Cumulative consumption function for buffer sizes calculation). The cumu-
lative consumption function used to derive buffer size is denoted by cnsB

[ts ,t f)
(Aj, eu)

and represents the total number of tokens consumed by actor Aj from edge eu during
the time interval [ts, t f).

Note that, for the purpose of computing the buffer size bu, the cumulative pro-
duction function prdB(Ai, eu) assumes that token production happens as early as
possible, i.e., at the release of each invocation of predecessor actor Ai. Conversely,
the cumulative consumption function cnsB(Aj, eu) assumes that token consumption
happens as late as possible, i.e., at the deadline of each invocation of actor Aj. These
assumptions, which make the calculation of buffer sizes safe, are emphasized by the
superscript B in prdB and cnsB.

Correspondence Between Dataflow and Real-Time Theory Notations

The analysis in [BS11, BS12] creates a one-to-one correspondence between actor Ai of
the input CSDF graph G and real-time periodic task τi of the derived periodic task
set ΓG. In this thesis, we will leverage either the dataflow notation for the (C)SDF
graph G (see Sections 2.1.1 and 2.1.2) or the real-time theory notation for the periodic
task set ΓG (see Section 2.2.1), depending on the problem we want to address. For
the sake of clarity, Table 2.2 shows the correspondence between these two notations.
Recall that we denote the jth invocation of actor Ai as Ai,j (with j ∈ N0), therefore
Ai,0 represents the first invocation of actor Ai. Note that, in Table 2.2, the earliest start
time and latest completion time of an invocation Ai,j refer to the schedule generated
by the methodology of [BS11, BS12].

Note that Chapter 5 and 6 of this thesis extend the methodology of [BS11, BS12].
Therefore, in those chapters the correspondence between dataflow and real-time
theory notations shown in Table 2.2 is used extensively.

2.3. HRT Scheduling of Acyclic CSDF Graphs [BS11,BS12] 47

Dataflow notation for G Real-time notation for ΓG
Actor Ai Task τi

Invocation Ai,j of Ai Job τi,j of τi
Earliest start time of Ai,0 Start time Si of τi
Earliest start time of Ai,j Release time ri,j of τi,j

Latest completion time of Ai,j Deadline di,k of τi,j

Table 2.2: Correspondence between dataflow and real-time theory notations resulting from the method-
ology of [BS11, BS12].

In addition, both Chapter 5 and 6 use the concept of stateless real-time periodic
tasks. In general, a task is said to be stateless if it complies to the definition below.

Definition 2.3.5. Stateless task (general). A task is said to be stateless if it does not keep
an internal state between two successive jobs.

Using the methodology of [BS11, BS12], we recall that each task τi corresponds to
actor Ai of the input CSDF graph G. Therefore

Definition 2.3.6. Stateless task (in [BS11, BS12]). In the scheduling technique of [BS11,
BS12], a task τi is said to be stateless if it corresponds to a (C)SDF actor Ai which is
stateless (i.e., Ai complies to Definition 2.1.5 on page 28).

48 Chapter 2. Background

