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Chapter 1

Introduction

ADVANCES in technology have added new features and functionalities to most of
vehicles, homes, industrial facilities, and many other applications that form the

basis of our society. For instance, many houses nowadays are endowed with security
camera systems to monitor the premises of the house itself. These systems are composed
of distributed security smart cameras, which are connected to a server where the
recorded images are stored. As another example, in recent years several companies are
making significant research and development efforts to implement autonomous driving
cars (e.g. Google [Woo], General Motors [Rho]). As a third example, state-of-the-art
operating rooms feature devices that help surgeons to perform minimally-invasive
surgeries, less traumatic for patients. During the surgical operation, these devices
visualize the organs and tissues on which the surgery is performed, together with the
position of surgical instruments, using for instance X-rays. The devices which allow
this visualization are termed live medical imaging devices.

In all the examples above, computing systems are enclosed into products, build-
ings, or facilities, to which they provide additional functionalities. These computing
systems are called embedded systems. For instance, in autonomous driving cars, an
embedded system is in charge of planning the motion of the car and the braking and
steering actions. As the above examples show, embedded systems are tightly coupled
to the environment in which they operate. Moreover, most embedded systems share
other characteristics, such as:

- They are designed to implement a well-defined set of functionalities, known at
design time;

- They must be dependable, because they often operate in safety-critical environ-
ments;

- They must provide hard real-time guarantees, i.e., their output must be correct
and also produced within a certain time frame.

These characteristics set embedded systems apart from general purpose systems, such
as Personal Computers, which show much greater flexibility in terms of functionality
and much lesser emphasis on real-time guarantees and dependability.

Embedded systems can be divided in two categories, depending on the type of
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functionality that they provide:
∙ Control systems wait for input events (or signals) from the environment and

react to these events accordingly. These systems are used, for instance, in
industrial automation.

∙ Streaming systems process a continuous, possibly infinite stream of data from
the environment. These system find application, for instance, in audio and
video processing.

In this thesis, we focus on embedded streaming systems. Examples of streaming
applications range from audio/video encoding and decoding (e.g., YouTube), signal
processing, computer vision [VAJ+09], medical imaging, navigation systems, security
camera systems, and many others.

Complex embedded systems such as the ones that control autonomous driving
cars are in fact composed of several sub-systems which communicate among each
other. In the autonomous driving cars example, part of these sub-systems belong to
the category of streaming systems, and the other part belong to the control category.
For instance, autonomous driving cars gather an enormous quantity of data, which
comes in the form of continuous streams, from cameras and laser sensors mounted
on the car itself. These streams of data must be continuously refined and processed
in order to perform motion planning (i.e., identify the optimal path and speed that
the vehicle should follow) and collision avoidance (i.e., detect and avoid incoming
unexpected obstacles). These decisions are made by streaming sub-systems, and
communicated to other sub-systems (of control type), which make the car actually
steer, brake, or accelerate. The analyses and techniques presented in this thesis target
the sub-systems that belong to the streaming category.

As mentioned above, systems that control autonomous driving cars implement
motion planning and collision avoidance algorithms that have extremely high com-
plexity. In addition, these algorithms must produce their output in a short and
predictable time, such that the car can react quickly to external events (consider, for
instance, a person that suddenly crosses a street in front of the car; the car must stop
as soon as possible). The high complexity of the implemented algorithms and the
requirement of a short execution time challenge designers to achieve high system
performance. This is a requirement shared by many modern embedded systems. In
fact, over the years, embedded systems have shown a constant demand for increasing
performance.

Until the mid-2000s, most computing systems were implemented as uniprocessor
architectures, and the aforementioned demand for increasing performance was ad-
dressed by enhancing the computational power of the (single) processor itself [HP07].
However, the performance increase between successive generations of uniprocessors
has incurred a major slowdown in the early 2000s [Sut], mainly due to: (i) dimin-
ishing returns of novel processor design solutions; (ii) very slow increase between
processor generations of clock frequency due to leakage power issues; (iii) growing
disparity of speed between processor and memory. Therefore, in order to push sys-
tem performance even further, chip manufacturers since the mid-2000s have shifted
their research and development efforts to multiprocessor architectures [HP07]. This
is a technology trend that has affected both general purpose and embedded sys-
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Figure 1.1: System-level design methodology.

tem, and is here to stay. Actually, more and more architectures proposed by both
research institutes and industry show an increasing count of processing elements
(PEs1). In fact, nowadays, embedded system designers often integrate in a single chip
multiple processors, memories, interconnections, and other hardware peripherals
to form a so-called Multiprocessor System-on-Chip (MPSoC) [JTW05]. This disser-
tation describes design methodologies and techniques targeted at such embedded
MPSoCs. An early example of such embedded MPSoCs is the Trimedia TM1000 [Tri],
where a general purpose microprocessor is combined with several multimedia co-
processors. More recent examples of MPSoCs that find application in the embedded
domain include the 64-PEs Adapteva Epiphany [VEMR14], the 72-PEs TILE-Gx72
from EZchip [TIL] and the 256-PEs Kalray MPPA-256 [dDAB+13].

1.1 Trends in Embedded MPSoC Design

In the previous section we have explained the importance of embedded systems in
our society and motivated the emergence of MPSoCs in the embedded domain. We
have also pointed out that modern embedded MPSoCs demand increasingly higher
performance. In addition to this increase in performance, the complexity of modern
embedded MPSoCs has also risen.

As the complexity of MPSoCs is constantly increasing, nowadays the design
of these systems must be performed at the right abstraction level. In particular,
design at gate-level and register-transfer level (RTL) is no longer effective. A higher
abstraction level, namely system-level, is necessary to design modern embedded
MPSoCs [Hen03]. As represented in Figure 1.1, at system level designers devise a
system by specifying the execution platform model, the application model, and the
mapping of the application to the execution platform. In particular, the execution
platform model describes the type and number of processors available in the system,
and which kind of memories and interconnections are present. The application is

1In this thesis, we use the terms “processor” and “PE” interchangeably.
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modeled as a set of tasks that can be distributed to multiple processors. Moreover, the
application model describes how these tasks communicate and synchronize among
each other. Finally, the mapping specifies how the application model is mapped to
the execution platform model. For instance, the mapping describes: (i) how tasks are
distributed among the processors of the execution platform; (ii) how several tasks,
mapped on a single processor, are scheduled; (iii) how communication primitives
used in the application model are converted to corresponding execution platform
primitives. Then, when application, execution platform and mapping are specified,
an Electronic System-Level Synthesis tool (e.g., [NSD08]) generates in an automated
way the detailed hardware description (e.g., at RTL) and the software running on
each processor of the system.

In general, in order to achieve high performance, the models of the execution
platform and the application should be closely related For instance, the Von Neu-
mann architecture matches perfectly with an application specified using a sequential
program (e.g., using the C programming language). If the system performance does
not meet the requirements, designers have to modify the execution platform, software
and/or mapping specification in order to improve the achieved performance level.

Since embedded systems are now shifting from uniprocessors to multiprocessors,
several changes in the design methodology are required. In particular, the two
main problems that designers face are: (i) how to model the applications such that
the multiple processing resources available in modern execution platforms can be
exploited; and (ii) how to connect processors in the execution platform, which is
especially complicated as the number of processors in systems is constantly increasing.
The current trends to solve these two problem are described in Section 1.1.1 and 1.1.2,
respectively.

1.1.1 Programming for Multiprocessors: Models of Computation

As mentioned earlier, in order to achieve the desired performance on MPSoCs, em-
bedded software shall be specified having in mind the parallelism of the execution
platform. In particular, applications have to be decomposed in portions that can be
executed in parallel. Moreover, designers shall be able to reason about how many
processing resources to utilize, and how to distribute the application workload among
these resources. Finally, the actual code that will run on the considered execution
platform has to be generated, preferably in an automated way given the complexity
of modern MPSoCs.

Old-fashioned design flows based only on board support packages and high-level
programming interfaces fail to support the aforementioned design activities in a
rigorous and efficient way [HHBT09]. The de-facto solution to overcome this issue
is to use parallel (or concurrent) Models of Computation (MoCs) [Lee99]. Design
approaches that exploit MoCs are called Model-based Designs. In particular, MoCs
support the design process by allowing to:

1. Expose the parallelism available in an application;
2. Perform Design Space Exploration;
3. Generate software for the considered execution platform in an automated way.
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Figure 1.2: Example of MoC-based application specification (a) and mapping to a platform with 4 PEs
(b).

All of these activities are instrumental to tackle the design complexity of modern
embedded multiprocessor systems. In the following, we describe how these activities
are facilitated by MoCs. We conclude this section with an introduction to the MoCs
considered in this thesis.

Exposing the available application parallelism

By using a parallel MoC, designers decompose applications into tasks capable of
performing computation in parallel. The parallel MoC, in particular, defines the rules
by which these tasks communicate and synchronize among each other. By contrast,
the actual computation performed by the tasks is specified using a host language, for
instance C.

As many MoCs exist, designers choose the MoC most suitable to the considered
application domain. In this dissertation we focus on streaming applications, which
are widespread in the embedded domain. For streaming applications, dataflow MoCs
are the most appropriate because their semantics allow to express the application par-
allelism in a natural way. An example of a streaming application specified according
to a dataflow MoC is shown in Figure 1.2(a). In particular, the figure shows a Motion
JPEG (M-JPEG) encoder application specified using the Homogeneous Synchronous
Dataflow (HSDF) MoC [LM87b]. The HSDF MoC is described in greater detail in
Section 2.1.1. As shown in Figure 1.2(a), in a dataflow MoC applications are usually
specified in the form of directed graphs in which graph nodes represent the tasks of
the application (in the example, v_in, Q, VLE, . . . ) and graph edges represent inter-task
data dependencies.

Performing Design Space Exploration

Dataflow MoCs are not only useful to specify the parallelism available in streaming
applications. In fact, they also facilitate the Design Space Exploration (DSE) process
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[PEP06]. In a nutshell, DSE consists of evaluating alternative design points until
(some) objective criteria are met. Each design point consists of a particular execution
platform configuration used to implement the desired functionality, and of a well-
defined scheduling of the application onto the considered execution platform.

As the execution platform configuration is concerned, several design parame-
ters can be varied, such as the number of processing elements (PEs), the memory
subsystems, or the interconnection infrastructure. After the execution platform config-
uration has been defined, the MoC-based application specification allows designers to
specify the scheduling2 of the application onto the execution platform in a rigorous
way [SB09]. Application scheduling consists in defining where and when each task of
the application is executed. More precisely, scheduling decisions can be divided in:

∙ Spatial scheduling (or mapping): it determines the assignment of application
tasks to processors.

∙ Temporal scheduling: if more than one tasks are assigned to a PE, it determines
the order of execution of the tasks on the PE, and when each task executes such
that all precedence constraints are met.

Both spatial and temporal scheduling can be performed at design-time (static ap-
proach) or run-time (dynamic approach). For instance, Figure 1.2(b) shows a possible
static mapping of the M-JPEG application specified in Figure 1.2(a) to a platform
with four PEs. Notice that tasks VLE and v_out are mapped to PE3. Since v_out is
data-dependent from VLE (see Figure 1.2(a)), it must always be scheduled on PE3
after VLE.

To summarize, referring to the system-level design methodology shown in Fig-
ure 1.1, given a fixed application specification, a point in the design space is de-
termined by defining the specification of the execution platform, together with the
mapping of the application tasks to the processors of the execution platform.

Once a point in the design space is defined, as an execution platform configuration
and a specific spatial/temporal scheduling of the application, the formal semantics
of MoCs allow designers to evaluate it. A design point can be evaluated according
to many metrics such as performance, memory requirements, and power consump-
tion. For instance, MoC-based design allows to evaluate system performance using
analytical models (e.g. [SB09, GGS+06]) or simulations (e.g. [PEP06]). Based on these
evaluations, at the end of the DSE process it is possible to choose a design point that
is optimal according to the considered objective criteria.

Generating Code in an Automated Way

Once the spatial and temporal scheduling of the application are defined, the MoC-
based application specification allows to generate the code to be run on each processor
of the target MPSoC in an automated way [HHBT09, NSD08]. This is because MoCs
define without ambiguity the behavior of each task and the communication among
them.

2The interested reader is referred to [Pin16] for an introduction of scheduling problems and techniques
that occur in many real-world domains, beyond the embedded system domain considered in this thesis.
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MoCs considered in this thesis

In addition to the HSDF MoC used in the example of Figure 1.2(a), other popular
examples of dataflow MoCs include Synchronous Dataflow (SDF) [LM87b], Polyhe-
dral Process Networks (PPN) [VNS07], and Cyclo-Static Dataflow (CSDF) [BELP96].
All of these MoCs are described in Chapter 2 of this thesis. These dataflow MoC share
three main characteristics. First, they are determinate [Kah74], i.e., the order in which
the nodes of the graph are scheduled has no influence on the result of the computation.
Second, as their expressiveness is concerned, they are not Turing complete. This is a
limitation required to guarantee the third characteristic: these MoCs are decidable.
The decidability of a MoC represents the extent to which designers can analyze, at
compile-time, properties of an application such as:

∙ Absence of deadlocks: given a certain set of spatial/temporal scheduling deci-
sions, it can be ensured that the application will never deadlock.

∙ Boundedness: given a certain set of spatial/temporal scheduling decisions, an
upper bound of the required size of buffers used to implement inter-task data
dependencies can be derived. As a result, at run-time neither buffer overflow
nor underflow can occur.

∙ Throughput guarantee: the throughput achieved by the system at run-time will
never be lower than a certain bound which can be determined analytically.

Due to these convenient characteristics, in this dissertation we assume that applica-
tions are specified using one of the MoCs mentioned above. A comparison of the
considered MoCs is provided in Figure 1.3, adapted from [SGTB11] and [Zha15]. In
the figure, MoCs are compared according to three criteria [SGTB11]: (i) expressiveness
and succinctness indicate which systems can be modeled using the considered MoC
and how compact these models are; (ii) implementation efficiency evaluates the com-
plexity of the scheduling problem and the (code) size of the resulting schedules; (iii)
analyzability, as mentioned earlier, refers to the availability of analysis and synthesis
algorithms and their computational complexity. As shown in Figure 1.3, there is no
“best” MoC among the ones considered in this thesis, because in general expressive-
ness and analyzability are inversely related. Therefore, in this dissertation we will
motivate the choice of one MoC over the others depending on the different addressed
problems.

Expressiveness and

succinctness

Implementation

efficiency
Analyzability

PPN

CSDF

SDF

HSDF

higher

lower

Figure 1.3: Comparison of the MoCs considered in this thesis.
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Note that, beside the MoCs considered in this thesis, other more expressive
dataflow MoCs exist. The interested reader is referred to [BDLT13] and to [SGTB11].
In particular, [SGTB11] provides a MoC comparison more complete than the one
given in Figure 1.3. The comparison given in [SGTB11] includes MoCs that can
express dynamic application behavior. For instance, such MoCs allow parameters
of the application to be changed at run-time, at the expense of a lower analyzability.
By contrast, the MoCs considered in this dissertation cannot express such dynamic
behavior of applications, favoring a superior analyzability.

1.1.2 Communication Infrastructures: Networks-on-Chip

As mentioned in the beginning of this chapter, since the mid-2000s research com-
munities and industry have shifted their focus from uniprocessor to multiprocessor
architectures, for both general purpose and embedded systems. In the beginning,
these multiprocessor architectures were composed of a small number of processors,
typically two to four (e.g., AMD 64 Athlon X2, Intel Core Duo). Over time this has
changed, leading in recent years to architectures with dozens or even hundreds of
processors [HDV+11, VEMR14, dDAB+13]. These architectures are referred to as
massively parallel.

As the number of processors in execution platforms grows, it becomes evident
that traditional on-chip interconnections and memory subsystems are no longer
adequate. For instance, using a shared bus to connect dozens of processors to a global
shared memory would result in unacceptable performance degradation due to high
contention [BB04, BDM02, AMC+07].

Based on this observation, many research papers since the early 2000s have sug-
gested the use of a scalable communication infrastructure that consists of an on-chip
packet-switched network of interconnects, generally known as Network-on-Chip
(NoC) [BB04, BDM02]. Nowadays, this suggestion has been translated into many
commercially available (massively parallel) multiprocessors, that use NoCs as their
communication infrastructure [VEMR14, dDAB+13, Ram]. Moreover, as the choice
of the memory subsystem is concerned, “traditional” shared memory systems have
been replaced by completely distributed memories [VEMR14] or to memories shared
only within a cluster, as in [dDAB+13]. Although shared memory systems are still
widespread in the embedded domain, they suffer from scalability problems, and
NoC interconnection, together with distributed memories, are considered the most
potential way to achieve scalability.

In its most common form, a NoC has the regular 2D mesh topology shown in
the right part of Figure 1.4 [KJS+02]. The basic building blocks of a NoC-based
multiprocessor are tiles, routers (denoted by R in Figure 1.4), and network links. We
briefly describe these components in the following. Each tile, as shown in the left
part of Figure 1.4, usually contains: (i) a processing element (PE), together with its
data memory (DM) and instruction memory (IM); (ii) a Network Interface (NI); (iii)
an adapter between the PE and the NI (PE-to-NI adapter). The PE is responsible to
perform the actual computation of data, whereas the NI allows the bi-directional
communication of the tile with the rest of the NoC. Communication over the NoC is
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performed using messages, which represent the unit of communication between tiles.
In fact, when a message has to be sent outside the tile, the NI converts it into packets
and performs the actual packet transmission from the tile to the router attached to it.
Conversely, when a message has the considered tile as destination, the NI performs
the reverse actions, i.e., it receives incoming packets and combines them to form the
actual received message.

In most NoC implementations, the NI is endowed with input and output buffers
for messages. Input buffers are used to allow the NI to receive a burst of messages
from the NoC, and avoid congesting the network if the PE of the tile cannot process
these messages quickly. Similarly, output buffers are useful when the PE produces
messages to be sent over the NoC at a fast rate, but the network is congested and
cannot immediately accept these messages.

tile00

R

tile01

R

tile02

R

tile10

R

tile11

R

tile12

R

IM

PE

DM

PE-to-NI

adapter

NI

Figure 1.4: The left part of the figure shows the internal structure of a tile. In each tile, the processing
element (PE) performs computations using its data memory (DM) and instruction memory (IM).
Communication with the rest of the NoC is handled by the Network Interface (NI) and the adapter
between the PE and the NI (PE-to-NI adapter). The right part of the figure depicts the structure of a
NoC composed of 6 tiles with a regular 2D mesh topology. Each tile is directly connected only to its
corresponding router, and each router is directly connected only to its neighbor routers.

Within the NoC, routers are responsible for dispatching the packets from the
source tile (i.e., the tile which sends the message) to the destination tile (i.e., the tile
which receives the message), according to defined routing rules. Finally, network
links allow the communication among tiles and routers, and among different routers
of the NoC. They are represented by bidirectional arrows in the right part of Figure 1.4.

Many NoC architectures have been proposed since the early 2000s. Popular
examples include ×pipes [BB04], Æthereal [RGR+03], Nostrum [KJS+02], SoCBUS
[WL03], Hermes [MCM+04]. From the point of view of the quality of service provided
by different NoC architectures, we can distinguish between:

∙ Best-Effort NoCs (e.g., ×pipes): in these NoCs, due to network contention,
latency fluctuations for packet delivery can be experienced [BB04] and, in
general, no guaranteed latency bound can be given.

∙ Guaranteed service NoCs (e.g., Æthereal): these NoCs can provide, for in-
stance, an upper bound of the latency incurred by messages that traverse the
network.

Clearly, for hard real-time applications, in which the timeliness of the computation
is as important as its correctness, NoCs with guaranteed services are the preferred
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design choice. In fact, Chapters 5 and 6 of this thesis, which target hard real-time
systems, assume communication infrastructures with guaranteed services. However,
for applications with looser timing requirements best-effort NoCs can suffice and lead
to other benefits compared to guaranteed service NoCs (e.g., smaller area and cost).
Chapters 3 and 4 of this thesis, which are aimed at best-effort systems, consider a
best-effort NoC as communication infrastructure.

1.2 Challenges in Embedded MPSoC Design

As described in the beginning of Section 1.1, the design of an embedded MPSoC is a
process that entails several steps. The process starts with the definition of the required
system functionality (using an application model), together with the specification of
the execution platform on which the application will run. After a series of refinement
steps, the design process is completed when a detailed description of the system
hardware (e.g., at RTL) and of the software running on each processor is obtained.

The design trends described in Section 1.1, namely the widespread adoption of
MoC-based design and scalable NoC interconnections, represent emerging design
methodologies aimed at achieving high system performance on multiprocessor ar-
chitectures. Ensuring high system performance, however, is not the only objective of
embedded system designers. In the following sections we list other desirable features,
specific to embedded systems, that are considered in this dissertation.

1.2.1 System Adaptivity

With the term “system adaptivity” we refer to the ability of the system to adapt to
changing conditions imposed by the environment. These conditions are represented
by parameters that can be divided in two classes:

1. Parameters belonging to the application. These parameters affect the way
in which the application is executed. For instance, the resolution of a video
decoding application is commonly represented by two parameters that specify
the height and width of frames.

2. Parameters describing the status of the execution platform. For instance, a
parameter can specify the number of active processors in the system.

In Chapters 3 and 4 of this thesis, we achieve system adaptivity in response to
changes of the second set of parameters, the ones which describe the status of the
execution platform. For example, refer again to the system sketched in Figure 1.2(b)
on page 5, where the M-JPEG encoder application is mapped to a system composed
of four PEs. Notice that each PE of the system is executing one or more tasks of the
M-JPEG application. Then, two examples of scenarios that require system adaptivity,
and can be handled by the techniques described in Chapters 3 and 4 of this thesis, are
the following.
EX1: The system is battery-powered and the battery charge is running low. The

user may decide to turn off a certain number of PEs to reduce the energy
consumption of the system. This may result in a decreased quality of service of
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the M-JPEG application (e.g., reduced rate of video encoding). In addition, this
scenario requires the system to migrate tasks that are running on PEs that will
be switched off to the PEs that will be kept active, i.e., to change task mapping
at run-time.

EX2: One or more PEs of the system may become permanently faulty. In this scenario,
in order to maintain the functionality of the system, tasks mapped on faulty
PEs must be migrated to functional PEs.

Note that system adaptivity can be implemented in a computing system in different
ways. Consider the hardware/software stack in Figure 1.5, which abstracts the
structure of a computing system. At the top of this stack there is the application layer.
As mentioned in Section 1.1.1, in the case of embedded multiprocessors, applications
are specified using a MoC. Generally, these applications are scheduled on the system
by an Operating System (OS), represented by the middle layer in the figure. The OS
acts as an interface between the application layer and the hardware layer, which lays at
the bottom of the stack in Figure 1.5.

Applications

Operating System

Hardware

Figure 1.5: Sketch of the hardware/software stack of a computing system. The dashed area highlights
the interface between the application layer and the OS layer.

In this thesis we consider approaches that provide system adaptivity at the inter-
face between the application layer and the OS layer, as highlighted by the dashed
area of Figure 1.5. In this context, approaches that provide system adaptivity already
exist in the literature [NVC10, Gab09, BABP06, AACP08, NKG+02]. Most of them
allow, to a lesser or greater extent, to change the mapping of the application tasks at
run time, therefore they allow task migration. As mentioned in the examples EX1
and EX2 above, task migration is an essential requirement to guarantee system adap-
tivity as considered in this dissertation. However, we argue that existing solutions
present shortcomings in either the extent to which system adaptivity is supported, or
in the scalability of the proposed approaches. In this dissertation we address these
shortcomings.

Note that several other research works target system adaptivity by considering
that the parameters of applications can change. They allow this change of parameters
directly at the application level [BB01, SGTB11, BDLT13]. In order to do so, they use
adaptive MoCs that can model the possibility to change the parameters of applications
at run-time [ZNS11,Zha15]. The variation of application parameters at run-time is also
referred to as mode change. In this thesis, we do not explicitly consider such adaptive
MoCs mainly for two reasons. The first reason is that in some cases applications
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simply do not show inherent (algorithmic) adaptivity, i.e., their parameters are fixed
and do not change. The second reason is that we want to encompass the cases in which
system adaptivity is required in response to faults detected in the execution platform.
These cases cannot be easily expressed by using an adaptive MoC. Moreover, if an
adaptive MoC is used to model applications, the techniques presented in Chapters 3
and 4 of this thesis may be used as a way to change the mapping of tasks at run-time,
consequently to a mode change.

1.2.2 Timing Requirements

As mentioned earlier, in many cases embedded systems must satisfy timing require-
ments in their execution. Based on the importance of these timing requirements,
embedded systems can be divided in the following categories.

∙ Hard Real-time (HRT) Systems: in these systems, failing to meet timing re-
quirements results in system failure.

∙ Soft Real-time (SRT) Systems: within this category, failing to meet timing
requirements results in degraded system performance.

∙ Best-Effort (BE) Systems: in these systems timing requirements are not speci-
fied and systems run at the best of their capacity.

Clearly, HRT systems pose a more difficult challenge to embedded designers
because they require an additional constraint, timing requirements, to be satisfied. In
these systems the result of the computation must be provided within a certain time
interval, otherwise it is useless. In some cases, violation of timing constraints may
result in catastrophic consequences. Among embedded systems, HRT requirements
are extremely common [Mar11]. In the special case of embedded streaming systems
(the scope of this dissertation), timing requirements that are typically guaranteed
are throughput and latency. Throughput refers to the amount of output tokens that
the application can produce in a defined time period. Latency measures the time
elapsed between the arrival of an input token in the system and the production of the
corresponding output token by the system.

A large variety of scheduling techniques which guarantee HRT behavior for
multiprocessor systems have been proposed over the years. In the remainder of this
section, we will categorize the most widely adopted techniques to guarantee HRT
constraints using the following three classes.

∙ Class I - Scheduling techniques based on direct analysis of the dataflow MoC
specification of applications.

∙ Class II - Scheduling techniques based on classical real-time scheduling analysis
[DB11, BBB15].

∙ Class III - Scheduling techniques that convert dataflow MoC-specified appli-
cations into real-time task sets compatible with classical real-time scheduling
analysis.

Each of these classes is briefly introduced in what follows.



1.2. Challenges in Embedded MPSoC Design 13

Class I - HRT Guarantees by analyzing Dataflow MoC Application Specifica-
tions

This class comprises most of the techniques in the literature which guarantee hard
real-time behavior of dataflow applications. Relevant examples of this class are
the approaches described in [LH89, MB07, GGS+06, SB09]. Techniques belonging to
this class require applications to be specified according to a dataflow MoC with high
analyzability. For this reason (recall Figure 1.3 on page 7), these approaches do not use
the PPN MoC to specify the applications. This is because performing an analysis of
timing guarantees directly on a PPN model is rather difficult, if not impossible, due to
the complexity of communication patterns which can occur in PPN models3 [Zha15].

Contrary to PPNs, for HSDF, SDF, and CSDF graphs analysis of timing guarantees
is possible. Recall that by using a dataflow MoC an application is represented as
a directed graph, where graph nodes represent tasks of the application and graph
edges represent inter-task data dependences. Then, several techniques belonging to
Class I derive certain hard real-time guarantees by analyzing the properties of the
application graph. For instance, [MB07] considers applications specified using an
SDF graph [LM87b]. This graph is converted to an equivalent HSDF graph [LM87b],
for which the maximum achievable throughput can be determined analytically. In
fact, the maximum achievable throughput of an HSDF graph is the inverse of its
Maximum Cycle Mean (MCM) [Das04]. However, note that this throughput analysis
is only applicable to the derived HSDF graph, which is often exponentially larger in
size compared to the original SDF graph [LM87b]. To avoid the exponential explosion
of the problem size, other techniques avoid the conversion of the original SDF graph
to the equivalent HSDF graph [GGS+06]. They, instead, explore the state-space of the
given SDF graph to calculate the maximum achievable throughput.

Note that all the scheduling techniques belonging to Class I share a significant
drawback: in order to provide certain timing properties, a complex design space
exploration is needed to determine the minimum number of processors required to
schedule the application(s) and the mapping of tasks to these processors. With regard
to this drawback, techniques belonging to Class II and III, which are presented in the
following, show higher efficiency.

Class II - HRT Guarantees using Classical Real-time Scheduling

The second class of scheduling techniques uses results from classical hard real-time
scheduling theory for multiprocessors [DB11, BBB15]. These techniques consider
application models which are more restrictive than the dataflow MoC considered in
Class I. In fact, scheduling techniques of Class II analyze programs in which tasks
conform to a certain real-time task model. The most influential example of such task
models is the periodic real-time task, which was introduced in the seminal work [LL73]
of Liu and Layland. In this model, each task is invoked in a strictly periodic way.
Each task invocation is called a job, and each job must be completed before a certain

3However, note that there exist techniques which can convert a PPN to its input-output equivalent
CSDF graph, see Chapter 3 of [Zha15].
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deadline. In the simplest form of a periodic real-time task model, called Implicit
Deadline Periodic model, the deadline of a job coincides with the release time of the
successive job of the same task. Moreover, all tasks in the system are independent
among each other, i.e., jobs of a task do not depend on the completion of any jobs
of any other tasks in the system. Under all these assumptions, given the Worst-
Case Execution Time (WCET) of each task in the system, [LL73] proves that a simple
schedulability test ensures that no deadline will ever be missed under the Earliest
Deadline First (EDF) scheduling algorithm. In addition, [LL73] proves that EDF is
optimal for uniprocessor systems, i.e., if the periodic task set can be scheduled by any
other scheduling algorithm, then it can also be scheduled by EDF4.

However, when the scheduling analysis shifts from uniprocessor to multiprocessor
systems EDF loses its optimality. In general, scheduling algorithms that consider
multiple processors not only have to assign priorities among jobs of different tasks,
but they also have to decide on which processor each task must be executed (spatial
scheduling). This fact adds another dimension to the scheduling problem, making it
more complex. Several scheduling algorithms for multiprocessor systems have been
proposed in the literature [DB11, BBB15]. Based on the way they allocate tasks to
processors, most of the proposed approaches can be classified in either partitioned or
global scheduling algorithms.

Under global scheduling algorithms, all the tasks can migrate among all the
processors. Such algorithms can be optimal for multiprocessor systems, which means
that they can fully exploit the available computational resources (see for instance
[BCPV96]). However, this comes at the cost of high scheduling overheads due to
excessive task preemptions and migrations. Partitioned scheduling algorithms, by
contrast, incur no migration overhead because each task is statically allocated to a
single processor. Moreover, they incur much lower preemption overheads compared
to optimal global scheduling algorithms. However, partitioned algorithms are not
optimal. This implies that, in general, these algorithms may require twice as many
processors to schedule certain sets of tasks compared to an optimal global scheduler
[LDG04].

Recently, a third class of algorithms, called hybrid scheduling algorithms, has
been proposed. Among hybrid scheduling algorithms, semi-partitioned algorithms
(e.g., [ABD08, AEDC14]) have gained significant attention within the real-time re-
search community. Under semi-partitioned algorithms, most of the tasks are statically
allocated to processors and only a subset of the tasks is allowed to migrate among dif-
ferent processors. Migrating tasks follow a migration pattern derived at design-time.
Thus, semi-partitioned approaches represent a “middle ground” between partitioned
and global scheduling algorithms. In general, semi-partitioned scheduling algorithms
require less processors than partitioned algorithms to schedule certain task sets. At
the same time, these algorithms do not incur large task migration and preemption
overheads like global scheduling algorithms [BBA11].

Note that most of the scheduling techniques that fall into Class II share a com-
mon drawback: they assume that the tasks of the applications comply with a rather

4In other words, no other scheduling algorithm can outperform EDF in terms of schedulability of
periodic task sets on uniprocessors.
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simple task model, for instance the independent periodic task model. These simple
task models are not easily applicable to dataflow applications, in which tasks are
dependent among each other. However, the scheduling techniques of Class II provide
the following advantages:

∙ The minimum number of processors needed to schedule a certain task set, and
the assignment of tasks to processors, can be derived in a fast analytical way.

∙ Temporal isolation5 among different applications is guaranteed.
∙ Applications can be loaded at run-time in the system, provided that the schedu-

lability test pertaining to the adopted scheduling algorithm is satisfied.

Class III - HRT Guarantees by converting Dataflow MoC Application Specifica-
tions to Real-time Task Sets

In recent years, several approaches that bridge the gap between dataflow MoCs and
real-time task models have been proposed [God98, BS11, BS12, LA10, BTV12]. In these
approaches, applications are specified using a dataflow MoC where, as mentioned
earlier, tasks have data dependencies. Then, these MoC-based application specifica-
tions are converted to a set of tasks which comply with some real-time task model,
usually independent among each other. Finally, based on the obtained (independent)
real-time task set, the scheduling approaches of Class III apply algorithms from hard
real-time scheduling theory [DB11, BBB15] to determine in a fast and analytical way
the minimum number of processors that guarantee the required performance and the
mapping of tasks to processors.

In this thesis, in particular, we consider the scheduling technique proposed in
[BS11, BS12]. The analysis of [BS11, BS12] accepts, as input, applications specified as
acyclic CSDF graphs [BELP96]. The choice of this kind of MoC to specify the input
applications makes the result of [BS11,BS12] applicable to most streaming applications.
In fact, it has been shown in [TA10] that around 90% of streaming applications can
be modeled as acyclic SDF graphs. Note that acyclic SDF graphs are a subset of the
acyclic CSDF graphs considered in [BS11, BS12]. Note also that throughout this thesis,
unless otherwise specified, we will assume all considered (C)SDF graphs to be acyclic.

In a nutshell, the core of the analysis in [BS11, BS12] is the conversion of the input
application(s) into a set of independent periodic real-time tasks. This conversion
is explained in Section 2.3 of this thesis. Then, based on the derived independent
periodic real-time task set, partitioned scheduling algorithms from multiprocessor
real-time scheduling theory (recall Class II of scheduling techniques described earlier)
are used to derive the number of processors required to execute the application(s)
and guarantee the desired timing requirements.

1.2.3 Cost

Embedded systems are sold in massive quantities, for instance in consumer electronics
and cars. In these contexts, keeping the cost of the system competitive is of vital

5Temporal isolation refers to the ability to start and stop applications in the system without violating
the timing requirements of the other applications.
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importance. Therefore, an embedded system designer is required to make an effective
use of the available hardware resources. When designing an embedded system, two
possible scenarios may occur. In the first scenario the hardware platform is yet to be
designed and the designer shall utilize the least amount of resources to implement
the required functionality. In the second scenario, the hardware platform is already
given, and the designer shall exploit the available hardware resources efficiently by
implementing as many useful applications as possible on the given hardware.

As described in Section 1.4.2, one of the contributions of this thesis is aimed
at improving the exploitation of hardware resources in HRT embedded streaming
systems.

1.2.4 Energy Efficiency

The challenge of power management (and therefore of energy management) of mod-
ern computing systems has been explicitly recognized by the International Technology
Roadmap for Semiconductors (ITRS) report of 2013 [Int13]. The ITRS report points
out, in particular, that among successive technology generations transistor density
doubles, while cost-effective heat removal from chips remains almost flat. This means
that in the near future chips will become increasingly powerful and rich in terms of
hardware resources. However, in these chips, power and energy management will
play an increasingly important role due to the limitations in dissipating heat.

Improper power management can affect a computing system in mainly two ways.
First, by requiring a huge amount of energy to perform the desired computation.
Second, by generating excessive heat, which must be somehow dissipated in order
to avoid hardware failures due to high temperatures. These concerns are even more
significant in the case of embedded systems. This is because several embedded
systems are battery powered and therefore cannot afford to consume huge amounts
of energy. Also, many embedded systems operate in safety-critical environments
where system failures could lead to catastrophic consequences.

Several energy and power-efficient techniques have been proposed in the literature.
These techniques mainly employ two mechanisms to reduce power consumption:
Voltage/Frequency Scaling (VFS) and Power Management (PM) [Jha01]. VFS reduces
dynamic power consumption by adjusting the voltage and operating frequency of
processors. Conversely, PM exploits idle times of processors by switching them to
a sleep mode. In multiprocessor systems, VFS and PM techniques can be applied
at the granularity of the single PE (so-called per-core VFS/PM), of the whole system
(so-called global VFS/PM), or at an intermediate level, by dividing the chip in clusters
(also called voltage islands) in which VFS/PM can be applied independently from the
rest of the system. Clearly, per-core VFS/PM provides greater flexibility in devising
power/energy management techniques and algorithms compared to clustered or
global approaches. However, many recent research works (e.g., [DA10,SJPL08,Lee09])
and several industrial examples (e.g., [HDV+11, dDAB+13]) have shown that for
massively parallel architectures per-core VFS/PM incurs large hardware overheads
and therefore is not a feasible solution.

As mentioned in Section 1.4.2, in this thesis we take this indication into account,
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therefore we propose an approach that uses a VFS technique to improve the system
energy efficiency.

1.3 Problems Addressed in this Thesis

Having summarized the design trends and challenges pertaining to the embedded
system domain (in Section 1.1 and Section 1.2), we proceed now to define the problems
addressed in this dissertation.

In this thesis we consider two different categories of systems, based on the im-
portance of their timing requirements, as mentioned in Section 1.2.2: Best-Effort
(BE) and Hard Real-Time (HRT) systems. Given the very different nature of BE and
HRT systems, we exploit different MoCs and analysis techniques according to the
considered category of systems. The problems addressed in the context of BE systems
differ, as well, from the problems considered for HRT systems. Research problems
concerning BE systems are presented in Section 1.3.1, whereas those regarding HRT
systems are presented in the Section 1.3.2.

All the research problems addressed in this thesis, however, consider carefully the
trends in embedded multiprocessor design presented in Section 1.1.1 and Section 1.1.2,
which we summarize in the following two points.

1. Model-based Design is an instrumental methodology to tackle the complexity
of modern embedded multiprocessor systems. This is valid for both BE and
HRT embedded systems.

2. For emerging massively parallel architectures, research and industry trends
are shifting towards NoC-based interconnections and distributed memories.
This choice is necessary to guarantee design scalability.

1.3.1 Best-Effort Systems

In the context of BE systems, this thesis addresses the problem of providing system
adaptivity, one of the design challenges mentioned in Section 1.2, by means of
dedicated software components. We consider the following design decisions in
order to allow system adaptivity.

∙ We model applications using the most expressive and succinct MoC mentioned
in Section 1.1.1, namely the PPN MoC (recall the comparison among MoCs
considered in this thesis, shown in Figure 1.3 on page 7). As mentioned earlier,
timing analysis for PPN MoC is very difficult, if not impossible, but this is not a
concern for BE systems because no timing requirements are specified.

∙ We consider a NoC-based architecture, as shown in the right part of Figure 1.4
on page 9, with completely distributed memories. We assume that tiles of the
NoC can only access their own memory. Therefore, if tile b requires some data
produced by tile a, this data has to be explicitly sent over the NoC from tile
a to tile b, in the form of a message. This kind of design is found in many
NoCs proposed by the research community (e.g., ×pipes [BB04]), to guarantee
scalability and minimize hardware cost.
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∙ We aim at providing system adaptivity by allowing to change the mapping
of tasks to processors at run-time, i.e., by implementing a mechanism of task
migration.

Assuming the three design decisions listed above, the problem of providing system
adaptivity on NoC-based architectures yields to the following two research questions.

∙ Research question 1. Although the PPN MoC is suitable to be implemented
on distributed architectures, the semantics of PPNs and the structure of NoC
interconnections do not exactly match. Therefore, in this thesis we provide an
answer to this question: how to implement the semantics of the PPN MoC on
NoC-based platforms in an efficient way?

∙ Research question 2. Assuming that an answer to the research question above
is given, how can we implement a task migration mechanism which respects
the PPN MoC semantics and can be deployed to a NoC-based architecture
with completely distributed memories? In particular, in order to reduce the
overhead incurred by task migration, we consider task migration using code
replication, where the code of the migrating task is copied on all the PEs that
may execute the task at run-time.

1.3.2 Hard Real-Time Systems

In the context of HRT systems, in this dissertation we use the methodology proposed
in [BS11, BS12] as a basis and research driver. As mentioned in Section 1.2.2, the
methodology of [BS11, BS12] is particularly appealing because it allows designers to
derive analytically the amount of resources (e.g., number of PEs, memories) necessary
to execute a set of applications, specified as acyclic CSDF graphs, with guaranteed
hard real-time behavior.

So far, in [BS11, BS12] and in all the scheduling methodologies mentioned in Class
III of Section 1.2.2, only partitioned or global scheduling algorithms from multipro-
cessor hard real-time theory [DB11, BBB15] have been considered. Advantages and
drawbacks of both of these approaches have been already mentioned in Section 1.2.2,
under Class II methodologies. In the context of emerging embedded multiprocessor
architectures, where memory is usually distributed, global scheduling algorithms
incur an additional drawback which we explain in the following. As mentioned
in Section 1.3.1, in order to reduce the overhead of task migration on distributed
memory architectures the code of each migrating task is copied to all the PEs that may
execute that task at run-time. In the case of global scheduling algorithms this means
that the code of all tasks must be replicated on all PEs, resulting in a huge memory
overhead. By contrast, partitioned scheduling algorithms do not incur any memory
overhead because all tasks are statically allocated. However, they are not optimal for
multiprocessor systems.

Semi-partitioned algorithms represent a middle ground between partitioned and
global scheduling algorithms. Under these algorithms, task migration is allowed.
However, only a few tasks are allowed to migrate and therefore need to replicate their
code in distributed memory architectures. Therefore, semi-partitioned algorithms
seem to be more applicable to such architectures, compared to global scheduling
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algorithms, because they do not incur the excessive memory overhead of global ap-
proaches mentioned in the paragraph above. In this thesis we focus, especially, on
semi-partitioned approaches with restricted migrations. In these approaches, migra-
tions can happen at job boundaries only, i.e., when a job is released on a PE, it cannot
migrate to another PE until its completion. This is a favorable feature in distributed
memory systems, because allowing migrations only at job boundaries reduce the
amount of data (state) to be transferred from one processor to the next.

The scheduling methodology of [BS11,BS12] shows that an application, modeled as
an acyclic CSDF graph, can be scheduled using a hard real-time partitioned schedul-
ing algorithm as a set of real-time periodic tasks. In this thesis, we extend that
scheduling methodology of [BS11,BS12] by allowing semi-partitioned scheduling
algorithms with restricted migrations to execute streaming applications using real-
time scheduling techniques. . In particular, in this thesis we provide an answer to the
following two questions. Can semi-partitioned approaches with restricted migra-
tions be exploited to achieve a more efficient utilization of the available hardware
resources (see the design challenge in Section 1.2.3)? And, can such approaches be
used together with VFS techniques to improve the energy efficiency of the system
(see the design challenge in Section 1.2.4)?

1.4 Research Contributions

The contributions of this thesis address the research questions presented in Section 1.3.
The common trait of the techniques proposed in this dissertation is the exploitation
of task migration. Our proposed techniques apply task migration in a specific way
depending on the considered category of systems (BE or HRT). In fact, the techniques
proposed for BE systems allow task migration to occur at any time, triggered by the
user or by the environment (e.g., by a hardware fault). By contrast, techniques aimed
at HRT systems perform task migration according to a precise temporal and spatial
pattern defined by the adopted semi-partitioned scheduling algorithm. For instance,
a task may be allowed to migrate periodically between two processors, alternating
the first and the second processor in the execution of successive jobs of the same task.
This results in an equal division of the workload of the task among the two considered
processors.

The research contributions of this thesis are divided in two parts:
∙ The first part (Chapters 3 and 4) is aimed at best-effort systems. Its contributions

are summarized in Section 1.4.1.
∙ The second part (Chapters 5 and 6) is aimed at hard real-time systems. Its

contributions are summarized in Section 1.4.2.

1.4.1 Exploiting Task Migration to achieve System Adaptivity in
Best-Effort Systems

In the first part of this thesis, namely Chapters 3 and 4, we propose the software stack
depicted in the left part of Figure 1.6. Within this stack, we introduce an intermediate
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layer called middleware. This layer stays in between the applications, specified as
PPN processes, and the underlying OS. The middleware layer represents the main
contribution of the first part of this thesis, and is aimed at allowing adaptivity in
BE systems.

PPN

communication

PPN

Processes

Process

migration

Operating System

Application(s)

Middleware

tile0

tile2

tile1

tile3

Software Stack Hardware Platform

P1

P2 P3

Figure 1.6: Software stack (left) proposed to achieve adaptivity in BE systems. The middleware layer is
denoted by the shaded area. The stack is deployed on each tile of the hardware platform (right).

As shown in Figure 1.6, the middleware layer comprises two components, which
are inter-dependent. The first component, presented in Chapter 3, addresses the
problem of PPN Communication on NoC-based platforms with distributed memories.
More precisely, it converts PPN communication primitives to the corresponding
execution platform primitives. We propose and investigate several approaches to
efficiently implement PPN Communication on NoCs. The proposed approaches differ
in the extent of the required synchronization among tiles of the NoC. However, all of
these approaches allow PPN process to communicate regardless of the actual spatial
mapping of processes to processors, i.e., they are mapping independent. This is a
fundamental requirement in order to maintain the functionality of the system in case
of task/process migration(s).

The second component of the middleware layer is proposed in Chapter 4 and
implements the Process Migration6 mechanism. We devise a process migration mech-
anism that complies with the following requirements. The first requirement is that
process migration, once triggered, must be completed within a certain known time
frame. We refer to such property as predictability. The second requirement is that task
migration can be triggered in the system at any time. Finally, the third requirement is
that the code necessary to allow task migration must be generated in an automated
way, without the manual intervention of the designer. The efficiency and applicability
of the proposed software stack is shown in a real-life case study in Chapter 4.

6In this thesis, we will use the terms task and process interchangeably. In this case, we refer to process
migration because we allow migration of PPN processes.
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1.4.2 Exploiting Semi-partitioned Approaches in Hard Real-Time
Scheduling of (C)SDF Graphs

In the second part of this thesis, namely Chapters 5 and 6, we study the applicability
of semi-partitioned approaches in hard real-time scheduling of (C)SDF graphs. Our
contributions extend the scheduling framework of [BS11, BS12], which considers only
partitioned scheduling approaches.

In particular, in Chapter 5 we make the following contributions.

∙ Contribution 1. We extend the framework of [BS11, BS12] such that soft real-
time (SRT) scheduling algorithms can be used to schedule the tasks of an
application specified as a (C)SDF graph. Under SRT schedulers, tasks can miss
their deadlines by a bounded value called tardiness. Despite that, our approach
can still provide hard real-time guarantees to the input/output interfaces of
the application with the environment.

∙ Contribution 2. Based on the previous point, we consider the SRT semi-partitioned
scheduler EDF-fm [ABD08] (Earliest Deadline First based where tasks can be
either fixed or migrating) to schedule the applications. For this semi-partitioned
approach, we propose a task allocation heuristic that is aimed at:

- reducing the minimum number of processors required to schedule the
applications compared to a pure partitioned scheduling algorithm;

- keeping low the memory and latency overhead caused by the SRT sched-
uler compared to a pure partitioned scheduling algorithm.

∙ Contribution 3. We show on a set of real-life benchmarks that our semi-partitioned
approach can lead to significant benefits by reducing the number of processors
required to schedule a given application, compared to a partitioned approach,
while achieving the same throughput. However, this reduction in number of
required processors comes at the cost of increased memory requirements and
latency of applications.

In Chapter 6 we show that semi-partitioned approaches can achieve higher energy
efficiency compared to partitioned ones. Chapter 6 builds upon Contribution 1 of
Chapter 6. In particular, it makes the following contributions.

∙ Contribution 1. We propose a novel SRT semi-partitioned scheduling algorithm
with restricted migrations, called EDF-ssl (Earliest Deadline First based semi-
partitioned stateless), which is targeted at streaming applications. EDF-ssl
is designed to be used in combination with VFS techniques, and exploits the
presence of stateless tasks7 to improve the energy efficiency of the system.

∙ Contribution 2. We use EDF-ssl in combination with a VFS technique, assuming
that VFS is supported globally over the considered set of processors (i.e., not
per-core) with a discrete set of operating voltage/frequency modes. We derive
the conditions that ensure a valid scheduling of the tasks of applications in two
cases:

7A task is called stateless if it does not keep an internal state between two successive jobs. A more formal
definition of this property for the considered MoCs is given in Section 2.1.
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- First, when we use the lowest frequency which guarantees schedulability
and is supported by the system.

- Second, when we use a periodic frequency switching scheme that preserves
schedulability and can achieve higher energy savings.

In general, our proposed EDF-ssl allows an even distribution of the utilization
of tasks among the available processors. In turn, this enables processors to
run at a lower frequency, which yields to lower power (and, therefore, energy)
consumption.

∙ Contribution 3. We show that, compared to a purely partitioned scheduling
approach, our technique achieves the same application throughput with signifi-
cant energy savings (up to 64%) when applied to real-life streaming applications.
These energy savings, however, come at the cost of higher memory requirements
and latency of applications.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview
of the MoCs considered in this thesis, some relevant analysis techniques and results
from real-time scheduling theory, and the methodology for hard real-time scheduling
of (C)SDF graphs proposed in [BS11, BS12]. All of these concepts and techniques are
instrumental to understand the contributions of this thesis.

Chapters 3 to 6, which present the contributions of this dissertation, are written in
a self-contained way. This means that each of these chapters includes an introduction
and related work section specific to the addressed research problem. We summarize
the content of each of these chapters in the list below.

∙ Chapter 3 describes the first component of the middleware layer (recall Fig-
ure 1.6 on page 20) that we propose to achieve system adaptivity in BE systems.
The first middleware component implements the communication of PPN pro-
cesses on NoC-based architectures in an efficient way.

∙ Chapter 4 proposes the process migration mechanism for PPNs on NoC-based
architectures, which represents the second component of the middleware layer
in Figure 1.6.

∙ Chapter 5 describes our semi-partitioned scheduling approach for CSDF graphs
with HRT constraints.

∙ Chapter 6 presents the final contribution of this thesis, which is based on a
novel semi-partitioned scheduling algorithm (EDF-ssl) together with a VFS
technique aimed at improving the system energy efficiency.

Finally, Chapter 7 draws some conclusions based on the results of this thesis and
suggest possible directions for future work.


