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Chapter 6

Emergent gauge symmetry and duality

Breaking symmetry is easy but making symmetry is hard: this wisdom
applies to global symmetry but not to local symmetry. The study of sys-
tems controlled by emergent gauge symmetry has become a mainstream in
modern condensed matter physics. Although one discerns as a fundamen-
tal gauge symmetry only electromagnetism in the ultraviolet of condensed
matter physics, it is now very well understood that in a variety of circum-
stances gauge symmetries that do not exist on the microscopic scale control
the highly collective physics on the macroscopic scale. An intriguing but
unresolved issue is whether the gauge structures involved in the Standard
Model of high energy physics and perhaps even general relativity could be of
such an emergent kind.

Up to now we have not focussed much on the emergence of gauge sym-
metries—rather we have taken them for granted as a either an unrelated
coincidence or as a logical but still auxiliary tool in the vortex duality. This
chapter discusses some of the deeper, underlying gauge principles that not
only facilitate understanding the nature of the disordering transition, but
even provide a new viewpoint to gauge symmetry in general, possibly adding
to our comprehension of its importance.

A gauge symmetry is said to be emergent when it is not present in the
microscopic model of the constituent particles or fields, but arises in the ef-
fective theory as a collective degree of freedom. We have encountered two
examples in this work:

1. the “stay-at-home” gauge invariance associated with (doped) Mott in-
sulators, expressing a local conservation law (see §2.3.4);
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2. the global-to-local symmetry correspondence in the strong/weak (i.e.
Kramers–Wannier, S-) dualities, or the expression of the Goldstone
mode as a dual gauge field (see §§2.4.2, 3.1).

In the common perception these appear as quite different. Here we clarify
that at least in the context of bosonic physics they are actually closely re-
lated. In fact, these highlight complementary aspects of the vacuum struc-
ture, and it just depends on whether one views the vacuum either using the
canonical/Hamiltonian language (stay-at-home) or field-theoretical/Lagran-
gian (local–global duality) language.

In this chapter we shall first go through the Bose-Hubbard model/vortex–
boson duality again in §6.1, emphasizing the dual aspects of the emerging
gauge symmetries. The ability to switch back and forth between Hamil-
tonian and Lagrangian viewpoints yields some entertaining vistas on this
well-understood theory. In particular, the condensate of vortices is to be un-
derstood as a coherent superposition of all possible vortex configurations,
and we will show that this is completely equivalent as adding gauge symme-
try to phase correlations.

To make the case that it can yield new insight, we apply it in §6.2 to the
less familiar context of dualities in quantum elasticity. This deals with the
description of quantum liquid crystals in terms of dual condensates formed
from the translational topological defects (dislocations) associated with the
fully ordered crystal. Using the Lagrangian language it was argued that
such quantum nematics are equivalent to (linearized) Einstein gravity [43].
Here we will demonstrate that this is indeed controlled by the local symme-
try associated with linearized gravity: translations are gauged, turning into
infinitesimal Einstein transformations.

6.1 Vortex duality versus Bose-Mott insulators

A mainstream of the gauge theories in condensed matter physics dates back
to the late 1980s when the community was struggling with the fundamentals
of the problem of high-Tc superconductivity. It was recognized early on that
this has to do with doping the parent Mott insulators and this revived the
interest in the physics of the Mott insulating state itself [58, 92–94]. The
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point of departure is the Hubbard model for electrons,

HFH =−t
∑

<i j>σ
(ĉ†

iσ ĉ jσ+ ĉ†
jσ ĉiσ)+U

∑
i

n̂i↑n̂i↓ , (6.1)

describing fermions ĉ†
iσ on site i with spin σ, hopping on a lattice with

rate t, subjected to a strong local Coulomb interaction U. Here n̂iσ = ĉ†
iσ ĉiσ is

the fermion number operator. A much simpler problem is the Bose-Hubbard
model of §2.3. It describes spinless bosons created by b̂†

i hopping on a lattice
with a rate t subjected to an on-site repulsion U,

HBH =−t
∑
<i j>

b̂†
i b̂ j +U

∑
i

n̂2
i . (6.2)

Again n̂i = b̂†
i b̂i is the boson number operator. We assume in the remainder

that the system is at “zero chemical potential”, meaning that on average
there is an integer number of fermions or bosons n0 per site.

6.1.1 Stay-at-home gauge symmetry

Now these models are invariant under a global symmetry,

ĉ†
iσ→ ĉ†

iσeiασ or b̂†
i → b̂†

i e
iα, (6.3)

where the symmetry transformation is a scalar variable α that is constant
for all lattice sites. But in the limit U /t →∞ the hopping term vanishes, and
this symmetry is promoted to a local symmetry,

ĉ†
iσ→ ĉ†

iσeiαiσ , b̂†
i → b̂†

i e
iαi

ĉiσ→ e−iαiσ ĉiσ , or b̂i → e−iαiσ b̂i ,

n̂i =
∑
σ

ĉ†
iσ ĉiσ→ n̂i n̂i = b̂†

i b̂i → n̂i. (6.4)

One discovers that a gauge symmetry emerges which controls the physics
at long distances, while it is non-existent at the microscopic scale. This is
the point of departure of a mainstream school of thought in condensed mat-
ter physics. In the fermionic model, there is still a dynamical spin system
at work at low energies. Using various “slave-constructions” it was subse-
quently argued that quantum spin liquids characterized by fractionalized
excitations can be realized when the resulting compact U(1) gauge theory
would end up in a deconfining regime. Conversely, the spinless Bose variety
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is completely featureless since it does not seem to break a manifest symme-
try while low energy degrees of freedom are absent.

Note that at any finite U /t this gauge symmetry would be strictly bro-
ken; still at large values of this parameter it is a good idea to start from
the gauge-invariant ground state, with deviation from this state entering as
excitations.

The complete Hubbard models are defined in term of particle creation
and annihilation operators, but in the Mott insulating state, the number of
particles is locally conserved, i.e. conserved at each site separately, and only
the number operator is present in the resulting Hamiltonian. The emergence
of the gauge symmetry is caused by this local number conservation. One
could picture that the annihilation–creation combination c†

i ci is now “tied”
by emergent gauge bosons as force carriers: the particles are told to “stay at
home”. Indeed, the doped Mott insulator is described in such terms, leading
to spin-charge separation and so forth.

This emergent gauge symmetry is not restricted to lattice models. Take
for instance the effective Landau model describing the superfluid Eq. (2.1),

H =
∫

d3x
1
2
τ|∇Ψ|2 + 1

2
α|Ψ|2 + 1

4
β|Ψ|4. (6.5)

We have inserted a parameter τ for convenience. This model is invariant
under global U(1) symmetry Ψ(x) → eiαΨ(x), where α is constant in space.
But if we were to suppress the fluctuation term τ→ 0, then this would be
promoted to a local symmetry α→ α(x). In other words, in the absence of
fluctuations of the order parameter, the superfluid is indistinguishable from
a superconductor. Furthermore the rigidity of the order parameter is now no
longer enforced by a Goldstone mode, but by a local conservation law.

6.1.2 Vortex–boson duality

As detailed in §2.3, the Bose-Hubbard model at zero chemical potential can
be mapped onto the XY - or phase-only model, which in turn maps onto the
superfluid in the weak-coupling and continuum limit. We saw in §2.4 and
chapter 3 that the phase transition to the Mott insulator is then formulated
by the proliferation of topological defects, in this case vortices.

We needed to pass from the Goldstone field ϕ to its canonical conjugate,
the supercurrent wµ. This is the Noether current of the global symmetry ϕ→
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ϕ+ε. The smoothness of the Goldstone field ensures that the supercurrent
is conserved ∂µwµ = 0, which can be enforced by expressing it in terms of a
dual gauge field,

wµ = εµνλ1···λd−2∂νbλ1···λd−2 , (6.6)

which is invariant under non-compact U(1) gauge transformations,

bλ1···λd−2 → bλ1···λd−2 +∂[λ1ελ2···λd−2], (6.7)

where ελ2···λd−2 is any smooth d −3-form field. These gauge fields have the
natural interpretation as the force carriers of the interactions between vor-
tex excitations.

Once again, the global symmetry of the original model seems to be pro-
moted to a local symmetry, but surely this non-compact symmetry of the
Coulomb or superfluid phase is completely different from the compact U(1)
of the stay-at-home gauge invariance of the Higgs or Mott insulating phase.

The next step is to consider what happens across the phase transition.
The vortices proliferate into a ‘tangle of vortex world lines’ or ‘string foam’,
which is as a fluid medium minimally coupled to the dual gauge fields, which
therefore undergo an Anderson–Higgs mechanism. The long-range correla-
tions mediated by massless gauge fields now turn short-range.

6.1.3 The vortex condensate generates stay-at-home gauge

Up to this point we have just collected and reviewed some well-known re-
sults on phase dynamics. However, at first sight it might appear as if the
matters discussed in the two previous subsections are completely unrelated.
Departing from the Bose-Hubbard model the considerations of the previ-
ous subsection leave no doubt that in one or the other way the dual vortex
‘d−2-form superconductor’ can be adiabatically continued all the way to the
strongly coupled Bose-Mott insulator of the first subsection. The standard
way to argue this is by referral to the excitation spectrum. The Bose-Mott
insulator is characterized by a mass gap ∼ U (at strong coupling), and a
doublet of “holon” (vacancy) and “doublon” (doubly-occupied site) propagat-
ing excitations being degenerate at zero chemical potential (see §§2.3,2.4.5
and 3.2). The vortex superconductor is a relativistic U(1)/U(1) Higgs conden-
sate characterized by a Higgs mass (a gap) above which one finds a doublet
massive gauge bosons. In this regard there is a precise match. However,
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in the canonical formalism one also discovers the emergent U(1) invariance
associated with the sharp quantization of local number density in the Mott
insulator. What has happened to this important symmetry principle in the
vortex superconductor?

The answer is: the emergent compact U(1) gauge symmetry of the Mott
insulator is actually a generic part of the physics of the relativistic supercon-
ductor.

The argument is amazingly simple. The stay-at-home gauge does not
show up explicitly in the Higgsed action describing the dual vortex conden-
sate, for the elementary reason that all the quantities in this action are asso-
ciated with the vortices which are in turn in a perfect non-local relation with
the original phase variables. However, we know precisely what this dual su-
perconductor is in terms of those phase variables. We can resort to a first
quantized, world line description of the vortex superconductor, putting back
“by hand” the phase variables. This constitutes a tangle of world lines of
vortices, warping the original phases, and eventually we can even map that
back to a first quantized wave function written as a coherent superposition
of configurations of the phase field. To accomplish this in full one needs big
computers [32, 33], but for the purposes of scale and symmetry analysis the
outcomes are obvious.

The penetration depth λV of the dual vortex superconductor just coincides
with the typical distance between vortices. At distances much shorter than
λV the vortices do not scramble the relations between the phases at spatially
separated points and at these scales the system behaves as the ordered su-
perfluid,

〈b†(r)b(0)〉→ constant , r ¿λV , (6.8)

However, at distances of order λV and larger, the vacuum turns into a
coherent quantum superposition of “Schrödinger cat states” where there is
either none, or one, or whatever number of vortices in between the two points
0 and r whose correlation of the phases of bosons we wish to know, see Fig.
6.1. We have arrived at exposing the simple principle which is the central
result of this chapter: since the vortex configurations are in coherent superpo-
sition, the phases acquire a full compact U(1) gauge invariance. Here is how
to understand the physical concept: focus on the direction of the phase at the
origin and look at the phase arrow at some distance point r. Consider a par-
ticular configuration of the vortices, and in this realization the distant phase
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Figure 6.1: In the vortex condensate the correlation of the phase between a point A
and another point B a distance r apart is in a superposition of having zero, one or
any number of vortices in between. As such the phase at B with respect to that at
A is completely undefined: it has acquired a full gauge invariance in the sense that
any addition to the phase is an equally valid answer

will point in some definite direction which will be different from the phase
at the origin as determined by the particular vortex configuration. However,
since all different vortex configurations are in coherent superposition and
therefore “equally true at the same time”, all orientations of the phase at
point r are also “equally true at the same time” and this is just the precise
way to formulate that a compact U(1) gauge symmetry associated with φ has
emerged at distances λV.

The implication is that via Eq. (6.4) the emerging stay-at-home gauge
invariance implies that in the Higgs condensate the number density associ-
ated with the bosons condensing in the dual superfluid becomes locally con-
served on the scale λV . The Mottness therefore sets in only at scales larger
than this λV . Notice that this mechanism does in fact not need a lattice:
it is just a generic property of the field theory itself, which is independent
of regularization. In fact, the seemingly all important role of the lattice in
the standard reasoning in condensed matter when dealing with these issues
is a bit of tunnel vision. It focusses on the strong-coupling limit where for
large U, λV → a, the lattice constant. However, upon decreasing the coupling
strength, the stay-at-home gauge emerges at an increasingly longer length
scale λV, to eventually diverge at the quantum phase transition. Close to
the quantum critical point the theory has essentially forgotten about the
presence of the lattice, just remembering that it wants to conserve number
locally which is the general criterion to call something an insulator. In fact,
Mottness can exist without a lattice altogether. A relativistic superconduc-
tor living in a perfect 2+1d continuum is physically reasonable. Since duality
works in both directions, this can be in turn viewed as a quantum disordered
superfluid, where the number density associated with the bosons comprising
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the superfluid becomes locally conserved.
By inspecting closely this simple vortex duality we have discovered a

principle which might be formulated in full generality as: the coherent su-
perposition of the disorder operators associated with the condensation of the
disorder fields has the automatic consequence that the order fields acquire a
gauge invariance associated with the local quantization of the operators con-
jugate to the operators condensing in the order field theory. We suspect that
this principle might be of use also in the context of dualities involving more
complex field theories.

6.2 Quantum nematic crystals and emergent lin-
earized gravity

To substantiate this claim, let us now inspect a more involved duality which
is encountered in quantum elasticity, where the principle reveals the precise
reasons for why quantum liquid crystals have dealings with general relativ-
ity. Einstein himself already suggested the metaphor that the spacetime of
general relativity is like an elastic medium. Is there a more literal truth
behind it? In recent years Hagen Kleinert has been forwarding the view
that quite deep analogies exist between plastic media (solids with topologi-
cal defects) and Einsteinian spacetime [41, 42]. There appears room for the
possibility that at the Planck scale an exotic “solid” (the “world crystal”) is
present, turning after coarse graining into the spacetime that we experience.

It turns out that this subject matter has some bearing on a much more
practical question: what is the general nature of the quantum hydrodynam-
ics and rigidity of quantum liquid crystals? Quantum liquid crystals [82] are
just the zero temperature versions of the classical liquid crystals found in
computer displays. These are substances characterized by a partial breaking
of spatial symmetries, while the zero temperature versions are at the same
time quantum liquids. Very recently indications have been found for variety
of such quantum liquid crystals in experiment [95–100]. In the present con-
text we are especially interested in the “quantum smectics” and “quantum
nematics” found in high-Tc cuprates [84, 96–98] which appear to be also su-
perconductors at zero temperature. Such matter should be, at least in the
long-wavelength limit, governed by a bosonic field theory, and this “theory
of quantum elasticity” [40, 45, 83, 101] is characterized by dualities that are
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richer, but eventually closely related to the duality discussed in the previous
section.

Departing from the quantum crystal, the topological agents which are
responsible for the restoration of symmetry are the dislocations and discli-
nations. The disclinations restore the rotational symmetry and the topologi-
cal criterion for liquid crystalline order is that these continue to be massive
excitations. The dislocations restore translational symmetry, and these are
in crucial regards similar to the vortices of the previous section. In direct
analogy with the Mott insulator being a vortex superconductor, the super-
conducting smectics and nematics can be universally viewed as dual “stress
superconductors” associated with Bose condensates of quantum dislocations.

Using the geometrical correspondences of Kleinert [41, 42], arguments
were put forward suggesting that the Lorentz-invariant version of the su-
perfluid nematic in 2+1d is characterized by a low energy dynamics that is
the same as at least linearized gravity [43]. Very recently it was pointed out
that this appears also to be the case in the 3+1d case [102, 103]. A caveat is
that Lorentz invariance is badly broken in the liquid crystals as realized in
condensed matter physics. This changes the rules drastically and although
the consequences are well understood in 2+1d [40, 45, 83] it remains to be
clarified what this means for the 3+1d condensed matter quantum liquid
crystals. The currently unresolved issue is how the gravitons of the 3+1d
relativistic case imprint on the collective modes of the non-relativistic sys-
tems.

Here we want to focus on perhaps the most fundamental question one
can ask in this context: although general relativity is not a Yang–Mills the-
ory, it is uniquely associated with the gauge symmetry of general covari-
ance or diffeomorphisms. Quite generally, attempts to identify “analogue”
or “emergent” gravity in condensed matter systems have been haunted by
the problem that general covariance is quite unnatural in this context. The
gravity analogues currently contemplated in condensed-matterlike systems
usually get as far as to identify a non-trivial geometrical parallel transport
of the matter, that occurs in a “fixed frame” or “preferred metric” [104–111];
in other cases this issue of the mechanism of emerging general covariance is
simply not addressed [112–114]. As we shall discuss, crystals are manifestly
non-diffeomorphic. However, the relativistic quantum nematics appear to be
dynamically similar to Einsteinian spacetime. For this to be true, in one way
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or another general covariance has to emerge in such systems. How does this
work?

In close parallel with the vortex duality “toy model” of the previous sec-
tion, we will explicitly demonstrate in this section that indeed general co-
variance is dynamically generated as an emergent IR symmetry. However,
there is a glass ceiling: the geometry is only partially gauged. Only the
infinitesimal “Einstein” translations fall prey to an emergent gauge invari-
ance while the Lorentz transformations (rotations) remain in a fixed frame.
This prohibits the inclusion of black holes and so forth, but this symmetry
structure turns out to be coincident with the ‘gauge fix’ that is underlying
linearized gravity. The conclusion is that relativistic quantum nematics con-
stitute a medium that supports gravitons, but nothing else than gravitons.

For this demonstration we have to rely on the detour for the identifica-
tion of the local symmetry generation as introduced in the previous section.
Different from the Bose-Mott insulator, there is no formulation available for
the quantum nematic in terms of a simple Hamiltonian where one can di-
rectly read off the equivalent of the stay-at-home gauge symmetry. We have
therefore to find the origin of the gauging of the Einstein translations in
the physics of the dislocation Bose condensate, but this will turn out to be a
remarkably simple and elegant affair.

The remainder of this section is organized as the previous one. In section
6.2.1 we will first collect the various bits and pieces: a sketch of the way that
“dislocation duality” associates the relativistic quantum nematic state with
a crystal that is destroyed by a Bose condensate of dislocations. In section
6.2.2 we will subsequently review Kleinert’s “dictionary” relating quantum
elasticity and Einsteinian geometry, while at the end of this subsection we
present the mechanism of gauging Einstein translations by the dislocation
condensate. For simplicity we will focus on the 2+1d case; the generalities
we address here apply equally well to the richer 3+1d case.

6.2.1 The quantum nematic as a dislocation condensate

Let us first introduce the field-theoretical side [40, 45, 83, 101]. The theory of
quantum elasticity is just the 19th century theory of elasticity but now em-
bedded in the Euclidean spacetime of thermal quantum field theory. To keep
matters as simple as possible we limit ourselves to the Lorentz-invariant
“world crystal”, just amounting to the statement that we are dealing with a
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(a) Edge dislocation (b) Screw dislocation

Figure 6.2: Dislocation lines (red spheres) in the relativistic 3D “world crystal” (two
space and one time direction), formed by insertion of a half-plane of particles. Shown
in red is the contour that measures the mismatch quantized in the Burgers vector
(red arrow). If the Burgers vector is orthogonal to the dislocation line it is an edge
location; if the Burgers vector is parallel it is a screw dislocation. In non-relativistic
2+1d there are only edge dislocations, since the Burgers vector is always purely spa-
tial.

2+1d elastic medium being isotropic, both in space and time directions,

Z =
∫

Dw e−Sel ,

Sel =
∫

dτdx2
[
µwµνwµν+ λ

2
w2
µµ

]
, (6.9)

where,
wµν = 1

2
(
∂µuν+∂νuµ

)
, (6.10)

are the strain fields associated with the displacements uν of the “world crys-
tal atoms” relative to their equilibrium positions. Here µ and λ are the shear
modulus and the Lamé constant of the world crystal, respectively. At first
view this looks like a straightforward tensorial generalization of the scalar
field theory of the previous section. For the construction of the nematics one
can indeed think about the displacements as “scalar fields with flavours”
since this only involves the “Abelian sector” of the theory associated with
translations. One should keep in mind however that one is breaking Eu-
clidean space down to a lattice subgroup and this is associated with non-
Abelian, infinite and semi-direct symmetry structure: the full theory beyond
the dislocation duality is a much more complicated affair.

These issues become manifest when considering the topological defects:
the dislocations and disclinations. The dislocation is the topological defect
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(a) Disclination (b) Stack of dislocations

Figure 6.3: (a) 90◦ disclination in a square lattice. A wedge is inserted into a cut
in the lattice. There is now one lattice point with five instead of four neighbouring
sites (red); going along a contour around this point will result in an additional 90◦

rotation. The associated topological charge is the Frank vector, orthogonal to the
plane and of size 90◦. As the dislocation, in 2+1d spacetime the disclination point will
trace out a world line. (b) Disclination as a stack of dislocations. Hence a disclination
corresponds to a uniform polarization of Burgers vectors. As long as disclinations
are massive, e.g. in the quantum nematic, dislocations appear only with balanced
opposite Burgers vectors.

associated with the restoration of the translations. The dislocation can be
viewed as the insertion of a half-plane of extra atoms terminating at the
dislocation core. One immediately infers that it carries a vectorial topolog-
ical charge: the Burgers vector indexed according to the Miller indices of
the crystal. In 2+1 dimensions the dislocation is a particle (like the vortex)
and as an extra complication the Burgers vector can either lie perpendicular
[“edge dislocation”, Fig. 6.2(a)] or parallel [“screw dislocation”, Fig. 6.2(b)] to
the propagation direction of its world line. The disclination is on the other
hand associated with the restoration of the rotational symmetry. This can
be obtained by the Volterra construction: cut the solid, insert a wedge and
glue together the sides [see Fig. 6.3(a)]. This carries a vectorial charge (the
Frank vector) as well. Finally dislocations and disclinations are not inde-
pendent. On the one hand, the disclination can be viewed as a stack of dis-
locations with parallel Burgers vectors [Fig. 6.3(b)], while the dislocation
can be viewed as a disclination–antidisclination pair displaced by a lattice
constant.

Dislocations and disclinations do however have a distinguishable iden-
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tity and this enables a tight, topological definition of quantum smectic and
nematic order. A state where dislocations have spontaneously proliferated
and condensed, while the disclinations are still massive, is a quantum liquid
crystal. Since a disclination is coincident with a “uniform magnetization” of
Burgers vectors, one cannot have a net density of parallel Burgers vectors as
long as disclinations are suppressed [see Fig. 6.3(b)]. The Burgers vectors of
the dislocations in the condensate have to be anti-parallel and therefore the
dislocation breaks orientations rather than rotations, with the ramification
that the order parameter is a director instead of a vector.

Finally, when all orientations of the Burgers vectors are populated equally
in the condensate, one deals with a nematic breaking only space rotations.
When only a particular Burgers vector orientation is populated one is deal-
ing with a smectic because the translations are only restored in the direction
of the Burgers vector: the system is in one direction a superfluid and in the
other still a solid. To complete this outline, when the coupling constant is
further increased there is yet another quantum phase transition associated
with the proliferation of disclinations turning the system into an isotropic
superfluid.

Let us now review the “dislocation duality”: in close analogy with vortex
duality, this shows how crystals and liquid crystals are related via a weak–
strong duality. The requirement that disclinations have to be kept out of the
vacuum is actually a greatly simplifying factor. One follows the same dual-
ization procedure for the dislocations as for the vortices. Hence, we introduce
Hubbard–Stratonovich auxiliary tensor fields σµν, rewriting the action as,

S =
∫

dτdx2
[

1
4µ

(
σ2
µν−

ν

1+νσ
2
µµ

)
+ iσµνwµν

]
, (6.11)

where ν = λ/2(λ+µ) is the Poisson ratio. We divide the displacement fields
(having the same status as the phase field in vortex duality) in smooth and
multivalued parts uµ = usmooth

µ +uMV
µ , and integrating out the smooth strains

yields a constraint, in this case a Bianchi identity,

∂µσµν = 0 , (6.12)

The physical meaning of σµν is that they are the stress fields, which
are conserved in the absence of external stresses as in Eq. (6.12): the
above is just the stress–strain duality of elasticity theory. One now wants
to parametrize the stress fields in terms of a gauge field. Since the stress
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tensor is symmetric this is most naturally accomplished in terms of Klein-
ert’s double curl gauge fields,

σµν = εµκλενκ′λ′∂κ∂κ′Bλλ′ (6.13)

while the B’s are symmetric tensors, otherwise transforming as U(1) gauge
fields.

To maintain the analogy with the vortex duality as tightly as possible,
one can as well parametrize it in a normal gauge field, σµν = εµκλ∂κbν

λ
with

the requirement that one has to impose the symmetry of the stress tensor
explicitly by Lagrange multipliers. Using this route one finds that the mul-
tivalued strains turn into a source term ibνµJν

µ where,

JV
µν = εµκλ∂κ∂λuMV

ν , (6.14)

This is just like a vortex current carrying an extra “flavour” ν. It is the
dislocation current, where the flavour indicates the D+1 components of the
Burgers vector. Like the vortices, dislocations have long-range interactions
which are parametrized by the gauge fields b (or B), with the special effect
that these are only active in the directions of the Burgers vectors.

The double curl gauge fields have the advantage that the symmetry is
automatically built in while the “extra derivatives” enable the identification
of the disclination currents. One finds,

S =
∫

dτdx2
[

1
4µ

(
σ2
µν−

ν

1+νσ
2
µµ

)
+ iBµνηµν

]
, (6.15)

where the “stress gauge fields” B are sourced by a total “defect current”,

ηµν = εµκλενκ′λ′∂κ∂κ′wMV
λλ′ ,

= θµν−εµκλ∂κJνλ , (6.16)

where θµν is the disclination current, and ν refers to the Franck vector com-
ponent. The fact that the disclination current has “one derivative less” than
the dislocation current actually implies that disclinations are in the solid
confined—in the solid, a disclination is like a quark.

One now associates a much larger core energy to the disclinations than
to the dislocations, and upon increasing the coupling constant a loop blowout
transition will occur involving only the dislocation world lines—it is obvious
from the single curl gauge field formulation that dislocations are just like
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vortices carrying an extra “Burgers flavour”. To obtain the quantum nematic
one populates all Burgers directions equally and after some straightforward
algebra one obtains the effective action for the “Higgsed stress photons” hav-
ing the same status as Eq. (3.23) for the Mott insulator,

S =
∫

dτdx2
[
m2

nemσµν
1
∂2σµν+

1
4µ

(
σ2
µν−

ν

1+νσ
2
µµ

)
+ iBµνθµν

]
, (6.17)

where σ should be expressed in the double curl gauge field Bµν according to
Eq. (6.13). In terms of the regular gauge fields bνµ, the first term represents
a Higgs mass, while the second term is like a Maxwell term. Nevertheless,
in the nematic the disclinations still act as sources coupling to the double
curl gauge fields.

Ignoring the disclinations, one finds in 2+1d that Eq. (6.17) describes a
state is quite similar to a Mott insulator: all excitations are massive, and
one finds now a triplet of massive “photons”. These are counted as follows:
there are two propagating (longitudinal and transversal acoustic) phonons of
the background world crystal, turning into “stress photons” after dualization
and acquiring a mass in the nematic. In addition, the dislocation condensate
adds one longitudinal stress photon.

As it turns out, the rules change drastically upon breaking the Lorentz
invariance. In a crystal formed from material bosons, displacements in the
time direction uτ are absent, and this has among others the consequence
that the dislocation condensate does not couple to compressional stress. In-
stead of the incompressible nature of the relativistic state, one finds now two
massless modes in the quantum nematic: a rotational Goldstone boson asso-
ciated with the restoration of the broken rotational symmetry, and a mass-
less sound mode which can be shown to be just the zero sound mode of the
superfluid. The non-relativistic quantum liquid crystals are automatically
superfluids as well and their relation to gravity is obscured.

Turning to the 3+1d case one finds as extra complication that dislocations
turn into strings and one has to address the fact that the “stress supercon-
ductor” is now associated with a condensate of strings. One meets the same
complication as in vortex duality, which was tackled in chapter 3. The out-
come is actually quite straightforward: the effective London actions of the
type Eqs. (3.23),(6.17) have the same form regardless whether one deals
with particle or string condensates, and these enter through the Higgs term
∼σ2/∂2.
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How to interpret the 2+1d relativistic quantum nematic? There are no
low energy excitations and it only reacts to disclinations. It has actually pre-
cisely the same status as a flat Einsteinian spacetime in 2+1d that only feels
the infinitesimal vibrations associated with gravitational events far away.
Similarly, using the general relativity (GR) technology of the next section, it
is also straightforward to demonstrate [102, 103] that in 3+1d one ends up
with two massless spin-2 modes: the gravitons. To prove that it is precisely
linearized gravity, let us consider next the rules of Kleinert that allow to
explicitly relate these matters to gravitational physics.

6.2.2 Quantum elasticity field theory: the Kleinert rules

Elaborating on a old tradition in “mathematical metallurgy”, Kleinert iden-
tified an intriguing portfolio of general correspondences between the field
theory describing elastic media and the geometrical notions underlying gen-
eral relativity. In order to appreciate what comes, we need to familiarize
the reader with some of the entries of this dictionary. For an exhaustive
exposition, see Kleinert’s books on the subject [41, 42].

GR is a geometrical theory which departs from a metric gµν, such that an
infinitesimal distance is measured through,

ds2 = gµνdxµdxν , (6.18)

One now insists that the physics is invariant under local coordinate trans-
formations (general covariance) xµ → ξµ(xν); infinitesimal transformations
then are like gauge transformations of the metric,

gµν→ gµν+∂µξν+∂νξµ ≡ gµν+hµν , (6.19)

Only quantities are allowed in the theory which are invariant under
these transformations and insisting on the minimal number of gradients,
one is led to the Einstein–Hilbert action governing spacetime,

S =− 1
2κ

∫
dD xdt R

p−g , (6.20)

where g = det gµν and R the Ricci scalar, while κ is set by Newton’s constant.
Together with the part describing the matter fields, the Einstein equations
follow from the saddle points of this action.
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How to relate this to solids? Imagine that one lives inside a solid and all
one can do to measure distances is to keep track how one jumps from unit cell
to unit cell. In this way one can define a metric “internal” to the solid, and
the interesting question becomes: what is the fate of the diffeomorphisms
(“diffs”) Eq. (6.19)? In order to change the metric one has to displace the
atoms and this means that one has to strain the crystal,

gµν→ gµν+wµν , (6.21)

But the strain fields are surely not gauge fields: the elastic energy Eq.
(6.9) explicitly depends on the strain. Obviously, the crystal is non-diffeo-
morphic and it is characterized by a “preferred” or “fixed” frame. This is the
deep reason that normal crystals have nothing to do with GR.

In standard GR the objects that are invariant keep track of curvature
and these appear in the form of curvature tensors in the Einstein equations.
Linearizing these, assuming only infinitesimal diffs as in Eq. (6.19), one
finds for the Einstein tensor appearing in the Einstein equations, say in the
2+1d case to avoid superfluous labels,

Gµν = εµκλενκ′λ′∂κ∂κ′hλλ′ (6.22)

One compares this with the disclination current Eq. (6.16) and one dis-
covers that these are the same expressions after associating the strains wµν

with the infinitesimal diffs hµν. This is actually no wonder: at stake is that
the property of curvature is independent of the gauge choice for the metric.
One can visualize the curved manifold in a particular gauge fix, and this is
equivalent to the fixed frame. The issue is that curvature continues to exist
when one lets loose the metric in the gauge volume.

What is the meaning of the dislocation tensor? Cartan pointed out to
Einstein that his theory was geometrically incomplete: one has to allow also
for the property of torsion. It turns out that torsion is “Cartan-Einstein”
GR sourced by spin currents and the effects of it turn out to be too weak
to be observed (see e.g. Ref. [115]). In the present context, the torsion
tensor appearing in the equations of motions precisely corresponds with the
dislocation currents. With regard to these topological aspects, crystals and
spacetime are remarkably similar.

However, given the lack of general covariance the dynamical properties of
spacetime and crystals are entirely different. For obvious reasons, spacetime
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does not know about phonons while crystals do not know about gravitons,
let alone about black holes. A way to understand why things go so wrong
is to realize that the disclinations encode for curvature, and gravitons can
be viewed as infinitesimal curvature fluctuations. As we already explained,
disclinations are confined in crystals meaning that it costs infinite energy to
create curvature fluctuations in normal solids.

Let us now turn to the relativistic quantum nematics: here the situa-
tion looks much better. Gravity in 2+1d is incompressible in the sense that
the constraints do not permit massless propagating modes, the gravitons.
We also found out that disclinations are now deconfined and they appear as
sources in the effective action Eq. (6.17): this substance knows about curva-
ture. In fact, one can apply similar considerations to the 3+1d case, where
two massless spin-2 modes are present. The relativistic quantum nematic in
3+1d behaves quite like spacetime!

To make the identification even more precise, one notices that the ex-
pression for the linearized Einstein tensor Eq. (6.22) is coincident with the
expression for the stress tensor in terms of the double curl gauge field Bµν,
Eq. (6.13). But now one is dealing with gauge invariance both of Bµν and hµν
while they are both symmetric tensors. At least on the linearized level the
stress tensor is the Einstein tensor. It is now easy to show that the Higgs
term in the theory of the nematic when expressed in terms of the linearized
Einstein tensors,

σµν
1
∂2σµν =Gµν

1
∂2 Gµν

→ R, (6.23)

actually reduces to the Ricci tensor R, demonstrating that one recovers the
Einstein–Hilbert action at distances large compared to the Higgs scale. Once
more, this only holds in the linearized theory. This works in the same way
in 3+1 (and higher) dimensions which is the easy way to demonstrate that
gravitons have to be present [102, 103]. At least the linearized version of the
Einstein–Hilbert action appears to be precisely coincident with the effective
field theory describing the collective behaviour of the quantum nematic!

Although this all looks convincing there is still a gap in the conceptual
understanding of what has happened with the geometry of the crystal in the
presence of condensed dislocations. The emergence of gravity requires that
the original spacetime defined by the crystal has to become diffeomorphic.
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Figure 6.4: In the dislocation condensate (quantum nematic), the distance between
two points (green dots) is in a coherent superposition of having zero, one or any
number of half-line insertions (light blue) or dislocations (red dot) in between them,
and therefore the number of lattice spacings in between them is undefined. This
is equivalent to having the Einstein translations fully gauged: there is a diffeomor-
phism between configurations with any number of lattice spacings in between the
two points.

The fields as of relevance to the dynamics of the nematic are healthy in this
regard but they belong to the dual side. The analogy with the Mott insulator
is now helpful: to demonstrate that gravity has emerged requires the demon-
stration that the spacetime of the original crystal is diffeomorphic and that
is equivalent to demonstrating that in the vortex condensate the superfluid
phase acquires a compact U(1) gauge invariance. The diffeomorphic nature
of the stress gauge fields telling about the excitations of the quantum ne-
matic has in turn the same status as the gauge fields that render the vortex
condensate to be a superconductor.

The good news is that we can use the same “first quantization” trick that
helped us to understand the emergence of the stay-at-home gauge in the vor-
tex condensate to close this conceptual gap. As for the vortices, it is easy to
picture what happens to the metric of the crystal when the coherent super-
positions of dislocation configurations associated with the dual stress super-
conductor are present. Let us repeat the exercise at the end of the previous
section (Fig. 6.1), by comparing how two points some distance apart com-
municate with each other, but now focusing on the metric properties. This
is illustrated in Fig. 6.4: imagine that no dislocation is present between
the two points and one needs N jumps to get from one point to the other.
However, this configuration is at energies less than the Higgs mass of the
quantum nematic necessarily in coherent superposition with a configuration
where a dislocation has moved through the line connecting the two points:
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one now needs N +1 hops and since these configurations are in coherent su-
perposition “N = N +1” and the geometry is now truly diffeomorphic!

However, there is one last caveat. Although translational symmetry is
restored in the quantum nematic, the rotations are still in a fixed frame and
even spontaneously broken! This is different from full Einstein gravity: in
real spacetime also the Lorentz transformations (rotations in our Euclidean
setting) are fully gauged. In order to understand this point, let us start from
special relativity, which has the global symmetry of the Poincaré group com-
prising translations and Lorentz transformations. The translations form a
subgroup, such that translational and rotational symmetry are easily dis-
tinguishable. More precisely, the generators of translations are ordinary
derivatives ∂µ which commute [∂µ,∂ν] = 0. In many ways, going from special
to general relativity is from going from global to local Poincaré symmetry
[115]. Indeed, referring to elasticity language, it seems to make sense to
restore first translational and then rotational symmetry, ending up in a per-
fectly locally symmetric “liquid” state.

However, it has long been known that such “gauging of spacetime sym-
metry” is very intricate, which has to do with the definition of locality under
such transformations. What happens is that local coordinate transforma-
tions of the form xµ → ξµ(xν), which are in fact local translations, can also
correspond to local rotations. The local translations no longer form a sub-
group, as the generators of translations should be augmented to those of
parallel translations, defined by [116],

Dµ = ∂µ+Γ κλ
µ fκλ, (6.24)

where Γ κλ
µ is the connection and fκλ is the generator of local rotations. Such

modified derivatives do not commute, and two consecutive translations may
result in a finite rotation. Such symmetry structure is actually at the heart
at everything non-linear happening in Einstein theory including black holes.

Going back to what we now know of the quantum nematic, it is clear that
it cannot correspond to full GR, since rotational symmetry as reflected by
disclinations is still gapped. Nevertheless, the identification between quan-
tum nematics and linearized gravity is in perfect shape. Linearized gravity
is a special and somewhat pathological limit of full GR, as it only applies to
nearly globally Lorentz symmetric systems. It was quite some time ago real-
ized that such systems are symmetric under global Lorentz transformations
and infinitesimal coordinate transformations (see ch. 18,35 in Ref. [117]).
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This is equivalent to fixing the Lorentz frame globally yet allow for infinites-
imal Einstein translations. Under such conditions the equations of motion
of linearized gravity follow automatically.

Here we have demonstrated that linearized gravity—a very peculiar lim-
iting case of GR—is actually literally realized in a quantum nematic. The
deeper reason is that in a quantum nematic the rotational symmetry of
(Euclidean) spacetime is global and even spontaneously broken, while the
restoration of the translational symmetry by the dislocation condensate has
caused the fixed frame internal coordinate system of the crystal to turn into
a geometry that is characterized by a covariance exclusively associated with
infinitesimal translational coordinate transformations.

6.3 Summary and outlook

In so far as vortex duality is concerned we have presented here no more
than a clarification. Living on the “dual side”, where the Bose-Mott insula-
tor appears as just a relativistic superconductor formed from vortices, the
emerging stay-at-home local charge conservation from the canonical repre-
sentation in terms of the Mott insulating phase of the Bose-Hubbard model
is not manifestly recognizable. However, the dual vortex language contains
all the information required to reconstruct precisely the nature of the field
configurations of the “original” superfluid phase fields which are realized in
the vortex superconductor. By inspecting these we identified a very simple
but intriguing principle. The local charge conservation of the Mott insulator,
associated with the emergent stay-at-home compact U(1) gauge symmetry,
is generated in the vortex condensate by the quantum mechanical principle
that states in coherent superposition “are equally true at the same time”—
the Schrödinger cat motive.

We find this simple insight useful since it yields a somewhat more gen-
eral view on the nature of strong/weak dualities. We already emphasized
that Mott insulators as defined through the local conservation of charge do
not necessarily need a lattice. One does not have to dig deep to find an ex-
ample: our dual superconductor is just a relativistic superconductor in 2+1d,
which is in turn dual to a Coulomb phase that can also be seen as a super-
fluid. The charge associated with this superfluid is locally conserved in the
superconductor, regardless of whether the superconductor lives on a lattice
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or in the continuum.

We find the emergent gauging of translational symmetry realized in the
quantum nematic an even better example of the usefulness of this insight.
Earlier work indicated that the relativistic version of this nematic is some-
how associated with emergent gravity. Resting on the “coherent superposi-
tion” argument it becomes directly transparent what causes the gauging of
the crystal coordinates: the condensed dislocations “shake the coordinates
coherently” such that infinitesimal Einstein translations appear while the
Lorentz frame stays fixed. This emergent symmetry imposes that the collec-
tive excitations of the quantum nematic have to be in one-to-one correspon-
dence with linearized gravity.

Our message is that we have identified a mechanism for the “dynami-
cal generation” of gauge symmetry which is very simple but also intriguing
viewed from a general physics perspective: the quantum mechanics princi-
ple of states in coherent superposition being “equally true at the same time”
translates directly to the principle that the global symmetry that is broken
in the ordered state is turned into a gauge symmetry on the disordered side
just by the quantum undeterminedness of the topological excitations in the
dual condensate. This raises the interesting question: is quantum coherence
required for the emergence of local symmetry, or can it also occur in classical
systems?

This question relates directly to the spectacular recent discovery of “Dirac
monopoles” in spin ice [118]. Castelnovo, Moessner and Sondhi [119] real-
ized that the manifold of ground states (“frustration volume”) of this classical
geometrically frustrated spin problem is coincident with the gauge volume of
a compact U(1) gauge theory, with the ramification that it carries Dirac mo-
nopoles as topological excitations. All along it has been subject of debate to
what extent these monopoles can be viewed as literal Dirac monopoles in the
special “vacuum” realized in the spin ice, or rather half-bred cartoon versions
of the real thing. With our recipe at hand it is obvious how to make them
completely real: imagine the classical spin ice to fill up Euclidean space-
time, and after Wick rotation our “coherent superposition principle” would
have turned the frustration volume of the classical problem into a genuine
gauge volume since by quantum superposition all degenerate states would
be “equally true at the same time”.

The ambiguity associated with the classical spin ice monopoles is rooted
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in the role of time. In principle, by doing time-resolved measurements one
can observe every particular state in the frustration volume and this renders
these states to be not gauge equivalent. However, all experiments which
have revealed the monopoles involved large, macroscopic time scales. One
can pose the question whether it is actually possible under these conditions
to define observables that can discriminate between the “fake” monopoles
of spin ice and the monopoles of Dirac. Perhaps the answer is pragmatic:
as long as ergodicity is in charge, one can rely on the ensemble average
instead of the time average, and as long as the time scale of the experiment
is long enough such that one is in the ergodic regime, the frustration volume
will “disappear” in the ensemble average. For all practical purposes one is
then dealing with a genuinely emergent gauge symmetry which tells us that
in every regard the spin ice monopole is indistinguishable from the Dirac
monopole.
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