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Chapter 5

Type-II Mott insulators

In chapter 3 we have seen that the Bose-Mott insulator is in fact a disordered
superfluid, where the superfluid vortices have proliferated, and furthermore
that the Bose-Mott insulator supports vortices of its own, in the form of lines
of supercurrent. This we coined the type-II Bose-Mott insulator. In chapter
4 we have seen how to formulate a relativistic description of Abrikosov vor-
tices in a superconductor, and thus how to wire in electromagnetism. It is
now time to combine the acquired knowledge, and to look at vortices in the
charged Bose-Mott insulator.

The essence is very much the same as the charge-neutral case, but the
outcome is striking: lines of electric current piercing through an otherwise
insulating slab of material. These Mott vortex lines contain a quantum of
electric current, just as Abrikosov vortices have a magnetic flux quantum. In
fact, almost all of the electrodynamic properties of a type-II superconductor
are mirrored in the type-II Mott insulator, where “magnetic field” has to be
substituted for “electric current”.

There are a few notable exceptions to this principle. Firstly, the electric
current Jµ = e∗

ħ wµ is a vector quantity, whereas the magnetic field or rather
the Maxwell field strength is a 2-form. As such, the coupling to the vortex
world sheet of the current is mathematically different when compared to the
magnetic field. The reason for this is easily understood intuitively: the vor-
tex is a line of electric current, which is electric charge in motion. If such
a line moves, it is just that the microscopic charges are moving in a differ-
ent direction than ‘straight up’. Compare this to a magnetic field, which in
motion generates an electric field. Surely this is a rather different situation.
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Secondly, in a superconductor one has the true vacuum where electro-
magnetic fields are free, and the Meissner state where those fields are ex-
pelled. Now the Bose-Mott insulator mimics the Meissner state, yet for elec-
tric current instead of magnetic field; the superconductor where current is
free mimics the vacuum; but on top of that we still have the real vacuum,
and this has no counterpart in superconductivity. Therefore the physical
situation is even richer than for type-II superconductors.

In this chapter we will repeat the duality calculation for charged super-
fluids, that is, a superfluid made out of Cooper pairs. First we will present a
short exposition of the realization of such systems in actual materials. After-
wards considerable time will be spent on the nature of the Mott vortex world
sheets. Then we collect the relevant physical observables from the equa-
tions of motion. All effects are collected in a phase diagram. And lastly, we
present a host of possible experimental setups that may be able to identify
the vortices in the Mott insulator.

5.1 Charged superfluid–insulator transitions

There are several systems whose properties are principally that of charged
bosons, with either weak (superfluid) or strong (insulating) effective interac-
tions. The very well-controlled optical lattice systems mentioned before [50]
do not fall into that category as the strong repulsive interaction between
charged atoms would dominate the subtle quantum statistical effects.

5.1.1 Arrays of Josephson junctions

Since the 1990s several groups devoted their time to making structures out
of superconducting components. Most notable are the arrays of Josephson
junctions. These are two-dimensional lattices of superconducting islands
with charging energy C which are connected by weak links with Joseph-
son coupling J. These systems are remarkably well described by the Bose-
Hubbard model of §2.3, where the boson repulsion U is as the inverse charg-
ing energy 1/C. Good reviews are Refs. [55, 56].

Since they are constructed out of superconducting materials, they are of
course electrically charged. As such, they can be probed by electromagnetic
means. Also, vortices in the insulating state would be of the kind described
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in this chapter.
All in all, this seems like an ideal system to look for type-II behaviour in

the Mott insulating state, because the level of control one has in the synthe-
sis of the arrays, and techniques that have already been developed over the
past two decades. There is one big caveat however: they have always been
restricted to two-dimensional systems. It turns out to be very hard to make
truly three-dimensional lattices of this kind. Of course, the two-dimensional
version will also have Mott vortices (vortex pancakes), but that prediction is
not as striking as the real three-dimensional vortex lines.

5.1.2 Underdoped cuprate superconductors

In 1986 Bednorz and Müller discovered superconductivity in an otherwise
very poorly conducting ceramic copper-oxide material up to an unpreceden-
ted high temperature. This sparked a true frenzy of research chasing exper-
imentally after new materials with ever higher Tc’s and theoretically after
the underlying physical mechanism. Up to now, the first endeavour has pro-
gressed reasonably well, while the latter has been stuck for a long time.
However, these days most scientists in the field would agree that the uncon-
ventional properties of the cuprate (and other high-Tc) superconductors lie
more in the ‘normal’ state than in the superconducting one.

The critical temperature Tc below which superconductivity prevails is
a function of the chemical doping (adding electron or hole carriers) of the
material. The highest Tc is said to be at optimal doping (OP). With fewer
carriers it is underdoped (UD), with more it is overdoped (OD). On the over-
doped side, the normal state above Tc is much like a regular Fermi liquid
(normal metal). But the properties on the underdoped side of the cuprates
like La2−xSrxCuO4 or YBa2Cu3O7−δ are very peculiar indeed. People find all
kinds of electronic ordering [78] like stripes [79, 80], orbital currents [81]
and recently also quantum nematics [82–84]. Furthermore a second energy
gap (distinct from the superconducting gap) shows up the single-electron
spectrum, dubbed the pseudogap. See the phase diagram in figure 5.1.

A hypothesis that has many proponents is that in the pseudogap region,
electrons do already combine into preformed Cooper pairs, which causes the
energy gap by the removal of electron states, but the phase fluctuations are
too strong to induce long-range phase coherence, such that there is no super-
conducting order yet [85, 86]. Viewed from the opposite side starting from
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Figure 5.1: Sketch of the generic phase diagram of hole-doped cuprate supercon-
ductors. The only undisputed phases are the antiferromagnetic Mott insulator (AM,
yellow), superconductor (SC, red) and Fermi liquid (FL, purple). Right above the
superconducting dome is a region with electric resistivity that grows linearly with
temperature, and is therefore often referred to as strange metal (SM, white). In
green is shown the pseudogap region (PG), with the appearance of an additional gap
in the single electron response. In is unclear whether there is a phase transition or a
crossover to the strange metal. The hatched area crudely indicates where interesting
electronic ordering is found, and also for instance a large Nernst effect; this is also
the first candidate to look for type-II Mott insulators.
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the superconductor: first the phase coherence is destroyed accompanied by
the loss of superconductivity, and only at a higher temperature do the Cooper
pairs break up. If true, this implies that there is a region in the phase di-
agram with phase-disordered Cooper pairs, c.q. charged bosons. Therefore
this state would actually be a charged Bose-Mott insulator, the topic of this
chapter.

This is beneficial in two ways: firstly, this is a suitable testing ground to
go and find the type-II Mott insulator and the Mott vortices. These mate-
rials have been very well studied, and there are many techniques for both
synthesis and experimental characterization. Conversely, if the type-II Mott
behaviour were to been found, it would constitute strong evidence for the
pseudogap regime as a phase-disordered superconductor.

5.2 Vortex world sheets coupling to supercurrent

In this section we will use physical arguments to determine the correct form
of the minimal coupling of the Mott vortices to the dual gauge field and there-
fore the supercurrent. The only ingredient that we need on top of the dis-
cussion in §3.4 is that the supercurrent is now electrically charged, with the
correspondence Jµ = e∗

ħ wµ. The full calculation will be performed in the next
section; here we only want to illustrate to the reader how to view relativis-
tically the current-carrying vortex, in contrast to the Abrikosov vortices of
§4.2.

5.2.1 Limiting to 3+0 and 2+1 dimensions

To obtain the appropriate formulation in the fully relativistic 3+1 dimen-
sional case, it will prove very useful to understand first the special cases of
3+0 and 2+1 dimensions, to both of which the full model must reduce as a
lower-dimensional hyperspace cut of the 3+1 dimensional spacetime.

In 3+0 dimensions, the minimal coupling of the dual gauge field bk, which
is now a vector field, to the disorder parameter Φ is straightforward,

Lmin.coup. = |(∂k − ibk)Φ|2 = |Φ|2(∂kφ−bk)2. (5.1)

In the equations of motion, we then find,

∂kφ−bk = 0, (5.2)
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and acting on this expression with εmnk∂n leads to,

wm = εmnk∂nbk = εmnk∂n∂kφ=J V
m, (5.3)

where the last equality is the definition of the vortex current J V
m. This ex-

pression agrees with the intuition that a vortex line in a Mott insulator is
parallel to the electric current JEM

m = e∗
ħ wm.

As we mentioned before, the minimal coupling Eq. (3.34),

Lmin.coup. =
1
2
|(∂µ− iεµ∥κλbκλ)Φ|2 (5.4)

does not specialize back to back to Eq. (5.1) in 3+0 dimensions.
We need to find another form for the minimal coupling, that satisfies the

following conditions,

1. The term in the Lagrangian is equivalent to Eq. (3.23), such that only
a single additional degree of freedom arises in the Higgs phase;

2. The equations of motion reduce naturally to the cases of 3+0 and 2+1
dimensions.

The problem of matching the two-form gauge field bκλ to the one-form
condensate phase mode ∂µφ is equivalent to matching the two-form vortex
world sheet J V

κλ
to the one-form supercurrent wµ. Fortunately, we can fall

back to the limiting cases of 2+1 and 3+0 dimensions, representing a dy-
namic vortex pancake and a static vortex line respectively.

5.2.2 Static vs. dynamic vortex lines

In 3+0 dimensions a vortex line J V
l in the Mott insulator is just a static

line of electric current JEM
l ∼ wl . Since here the time dimension is absent,

the three components of the vortex line correspond to the temporal (density)
components of the vortex world sheet J V

tl . Therefore these temporal com-
ponents of world sheet surface elements correspond to the spatial current
J V

tl ∼ wl .
In 2+1 dimensions we have a vortex pancake in the spatial xy-plane,

which is therefore represented by a scalar quantity, the charge density wt.
When this vortex pancake moves, its charged vortex core moves, which is
equivalent to having an electric current as witnessed by the continuity equa-
tion ∂twt+∂kwk = 0. Since the vortex pancake can be viewed as a slice through
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Figure 5.2: (a) Static vortex line in the xy-plane; the current flows through the line.
(b) Vortex pancake moving in time (blue). The associated current in the spatial di-
rection is shown in red. (c) Static vortex line in the xz-plane moving straight up in
time. (d) A vortex line in the z-direction moving in the x-direction through time. The
last two world sheet configurations correspond to the same electromagnetic current
(red).

4-dimensional spacetime orthogonal to the third spatial direction l, this sug-
gests that J V

κl = e∗
ħ wκ.

So here we find electric current as well, but of a different origin: in 3+0
we have a static line through which the current is flowing, whereas in 2+1
dimensions the motion of the vortex itself causes electric current. Therefore
in 3+1 dimensions, we must have both of these contributions.

This is depicted in Figure 5.2. The static vortex line in the xz-plane that
moves straight up in time generates the same electric current as a vortex
line that is always along the z-direction but moves in the x-direction through
time. In other words: the current in the z-direction can originate from the
density of vorticity in the z-direction J V

tz; or from lines along x or y that
move in the z-direction, represented by J V

az, a = x, y. The total current in
the z-direction therefore is,

wz ∼J V
tz +J V

xz +J V
yz =

∑
κ

J V
κz. (5.5)
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Now for the charge density1 wt, we note that is is an undirected quan-
tity. The charge density does not care in which direction the vortex line is
pointing. Therefore the charge density gets contributions from world sheet
elements that represent the density of vorticity in all spatial directions,
wt ∼∑

κJ V
κt. Therefore we may conclude that,

wλ ∼
∑
κ

J V
κλ. (5.6)

The continuity equation for the electric current ∂λwλ = 0 is satisfied due
to the no-monopoles condition of the vortex world sheet ∂λJ V

κλ
= 0. In the

limiting cases of 3+0 or 2+1 dimensions, for each component of the current
wλ there is only a single contribution from the vortex (world) line, and then
there is no summation. The 3+1 dimensional vortex world sheet J V

κλ
reduces

to the special limits of 2+1 and 3+0 dimension as follows. The static vortex
line in 3+0 dimensions has only the density components, or J V

l = J V
tl . For

2+1 dimensions, we picture a vortex line in the z-direction, and we take a
slice in the txy-hyperplane; then J V

κ =J V
κz.

5.2.3 Minimal coupling by sum over vortex components

We propose the following minimal coupling prescription, that satisfies the
above mentioned conditions and results in Eq. (5.6),

Lmin.coup. = |(1
2

∑
α

δακ∂λ− ibκλ)Φ|2 = |Φ|2(
1
2

∑
α

δακ∂λφ−bκλ)2. (5.7)

This is the form already encountered in Eq. (3.30), and we have now pre-
sented the physical reason for this form. If we expand the square, we find,

(
1
2

∑
α

δακ∂λφ−bκλ)2 = 1
4

∑
α

δακ∂λφ
∑
β

δβκ∂λφ−bκλ
∑
α

δακ∂λφ+b2
κλ

= (
1
4

∑
αβ

δαβ)(∂λφ)2 +∑
α

φ∂λbαλ+b2
κλ

= (∂λφ)2 +b2
κλ (Lorenz gauge). (5.8)

1Even though the Mott insulator as a whole is electrically neutral, the vortex lines carry
current because the Cooper pairs can move freely. Therefore this charge density is just the
density of Cooper pairs, which is clearly quantized in units of e∗ = 2e, and the balancing positive
charge is not taken into consideration. The same applies of course in a current-carrying metal
wire.
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In the second step we have performed partial integration, and in the last
step we have enforced the Lorenz gauge condition ∂κbκλ = 0. Here we see
that this form is indeed equal to that of Eq. (3.23), where ∂λφ represents
the longitudinal component of wµ and the three degrees of freedom of bκλ
remaining after the gauge fix are the transversal ones.

Next, in the equations of motion, we will encounter the term,

∂L

∂bκλ
= 1

2

∑
α

δκα∂λφ− 1
2

∑
α

δλα∂κφ−bκλ. (5.9)

Acting on this expression with εµνκλ∂ν leads to,

1
2

∑
κ

εµνκλ∂ν∂λφ− 1
2

∑
λ

εµνκλ∂ν∂κφ−εµνκλ∂νbκλ = ∑
κ

εκµνλ∂ν∂λφ−wµ

= ∑
κ

J V
κµ−wµ. (5.10)

This precisely agrees with Eq. (5.6).
There are three details that may raise some concern. Firstly, the expres-

sion in Eq. (5.7) is not antisymmetric under the interchange κ↔λ. We could
write down a fully antisymmetric form, but that would leads to contractions
∼∑

λ∂λφ. We suspect that such terms would fall within the gauge volume or
would otherwise be dynamically constrained. But in fact, nothing requires
the term to be antisymmetric in the first place. In the relevant quantities,
such as the vortex current J V

κλ
, the antisymmetry follows automatically. The

expression in Eq. (5.9) is one example of this.
The next point is that the expression in Eq. (5.7) is not strictly gauge

invariant. The gauge transformations for the two-form dual gauge field are
Eq. (3.5). The resolution of the alternative form Eq. (3.26) was to explicitly
leave the gauge volume out of the minimal coupling. But this expression
Eq. (5.7) is to be taken gauge fixed. This is not an actual problem, as the
physical field content is dictated by the currents, as in Eq. (3.23). As of yet,
we have not found a way to balance the three gauge degrees of freedom of
the two-form gauge field with the condensate phase mode. It remains our
conviction that the minimal coupling to a vector field is rather special in this
regard.

Lastly, as mentioned in §3.4.5, there is as of yet no way to complete the
“duality squared” procedure with this form of the minimal coupling. Since
we know that the outcome will be fine using the alternate form we leave this
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aside, and focus here on the more interesting vortices in the Mott insulator
themselves.

5.3 Charged vortex duality

Here we perform the duality transformation of §2.4.7 for 3+1 dimensions.
About half of the calculation was already done in §4.3, but we now find it
convenient here to work in imaginary time.

5.3.1 Dual superconductor

Then starting with the dimensionless action of the Ginzburg–Landau super-
conductor Eq. (2.37),

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ− Aph

µ )2 − 1
4µ

F2
µν, (5.11)

we will end up with the Euclidean version of Eq. (4.36),

Z =
∫

DJV
κλDAµF (Aµ)DbκλF (bκλ)e−

∫
Ldual , (5.12)

Ldual =
1
2

g(εµνκλ∂
ph
ν bκλ)2 −bκλJV

κλ+εµνκλ∂ph
ν bκλAph

µ − 1
4µ

F2
µν. (5.13)

Here the coupling constants are,

1
g
= Ja

ħcph
,

1
µ
= ħaD−3

µ0cphe∗2 . (5.14)

The first is always dimensionless, the last is dimensionless if D = 3, which is
the case we are interested in, and we specialize to 3+1 dimensions from now
on.

In these dimensionless units, the charge of the vortex minimal coupling
is 1, which was the reason for rescaling to these units in the first place. The
action above describes one or several individual (Abrikosov) vortex sources
that interact via the mediation of the dual gauge fields bκλ. These gauge
fields are the duality transforms of the original Goldstone modes ϕ. They re-
member that the bosons are electrically charged by also coupling to the elec-
tromagnetic field Aµ. If one were to integrate out the dual gauge fields, one
would find an action of charged vortices that couple to each other non-locally.
They would have long-range interactions were it not for the electromagnetic
fields, which induce Meissner screening.
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5.3.2 Vortex proliferation

This is however not what we are interested in at the moment. We are going
to proceed and let the vortex strings proliferate into the ‘string foam’ as ex-
plained in §3.2. The disorder parameter Φ is the ‘density of the string foam’,
and the minimal coupling to the gauge field is dictated by the considerations
of §5.2. Thus we find,

L = 1
2

g(εµνκλ∂
ph
ν bκλ)2 +εµνκλ∂ph

ν bκλAph
µ − 1

4µ
F2
µν

+1
2
|(1

2

∑
α

δακ∂λ− ibκλ)Φ|2 + ã
2
|Φ|2 + β̃

4
|Φ|4. (5.15)

Here we have added Ginzburg–Landau potential energy terms for the dual
order parameter, which we will neglect from now on. If α̃< 0, the dual order
parameter obtains an expectation value 〈Φ〉 =

√ |α̃|
β̃

≡ Φ∞. This signals the
phase transition to the Bose-Mott insulator, with the Mott gap represented
by |Φ|2.

What we would like to do, similar to the procedure in §3.4.5, is dualize the
dual phase field φ to a conserved current vµ, integrate out the smooth part,
define the Mott vortex current J V

κλ
= εκλνµ∂ν∂µφ and integrate out the current

vµ to find the direct coupling of the Mott vortex current to the supercurrent
gauge field bκλ. However, as mentioned before, I have not been able to find a
consistent way of doing it for this form of the minimal coupling. Fortunately,
the action (5.15) is sufficient to find the Mott vortex electrodynamics, just as
it was for the Abrikosov vortices in chapter 4.

5.4 Phenomenology of Mott vortices

In this section we derive observable quantities of the Bose-Mott insulator
and its vortices. This mostly follows the same reasoning as for the regular
Ginzburg–Landau model of §2.1, see also e.g. [51, ch.4].
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5.4.1 Equations of motion

We calculate the equations of motions by varying Eq. (5.15) with respect to
Φ̄, bκλ and Aµ.

(
1
2

∑
α

δκα∂
ph
λ

− ibκλ)2Φ− α̃Φ− β̃|Φ|2Φ= 0, (5.16)

−gεκλνµ∂
ph
ν wµ+|Φ|2

(1
2

∑
α

(δκα∂
ph
λ
φ−δλα∂ph

κ φ)−bκλ
)
= 1

2
εκλµνFph

µν , (5.17)

1
µ
∂µFµν =−wph

ν . (5.18)

Here we have substituted definitions of wµ = εµνκλ∂
ph
ν bκλ and Fµν = ∂µAν −

∂νAµ. The superscripts on Fph
µν and wph

µ indicate that those quantities carry a
velocity ratio in the temporal components: Fph

tn = c
cph

Ftn and wph
t = c

cph
wt. The

dimensionful versions of these equations are,

−a2(
∑
α

δκα∂
ph
λ

− i
a

ħcph
bκλ)2Φ+ α̃Φ+ β̃|Φ|2Φ= 0, (5.19)

−ga2εκλνµ∂
ph
ν wµ+|Φ|2

(1
2

∑
α

ħcph

a
(δκα∂

ph
λ
φ−δλα∂ph

κ φ)−bκλ
)
= 1

2
cphe∗εκλµνFph

µν ,

(5.20)
1
µ0
∂µFµν =− e∗

ħ wph
ν =−Jph

s ν. (5.21)

In the last equality we used the definition of the supercurrent Js
ν = e∗

ħ wν.
Note that the last two equations reduce to the equations of motion for the
superconductor in the limit |Φ|2 → 0. The last equation is the same with or
without the Mott condensate, and just reflects the generation of an electro-
magnetic field by a current. The second equation is basically the extension
of the Meissner screening of the electric current as in Eq. (4.54), but is now
sourced by Mott vortices φMV. We are now set to discuss the physical content
of these equations.

5.4.2 Maxwell equations

The last equation Eq. (5.21) is clearly the inhomogeneous Maxwell equations
for a source term Jph

s ν. This equation carries over from the superconductor,
and does not pertain as such to the Mott insulating state. The insulating
behaviour is due to the screening of the electric current, which is represented
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by the term ∼ |Φ|2. Therefore, Eq. (5.21) is just the vacuum contribution to
electric and magnetic fields generated by a current source.

5.4.3 Penetration depth

The dual penetration depth λ̃ sets the length scale up to which an electric
current penetrates in the Mott insulating region. To find it we act on Eq.
(5.20) with ερσκλ∂

ph
σ . Contracting repeated indices, and using ∂

ph
ρ wρ = 0, we

find in the dual London limit |Φ| =Φ∞,

ga2(∂ph
µ )2wρ −Φ2

∞wρ + cphe∗∂ph
µ Fph

µρ =−Φ2
∞
ħcph

a

∑
κ

J V
κρ . (5.22)

Here we used the definition of the vortex current Eq. (3.33). The interpre-
tation of this equation is as follows: a supercurrent wρ can be generated
by a vortex source J V

κρ. This current is “dual Meissner screened” by the
Mott condensate Φ∞ as witnessed by the second term; but there is also some
electromagnetic screening from the ‘backreaction’ of the induced electromag-
netic field. In order to see this, we would like to substitute Eq. (5.21) in
this equation. This is however complicated by the additional factors of c

cph
,

which will clutter up the full expression. Recall however that this electro-
magnetic screening originates from the superconductor, and must comply
with Eq. (4.54). Thus let us take the simplest case, that of static limit
with only stationary flow: all time derivatives set to zero. Then we can use
∂mFmn =−µ0 e∗

ħ wn, to find in the absence of vortex sources,

ga2∇2wn −Φ2
∞wn −

µ0e∗2cph

ħ wn = 0, or

∇2wn − ħρs

cphm∗Φ
2
∞wn − 1

λ2 wn = 0 (5.23)

Here we substituted ga2 = m∗cph/ħρs (see §2.3.6), and used the definition
of the London penetration depth λ2 = µ0e∗2ρs/m∗. So we indeed find two
contributions to screening of electric current. The first ∼ Φ2∞ is due to the
Mott insulator, and the second remembers that the system originated from
a superconductor. This is actually rather odd: the Meissner screening is due
to the fact that the superconductor wants to expel the magnetic field, which
is not true for the Mott insulator. However, let us make a crude estimate of
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the relative strengths of the screening, by inserting the numerical values,

µ0 = 4π.10−7 ≈ 10−6N/A2, e∗ ≈ 10−19C, ħ≈ 10−34Js, cph ≈ 1
300

c ≈ 106m/s,

(5.24)

we find that the relative strengths are

Mott
Meissner

≈ Φ2∞
µ0e∗2cph/ħ ≈ Φ2∞

10−6.10−38.106.1034 ≈ 104Φ2
∞. (5.25)

Now Φ2∞ is dimensionless, but as the order parameter of the Mott conden-
sate it should be surely greater than 1. Therefore the expulsion of electric
current due to the Mott term is several orders of magnitude stronger than
the Meissner screening, and for all purposes the latter may be ignored, also
eliminating our interpretative problem.

Hence the dual penetration depth of electric current in the Mott conden-
sate is λ̃=

√ ħ
cphm∗ ρsΦ2∞. It depends on many material parameters. Here, as

we often do, we encounter the combination ρsΦ
2∞, which is the product of the

superconducting order parameter and the Mott order parameter. At first,
one may think that they should be mutually exclusive, as one has either su-
perconducting order or Mott insulating order. However one must realize that
the Mott insulator is made out of repelling Cooper pairs: the larger the num-
ber of Cooper pairs, as denoted by the superfluid density ρs, the stronger the
electromagnetic effects such as screening. It is just Φ2∞ that signals the ex-
istence of the Mott state, whereas the combination ρsΦ

2∞ is the appropriate
Higgs mass.

5.4.4 Coherence length

If in Eq. (5.19) we rescale the dual order parameter Φ by extracting it by its
equilibrium value Φ∞ =

√ |α̃|
β̃

, so Φ =Φ∞Φ′, and set bκλ to zero which is true
deep within the Mott insulator, the equation reduces to,

a2

|α̃| (∂
ph
µ )2Φ′+Φ′−Φ′3 = 0. (5.26)

Hence we can define the dual coherence length ξ̃ = ap|α̃| , which depends on
the details of the dual symmetry breaking through the precise value of the
Ginzburg–Landau parameter |α̃|.
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The coherence length is rather unimportant in this story. We are primar-
ily interested in the type-II regime where vortices can arise, and then ξ̃ is
very short, perhaps even near the lattice constant. All the questions we ask
of the system are related to longer length scales. In other words, we assume
the dual London limit where |Φ| =Φ∞ is constant, and ξ̃ denotes the typical
scale over which variations of |Φ| are important.

5.4.5 Current quantization

Now we come to the most striking prediction: the existence of ‘quantized’
vortex lines of electric current. The equation (5.20) is just as the regular
Ginzburg–Landau equation Eq. (2.5), and we can imagine a closed contour
over which the change of the phase φ is a multiple of 2π, that is,∮

∂S
dxµ∂µφ= 2πN. (5.27)

We are free to choose this contour deep within the Mott insulator far away
from the vortex line, such that the electric current in suppressed wµ = 0. Now
assume there is no external electromagnetic field Fext

µν = 0, and the induced
field is very small as argued in Eq. (5.25). Then Eq. (5.20) reduces to,

1
2

∑
α

ħcph

a
(δκα∂λφ−δλα∂κφ)= bκλ. (5.28)

We restrict our attention to the case (κλ) = tl, and take the static limit in
which all time derivatives are set to zero. Thus we only look at a stationary
current flowing through a static vortex line. Then,

ħcph

2a
∂lφ= btl . (5.29)

We take the line integral of this equation as in (5.27). On the right-hand side
we invoke Stokes’ theorem (cf. §2.1.2) to find,

ħcph

2a
2πN = ħcph

2a

∮
∂S

dxl ∂lφ=
∮
∂S

dxl btl =
∫
S

dSm εmnl∂nbtl =
∫
S

dSm wm.

(5.30)
In the last step we have used the definition of the dual gauge field Eq. (3.4)
in the static limit. The right-hand side is the flux of current wm through the
surface S . Since the current is expelled from the Mott insulator, this current

5.4 Phenomenology of Mott vortices 101



flows through the vortex line. For the electric current I which is the flux of
the current density Jm = e∗

ħ wm, this implies the quantization condition,

I0 = e∗

ħ
ħcph

2a
2πN = 1

Φ0

p
U J2π2N. (5.31)

Here Φ0 = h/e∗ is the (magnetic) flux quantum and we have substituted the
microscopic parameters

p
U J =ħcph/a from §2.3.3.

Admittedly, this is no ‘true’ quantization as the current quantum depends
on material parameters. This is however not unexpected, since, contrary to
for instance conductivity or magnetic flux, there is no combination of natural
constants that results in a unit of electric current. In any case, for a certain
material under fixed environmental conditions, the current should penetrate
through the Mott insulator in incremental steps of size of the current quan-
tum. From a duality perspective, it is nice that the current quantum is
proportional to the inverse of the flux quantum.

If the phase velocity cph is the same or similar for the Bose-Mott insulator
as for the superconductor, then we can make a quick estimate for the N = 1
quantum by inserting cph ≈ 106m/s and a = 10−10m, such that

I0 =
e∗cph

2a
2π≈ 5.10−3A, (5.32)

which seems rather large at first sight.

5.5 The phase diagram of the type-II Bose-Mott in-
sulator

We shall now collect all acquired knowledge about the type-II Bose-Mott in-
sulator in a phase diagram, figure 5.3. The phase is a function of three, or
rather four external parameters. The quantum phase transition from a su-
perconductor to a Bose-Mott insulator is dependent on the coupling constant
g ∼U /J (see §§2.3.3, 2.3.7). Next to quantum fluctuations there are thermal
fluctuations at any finite temperature T. The phase diagram is presented as
is common in the literature of quantum phase transitions: increasing quan-
tum fluctuations on the horizontal axis, and temperature on the vertical axis.

On top of this we can disturb the system by external electromagnetic
means. For the superconductor we know that applied magnetic field com-
petes with the superconducting order. And in this chapter we have learned
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Figure 5.3: Proposed phase diagram of the type-II Bose-Mott insulators. On the hor-
izontal axis is the strength of the quantum fluctuations that disorder the supercon-
ductor (SC) into a Bose-Mott insulator (BMI). On the vertical axis is the temperature.

In the plane there is increasing applied magnetic field H for the superconductor,
resp. applied electric current I for the Bose-Mott insulator. For both the supercon-
ductor and the Bose-Mott insulator at low applied field or current, all of it is expelled
by the (dual) Meissner effect. When the first flux or current quantum is generated
above the lower critical field Hc1 or current Ic1, the system enters in to a mixed, Abri-
kosov state. When the applied field or current exceeds the upper critical field Hc2 or
current Ic2, all of the superconductivity or insulation order is destroyed. It is unclear
what will be the resulting phase at zero temperature (see text).

At finite temperature, we expect the canonical behaviour of quantum phase tran-
sitions, with a quantum critical (QC) region right above the quantum critical point.
At high temperatures, the superconducting state goes over into the normal state. The
Bose-Mott insulator can only originate from a Bose system of Cooper pairs; breaking
up the bosons should also lead back to the normal state. When the interactions be-
tween the bosons becomes infinitely strong U →∞, the system will stay insulating.
This sets a UV-limit on the applicability of our model.
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that the equivalent effects in type-II Mott insulators are due to applied elec-
tric current. These two variables are drawn in the plane of the phase dia-
gram, magnetic field for the superconducting side, and electric current for
the insulating side.

There a lot going on here, so let us explore the diagram step by step.
We will go through to the overly well-known superconductor in some detail,
because the same reasonings will be mirrored on the insulating side.

5.5.1 Superconducting side

Surely, the superconductor holds no surprises at all. It should completely
reproduce the familiar H–T-diagram found in any textbook. That is, the
superconducting order persists below the critical temperature Tc, which is a
decreasing function of magnetic field. When, for a particular temperature,
the applied field exceeds the so-called critical field Hc, superconducting order
is completely destroyed, and we end up in the normal state (a metal for
conventional superconductors).

In a type-II superconductor, we distinguish the Meissner state below the
lower critical field Hc1, and the Abrikosov state between Hc1 and the upper
critical field Hc2. The Meissner state is just as for type-I superconductors: a
countercurrent will perfectly oppose the applied magnetic field. Above Hc1,
it is energetically favourable to let magnetic field penetrate through an Abri-
kosov vortex line. Increasing field will create more and more of these vortices
in a triangular lattice. When the applied field is so large that the vortices
start to overlap (when they are approximately spaced by the penetration
depth λ), superconductivity is destroyed.

In BCS theory, the superconducting gap decreases with temperature un-
til it vanishes at Tc. The gap is proportional to the superfluid density, i.e. the
‘strength’ of the superconducting condensate. Therefore it is natural that the
critical fields Hc1 and Hc2 are lower at higher temperatures, since it is easier
to perturb the superconducting order.

Similarly, quantum fluctuations can diminish the superconducting order.
This whole work is centred around the idea that increasing quantum disor-
der is just the growth of spontaneous creation and annihilation of vortex–
anti-vortex pairs. Therefore increasing quantum fluctuations has the same
effect as increasing thermal fluctuations: it is easier to destroy the supercon-
ducting condensate, so that the critical applied fields are lower. The situation
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for zero temperature and high applied field will be discussed at the end of
this section.

5.5.2 Insulating side

The Bose-Mott insulator basically mimics the superconductor, where applied
current takes the role of applied magnetic field. Some exceptions are fore-
seen on simple physical grounds as we proceed.

The point of departure is the no-fluctuations, no-applied current regime,
where the system is just a “boring” Bose-Mott insulator. Approaching the
quantum phase transition U /J → 1, the bosons repel each other less strongly,
such that the dual order parameter |Φ|2 shrinks, causing the critical temper-
ature or critical current to diminish. The applied electric current is as the
applied field for a superconductor: it competes with the established order.
At first, all applied current is expelled, showing purely insulating behaviour.
But in the type-II regime detailed in this chapter, above the lower critical
current Ic1, vortex lines of current will be created. The current starts to pen-
etrate in multiples of the current quantum I0, until it is so large that the
Mott order is completely destroyed. This point we call the upper critical cur-
rent Ic2. It should not be confused with the critical current in a superconduc-
tor, which destroys superconducting order by inducing a too high magnetic
field.

As opposed to the superconducting side, in the ‘atomic’ or infinite strong-
coupling limit U /J →∞, there is no way in which the Mott insulating order
can be perturbed. As such, at least formally, the insulating behaviour should
persist and no current vortex lines can be formed. This could be character-
ized as the ‘type-I’ regime of the Mott insulator. Moreover, within the lim-
its of validity of the model, this insulator will not be destroyed at any finite
temperature. Therefore we have indicated a UV-cutoff in the phase diagram,
above which our model is no longer descriptive. One could imagine for in-
stance that the Cooper pairs will break up across this cut-off, so that there
are no charged bosons to begin with.

This all seems quite straightforward, but it is actually profoundly sur-
prising. In the regular XY -model, a 2-dimensional Bose-Mott insulator ex-
ists only at zero temperature, and it is destroyed at any finite temperature
due to strong fluctuations (see e.g. [87, 88]). On the superfluid side there is
still a finite-temperature Kosterlitz–Thouless transition because there the
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interactions are logarithmically long-range, but on the insulating side the
dual gauge fields are massive. However the 3+1D Mott insulator at finite
temperature is in the 4d XY universality class, and reverts basically to the
mean-field result as it is at its upper critical dimension. The simple fact that
there is a finite-temperature phase transition in a Bose-Mott insulator, even
though it is just due to a higher dimensionality, is a novelty by itself.

5.5.3 Quantum critical regime

In this work we have not made any calculation at finite temperatures, and
all our inferences for that regime stem from established knowledge. Actually,
in the quantum disorder–temperature plane without applied field or current,
this would just be the standard superconductor–Bose-Mott insulator quan-
tum phase transition. Therefore, we expect a quantum critical point at zero
temperature and associated quantum critical regime at finite temperature.
The critical behaviour is also not part of this work.

Concurrently, it is not quite clear what happens at zero temperature
when the applied field or current grows too large. For the superconductor
one may still expect a transition to the normal state. However, the supercon-
ductor is destroyed by a large applied field because it induces a very large
countercurrent. If the normal state is a Fermi liquid, and the Fermi liquid is
intrinsically resistive, any current will immediately generate heat, making
the assumption of zero temperature invalid. Similarly, if the ‘normal’ state
is insulating as for instance in the underdoped cuprates, it is also hard to
picture how a too large current can go over into insulating behaviour.

The situation is even more clear for the Bose-Mott insulator. Once the
current permeating through the dual vortices gets too large, surely all of
the insulator is destroyed. The current flowing is actually supercurrent: the
vortex cores are locally superconducting as dictated by the duality. Therefore
a large applied current should render the type-II Bose-Mott insulator into a
superconductor. But the superconductor will be destroyed by a large current
itself.

These considerations make us postpone a definite statement on the state
of matter at zero temperature and large applied field or current. These re-
gions are therefore indicated by a question mark ? in the phase diagram.
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5.5.4 Application to underdoped cuprates

We shall briefly map this general phase diagram onto the relevant phases
of the underdoped cuprates (see figure 5.1). Surely, in real life things work
differently than as pictured in the idealized scenario.

In the cuprates the quantum fluctuations are controlled by chemical dop-
ing, and it is therefore not possible to tune along the horizontal axis within
one material sample. For each sample on the underdoped side, there is a
thermal transition from the superconducting to the pseudogap state. But
collecting data from several samples, there should also be an effective tran-
sition along the horizontal direction, which should therefore be governed by
quantum fluctuations. The quantum critical point in the phase diagram of
Fig. 5.3 does not appear as such in the cuprates—if at all present, many
people believe a quantum critical point to be hidden by the superconducting
‘dome’, and it is actually related to the transition from the (doped) Mott in-
sulating state to the Fermi liquid at large dopings, and probably of intrinsic
fermionic nature.

Still, as we mentioned in §5.1.2, there is evidence for the pseudogap re-
gion to be a phase-disordered superconductor, and therefore a Bose-Mott
insulator of repelling Cooper pairs. Thus, the transition (at a fixed finite
temperature) from the superconductor to the pseudogap should be as the
increasing quantum disorder transition of this chapter. Increasing quan-
tum disorder is the increase of the fluctuations in the superconductor phase
field. This suggests that the type-II Bose-Mott insulator may be found in the
pseudogap region, and close to the phase transition to the superconductor,
because there the Mott order parameter should be small, such that the dual
penetration depth is large and vortices can be formed. This region is crudely
indicated in Fig. 5.1.

5.6 Experimental signatures

In this chapter we have made a prediction for a new state of matter which
we named “type-II Bose-Mott insulator”. Whereas a regular (Mott) insula-
tor would either completely expel electric current, or would finally permit
current through dielectric breakdown like a capacitor, the type-II Mott in-
sulator supports vortex lines of electric current such that it may penetrate
at applied current much smaller than what would be required for complete
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breakdown. Furthermore, since the current lines form a (dual) Abrikosov
lattice, the conductivity is very inhomogeneous.

Here we outline several experimental setups that may verify the exis-
tence of such type-II Mott insulating behaviour. Every time we assume that
a clever experimentalist would be able to i) find a type-II Bose-Mott insulat-
ing material; ii) be able to make the samples as pictured; and iii) have the
right experimental probes available and under full control. The experimen-
tal setups are sketched in figure 5.4.

5.6.1 The vacua for electric current

Many effects in superconductivity appear at the boundary between the su-
perconductor and empty space. These are both ground states or ‘vacua’ of
their respective Hamiltonians. A magnetic field is free in empty space, but
Meissner screened in the superconductor. These effects have to do with the
Anderson–Higgs mechanism: photons are free in empty space but obtain
a Higgs mass in the superconductor. In this regard, for the magnetic field
also metals, dielectrics and so forth are like the vacuum, only with a differ-
ent light velocity. The screening of photons in a metal is certainly not the
Meissner effect, and the photons do not gain a mass even though they inter-
act heavily with the electrons/quasiparticles. Most clearly, a static magnetic
field can exist within a metal.

But for electric current, things are really different. We add a third vac-
uum: the type-II Bose-Mott insulator. As we have seen, electric current is
to the Mott insulator as magnetic field is to the superconductor. Continuing
the duality reasoning: the superconductor is to the Mott insulator as empty
space is to the superconductor. What we mean is: an electric current is free
in the superconductor (as long as it does not exceed the critical current) in
the sense that a persistent current may run forever. But this current obtains
a Higgs mass in the Bose-Mott insulator, just as the magnetic field does in a
superconductor (Eq. (5.1.2)).

Conversely, the relation of empty space to the Bose-Mott insulator has no
counterpart in the superconductor. As such, the situation is even richer, and
more diverse tunnelling and/or junction experiments could be conceptual-
ized. In figure 5.4, yellow is the type-II Mott-insulator, red is superconductor
and blue is empty space.

Even more vacua are to be envisaged. Both the Bose-Mott insulator and
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dual Meissner effect

(a) MI immersed in SC (b) MI with SC leads
(giant proximity effect)

(c) MI without SC

dual Josephson vortices

(d) Josephson
vortex in SC

(e) Josephson
vortex in vacuum

lower critical current

(f) SQUID

Figure 5.4: Proposed experimental setups. The type-II Bose-Mott insulator (MI) is
in yellow; the superconductor (SC) in red; and the empty space/Maxwell vacuum in
blue. The circle and arrow represent a current source.
(a) The MI is completely immersed in SC which acts as the “current vacuum”. The SC
walls should be thin as to curtail the critical current. If current vortex lines will form,
the total supercurrent will surpass this critical current. (b) A junction experiment
with a thick MI layer between SC leads. This will only succeed if it is not necessary
to have the current penetrate bit by bit from the outside, but may force it to form a
vortex line from top to bottom immediately. This setup is used in the giant proximity
effect (GPE). (c) Capacitor. Perhaps any current bias will cause vortex lines to form,
even if it is not supercurrent. Then just MI between normal leads should short-circuit
way before dielectric breakdown occurs. (d) Equivalent of Josephson vortices where
the vortex line does not form inside MI but within a narrow junction layer of SC. (e)
Perhaps the SC vacuum is unnecessary, and a dual Josephson vortex may even form
in empty space. (f) SQUID setup in which current bias in increased in very small
steps by a perpendicular magnetic field (circle with dot). Current will not flow until
the first vortex is formed. This experiment measures the lower critical current.
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the superconductor are made out of Cooper pairs, but in a normal metal
those pairs are broken up. There simply are more building blocks, especially
when making junction geometry setups.

5.6.2 Dual Meissner effect

The Mott insulator wants to expel current as all insulators do. However,
when the applied current exceeds the lower critical current Ic1, dual vortices
will form as lines of supercurrent, such that at least part of the current is
permitted to flow through the material. Similar to showing the Meissner ef-
fect by measuring the magnetization of a block of superconducting material
in the presence of a magnetic field, this dual Meissner effect for current may
be demonstrated.

As explained in §5.6.1, the immediate analogue of the superconductor
in an applied magnetic field is to immerse a block of type-II Mott insulator
in superconducting material. This is because the common understanding is
that the magnetic field lines penetrate from the outside to the centre to form
the first vortex; similarly angular momentum in a superfluid travels from
the outside in to form the first vortex. Now we have electric current which is
not supported in the Maxwell vacuum but it is in the superconductor.

Therefore the first thing to try is pictured in Fig. 5.4(a). Current is in-
duced to flow through the superconductor. Since current in a superconductor
always flows near the boundary, it must be very narrow where the Mott in-
sulator is immersed, presumably within one penetration depth λ. If the Mott
insulator were perfectly insulating, the critical current Jc for this configura-
tion would be limited by the narrow superconducting layers. But if vortices
can form, some of the current will flow through the Mott insulator, leading
to a much higher critical current.

It could also be that the current vortex lines will form even without super-
conducting leads, by just forcing regular, not super-, electric current through
the Mott insulator. This is pictured in Fig. 5.4(c), and is in fact a capacitor.
For a true insulator, current will only flow after dielectric breakdown, which
only happens for really large currents. But if vortices form, that will hap-
pen at much lower current biases. There may be additional interface effects
such as Andreev reflection, but it is our conviction that any form of electric
current bias should suffice.

It may be that the vortices will only form if the applied current is a su-
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percurrent. Then the leads should be made out of superconductor, as in Fig.
5.4(b). The signature will be the same: no current will flow for a good insu-
lator, but current will soon flow for a type-II Mott insulator. In fact, this may
have already been measured, related to the so-called giant proximity effect
(GPE). Right after the high-temperature superconductors were discovered,
people made junction setups to study their properties. An interesting type
of junction is to have a superconductor of lower Tc sandwiched between two
layers of material with higher Tc, and measure at a temperature right in be-
tween [89]. The question is whether the leads will induce superconductivity
in the middle layer which is above its Tc. Surprisingly, a supercurrent was
observed even in very thick layers, which does not conform to the regular
Josephson effect, that is ultimately caused by the overlap of exponentially
decaying wave functions. Even though there was some doubt related to the
presence impurities, the final word seem to be that the effect is real [90]. It
is also unexplained up to this day.

There is a proposal by Marchand et al. [91] that suggests that the phase
rigidity of the superconducting leads prevents vortices to unbind in the mid-
dle layer, thus retaining the superconductivity even above Tc, not unlike
the theme of this thesis. However, we suggest another mechanism: the for-
mation of vortex lines of electric current. This automatically enables the
middle layer to be very thick, because the energy cost of a vortex line grows
as the length of the line, where as all other mechanisms affect the whole
layer homogeneously, scaling as the volume. The telltale difference between
our proposal and the earlier one, is that the vortex lines will show as an
inhomogeneous distribution of conductivity, as opposed to homogeneous.

5.6.3 Dual Josephson vortices

In §4.4.3 we mentioned that, in superconductors, there can also be vortices
in Josephson junctions, which are quantized but do no have a normal core
and no core energy. This situation may be mimicked in the type-II Mott
insulator. The influence of the Mott condensate will stray just beyond the
edge of the material, so that in narrow gaps also vortices may arise. They
are parallel to the edge of the Mott insulator.

Following the argument in §5.6.1 the immediate analogue of the Joseph-
son vortex would be to have a very thin layer of superconductor between two
pieces of type-II Mott insulator as in Fig. 5.4(d). Setting a current bias along
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the layer should cause the formation of vortices, manifested as a line of elec-
tric current. Of course, current flowing through a superconductor is nothing
special, so this effect may not exist, or it may be very hard to detect. Still,
the vortices are quantized, and therefore different in nature from regular
supercurrent.

Another thing to try is to leave out the superconductor, and see whether a
vortex can form under the influence of the Mott condensate wave function in
the Maxwell vacuum (Fig. 5.4(e)). It is however hard to imagine how electric
current would flow through empty space, and this is definitely not the first
place to look for this effect. Other vacua such as a normal metal may also be
interesting.

5.6.4 Lower critical current

Instead of trying to see the vortices directly, one could also attempt to deter-
mine when the first vortex is formed, that is: what is the value of the lower
critical current Ic1? One advantage is that current is measurable to very
high precision. We propose a superconducting quantum interference device
(SQUID) setup as in figure 5.4(f). The (Josephson) junction in the SQUID is
now made of type-II Mott insulator.

Applying a magnetic field perpendicular to the loop as indicated will
induce a (persistent) current in the superconductor. Related to the phe-
nomenon of flux quantization (§2.1.2), the magnetic field will only penetrate
through the inner area when the current is actually allowed to flow. Read-
ing out the amount of field that does get through, for instance by another
SQUID, will tell how much current is flowing trough the loop. We envisage
that, while increasing applied magnetic field, at first no current will flow
until suddenly the first dual vortex will form and current does start to flow.
The point of this jump is precisely the lower critical current Ic1. This should
continue in a stepwise manner. Not only will this quantitatively determine
the value of this parameter, but the sudden jump and ladder pattern are also
qualitatively different from regular Josephson junctions.

5.6.5 Inhomogeneous conductivity

In many of the proposed setups in figure 5.4, the type-II behaviour of the
Bose-Mott insulator would show in the inhomogeneity of the conductivity.
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The typical length scale is the lattice spacing of the dual Abrikosov lattice,
which depends the dual penetration depth and the amount of vortices re-
lated to the magnitude of the applied current and the size of the current
quantum I0. These parameters in turn depend on the “strength” of the Mott
condensate Φ2∞, which varies from material to material and presumably also
with temperature. This should be calculated or measured on an individual
basis. The inhomogeneity itself is however a strong qualitative prediction.

Another problem is that the dual penetration depth λ̃ may typically be
quite large (see §5.4.3). Presumably, following intuition from regular Abri-
kosov vortex physics, this would imply that the vortex lines reside quite deep
below the edge of the Mott insulator, and all surface sensitive techniques
would suffer from this complication.

Leaving these matters aside, there are several techniques that could
measure the inhomogeneous conductivity. They should i) have high spatial
resolution to see the current lines and the insulating regions in between; ii)
have high conductivity resolution to measure the possibly low value of the
current quantum I0; and iii) be able to operate at temperatures low enough
that the quantum phase transition dominates thermal fluctuations.

Scanning tunnelling spectroscopy (STS) is a very sensitive technique
with extremely high spatial resolution. However it cannot probe further
than several lattice spacings below the surface. Microwave Impedance Mi-
croscopy (MIM) directly measures the conductivity and up to 100nm reso-
lution, but suffers the same surface limitations. Low energy electron mi-
croscopy (LEEM) measures the local electric field non-invasively, and for
insulators should be able to do so up to a reasonable depth, and with high
spatial resolution. A current problem is to cool the samples to a low enough
temperature.

In the appendix 5.A we calculate the conductivity for both the supercon-
ducting and the Bose-Mott insulating phases.

5.6.6 Foreseeable complications

There are many possible complications in all of these proposals that may
spoil a clean signature of the vortex current lines. It could be that the num-
bers simply do not work out. The current quantum I0 seems rather large
(§5.4.5), so that there will only be a few vortices deep below the surface.
Or, the applied current necessary to induce the first vortex may exceed the
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superconductor critical current density Jc.
More importantly, most Mott insulators such as the underdoped cuprates

are in fact poor insulators, meaning there will always be leak currents. This
can be understood by considering figure 2.3: each excitation of the Mott in-
sulator above the ground state immediately leads to free current carriers. As
soon as the doublon and holon are formed, there is no further energy penalty
for their hopping around. Therefore any experiment that relies on the dis-
tinction between insulating and conducting behaviour, and in particular the
lower critical current setup of Fig. 5.4(f), has to deal with this drawback.

But the primary important effect to be expected is the strong pinning of
the vortices. It is well known that the cuprates are in the ‘dirty’ limit where
the coherence length is really short. We expect the same to hold for the Mott
vortices. An Abrikosov vortex lattice can only exist because of pinning forces,
since vortices in motion dissipate energy, and any fluctuation will cause such
motion in an unpinned lattice. Indeed, the limiting factor in making high-
field superconducting magnet coils is the ability to pin the vortices.

The pinning occurs on so-called pinning centres (impurities or defects),
which are distributed unevenly throughout the material. Therefore the vor-
tices follow the pinning centres rather than the vortex lattice, and the lines
will most often not really be straight. These effects cause a large deviation
from the idealized case. We expect similar behaviour for the Mott vortices. It
may cause the vortex state to become ‘glassy’ and may in particular obscure
the transition from the purely insulating to the vortex lattice state under
applied current (at Jc1). Still, the strong non-linearity in the I–V charac-
teristic should distinguish the type-II Mott insulator from a regular (doped)
Mott insulator.

In all of our considerations, we have assumed the dual London limit
|Φ|(x) =Φ∞ (no amplitude fluctuations). This should be good in the extreme
type-II limit, but since this is all unexplored territory, one should keep a
keen eye on a less robust condensate, which may have more obfuscated sig-
natures.

5.7 Summary

We predict a new state of matter called “type-II Bose-Mott insulator”. Just
as in a type-II superconductor the Meissner effect expels magnetic field but
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permits it in the form of quantized vortex flux lines, this material normally
expels electric current but permits it in the form of quantized vortex current
lines. The current quantum is not fundamental, but depends on system-
specific parameters. Otherwise, almost all the properties of type-II super-
conductors are mirrored, where magnetic field is to be replaced by electric
current. All these features are collected in a new phase diagram (Fig. 5.3).

The current vortex lines may be found in cold atoms in optical lattices, ar-
rays of Josephson junctions, but moreover in the pseudogap phase of under-
doped cuprates, which are in this context fluctuating Bose-Mott insulators
of incoherent Cooper pairs. We have proposed several experiments that may
see the current lines (Fig. 5.4). If the type-II Mott behaviour is confirmed,
this would be strong evidence of the pseudogap region as a phase-disordered
superconductor.

There may be many ways in which this idealized picture can be compli-
cated in nature. But since the study of Abrikosov vortices is over 50 years
old and still going strong, we believe that with time the current vortex lines
will show themselves just as clearly as their superconductor siblings.

5.A The conductivity of the superconductor and
Bose-Mott insulator

Here we calculate the conductivity from the quantum partition sum as the
response to an applied electric field. The conductivity σ in imaginary time τ
is defined as,

〈 ja(x,τ)〉 =
∫

dD x̃dτ̃ σab(x− x̃,τ− τ̃)Eb(x̃, τ̃). (5.33)

Here a and b are spatial vector indices; 〈. . .〉 denotes expectation value. This
equation defines the conductivity per spacetime volume, which has units of

C2

JsmD−2
1

mDs . The volume-integrated conductivity is related to the conductance
as g =σA/l in D=3, where A is the area of the conductor, and l its length. This
explains the factor 1/mD−2 in the previous expression. It is the conductance
which has the same units in any dimensions. The quantum of conductance,
which features for example in the quantum Hall effect, is e2

h .
The electric field can be expressed in terms of electromagnetic potentials,

E(x, t)=−∇V (x, t)−∂tA(x, t). (5.34)
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In our calculation, we will take the functional derivative of this expression
with respect to Aa, with a spatial only. Therefore, we will disregard the term
∼ V , since it will drop out anyway. When going to imaginary time t → iτ,
(5.34) will go over to,

E(x,τ)= i∂τA(x,τ). (5.35)

Substituting this expression in (5.33), performing a partial integration, and
taking the functional derivative on both sides gives,

δ

δAc(y,τy)
〈 ja(x,τ)〉 = δ

δAc(y,τy)

∫
dD x̃dτ̃

(− i∂τ̃σab(x− x̃,τ− τ̃)
)
Ab(x̃, τ̃)

=
∫

dD x̃dτ̃
(
i∂τσab(x− x̃,τ− τ̃)

)
δbcδ(x̃− y)

= i∂τσac(x−y,τ−τy). (5.36)

We can define the Fourier transform of the conductivity in terms of Mat-
subara frequencies ωn and wave vectors k as follows,

σab(k, iωn)=
∫

dD x̃dτ̃ e−ik·x̃e−iωnτ̃σab(x̃, τ̃)=
∫

dd x̃ e−ik·x̃σab(x̃). (5.37)

To get to the result of (5.36), multiply by the frequency,

−ωnσab(k, iωn)=
∫

dd x̃
(−ωne−ik·x̃)σab(x̃)=

∫
dd x̃

(− i∂τ̃e−ik·x̃)σab(x̃)

=
∫

dd x̃ e−ik·x̃(+ i∂τ̃σab(x̃)
)
. (5.38)

Now substituting x̃ = x− y and noticing that ∂τ f (τ) = ∂τ f (τ−τy), we have in-
deed derived the Fourier transform of (5.36).

Now the current can be retrieved from the generating functional Z,

Z =
∫

D{fields}exp
(− 1

ħSE
)
, (5.39)

where SE is the Euclidean action. It is,

〈 ja(x)〉 =−ħ 1
Z[0]

δ

δAa(x)
Z[A]. (5.40)

Indeed, when one takes the action of a Ginzburg–Landau superconductor
Eq. (2.34),

SE =
∫

dD xdτ − ħ2

2m∗ ρs
(
∂

ph
µ φ(x)− e∗

ħ Aph
µ (x)

)2, (5.41)
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one finds

〈 ja(x)〉 =−ħ(−1
ħ )(− ħ2

m∗ ρs)(− e∗
ħ )

(∇aφ(x)− e∗

ħ Aa(x)
)

= e∗ħ
m∗ |Ψ|2(∇aφ(x)− e∗

ħ Aa(x)
)
, (5.42)

which agrees with Eq. (2.7).
Now from (5.40), (5.38) and (5.36) we find,

ωnσab(k, iωn)=
∫

dd(x− y) e−ik(x−y) ħ
Z[0]

δ

δAb(y)
δ

δAa(x)
Z[A]

∣∣
A=0. (5.43)

The restriction A = 0 is taken, because we want to know the linear response
of the (electron) system; when keeping A around, one also incorporates non-
linear contributions.

5.A.1 Superconductor

We have derived the Euclidean action from the charged superfluid in (2.34),

SE =
∫

dD xdτ − ħ2

2m∗ ρs(∂ph
µ φ− e∗

ħ Aph
µ )2. (5.44)

We also need to include the Maxwell term, which we will treat in the next
section.

The temporal components involve a speed, but those components play no
role in this calculation. Using this action in the generating functional, we
find,

ωnσab(k, iωn)

=
∫

d(x− y)e−ik(x−y) ħ
Z[0]

δ

δAc(y)
(−1

ħ )(− ħ2

m∗ ρs)(− e∗

ħ )
(∇aφ(x)− e∗

ħ Aa(x)
)
Z[A]

=
∫

d(x− y)e−ik(x−y)[ e∗2

m∗ ρsδacδ(x− y)+ e∗2

m∗2 ρ
2
sħ〈∇aφ(x)∇bφ(y)〉]. (5.45)

In the last term appears the velocity–velocity correlation function. This
can be easily extracted from the generating functional in the Lorenz or the
Coulomb gauge, where the photon fields decouple from the phase velocity
∇φ, and can be disregarded for this calculation. Adding an external source
Jµ, the action to consider is,

SE =
∫

dD xdτ − ħ2

2m∗ ρs
1
2

(∂ph
µ φ)2 +Jµ∂

ph
µ φ. (5.46)

5.A The conductivity of the superconductor and Bose-Mott insulator 117



Then,

ħ2

Z[0]
δ

δJb(y)
δ

δJa(x)
Z[J ]

∣∣
J=0 =

1
Z[0]

∫
Dφ ∇aφ(x)∇bφ(y)e−1/ħSE

= 〈∇aφ(x)∇bφ(y)〉. (5.47)

Next, we complete the square in (5.46) and integrate out the phase field to
find,

SE =
∫

dD xdτ
ħ2

2m∗ ρsφ(∂2
ph)

(
φ−2

1
ħ2

m∗ ρs∂
2
ph

∂
ph
µ Jµ

)
=

∫
dD xdτ − 1

2
m∗

ħ2ρs
∂

ph
µ Jµ

1
∂2

ph

∂
ph
ν Jν

=
∫

dD xdτddkddk′ 1
2

m∗

ħ2ρs
Jµ(k′)eik′x ∂

ph
µ ∂

ph
ν

∂2
ph

eikxJν(k)

=
∫

d4k
1
2

m∗

ħ2ρs
Jµ(−k)

kph
µ kph

ν

k2
ph

Jν(k). (5.48)

Now, by definition,

δ

δJa(x)
Jb(y)= δabδ

D+1(y− x)= δab

∫
dD+1k eik(y−x). (5.49)

Expressing Jb(y) in Fourier decomposition, one finds,

δ

δJa(x)
Jb(y)= δ

δJa(x)

∫
dD+1k eikyJb(k)=

∫
dD+1k eiky[ δ

δJa(x)
Jb(k)

]
. (5.50)

Comparing these two equations, one concludes,

δ

δJa(x)
Jb(k)= δabe−ikx. (5.51)

Now we can evaluate the velocity–velocity correlation function:

〈∇aφ(x)∇bφ(y)〉 = ħ2

Z[0]
δ

δJb(y)
δ

δJa(x)
e

−1
ħ

1
2

m∗
ħ2ρs

∫
dd k Jµ(−k)

kph
µ kph

ν

k2
ph

Jν(k)

= 1
Z[0]

δ

δJb(y)
−m∗

ħρs

∫
ddk eikx kakph

ν

k2
ph

Jν(k)Z[J ]

= −m∗

ħρs

∫
ddk eik(x−y) kakb

k2
ph

. (5.52)
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Inserting this into (5.45) one finds,

ωnσab(k, iωn)=
∫

d(x− y)e−ik(x−y) e∗2

m∗ ρs
[
δacδ(x− y)+

∫
ddk′ eik′(x−y) k′

ak′
b

k′2
ph

]
= e∗2

m∗ ρs
[
δab −

kakb
1

c2
ph
ω2

n +k2

]
. (5.53)

Now we analytically continue to real time iωn →ω+iη and invoke the Sokhost-
sky formula,

lim
η→0

1
ω+ iη

= P(
1
ω

)− iπδ(ω). (5.54)

we finally obtain,

Re
[
σab(k,ω)

]= e∗2

m∗ ρsπδ(ω)
[
δab −

kakb

− 1
c2

ph
ω2 +k2 − iηsgn(ω)

]
. (5.55)

We are especially interested in the zero-momentum conductivity. Taking
the limit k→ 0 with ω still finite the complex conductivity reads,

σab(k= 0,ω)= e∗2

m∗ ρsδab
(
πδ(ω)− i

1
ω

)
. (5.56)

This agrees for the conductivity derived from the two-fluid Drude model,
with the normal component vanishing, see e.g. [51, eq. 2.44]. The real part
of the electric conductivity is peaked at zero frequency, this is the DC con-
ductivity. The imaginary part has the standard form ∼ 1

ω
, valid at non-zero

frequencies. It can also be found from invoking the Kramers–Krönig rela-
tion. Furthermore it is only valid for frequencies corresponding to energies
below the gap; for higher energies pair-breaking events have to be taken into
account as well, like in the Mattis–Bardeen model. Since we are deep within
the superconductor ρs À 1, the approximation is valid for a large range of
frequencies.
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5.A.2 Vacuum conductivity

If there is a need to include the Maxwell term, one can derive its conductivity
contribution as follows,

SE,MW =
∫

dτdD x
−1
4µ0

(∂c
µAν−∂c

νAµ)2

=
∫

dτdD x
1

2µ0
Aµ

(
(∂c)2δµν−∂c

µ∂
c
ν

)
Aν

=
∫

dωndD k
−1
2µ0

Aµ(−k)
(
(kc)2δµν−kc

µkc
ν

)
Aν(k). (5.57)

Using this expression in the partition function, we find from (5.43),

ωnσab(k, iωn)=
∫

d(x− y)e−ik(x−y) ħ
Z[0]

δ

δAb(y)
1
µ0ħ

∫
dk̃eik̃x((k̃c)2δaν− k̃c

a k̃c
ν

)
Aν(k)Z[A]

=
∫

d(x− y)dk e−ik(x−y)+ik̃(x−y) 1
µ0

(
(k̃c)2δab − k̃c

a k̃c
b
)

= 1
µ0

(
(kc)2δab −kc

akc
b
)= 1

µ0

(
(

1
c2ω

2
n +k2)δab −kakb

)
. (5.58)

By continuation to real time one finds,

σab(k,ω)= i
1
µ0

1
ω+ iη

(
(− 1

c2ω
2 +k2)δab −kakb

)
. (5.59)

In the limit k→ 0 this reduces to, using (5.54),

σab(ω)= ε0δab
(
iω+πδ(ω)ω2)

. (5.60)

Clearly the second term vanishes for all ω, so the conductivity is purely imag-
inary, and σ(ω) = −iε0ω. This agrees with simple inspection of the Ampère–
Maxwell law for k→ 0,

0= 1
µ0

ik×B→ 1
µ0

∇×B=J+ε0∂tE→J+ iε0ωE≡J−σ(ω)E. (5.61)

The last step is the definition of the conductivity σ [cf. Eq. (5.33)].

5.A.3 Superconductor from dimensionless variables

For the sequel, it will be useful to repeat the calculation employing dimen-
sionless variables as much as possible. First, we need to define the func-
tional derivative. Take a dimensionless field f (x) which is a function of the
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dimensionful coordinate xµ. Then the functional derivative is

δ

δ f (x)
f (y)= δd(x− y). (5.62)

The right hand side has dimension 1/[x]d, so that also
[

δ
δ f (x)

]= 1/[x]d. There-
fore, one is led to equate

δ

δ f (x)
= 1

ad
δ

δ f (x′)
(5.63)

where x′ = x/a is the dimensionless length and a the lattice constant.
From the Euclidean action (2.34),

SE =
∫

dD xdτ − Ja2−D 1
2

(∂ph
µ φ− e∗

ħ Aµ)2. (5.64)

the dimensionless action,

S′
E =

∫
dD x′dτ′ − Ja

ħcph

1
2

(∂′µφ− A′
µ)2, (5.65)

is obtained by the substitutions,

x = ax′ τ= a
cph

τ′ Aµ = ħ
ae∗

A′
µ SE =ħS′

E (5.66)

Now for the conductivity (5.43),

ωnσab(k, iωn)=
∫

d(x− y)e−ik(x−y) ħ
Z[0]

δ

δAb(y)
δ

δAa(x)
Z[A]

∣∣
A=0

= aD+1

cph

∫
d(x′− y′)e−ik′(x′−y′) ħ

Z[0]( cph

aD+1

)2 (
ae∗

ħ
)2 δ

δA′
b(y′)

δ

δA′
a(x′)

Z[A′]
∣∣
A′=0 (5.67)

This expression is generally valid after the substitutions (5.66), not just for
the superconductor action (5.65). Still, for the superconductor one finds,

δ

δA′
b(y′)

δ

δA′
a(x′)

Z[A′]= Ja
ħcph

δabδ(x′− y′)+
(

Ja
ħcph

)2
〈∂′aφ(x′)∂′bφ(y′)〉. (5.68)

Following a procedure similar to (5.52), one finds the dimensionless version,

〈∂′aφ(x′)∂′bφ(y′)〉 =−ħcph

Ja

∫
dD+1k′eik′(x′−y′) k′

ak′
b

k′2 . (5.69)
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For the conductivity we then find,

ωnσab(k, iωn)= cph

aD+1 ħ
Ja
ħcph

e∗2a2

ħ2

[
δab −

k′
ak′

b

k′2
]= Ja2−D e∗2

ħ2

[
δab −

kakb

k2

]
, (5.70)

which agrees with (5.53), as in D = 3 we have Ja2−D =ħ2ρs/m∗. One can now
proceed to real time just as in the previous section.

5.A.4 Bose-Mott insulator

The Bose-Mott insulator is a condensate of phase-vortices. One must express
the phase field φ in terms of dual gauge fields which couple to a dual Higgs
field. Across the phase transition, the action is (5.15),

S′
E =

∫
dτ′d3x′

1
2

g(εµνκλ∂′νb′
κλ)2 + 1

2
|Φ|2(

1
2

∑
α

δακ∂
′ph
λ
φ−b′

κλ)2

+εµνκλ∂′νb′
κλA′

µ−
1

4µ
(∂

′c
µ A′

ν−∂
′c
ν A′

µ)2. (5.71)

Again, since the conductivity is a property of the medium, we can leave out
the (vacuum) Maxwell term. We can then directly integrate out the dual
gauge fields, yielding an expression quadratic in the photon field, which can
be inserted in Eq. (5.67). Now we run into the standard problem for calcu-
lating propagators for gauge fields: the gauge invariant inverse propagator
in the Lagrangian cannot be inverted, in essence because it is a transversal
projector, and no projector but the unit matrix has an inverse. The solution is
to fix the gauge, most conveniently using the Lorenz gauge. We had already
assumed this gauge fix in going to Eq. (5.15).

The action simplifies considerably. The only catch is that in the end re-
sult, one should remember to impose the constraints ∂′µw′

µ = 0 and ∂′µA′
µ = 0

by inserting the transversal projector δµν − k′
µk′

ν/k′2 in the numerator. We
denote with a ˜ components that are Lorenz-gauge fixed. Then

(εµνκλ∂′νb′
κλ)2 =−b′

µλ(∂′2δµν−2∂′µ∂
′
ν)b′

νλ→−b̃′
κλ∂

′2 b̃′
κλ. (5.72)

Also the condensate mode ∂′ph
µ χ does not couple to the dual gauge field b′ and

does therefore not contribute to the photon correlation function. The Higgs
term is then simply 1

2 |Φ|2(b̃′
κλ

)2. We are now in a position to integrate out the
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dual gauge field,∫
dτ′d3x′ − 1

2
gb̃′

κλ∂
′2 b̃′

κλ+
1
2
|Φ|2(b̃′

κλ)2 +εµνκλ∂′νb′
κλA′

µ

=
∫

dτ′d3x′
1
2

G−1 b̃′
κλ

[
b̃′
κλ+2G εκλνµ∂

′
νA′

µ

]
=

∫
dτ′d3x′

1
2

G−1[
b̃′
κλ+G εκλνµ∂

′
νA′

µ

]2 − 1
2
εκλνµ∂

′
νA′

µG εκλσρ∂
′
σA′

ρ

→
∫

dτ′d3x′
1
2

A′
µ(δµν∂′

2 −∂′µ∂′ν)G A′
ν. (5.73)

Here we have defined the inverse dual gauge field propagator G−1 =−g∂′2 +
|Φ|2. To calculate the correlation function, we should apply a Fourier trans-
formation as in (5.48),∫

dτ′d3x′
1
2

A′
µ(δµν∂′

2 −∂′µ∂′ν)(−g∂′2 +|Φ|2)−1 A′
ν =∫

dD+1k′ − 1
2

A′
µ(−k′)

δµνk′2 −k′
µk′

ν

gk′2 +|Φ|2 A′
ν(k′). (5.74)

The conductivity is now obtained by inserting this in (5.67),

ωnσab(k, iωn)= ħcph

aD−1
e∗2

ħ2

∫
dd(x′− y′)e−ik′(x′−y′) 1

Z[0]
δ

δA′
b(y′)

δ

δA′
a(x′)

Z[A′]

= ħcph

aD−1
e∗2

ħ2

∫
dd(x′− y′)dk̄′ e−i(k′+k̄′)(x′−y′) δab k̄′2 − k̄′

a k̄′
b

gk̄′2 +|Φ|2

= 1
g
ħcph

aD−1
e∗2

ħ2

δabk′2 −k′
ak′

b

k′2 +|Φ|2/g
= e∗2ρs

m∗
δabk2 −kakb

k2 +|Φ|2/ga2 (5.75)

In the last step we reverted to dimensionful units. In the limit |Φ|2 → 0 this
reduces to the result for the superconductor (5.70). We are interested in the
DC and AC conductivity, and therefore take the limit k→ 0, to find,

σab(iωn)= e∗2ρs

m∗
1
ωn

δabω
2
n

ω2
n + c2

ph|Φ|2/ga2
≡ e∗2ρs

m∗ δab
ωn

ω2
n +M2

. (5.76)

Here we defined M2 = c2
ph

a2
|Φ|2

g . We continue to real time by iωn →ω+ iη, where
η> 0. Then,

σab(ω)= e∗2ρs

m∗ δab
−iω

−ω2 −2iωη+M2

= e∗2ρs

m∗ δab
−iω(

(ω−M)+ iη
)(

(−ω−M)+ iη
) . (5.77)
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Clearly there are poles at ω = M − iη and ω =−M + iη. Using the Sokhostsky
formula Eq. (5.54) for the pole near ω = M we find for the real part of the
conductivity,

Reσab(ω)= Ja2−D e∗2

ħ2 δab
−iω

−ω−M
(− iπδ(ω−M)

)= Ja2−D e∗2

ħ2 δab
π

2
δ(ω−M).

(5.78)
We can conclude that there are gapped poles at ω = ±M = ± cph

a

√
|Φ|2/g, and

the pole strength of each is half of that of the superconductor [cf. Eq (5.56)].
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