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Chapter 4

Electrodynamics of Abrikosov vortices

Having learned that Bose-Mott insulators near the quantum phase transi-
tion support vortex excitations, we would like to study those objects in elec-
trically charged systems: the superconductor to charged Bose-Mott insulator
transition. But first it is necessary to fully understand how the electromag-
netic field comes into play, and therefore this chapter is dedicated to the vor-
tex world sheet formalism in the superconducting state. Here the topological
defects are of course the well-studied Abrikosov vortices we encountered in
§2.1.2. It will prove to be an interesting subject in its own right.

The study of the matter formed from Abrikosov vortices in type-II super-
conductors constitutes a vast and mature research subject. This subject is
crucial for the technological applications of superconductivity [67] but it has
also proven to be a fertile source for fundamental condensed matter phy-
sics research. The elastic and hydrodynamical properties of matter formed
from vortices can be very easily tuned by external means and it has demon-
strated to be an exceedingly fertile model system to study generic questions
regarding crystallization, the effects of background quenched disorder and
so forth [68, 69]. Especially after the discovery of the cuprate high-Tc super-
conductors it became also possible to study the fluids formed from vortices.
Because of the strongly two-dimensional nature of the superconductivity in
the cuprates, the Abrikosov vortex lattice becomes particularly soft and it
melts easily due to thermal motions at temperatures that are much below
the mean field Hc2-line [70].

Many phenomena in this field are of a dynamical nature, associated with
the fact that vortices are in motion. This includes the vortex flow, the mag-
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netic field penetration and the flux creep, but also the large Nernst effect of
the vortex fluid and, perhaps most spectacularly, the use of cuprate vortices
as source of terahertz radiation [71, 72]. This vortex dynamics is analogous
to the magnetohydrodynamics of electrically charged plasmas in the sense
that the forces exerted on vortices are exclusively of electromagnetic origin,
while in turn the vortex matter backreacts on the electromagnetic fields.
The phenomena that arise are rather thoroughly understood starting from
the AC and DC Josephson relations as well as the Maxwell equations as the
force equations in this “vortex magnetohydrodynamics”.

Although the computations explaining these phenomena are certainly
correct, they are of a rather improvised, ad hoc nature, at least compared to
the Landau–Lifshitz style [73] of deriving the usual magnetohydrodynam-
ics from first principles. In this chapter we show that with the use of the
vortex world sheets in 3+1 dimensional spacetime, all of the phenomena re-
lated to the electrodynamics of vortices in superconductors can be captured
in one concise equation. Furthermore the electrodynamics of stringlike ob-
jects in the absence of monopole sources has very special features, turning
the Maxwell field strength itself into a gauge field.

We shall show quickly how the vortex world sheet current arises in the
relativistic Ginzburg–Landau model. Then we take a small theoretical de-
tour to explore the electrodynamics of two-form sources in general. After
that the rigorous vortex duality is derived for charged superfluids, and fi-
nally we shall present the equations of motion that contain all the electrody-
namical phenomena related to moving Abrikosov vortices. We conclude with
a short outlook.

4.1 The vortex world sheet in relativistic supercon-
ductors

We will now show how the vortex world sheet appears from the Ginzburg–
Landau equations. In §4.2, we shall derive the more generic coupling of a
vortex current to electromagnetic fields.

Before we write down the partition function let us stress that it may be
less familiar to researchers in the field of superconductivity, since it will
be fully relativistic. In particular it will have a squared time-derivative,
whereas most works start with a single time-derivative term. The latter
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applies to systems which are diffusion-limited. Of course, in actual super-
conductors vortices are accompanied by such diffusion processes. However,
the relativistic action is necessary to derive the vortex world sheet. Further-
more processes such as Thomas–Fermi screening are in fact ballistic. Finally
the validity of this relativistic approach is verified by the results of §4.4. If
one wishes to consider diffusion processes, an appropriate term can be added
to the Lagrangian at will.

In this chapter we find it convenient to stay in real time, because we do
not need to carry out the vortex proliferation, and because we can compare
directly to other known results. The partition function associated with the
relativistic Ginzburg–Landau action deep in the superconducting state is (cf.
§§2.1.2,2.4.7),

Z =
∫

DϕDAµF (Aµ)ei/ħ ∫
d4x L , (4.1)

L =− 1
4µ0

F2
µν−

ħ2

2m∗ ρs(∂ph
µ ϕ− e∗

ħ Aph
µ )2. (4.2)

Here Fµν = ∂µAν−∂νAµ is the electromagnetic field strength; F (Aµ) denotes
an appropriate gauge fixing condition; ϕ is the superconducting phase re-
lated to the order parameter Ψ = p

ρseiϕ; ρs is the superfluid density; m∗

and e∗ are the mass and charge of a Cooper pair; and most importantly,
one must take great care to differentiate between the two velocities in the
problem, namely the velocity of light c pertaining to the photon field Aµ,
and the phase velocity in the superconductor cph. Therefore we have defined
∂µ = (∂0,∇), ∂0 = 1

c∂t and ∂
ph
µ = (∂ph

0 ,∇), ∂ph
0 = 1

cph
∂t. Furthermore Aµ = (− 1

c V ,A)

and Aph
µ = (− 1

cph
V ,A). The last form is dictated by gauge invariance of the

second term in Eq. (4.2).
We shall for the moment proceed in the relativistic limit where cph = c, for

simplicity. The equations of motion then follow from variation with respect
to Aν,

∂µ
∂L

∂(∂µAν)
− ∂L

∂Aν
=− 1

µ0
∂µ(∂µAν−∂νAµ)− ħ2

m∗ ρs
e∗

ħ (∂νϕ− e∗

ħ Aν)= 0. (4.3)

Now we act with εκλρν∂ρ on this equation, which leads to,

−λ2(εκλρν∂2
µ∂ρAν−�����εκλρν∂ρ∂ν∂µAµ)+εκλρν∂ρAν = ħ

e∗
εκλρν∂ρ∂νϕ= ħ

e∗
JV
κλ. (4.4)

Here we have defined the London penetration depth λ=
√

m∗
µ0 e∗2ρs

; the second
term vanishes because the antisymmetric contraction of two derivatives; and
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on the right-hand side we recognize from Eq. (2.17) the definition of the vor-
tex current JV

κλ
. Let us consider the special case κ= t, and use the definition

of the magnetic field Bl = εlrn∂r An,

−λ2∂2
µBl +Bl =

ħ
e∗

JV
tl =

ħ
e∗

2πNδ(2)
l (x). (4.5)

Here we have used Eq. (2.17) in the last equality. This is precisely the
textbook equation for the Meissner screening of a vortex source of strength
N, with flux quantum Φ0 = 2πħ/e∗ Eq. (2.6), [51, eq.(5.10)]. But instead of
ad hoc inserting the delta-function source, we actually derived it from the
singular phase field. The only difference is that here also the dynamics is
taken into account via the double time derivative contained in ∂2

µ. The true
power of the vortex world sheet shows itself when considering the electric
field E =−∇A0 −∂tA and the spatial components JV

kl of the vortex field. This
will be further elaborated on in §4.4. But let us first analyze how two-form
sources couple to electromagnetism in general, followed by a more general
derivation of the above relations invoking a duality mapping, by which we
can treat the vortex fields in the action itself, rather than only in the equa-
tions of motion. This can be regarded as revealing the more fundamental
structure of the problem. The reader who is less interested in these theoret-
ical matters may skip ahead directly to §4.4.

4.2 Electrodynamics of two-form sources

We will formulate here the generalization of the standard Maxwell action
and equations of motion when the sources are not monopoles with charge
density ρ and current Jm, collected in a vector field Jµ = (cρ, Jm), but instead
(vortex) lines with line densities Jtl and line currents Jkl (which denote the
current in direction k of a line that extends in direction l), collected in a
two-form field Jκλ = (Jtl , Jkl). Let us first recall the established knowledge
for ordinary electromagnetism, in terms suited for this generalization. For
clarity we again use a shorthand notation where we are intentionally sloppy
with contra- and covariant indices, leaving out dimensionful parameters in
order to maximally expose the principles. In the next section we will present
the final results that are accurate in this regard.
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4.2.1 Maxwell action with monopole sources

Let us start by considering a set of electrical monopole sources collected in a
source field Jµ as in the above, satisfying a continuity equation/conservation
law ∂µJµ = 0. These sources interact via the exchange of gauge particles, as
gauge fields Aµ that couple locally to the source fields, by an interaction term
in the Lagrangian of the form AµJµ. Because of current conservation, any
transformation of the gauge field Aµ→ Aµ+∂µε, where ε is any smooth scalar
field, will leave the coupling term invariant. Indeed,

AµJµ→ AµJµ+ (∂µε)Jµ = AµJµ−ε∂µJµ = AµJµ. (4.6)

Here we performed partial integration in the second step. The field strength
Fµν = ∂µAν − ∂νAµ is also invariant under the same gauge transformation.
An immediate consequence of this definition are the Bianchi identities or
homogeneous Maxwell equations,

εαβµν∂βFµν = εαβµν∂β∂µAν = 0, (4.7)

because the derivatives commute. These equations comprise ∇ ·B = 0 and
∇×E=−∂tB. This suggests a Lagrangian of gauge invariant terms,

LMaxwell =−1
4

FµνFµν+ AµJµ, (4.8)

accompanied by the Euler–Lagrange equations of motion obtained by varia-
tion with respect to Aν,

∂µFµν =−Jν. (4.9)

These are the inhomogeneous Maxwell equations comprising ∇ ·E = ρ and
∇×B− ∂tE = J. In a superconductor, one must also add a Meissner term,
which in the unitary gauge fix turns into a mass term for the gauge field Aµ,

LMaxwell + Meissner =−1
4

FµνFµν− 1
2

AµAµ+ AµJµ, (4.10)

In this form, the Meissner term breaks the gauge invariance of the Lagran-
gian. This corresponds to releasing the longitudinal degrees of freedom
of the photon field. A gauge equivalent perspective is that this degree of
freedom represents the phase mode of the superconducting condensate (see
§3.2.2). The equation of motion is modified to,

∂µFµν− Aν =−Jν. (4.11)
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4.2.2 General two-form sources

Let us now repeat this procedure for antisymmetric two-form sources Jκλ =
(Jtl , Jkl). These must obey the continuity equations (i.e. conservation laws)
∂κJκλ = 0, reflecting that the density of the source can only increase (de-
crease) when it flows into (out of) the region under consideration, and that
vortex lines cannot end within in the system (no monopoles). Consider now
that these sources interact by exchanging two-form gauge fields, that we
will tentatively denote by Gκλ. Then these gauge fields couple locally to the
sources as GκλJκλ. These fields have to transform under gauge transforma-
tions as,

Gκλ→Gκλ+ 1
2

(∂κελ−∂λεκ), (4.12)

where ελ is any smooth vector field, in order to leave the coupling term in-
variant as required by the current conservation. Indeed,

GκλJκλ→GκλJκλ+ (∂κελ)Jκλ =GκλJκλ−ελ∂κJκλ =GκλJκλ. (4.13)

Here we have used the antisymmetry of Jκλ in the first step, and partial
integration in the second. The field strength Hµκλ = ∂[µGκλ] = ∂µGκλ+∂λGµκ+
∂κGλµ is also invariant under these gauge transformations. An immediate
consequence of this definition is the Bianchi identity,

ενµκλ∂νHµκλ = ∂[ν∂µGκλ] = 0, (4.14)

because the derivatives commute. With these definitions, we can write down
a gauge invariant Lagrangian,

L =− 1
12

H2
µκλ+GκλJκλ. (4.15)

Note that this Lagrangian is in terms of the dynamic variables Gκλ, which
we will see later is the dual of the electromagnetic field strength Fµν. In
other words, this Lagrangian is in terms of the electric and magnetic fields
themselves, rather than the gauge potential Aµ. The equations of motion
follow after variation with respect to Gκλ,

∂µHµκλ =−Jκλ. (4.16)

Now, in a gauge-invariance breaking medium such as a superconductor, one
must add a Higgs or Meissner term to the Lagrangian as,

L =− 1
12

H2
µκλ−

1
4

G2
κλ+GκλJκλ. (4.17)
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4.2.3 Abrikosov vortex sources

Up to now we have just reviewed the standard derivation of non-compact
U(1) two-form gauge theory. Let us now specialize to the case of a vortex line
in a superconductor. For such an Abrikosov vortex, we know that the density
JV

tl is proportional to the magnetic field, and that the magnetic field is par-
allel to the spatial orientation of the vortex line. In fact, when the magnetic
field intensity coincides with the lower critical field Hc1, the dimensionful
vortex density may be denoted as before, Eq. (4.5),

JV
tl =Φ0δ

(2)
l (r), (4.18)

where Φ0 is the flux quantum h
e∗ . Because of these considerations, the vortex

line density should couple to the magnetic field Bl . The definition of the
Maxwell field strength is,

Ftn = En Fmn = εmnlBl , (4.19)

If we contract the last definition with
∑

mn εtbmn, one finds Bl = εtlmnFmn ≡
G tl . Here we introduce the Hodge dual of the Maxwell field strength Gαβ ≡
1
2εαβµνFµν. Then the coupling of the vortex line density JV

tl to the magnetic
field Bl is written as G tl JV

tl and generalizes to GκλJV
κλ

. Therefore, the general
two-form gauge field in Eq. (4.15) is now identified as the dual Maxwell field
strength Gκλ.

4.2.4 Gauge freedom of the field strength

This leads immediately to an astonishing consequence: the Maxwell field
strength Fµν itself has now become a gauge field ! The gauge transformations
Eq. (4.12) correspond to,

Fµν→ Fµν+εµνκλ∂κελ. (4.20)

How does it come about that these all too physical Fµν’s have suddenly
turned into gauge variant quantities? The reason is simple although per-
haps defeating the physical intuition: in normal matter we always have
electric monopole sources Jν with the associated equations of motion ∂µFµν =
−Jν. In the absence of any such sources, these equations reduce to ∂µFµν = 0.
Together with the inhomogeneous Maxwell equations εαβµν∂βFµν = 0, these
imply that the field strength cannot be measured at all. It amounts to the
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Schwinger wisdom that fields which cannot be sourced do not have physi-
cal reality [62]. The formal expression of this fact is that the field strength
becomes pure gauge in the absence of monopole sources.

Another insight is obtained by taking a closer look at the gauge transfor-
mations Eq. (4.20). For the Bianchi identities in Eq. (4.7) these imply,

εαβµν∂βFµν→ εαβµν∂βFµν+εαβµν∂βεµνκλ∂κελ
= εαβµν∂βFµν+ (∂α∂λ−∂2δαλ)ελ. (4.21)

In other words, the Bianchi identities are not invariant under these gauge
transformations! This makes sense: these identities are a direct result of
expressing the field strength in terms of a gauge potential Aν, which of itself
has three degrees of freedom (four minus one gauge freedom). The Bianchi
identities serve to restrict the six degrees of freedom contained in Fµν to
the proper number of three1. Conversely, in the derivation of the two-form
action Eq. (4.15), we have not assumed anything about the origin of the two-
form field. Next to three physical degrees of freedom, there are three gauge
degrees of freedom. Therefore the constraints εαβµν∂βFµν = 0 are not strictly
enforced, but can always be obtained by a suitable gauge transformation.

We never observe the gauge character of the fields Fµν themselves be-
cause the only two-form sources to which this action applies that we know
of are Abrikosov vortices in a superconductor. The superconducting matter
causes a finite penetration depth λ for the fields, which is reflected by the
addition of a Meissner term to the Lagrangian. The gauge-invariant form of
this term is known to be,

Hκλµ
1
∂2 Hκλµ =−Gκλ

δκµ∂
2 −∂κ∂µ
∂2 Gκλ, (4.22)

in the same way as one can formally write the Meissner term in Eq. (4.10)
as Fµν

1
∂2 Fµν [cf. Eq. (3.23)]. However, since the longitudinal components of

Gκλ are not sourced by the conserved Abrikosov vortices, we are naturally
led to the Lorenz gauge condition ∂κGκλ = 0, and the gauge freedom has been
removed. With this gauge condition Eq. (4.22) reduces to GκλGκλ, that ap-
pears in Eq. (4.17). In other words, the superconducting medium forces us
to the fixed frame action Eq. (4.17).

1In light of the discussion in §3.A, we refer here to the general case for the field strength,
without restricting to a particular action. Surely a massless photon field has only two propa-
gating degrees of freedom, but that follows only after ascertaining the Maxwell action.
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4.2.5 Vortex equation of motion

We end up with the action Eq. (4.17), and we now put in dimensionful pa-
rameters. Please note that this action is equivalent to the regular action as
(4.2), but with the important difference that here we work with the dual field
strength Gκλ as the dynamic variable instead of the gauge potential Aµ .The
equations of motion (“Maxwell equations for relativistic vortices”) are now
obtained straightforwardly by varying with respect to Gκλ as,

λ2(∂2Gµν−∂µ∂κGκν+∂ν∂κGκµ)−Gµν =− ħ
e∗

JV
µν. (4.23)

This is to be compared with Eq. (4.11) and Eq. (4.5). The second and third
term can be set to zero by a gauge transformation Eq. (4.20) or alterna-
tively by invoking the Bianchi identities Eq. (4.7). The meaning of these
equations is that the two-form source JV

κλ
, causes an electromagnetic field

Gµν = 1
2εµνκλFκλ that is now Meissner screened over a length scale λ. The

case µ= t, together with the definition Bn = 1
2εnabFab reduces to Eq. (4.5).

4.2.6 Summary

Summarizing, we have shown here that the action Eq. (4.17) can be postu-
lated, from which the correct equations of motion as introduced in §4.1 di-
rectly follow, without ever mentioning the gauge potential Aµ. One trades in
the Bianchi identities Eq. (4.7) for a set of gauge transformations Eq. (4.20).
This action is only meaningful in the absence of monopole sources, but is
very appropriate when considering two-form sources such as Abrikosov vor-
tices. In the case that the penetration depth λ becomes infinitely large, the
field strength Fµν recovers its status as a gauge field. This would correspond
to the Coulomb phase of two-form sources, as opposed to the Higgs phase
that is always realized in superconductors.

As a final note it should be stressed, that although the vortex source is
intrinsically dipolar in nature, the equations stated above are not generally
valid for any dipole source. Here, the direction of the vortex line is always
parallel to the dipole moment. If one should instead consider for instance
a string of ferromagnetic material with moments not along the string, one
must revert to the omnipotent regular Maxwell equations.

For the reader familiar with differential forms, I have included appendix
4.A repeating these considerations in metric-independent language, valid in
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any spatial dimension higher than 2.

4.3 Vortex duality in charged superfluids

We shall now rigorously derive the coupling of Abrikosov vortex sources to
the electromagnetic fields, starting from the action describing a supercon-
ductor in 3+1 dimensions. This follows the same pattern as the uncharged
superfluid of chapter 3, extended by minimally coupling in the electromag-
netic field. For 2+1 dimensions this was done in §2.4.7. We end up with an
effective action describing the electrodynamics of vortices.

4.3.1 Dual Ginzburg–Landau action

Our starting point is the partition function Eq. (4.1). To keep the equa-
tions readable, we will transform to dimensionless units denoted by a prime
(which we suppress when matters are unambiguous),

S′ = 1
ħS, x′m = 1

a
xm, t′ = c

a
t, A′

µ =
ae∗

ħ Aµ, ρ′ = ħa2

m∗c
ρs,

1
µ′

= ħ
µ0ce∗2 . (4.24)

Here a is a length scale relevant in the system, for instance the lattice con-
stant. We will assume the relativistic limit cph = c; later we shall return to
dimensionful quantities and it will become clear that the phase velocity is
playing an essential role for the description of the non-relativistic vortices.
The partition function in these dimensionless units reads,

Z =
∫

DϕDAµF (Aµ)ei
∫

d4x L , (4.25)

L =− 1
4µ

F2
µν−

1
2
ρ(∂µϕ− Aµ)2. (4.26)

Now we perform the dualization procedure. A Hubbard–Stratonovich
transformation of Eq. (4.25) leads to,

Z =
∫

DwµDϕDAµF (Aµ)ei
∫

Ldual , (4.27)

Ldual =− 1
4µ

F2
µν+

1
2ρ

wµwµ−wµ(∂µϕ− Aµ). (4.28)

Here wµ is the auxiliary variable in the transformation, but it is actually the
canonical momentum related to the velocity ∂µϕ, which can be found as,

wµ =− ∂L

∂(∂µϕ)
= ρ(∂µϕ− Aµ), (4.29)
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and is related to the supercurrent as wµ = e∗
ħ Jµ. If one integrates out the field

wµ from Eq. (4.27), one retrieves Eq. (4.25). In the presence of Abrikosov
vortices, the superconductor phase ϕ is no longer everywhere single-valued.
Therefore it is separated into smooth and multivalued parts ϕ = ϕsmooth +
ϕMV. The smooth part can be partially integrated yielding,

Z =
∫

DwµDϕsmooth DϕMV DAµF (Aµ)ei
∫

Ldual , (4.30)

Ldual =− 1
4µ

F2
µν+

1
ρ

wµwµ+ϕsmooth∂µwµ−wµ∂µϕMV +wµAµ. (4.31)

Notice that the photon field is wired in just by coupling to the supercurrent.
The smooth part can now be integrated out as a Lagrange multiplier turn-
ing into the constraint ∂µwµ = 0, the supercurrent continuity equation. This
constraint can be explicitly enforced by expressing wµ as the curl of a gauge
field,

wµ = εµνκλ∂νbκλ. (4.32)

4.3.2 Abrikosov vortex world sheets

We can now substitute this expression in the partition function; the integral
over the fields wµ is replaced by one over bκλ, as long as we apply a gauge
fixing term F (bκλ) to take care of the redundant degrees of freedom. Since
the gauge field is smooth it can be partially integrated to give,

Z =
∫

DϕMV DAµF (Aµ)DbκλF (bκλ)ei
∫

Ldual , (4.33)

Ldual =− 1
4µ

F2
µν+

1
ρ

(εµνκλ∂νbκλ)2 −bκλεκλνµ∂ν∂µϕMV +bκλεκλνµ∂νAµ. (4.34)

Here we recognize the definition Eq. (2.17) of the vortex source,

JV
κλ = εκλνµ∂ν∂µϕMV, (4.35)

and we have derived the dual partition function,

Z =
∫

DJV
κλDAµF (Aµ)DbκλF (bκλ)ei

∫
Ldual , (4.36)

Ldual =− 1
4µ

F2
µν+

1
ρ

(εµνκλ∂νbκλ)2 −bκλJV
κλ+bκλεκλνµ∂νAµ. (4.37)

The interpretation is as follows. The vortex sources JV
κλ

interact through the
exchange of dual gauge particles bκλ coding for the long range vortex–vortex
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interactions mediated by the condensate. The gauge field bκλ couples as well
to the electromagnetic field Aµ. Integrating out the electromagnetic field will
lead to a Meissner/Higgs term ∼ b2

κλ
, showing that the interaction between

vortices is actually short-ranged in the superconductor. However, we are
instead interested in how the electromagnetic field couples to the vortices
themselves. Therefore, we shall integrate out the dual gauge field bκλ.

The first step is to complete the square in bκλ. The kinetic term for bκλ is
proportional to,

−bκλεκλµν∂νερσαµ∂αbρσ =−bκλ(δκµ∂2 −∂κ∂µ)bµλ ≡−bκλG−1
0

κµ
bµλ. (4.38)

Here G−1
0

κµ is the inverse propagator. However, this expression cannot be
inverted (the same problem arises in the quantization of the photon field).
We can solve this by imposing the Lorenz gauge condition ∂κbκλ = 0. Then the
inverse propagator is simply G−1

0
κµ = δκµ∂2, and its inverse is G0κµ = δκµ

1
∂2 .

Now we can complete the square,

Ldual =
1
2

(
bκλ− ρ

∂2 JV
κλ+εκλνµ∂νAµ

)(− ∂2

ρ

)(
bκλ− ρ

∂2 JVκλ+εκλρσ∂ρAσ

)
− 1

2
(− JV

κλ+εκλνµ∂νAµ
)(− ρ

∂2

)(− JVκλ+εκλνµ∂νAµ

)− 1
4µ

F2
µν. (4.39)

Then we shift the field bκλ → bκλ+ ρ

∂2 JV
κλ

− εκλνµ∂νAµ and integrate it out in
the path integral to leave an unimportant constant factor. Expanding the
remaining terms leads to,

Ldual =
1
2

JV
κλ

ρ

∂2 JVκλ+ 1
2
εκλνµ∂

νAµ ρ

∂2 ε
κλρσ∂ρAσ−ρJV

κλε
κλνµ ∂ν

∂2 Aµ− 1
4µ

F2
µν

= 1
2

JV
κλ

ρ

∂2 JVκλ− 1
2
ρAµAµ−ρJV

κλε
κλνµ ∂ν

∂2 Aµ− 1
4µ

F2
µν. (4.40)

In going to the second line we have performed partial integration on the sec-
ond term and invoked the Lorenz gauge condition ∂µAµ = 0. We can immedi-
ately read off the physics encoded in this action: the first term describes the
core energy of the vortices and we shall not need it in this work; the second
term is the Higgs mass (including Meissner) for the electromagnetic field;
the third term is the coupling term between the electromagnetic field and
the vortex source. This term looks rather awkward given the derivatives in
the denominator. This could signal that the coupling is non-local but that is
not the case here. The origin of this coupling follows from the notions pre-
sented in section 4.2: it is not the gauge potential Aµ but rather the field
strength Fµν itself that couples to the vortex source.
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4.3.3 Equations of motion

We can confirm this expectation by computing the equations of motion,

1
µ
∂µFµν+ρεµνκλ ∂µ

∂2 JV
κλ−ρAν = 0. (4.41)

Acting with εαβγν∂
γ on this equation, one obtains,

1
µρ

εαβγν∂
γ∂µFµν+εαβγνεµνκλ

∂γ∂µ

∂2 JV
κλ−εαβγν∂γAν = 0 (4.42)

Using Fµν = ∂µAν−∂νAµ one can see that from the first term only εαβµν∂
2Fµν

survives. Also, using ∂κJV
κλ

= 0 one can see that εαβγνεµνκλ∂γ∂µJV
κλ

= ∂2JV
αβ

,
cancelling the derivatives in the denominator. Altogether we find,

1
2µρ

εαβµν∂
2Fµν− 1

2
εαβµνFµν =−JV

αβ. (4.43)

This is the same result as Eq. (4.23). Notice that it is a completely local ex-
pression. As we announced earlier, we have derived here with a completely
controlled procedure the dimensionless version of Eq. (4.5), describing the
interactions between the vortices and electromagnetic fields inside a rela-
tivistic superconductor. Departing from this result we will derive in the next
section various physical consequences. Summarizing this section, by dual-
izing the Ginzburg–Landau action for the superconductor, Eq. (4.25) was
reformulated in terms of the vortex currents Eq. (4.35) as the active de-
grees of freedom, that interact via the effective gauge fields parametrizing
the rigidity of the superconductor. The latter were integrated out to obtain
the direct coupling of the vortices to the electromagnetic field, leading even-
tually to the concise equations of motion Eq. (4.43). Although this strategy
is well known dealing with vortex ‘particles’ in 2+1 dimensions we are not
aware that it was ever explored in the context of the electrodynamics of vor-
tices in 3+1d. Surely, the derivation presented in the above is in regard with
its rigour and completeness strongly contrasting with the rather ad hoc way
that the problem is addressed in the standard textbooks [51, eq.(5.13)].

4.4 Vortex electrodynamics

In order to establish contact with the physics in the laboratory all that re-
mains to be done is to break the Lorentz invariance, doing justice to the
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fact that the phase velocity of the superconductor as introduced in the first
paragraphs of Section 4.1 is of order of the Fermi velocity of the metal and
thereby a tiny fraction of the speed of light. Subsequently we will analyze
what the physical ramifications are of our “Maxwell equations for vortices”.

4.4.1 Non-relativistic dual action

The non-relativistic version of the vortex action Eq. (4.40) is,

L = ħ2

2m∗ ρs JV
tl

1
−1/c2

ph∂
2
t +∂2

k
JV

tl −
ħ2

2m∗ ρs JV
kl

c2
ph

−1/c2
ph∂

2
t +∂2

k
JV

kl

− e∗2

2m∗c2
ph
ρsV 2 − e∗2

2m∗ ρs A2
m

− e∗ħ
m∗ ρs

1
− 1

c2
ph
∂2

t +∂2
k

[ 1
cph

JV
abεabtm(∂t Am +∂mV )+ 1

2
JV

taεtamn∂m An
]

+ 1
2µ0c2 (∂t An +∂nV )2 − 1

4µ0
(∂m An −∂n Am)2. (4.44)

4.4.2 Non-relativistic equations of motion

Varying with respect to Aν, acting with εαβγν∂
γ and imposing current conser-

vation ∂κJV
κλ

= 0 will lead to the correct non-relativistic form of the equations
of motion Eq. (4.4). However the easiest way to obtain these is to vary Eq.
(4.2) directly with respect to V and An respectively,

−
c2

ph

c2 λ2∂nEn −V = ħ
e∗
∂tϕ, (4.45)

−λ2 1
c2 ∂tEn +λ2εnmk∂mBk + An = ħ

e∗
∂nϕ. (4.46)

Here λ =
√

m∗
µ0 e∗2ρs

is the London penetration depth. Now we operate on the

first equation by ∂m = 1
2εmtabεabrt∂r, and on the second by δmn∂t = 1

2εtmabεabtn∂t

and εtamn∂m respectively to obtain,

−
c2

ph

c2 λ2∂m∂nEn −∂mV = ħ
e∗

cph
1
2
εmtab JV

ab, (4.47)

−λ2 1
c2 ∂

2
t Em −λ2∂2

n∂t Am +∂t Am = ħ
e∗

cph
1
2
εtmab JV

ab, (4.48)

λ2(∇2 − 1
c2 ∂

2
t )Ba −Ba =− ħ

e∗
JV

ta. (4.49)
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For the last equation we used the Maxwell equations ∇×E=−∂tB and ∇·B= 0.
This one is equal to the one we found before in Eq. (4.5), obviously, since
there the temporal terms do not come into play.

For the equations for the electric field is it useful to choose the Coulomb
gauge ∇·A= 0, and separate the electric field in longitudinal and transversal
parts: E=EL +ET, where ∇×EL = 0 and ∇·ET = 0. In the Coulomb gauge we
see from the definition E =−∇V −∂tA that EL =−∇V and ET =−∂tA. We can
subtract the first equation above from the second to obtain,

λ2(− 1
c2 ∂

2
t Em +∇2ET

m +
c2

ph

c2 ∇2EL
m

)−Em = ħ
e∗

cphεtmab JV
ab. (4.50)

Hence, as in the case of the Maxwell theory for non-relativistic matter
one finds instead of the highly symmetric relativistic result Eq. (4.4) two
equations of motion that are representing the spatial (magnetic) and tempo-
ral (electrical) sides of the physics, Eq. (4.49) and Eq. (4.50). One notices
that the first ‘magnetic’ equation is quite like the relativistic one while the
‘electrical’ equation is now more complicated for reasons that will become
clear in a moment.

The factor cph on the right-hand side of the electric equation is due to our
convention of rescaling the time derivative to having units of 1/length in the
definition of JV

κλ
. Thus all components of JV

κλ
have dimensions of a surface

density, and multiplying by a velocity is necessary to end up with a current
density. The sign difference on the right-hand side between the electric and
magnetic equations is related to the continuity equation 1

cph
∂t JV

tn =−∂m JV
mb.

To grasp the content of these equations, one should compare the magnetic
equation Eq. (4.49) with the standard form [51, eq.(5.13)],

λ2∇2Ba −Ba =−Φ0δ
(2)
a (r), (4.51)

Here Φ0 = 2πħ/e∗ is the flux quantum. The factor of 2π is associated with
the definition of JV as in Eq. (2.17). Our treatment automatically takes dy-
namics into account in the form of temporal derivatives. Otherwise, the
correspondence is complete. We have indeed exactly recovered the well-
established vortex equation of motion.

The equation for the electric field (4.50) looks more involved, but this can
be made more insightful by writing the equations for the longitudinal and
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transversal parts separately,

λ2(
c2

ph

c2 ∇2 − 1
c2 ∂

2
t )EL

m −EL
m = ħ

e∗
cphε

L
tmab JV

ab, (4.52)

λ2(∇2 − 1
c2 ∂

2
t )ET

m −ET
m = ħ

e∗
cphε

T
tmab JV

ab. (4.53)

The labels on the ε-symbol denote that they include a longitudinal or trans-
versal projection.

We want to point out for future reference that, applying the curl operator
to Eq. (4.49), in the absence of vortex sources, and using ∇×B = −µ0J (the
Ampère–Maxwell equation in the static limit), one finds,

λ2∇2J−J= 0. (4.54)

This denotes the perhaps counterintuitive result that the current is screened
inside the superconductor. The reason is that a current induces a magnetic
field locally, and the superconductor wants to expel the magnetic field. As
such, all current through a superconductor flows through a thin layer near
the boundary of typical size λ.

4.4.3 Vortex phenomenology

We can now read off the following physical relations:
1. Meissner screening: from Eq. (4.49) in the static limit ∂t → 0, a vor-

tex line sources a magnetic field, that falls off in the superconductor with a
length scale λ, the familiar Meissner effect.

2. Thomas–Fermi screening: from Eq. (4.52) one infers that the longitudi-
nal (electrostatic) electric field penetrates up to a much smaller length cph

c λ,
which is the Thomas–Fermi length (c ≈ 300cph). This just amounts to the
well-known fact that the electrical screening is the same in the metal as in
the superconductor. Notice that this length scale is obtained without referral
to the electrons in the normal metal state as in the textbook derivation.

3. Dynamic Meissner screening or the Higgs mass: taking into account
the time-dependence, Eq. (4.49) and Eq. (4.53) show that the transversal
photon parts of the fields are screened not only in space, but also in time
with characteristic time scale λ

c . This is just the familiar statement that the
two propagating photon polarizations in 3+1 dimensions acquire a “Higgs
mass” ∼ ħ

λc inside the superconductor.
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B

(a) A vortex in a Josephson junction be-
tween two superconductors (grey); it has no
normal core. The magnetic field B is along
the vortex; any electric field across the
junction causes the vortex to move in the
perpendicular direction. Such motion in-
duces electromagnetic radiation that may
escape to the outside world.

B
E

v

(b) Geometry of the electric field E gener-
ated by a vortex line parallel to the mag-
netic field B and moving with a speed v.
This phenomenon related to the Lorentz
force follows directly from the vortex equa-
tions of motion.

Figure 4.1: Additional vortex configurations

4. Electrical field of a moving vortex and the Nernst effect: disregarding
the dynamical term in Eq. (4.50), one is left with

Em =− ħ
e∗

cphεtmkl JV
kl . (4.55)

Recall from section 2.2.4 that we had interpreted JV
kl as the flow or velocity

in the k-direction of a vortex line in the l direction. Since we know that
one vortex line carries a magnetic flux of Φ0 = 2π ħ

e∗ , we can write ħ
e∗ cphJV

kl =
vlB0

k, where B0 denotes the field associated with one quantum of flux, and
vl = cph ê l is the velocity. In practice there is always a drag force that greatly
slows down the vortices. Still, Josephson vortices that do not have a normal
core (Fig. 4.1(a)) may achieve this large speed. With this interpretation,
(4.50) reads,

E=−v×B0, (4.56)

which is precisely the known result [74] for the electric field generated by a
vortex moving in a magnetic field B0 (Fig. 4.1(b)). When the motion is caused
by a temperature gradient this is responsible for the large Nernst effect of
the vortex fluid.

5. AC Josephson relation: another interpretation of Eq. (4.52) is found
by inserting the definition of the vortex current, JV

ab = εabtn
1

cph
∂t∂nϕ, taking
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m as the longitudinal direction and neglecting the higher derivative terms.
In this case,

∂mV = ħ
e∗
∂t(∂mϕ). (4.57)

Here the left-hand side is the potential difference, and the right-hand side is
the time derivative of the superconducting phase difference. This is exactly
the AC Josephson relation. The full equations Eq. (4.50) reveal also that the
induced electric field is screened inside the superconductor.

6. Moving vortices as radiation sources: in the same spirit, the moving
vortex is also inducing dynamic transversal fields according to Eq. (4.53).
In other words: moving vortices radiate [71]. But since the field is Meissner
screened, it is very hard to detect this radiation. All our results also apply
to Josephson vortices (line vortex solutions in a Josephson junction between
two superconductors parallel to the interface, Fig. 4.1(a)), which differ only
in the regard that they do not have a normal core. There is much recent in-
terest in radiation from (arrays of) Josephson junctions, see e.g. [75]. Since
inside the junction the field is not expelled by Meissner and metallic screen-
ing, the radiation may escape to the outside world. In this literature one
finds the following result [76, eq.(13)],

− λ̂2∇2A+A= ħ
e∗

∇φ. (4.58)

Here λ̂ differs from λ because of a special geometry. Compare this with a
result that follows from Eq. (4.53),

∂t
[−λ2(

(∇2 − 1
c2 ∂

2
t )A+A

]= ∂t
[ ħ

e∗
∇ϕ]

, (4.59)

confirming Eq. (4.58) but showing in addition how to take care of a possible
time dependence of the photon field.

Summarizing, to the best of my knowledge we have addressed all known
electrodynamical properties of vortex matter departing from a single action
principle.

4.5 Outlook

I am of the opinion that our action principle for vortex electrodynamics Eq.
(4.40) resp. (4.44) and the associated “vortex-Maxwell” equations Eq. (4.43),
(4.49) and (4.50) deserve a place in the textbooks on the subject. In contrast
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with the clever but improvising discussions one usually finds, our formula-
tion has the same ‘mechanical’ quality as for instance the Landau–Lifshitz
treatise of electromagnetism. One just departs from the fundamentals, to
expose the consequences by unambiguous and straightforward algebraic ma-
nipulations that are worshipped by any student of physics. A potential hur-
dle is that one has to get familiar with the two-form gauge field formalism,
but then again this belongs to the kindergarten of differential geometry and
string theory.

The analysis also reveals the origin of the peculiar nature of this vortex
electrodynamics. The realization that it is in fact governed by a two-form
gauge structure amounts to an entertaining excursion in the fundamen-
tals of gauge theory itself, nota bene associated with the superficially rather
mundane and technology-oriented vortex physics, at least when viewed from
the perspective of fundamental physics. In the next chapter we will en-
counter more surprises when we investigate the electrodynamics of vortices
in Bose-Mott insulators

On the practical side, as we implicitly emphasized in the last section
our approach offers a unified description of the electrodynamics of vortices.
Although we got as far as recovering the known physical effects in terms of
special limits of our equations, there is potential to use them to identify hith-
erto unknown effects and perhaps to arrive at a more complete description
of the electrodynamics vortex matter. As we are well aware of the large body
of knowledge of this large field in physics, this is left as an open question to
the real experts.

4.A Electrodynamics with differential forms

For the reader familiar with the mathematical language of differential forms,
we present the electrodynamics of vortex sources for any dimension d = D+1
higher than 2. For our purposes, a differential form can be thought of as
something that can be integrated over; in other words: it is a density func-
tion combined with the integrand. For instance, the electric field is a 1-form
E = E idxi = Exdx+E ydy+Ezdz. Higher forms are always obtained through
the wedge product a∧b, which is the antisymmetrization of the tensor prod-
uct of a and b. Another common operation is the Hodge dual ∗a of a, which
turns an n-form into a (d−n)-form. For instance in three spatial dimensions
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name field ?-form 2+1d 3+1d representative in
d=3+1

electric field E 1 1 1 Ex dx
dielectric current D= ε∗s E d-2 1 2 Dx dy∧dz
magnetic field B 2 2 2 Bx dy∧dz
magnetic intensity H=µ∗s B d-3 0 1 Hx dx
charge density ρ d-1 2 3 ρ dx∧dy∧dz
current density J d-2 1 2 Jx dy∧dz
covariant current j= ρ+J∧dt d-1 2 3 jx dy∧dz∧dt
field strength F=B+E∧dt 2 2 2 Fxy dx∧dy
gauge potential A 1 1 1 Ax dx
vortex source JV d-2 1 2 JV

xy dx∧dy
Lagrangian density L d 3 4 L dt∧dx∧dy∧dz

Table 4.1: Electrodynamical quantities in differential forms. Here ε and µ are the
electric permittivity and the magnetic permeability, and ∗s is the spatial Hodge dual.
Other factors of c are suppressed. Minus signs are subject to convention.

∗E= Exdy∧dz+E ydz∧dx+Ezdx∧dy. For a pedagogical introduction to differ-
ential forms in Maxwell electrodynamics see [77].

In the familiar case of d = 3+ 1, a 1-form is a line density or “field in-
tensity” like the electric field; a 2-form is a surface density or flux density
like the magnetic field; a 3-form is a volume density like the charge density.
Confusion may arise when it is not immediately clear whether an object is an
n-form or a d−n-form, which is important for generalization to other dimen-
sions. We distinguish the regular Hodge dual ∗ from the spatial Hodge dual
∗s, where the latter does not involve the temporal dimension. The exterior
derivative operator is d = ∂

∂t dt∧+∑
i
∂
∂xi

dxi∧, and the one with only spatial
components is ds =∑

i
∂
∂xi

dxi∧. The Leibniz rule is d(a∧b)= da∧b+(−1)ra∧db,
where a is an r-form. This can be used for partial integration.

In table 4.1 we have listed the differential forms of the relevant fields.
Some of these definitions seem perhaps unfamiliar. In particular, we are
used to thinking of the magnetic field as a vector field; however, its solenoidal
nature is typical of a two-form. This becomes even more clear when it is
expressed as the curl of the vector potential B = dsA, which holds in 3+ 0
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dimensions. Also the current density J is naturally a flux or a 2-form, but its
generalization is as a d−2-form. One way to see that this must be so, is to
write down the continuity equation in differential forms,

∂tρ+∇·J= 0 → (∂tρ+dsJ)∧dt = dj= 0. (4.60)

The current density appearing as a vector field for instance in Ohm’s law,
J=σE is actually the spatial Hodge dual of J.

We shall now write down the familiar expressions of Maxwell electrody-
namics. The Lagrangian density is a spacetime volume density. All terms
must therefore combine into d-forms. The field strength is F= dA. From this
definition it is clear that the gauge transformations A→ A+dξ, with ξ any
0-form, leave the field strength unchanged, since d2 = 0. The field strength is
contracted with its dual to obtain a d-form in the Lagrangian. The sources
couple to the gauge potential (this is another reason why the source is a d−1
form). The Maxwell action is then,

S =
∫

−F∧∗F+A∧ j. (4.61)

The second term is also invariant under the same gauge transformations,
provided that dj= 0, the continuity equation. The Euler–Lagrange equations
are,

d
∂L

∂dA
− ∂L

∂A
= 0, (4.62)

resulting in the inhomogeneous Maxwell equations,

d∗dA= d∗F=−j, (∂µFµν =−Jν). (4.63)

Applying the exterior derivative on this equation directly leads to the conti-
nuity equation, since d2 = 0. Similarly, from the definition F= dA it immedi-
ately follows that,

dF= 0, (4.64)

which are the homogeneous Maxwell equations, or in this context rather the
Bianchi identities.

Now let us repeat the reasoning of section 4.2. In the absence of monopole
sources J, we have both d∗ F = 0 and dF = 0. This implies that the field
strength has become “pure gauge”. The first of these equations still holds
when we add any 1-form ξ as ∗F→∗F+dξ. The original Bianchi identities are
not invariant under these transformations. The dual field strength ∗F turns
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into a gauge potential, and is accompanied by its own field strength K= d∗F,
which contracts with its dual in the Lagrangian. The field strength can
couple to a d−2-form source, which we anticipatively denote by JV, provided
that d∗JV = 0. Indeed,

F∧JV → F∧JV +∗dξ∧JV =F∧JV −ξ∧d∗JV =F∧JV. (4.65)

The second step is achieved by partial integration, and the last equality
holds if the vortex current is conserved, d∗ JV = 0. The action for vortices
directly sourcing the field tensor is, (with G=∗F),

S =
∫

−K∧∗K+F∧JV =
∫

−K∧∗K+G∧∗JV. (4.66)

Variation with respect to G leads to,

∗d∗dG=−JV. (4.67)

This equation corresponds to εκλµν∂
2Fµν =−JV

κλ
as in Eq. (4.43), but is valid

in any dimension. The addition of a Meissner term results in

S =
∫

−K∧∗K−G∧∗G+G∧∗JV. (4.68)

and,
∗d∗dG−G=−JV. (4.69)

This is the equation of motion for d−1-dimensional superconductors, which
have d−2-dimensional vortex world branes JV.
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