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Chapter 3

Vortex duality in 3+1 dimensions

The vortex–boson or Abelian-Higgs duality as pertaining to many-body phy-
sics in 2+1 dimensions is by now well established and has been researched
for over three decades [27–33, 35, 36]. One can wonder why this has almost
exclusively been restricted to planar physics, while many systems of inter-
est are in fact three-dimensional. The reason is quite simple: vortices in
two dimensions are pointlike and trace out world lines, whereas in three di-
mensions they are linelike and trace out world sheets in spacetime. As such
the dual objects are more complicated as they have more internal degrees
of freedom. Although a single vortex world sheet is still quite tractable, for
a rigorous description of a condensate of such extended objects, a “string
foam”, one needs string field theory [38, 39], which is as of yet still in early
stages of development.

Surely, several authors have made progress on the condensation of vortex
world sheets, in the context of string theory [47, 48] and condensed matter
theory [46]. However in this chapter we shall discover that the proposed
methods do not apply for the case at hand, the quantum phase transitions
in 3+1 dimensional condensed matter. The reason is that they do not yield
the proper mode content for the disordered phase (the Bose-Mott insulator)
as they ascribe too many degrees of freedom to the vortex condensate as
a compressible liquid. In part this can be explained by the fact that the
vortices in condensed matter are so-called Nielsen–Olesen strings [60] which
have a finite core size and core energy and no internal conformal symmetry.
This is different from fundamental or ‘critical’ strings1. Nevertheless one

1I thank Dr Soo-Jong Rey for pointing this out.
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encounters the difficulty that second quantization cannot be formulated for
stringy matter. Accordingly, different from matter formed out of particles,
an algorithm is lacking to compute the properties of such string condensates
directly. The only example of a precise duality involving stringy topological
excitations is the transversal field global Ising model in 2+1d [3]. The strong
coupling phase can be viewed as Bose condensate of Ising domain walls in
space time [61]; remarkably, the Wegner duality [4] demonstrates that this
string condensate is actually the ordered (deconfining) phase of Ising gauge
theory, while the ordered Ising phase corresponds with the confining phase
of the gauged theory.

In this chapter we develop the effective theory governing the condensa-
tion of vortex world sheets in superfluids. In the ordered phase the vor-
tices interact by exchanging 2-form gauge fields instead of 1-form or vector
fields. We will show that these 2-form gauge fields undergo a Higgs mecha-
nism in the disordered phase much like regular vector fields do. Guided by
the knowledge that the disordered superfluid must correspond to the Bose-
Mott insulator and its two gapped doublon and holon excitations, we argue
that the string foam should add only a single degree of freedom, contrary
to earlier claims. As a result, not the gauge fields but rather the physi-
cal supercurrents are to be regarded the fundamental quantities, and the
phase transition is in this context at that point where supercurrents are no
longer conserved. The results are generalizable to any dimension higher
than two. Systems more complicated than the superfluid should undergo a
similar mechanism, for instance the superconductor that will be investigated
in chapter 5.

We include a discussion about vortices in the disordered phase, and two
appendices on the counting of degrees of freedom and the application of this
current formalism to Maxwell electromagnetism.

3.1 Dualization of the phase mode

Let us start right away by repeating as much as possible the exercise of
dualizing the superfluid phase mode. The starting point is again Eq. (2.40).

Z =
∫

Dϕ e−
∫

L =
∫

Dϕ e−
∫ − 1

2g (∂ph
µ ϕ)2 . (3.1)

Introduce auxiliary variables, the canonical momentum or the supercur-
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rent,

wµ =− ∂L

∂(∂ph
µ ϕ)

= 1
g
∂

ph
µ ϕ. (3.2)

The partition sum after a Hubbard–Stratonovich transformation is now,

Zdual =
∫

DϕDwµ e−
∫ 1

2 gwµwµ−wµ∂
ph
µ ϕ. (3.3)

We split the phase field into smooth (phase mode) and multivalued (vortices)
parts, ϕ=ϕsmooth +ϕMV. In 3+1 dimensions, the contour integral around the
multivalued part will still yield the winding number N times 2π, but the
vortices are now linelike, because otherwise we could close the contour by
pulling it ‘over’ the point, see §2.2. The smooth part can be integrated out
as a Lagrange multiplier for the constraint ∂

ph
µ wµ = 0, the conservation of

supercurrent.

3.1.1 2-form gauge fields

Now comes the first deviation from the treatment in 2+1 dimensions. The
constraint can be explicitly enforced by expressing the supercurrent as the
curl of a gauge field, but since in four dimensions the Levi-Civita symbol has
four indices, the gauge field is an antisymmetric 2-form field,

wµ = εµνκλ∂ph
ν bκλ. (3.4)

There are six independent components in bκλ. This expression is invariant
under the addition of the gradient of any smooth vector field ελ(x),

bκλ(x)→ bκλ(x)+∂κελ(x)−∂λεκ(x). (3.5)

The addition of the gradient of any smooth scalar field ελ(x) → ελ(x)+∂λη(x)
will lead to the exact same gauge transformation for bκλ, so there is a re-
dundancy in the gauge redundancy itself. This is sometimes referred to as
“gauge in the gauge”, and is of importance in the counting of degrees of free-
dom as described in the appendix 3.A. The result is that a free massless
2-form field has one propagating degree of freedom, which we already know
since we derived it from the superfluid phase mode. Substituting the gauge
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field in the generating functional we find,

Zdual =
∫

DϕMVDbκλF (bκλ) e−
∫

Ldual (3.6)

Ldual =
1
2

g(εµνκλ∂
ph
ν bκλ)2 −εµνκλ∂ph

ν bκλ∂
ph
µ ϕMV

= 1
2

g(εµνκλ∂
ph
ν bκλ)2 −bκλJV

κλ. (3.7)

Here F (bκλ) is a suitable gauge-fixing factor, and in the last step we defined
the vortex current,

JV
κλ(x)= εκλµν∂ph

µ ∂
ph
ν ϕMV(x). (3.8)

The interpretation of Eq. (3.7) is the following: in the superfluid there are
vortex lines which trace out world sheets, built up out of surface elements
JV
κλ

, spanned by two non-parallel directions κ and λ. These vortices are
sources in the sense of Schwinger [62], and therefore interact by exchanging
two-form gauge fields bκλ. This gauge field corresponds to the zero sound
or Goldstone boson of the superfluid. The first term is the kinetic energy
or dynamics of the gauge field. Just as before, because of the long-range
interactions, we call this the Coulomb phase for the vortices.

3.1.2 Mode content of the Coulomb phase

To examine the mode content explicitly, it is useful to go to the (τ,L,θ,φ)
coordinate system, in which L is the spatial-longitudinal direction, and θ,φ
are two arbitrarily chosen orthogonal transversal directions (see Fig. 1.3).
We can use the gauge freedom Eq. (3.5) to impose the generalized Coulomb
gauge ∂kbkλ = qbLλ = 0, which removes all longitudinal components. The
Lagrangian can now be expanded in the remaining components to find,

L = 1
2

gq2b2
τθ+

1
2

gq2b2
τφ+

1
2

g(ω2 + q2)b2
θφ. (3.9)

Here we clearly identify the purely transversal component bθφ as the sin-
gle propagating mode. This makes sense as in 2+1 dimensions it was the
transversal polarization of the dual gauge field, bT , that represented the
Goldstone mode. Furthermore there are now two temporal components bτθ
and bτφ that communicate static Coulomb interactions between two vortex
lines. The number of Coulomb forces increases because of the higher dimen-
sionality of space: the relative orientation of vortex line sources allows for
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more diverse interactions. Except for this little surprise, we observe that the
Coulomb phase of this stringy 2-form gauge theory is coding precisely for the
physics of the 3+1d superfluid with its single propagating mode.

3.2 Vortex proliferation

Now it is time to try and increase the coupling constant g, let the vortex
world sheets grow to the system size and let the vortices proliferate to effect
the phase transition. We anticipate a kind of ‘string foam’ as the analogue of
the ‘tangle of vortex world lines’. As mentioned, there is presently no ‘second
quantized’ way to do this, and all we can hope to achieve is an effective theory
that captures the collective behaviour of the vortex liquid. The problem is
to find a (dis)order parameter to which the dual 2-form gauge fields couple
minimally. This was attempted in earlier works [46–48], and we now shall
review their approach (a different path with some ideas similar to ours was
taken in Refs. [49, 63]).

3.2.1 Naive generalization of the vortex proliferation

The defect world sheet is parametrized by σ = (σ1,σ2) and X (σ) is the map
from the world sheet to real space. Hence each point on the world sheet σ is
mapped to a specific point in real space X (σ). A surface element of the world
sheet is given by,

Σκλ
[
X (σ)

]= ∂Xκ

∂σ1

∂Xλ

∂σ2
− ∂Xλ

∂σ1

∂Xκ

∂σ2
. (3.10)

The dynamics of the world sheet is given by the Nambu–Goto action,

Sworldsheet =
∫

d2σ T
√
ΣµνΣµν, (3.11)

where the integral is over the entire world sheet and T is the string tension,
comparable to our 1/g.

The source term Jκλ = εκλµν∂µ∂νϕMV is related to the world sheet by,

Jκλ(x)∼
∫

d2σ Σκλ
[
X (σ)

]
δ(X (σ)− x). (3.12)

According to figure 2.2(b), the gauge field bκλ(x) couples to the world sheet
surface element Σκλ

[
X (σ)

]
. Suppose that a condensate of these vortex strings
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has formed, giving rise to a collective variable Φ
[
X (σ)

]
which is now a func-

tional of the coordinate function X (σ). The fluctuations of the condensate are
given by the functional derivative,

∂µΦ→ δ

δΣκλ
[
X (σ)

]Φ[
X (σ)

]
. (3.13)

When a condensate has formed, the amplitude |Φ| acquires a vacuum ex-
pectation value. The amplitude fluctuations freeze out as in the particle
condensate and only the phase of the string condensate field is left as a dy-
namical variable. The phase fluctuations enumerate the collective motions
of the string condensate but in the absence of an automatic formalism it is
guess work to find out what these are. Marshall & Ramond, Rey and Franz
[46–48] find inspiration in the analogy with the particle condensate. The
phase degrees of freedom have to be matched through the covariant deriva-
tive with the 2-form gauge fields and they conjecture the seemingly obvious
generalization,

Φ
[
X (σ)

]= |Φ|ei
∫

dXµ(σ)Cµ[X (σ)], (3.14)

which implies that the collective motions of the string condensate are para-
metrized in a vector valued phase. The functional derivative (3.13) yields,

δ

δΣκλ
Φ

[
X (σ)

]= |Φ|(∂κCλ−∂λCκ), (3.15)

reducing in turn to a natural minimal coupling form,

| δ

δΣκλ
Φ|→ |( δ

δΣκλ
− ibκλ)Φ| = |Φ|(∂κCλ−∂λCκ−bκλ), (3.16)

being gauge invariant under the combined transformations,

bκλ→ bκλ+∂κελ−∂λεκ, (3.17)

Cκ→ Cκ+εκ. (3.18)

While this conjecture seems elegant and natural it is actually wrong, at
least for the string field theory as of relevance to the 3+1d vortex string
condensate. The flaw is in the overcounting of the degrees of freedom of
the Mott-insulator/dual superconductor: the vector phase field ascribes too
many collective degrees of freedom to the string condensate. Relying on the
gauge invariance in the previous paragraph, we choose the unitary gauge
Cκ ≡ 0 (cf. (2.58)). The action then reduces to that of a massive 2-form, which
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is known to have three propagating degrees of freedom. These can be identi-
fied by noting that we have ‘spent’ all gauge freedom in this gauge fix, such
that all components of bκλ become physical degrees of freedom. The three
components bτλ are Coulomb forces, the other three are propagating. But we
know that we should end up with two propagating degrees of freedom from
the correspondence to the Bose-Mott insulator of section 2.3. Another view
on this is that without interactions, this vortex condensate carries the two
propagating degrees of freedom of a free massless vector field Cκ in four di-
mensions (just like a photon). In the unitary gauge these two get transferred
to the gauge field b∥κ, just as the φ-degree of freedom was transferred to b∥
in (2.58). So if the vortex condensate were described by (3.14), it would carry
two degrees of freedom, instead of only a single pressure mode.

The fallacy of this guess becomes even more obvious extending matters to
higher dimensions. Generalizing this minimal coupling guess to d spacetime
dimensions,

|∂µφ−bµ|→ |∂[µφν1···νd−3] −bµν1···νd−3 |, (3.19)

One easy way is to count the number of propagating degrees of freedom of
the phase field φν1···νd−3 if it were not coupled to the gauge field bµν1···νd−3 . All
of these modes transfer to the gauge field via the Higgs mechanism, adding
their degrees of freedom to the single spin-wave mode. The number of propa-
gating modes for an antisymmetric form field is given by all possible spatial-
transversal polarizations [cf. (3.9)]. In d spacetime dimensions there are d−2
transversal directions, which must be accommodated in the d−3 indices of
the phase field φ. Therefore, the number of degrees of freedom is(

d−2
d−3

)
= (d−2)!

(1)!(d−3)!
= d−2, d ≥ 3. (3.20)

This must be added to the single spin-wave mode, so in d spacetime dimen-
sions, the naive prescription (3.19) would yield d−1 massive degrees of free-
dom, overcounting the modes of the Mott insulator by d−3. In this regard,
d=2+1 is quite special indeed!

The fact that the usual minimal coupling procedure for the Higgs phe-
nomenon is failing so badly in the higher dimensional cases indicates that it
is subtly flawed in a way that does not become obvious in the 2+1d duality
case, or even the 3+1d electromagnetic Higgs condensate. What is then the
correct description of the string condensate? It surely has to correspond to
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the Bose-Mott insulator, which implies that the string condensate can only
add one additional mode. One way to establish its nature is by invoking a
general physics principle: the neutral string condensate would surely rep-
resent some form of compressible quantum liquid—which is not necessarily
the case for fundamental strings—and such an entity has to carry pressure
and thereby a zero sound mode. There is just no room for anything else given
the mode counting that we know from the Bose-Mott insulator and we can
already conclude that a Nielsen–Olesen string superfluid is at macroscopic
distances indistinguishable from a particle superfluid!

3.2.2 Fate of the supercurrent

We need a different approach to guide us through the phase transition. Re-
member that in the duality transformation, we started out with regarding
the supercurrent as the central object instead of the phase mode. The su-
percurrent is conserved in the superfluid ∂

ph
µ wµ = 0, which was the reason we

could express it in terms of a dual gauge field wµ = εµνκλ∂
ph
ν bκλ. There is a

one-to-one correspondence between the components of the supercurrent and
of the gauge field when expressed in the (∥,⊥,θ,φ) coordinate system,

w⊥ ↔ bθφ wθ ↔ b⊥φ wφ↔ b⊥θ. (3.21)

In the superfluid the conservation of supercurrent eliminates w∥ as a degree
of freedom, and for the gauge fields we can remove b∥λ ∀λ by a suitable
gauge transformation ∂

ph
κ bκλ = 0. This choice, called the (generalized) Lorenz

gauge, is very natural as these components are not sourced by the vortex
current, as it is also conserved ∂

ph
κ JV

κλ
= 0.

But in the dual superconductor we have seen that there is an additional
degree of freedom due to the vortex condensate. How is this reflected by the
supercurrent?

The Helmholtz theorem, familiar from vector analysis in electrodynam-
ics, states that a sufficiently smooth vector field can always be separated
into a irrotational (curl-free) and a solenoidal (divergence-free) part. This
theorem can be generalized to dimensions other than three [64]. Thus we
can split any vector field, in particular the supercurrent, into,

wµ = ∂ph
µ χ+εµνκλ∂ph

ν bκλ. (3.22)
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It it easy to see that the curl of the first term and the divergence of the second
term both vanish. Now in the superfluid the current is conserved, ∂ph

µ wµ =
0, which imposes a constraint on the irrotational part, namely (∂ph)2χ = 0.
Clearly this irrotational part, corresponding to w∥, is removed as a dynamic
degree of freedom in the superfluid. But what is the situation for the vortex
condensate?

Recall that the formation of a vortex line induces supercurrent to flow
around it. In other words, a vortex is a source of supercurrent. In the vortex
condensate vortices and anti-vortices can form and disappear freely, and as
they are sources and sinks of supercurrent, the latter is no longer conserved
anywhere. This is equivalent to the statement that there are now only short-
range correlations of the supercurrent due to the Higgs mechanism, and the
local conservation law no longer holds. The constraint ∂ph

µ wµ = 0 is removed,
and in view of the above this also implies the release of the irrotational, lon-
gitudinal component as an additional degree of freedom. The compressional
mode of the vortex condensate is reflected by the longitudinal component of
the superfluid.

3.2.3 Supercurrent Higgs action

For another viewpoint, let us step back to the 2+1 dimensional case. Using
the definition wµ = εµνλ∂

ph
ν bλ and by integrating out the phase field φ, Eq.

(2.58) can be formally rewritten as,

L = 1
2

gwµwµ+ 1
2
Φ2

∞wµ
1

−∂2 wµ. (3.23)

Here the first term is just the kinetic energy of the supercurrent as in Eq.
(2.41), and the second is the Meissner term indicative of the now short-range
interactions, and it is sometimes referred to as the “gauge-invariant Higgs
term”. But since this is the Higgs phase, there must also be the additional
degree of freedom coming from the vortex condensate compressibility. We
now know that this role is taken up by the longitudinal component of the
supercurrent.

This expression is true for any dimensionality! And we have already pro-
vided the interpretation, the components of the supercurrent are classified
as follows: the component w⊥ corresponds to the purely transversal compo-
nent of the gauge field and represent the superfluid zero sound or Goldstone
mode; the transversal components wTi correspond to temporal components
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of the gauge fields, and therefore represent the static Coulomb forces; and
the longitudinal component w∥ couples to the vortex condensate, and is a
dynamical degree of freedom only in the Higgs phase.

In light of these considerations, it is almost always best to choose the
Lorenz gauge fix. Then using Eq. (3.22), the Higgs Lagrangian in 3+1 di-
mensions Eq. (3.23) reads,

L = 1
2

(gp2 +Φ2
∞)(χ2 +b2

⊥θ+b2
⊥φ+b2

θφ). (3.24)

Here the first two terms are the degenerate doublet of propagating modes,
whereas the last two are the static Coulomb forces—their static nature with
propagator ∼ q2 is seen only explicitly in the Coulomb gauge. All terms ac-
quire a Higgs mass and therefore represent short-range interactions.

3.2.4 Summary of the results

The take-home message of this section is as follows. The conventional way
of deriving the duality has a ‘materialistic’ attitude, invoking the vortices as
a form of matter while the gauge fields enter much in the way as fundamen-
tal gauge fields code for the way that matter interacts. As we discussed, it
is however also possible to reformulate the duality in terms of the physical
currents, focussing on the way their continuity is lost—in phase representa-
tion this turns into the emergent gauge invariance of the Mott insulator. In
the next section we will show that the ingredients of the vortex duality in
the gauge language are strongly dependent on the dimensionality of space-
time, actually posing some problem of principle associated with the nature
of string field theory.

However, when formulated in terms of the gauge invariant currents the
dependence on dimensionality disappears, just as in the canonical Bose-
Hubbard language of section 2.3. It leads to the correct mode counting as
detailed in table 3.1. The ‘current language’ is still closely tied to the vortex
language and this gives us the hold to control the duality in higher dimen-
sions. The explicit statement is:

The neutral superfluid–charged superconductor duality of the 2+1d global
U(1) theory is equally valid in D+1 dimensional systems with D > 2, where the
dual superconductor describes a D−1 form gauge theory Higgsed by a p = D−2
Nielsen–Olesen brane condensate that supports one massive compressional
mode.
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Coulomb phase Higgs phase

Coul. forces propagating Coul. forces propagating

2+1d 1 long-range 1 massless 1 short-range 2 massive
3+1d 2 long-range 1 massless 2 short-range 2 massive

Table 3.1: Mode counting in the XY -model. Vortex proliferation in terms of the
demise of supercurrents leads to the correct mode counting. Furthermore it con-
tains as well the static Coulomb forces, which increase with the dimensionality of
the system.

The derivation goes as follows. For each broken symmetry generator,
there is a Goldstone mode that communicates the rigidity of that order pa-
rameter. The set of Goldstone modes {ϕa} is labelled by an index a. Be-
cause these modes are massless and non-interacting, the canonical momenta
wa
µ = ∂L

∂(∂µϕa) are conserved ∂µwa
µ = 0. They are in fact the Noether currents

under the global symmetry transformations ϕa(x) → ϕa(x)+αa. As current
carries energy, the action is of the form S ∼ ∫

wa
µwa

µ. Topological defects are
regions where the Goldstone variable is not well-defined; consequently, the
current is no longer conserved in that region. Each flavour a of current wa

µ

can be generated by the appropriate topological defect. A condensate of such
defects Φa will have two effects:

i) they generate current everywhere, so that the current is conserved
nowhere ∂µwa

µ 6= 0 which introduces a new degree of freedom;

ii) the current–current correlations are destroyed by the defects, causing
them to be exponentially decay with scale set by the Higgs mass Φa∞.

The action in the Higgs phase is of the form,

S ∼
∫

wa
µ

(
1+ (Φa∞)2

−∂2

)
wa
µ. (3.25)

3.3 Minimal coupling to 2-form gauge fields

The Lagrangian Eq. (3.23) contains all the dynamical information, and is
valid for any dimension. Still, since the gauge fields are interpreted as the
force carriers of the interaction between vortices, it would be nice if there
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were a description in terms of the gauge fields as well. In other words, we
want a minimal coupling description that supersedes Eq. (3.16), and that
incorporates the 2-form gauge fields while still leading to the correct mode
content. The central problem is how to match the 1-form gradient of the
phase field ∂µφ to the 2-form gauge field bκλ.

We shall here present two proposals that accomplish this task. The first
is valid in any dimension, but in fact leads to a slightly different definition
of the gauge field, which in turn has an effect on the vortices of the dis-
ordered phase. The second avoids this last complication, but is as of yet
only valid in 3+1 dimensions, and has no obvious way in which the “duality
squared”-procedure of §2.4.6 follows. Let us first describe the two proposals,
and address these issues when they present themselves.

3.3.1 Orthogonal projection

Since we know that the Lagrangian in gauge field components Eq. (3.24) is
correct, we would be satisfied with any minimal coupling form that results
in this expression. Now this Lagrangian is explicitly gauge fixed by ∂

ph
κ bκλ

to project out the longitudinal components. We can also collect these three
components in vector form by contracting with the Levi-Civita symbol where
one of the indices is fixed to be this longitudinal direction. Consequently, we
propose the minimal coupling to be,

∂
ph
µ φ−εµ∥κλbκλ. (3.26)

The second term is non-zero only when µ,κ and λ take values in (⊥,θ,φ) exclu-
sively. Now since the derivative operator has only a longitudinal component,
any crossterms automatically vanish, and indeed we find,

|Φ|2(∂ph
µ φ−εµ∥κλbκλ)2 = |Φ|2(

(∂µφ)2 +b2
θφ+b2

⊥θ+b2
⊥φ

)
. (3.27)

Several remarks are in order. Firstly, this minimal coupling does not seem to
be explicitly gauge fixed, as the gauge-variant components are projected out.
However after taking the square as above, one cannot help to think that the
Lorenz gauge fix is still in place. This should not concern us too much: we
can contend ourselves with this gauge-fixed form, knowing that the ultimate
truth is represent by the “gauge-invariant Higgs action” Eq. (3.23) anyway.

Secondly and more importantly, the gauge fields bκλ in this expression
are not precisely the same as those we used before in e.g. Eq. (3.22). This
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becomes clear when we step back to 2+1 dimensions. The analogue of Eq.
(3.26) is,

∂µφ−εµ∥λbλ, (3.28)

which is clearly different from the standard minimal coupling Eq. (2.57). In
fact, the directions in the transversal directions have been shuffled by the
Levi-Civita symbol. This is the reason why I refer to this minimal coupling
as “orthogonal projection”. In 2+1 dimensions the relationship between the
two forms for the gauge fields is clear, but in higher dimensions there is no
immediate way of doing this. This does not seem to matter much now as the
gauge fields are secondary variables anyway, but it has in fact bearing on
the definition of the dual vortices as we will see in the next section.

Finally, this prescription can be generalized to any dimension d ≥ 2+1,

∂µφ−εµ∥λ1···λd−2 bλ1···λd−2 . (3.29)

The only surviving components of the gauge field are the single superfluid
phase mode with only spatial-transversal components, and the Coulomb
forces which have one index with temporal direction ⊥.

3.3.2 Sum over vortex world sheet components

There is another form of the minimal coupling that results in Eq. (3.24),
namely,

1
2

∑
α

δκα∂
ph
λ
φ−bκλ. (3.30)

Indeed,

|(1
2

∑
α

δκα∂
ph
λ

−bκλ)Φ|2 = |Φ|2(1
4

(
∑
α

δκα
∑
β

δκβ)(∂ph
λ
φ)2 −∑

α

δκα(∂λφ)bκλ+bκλ2)
= |Φ|2(

(∂ph
λ
φ)2 +bκλ2)

. (3.31)

In the last line we have imposed the Lorenz gauge so that the crossterms
vanish. The expression Eq. (3.30) looks rather awkward. Nevertheless there
is a concrete physical example where the minimal coupling has to be of this
form, namely the vortices in a disordered superconductor. There the sum-
mation causes all κ-components of the dual vortex current J V

κµ to contribute
to the current wµ. This will be argued extensively in chapter 5.

Again, one could be satisfied by the correct outcome for the Lagrangian
in gauge field components, always able to fall back on Eq. (3.23) when doubt
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arises. The specialization back to 2+1 dimensions is straightforward, by just
leaving out the κ-components, avoiding the summation altogether. However
it is not clear how to generalize to dimensions higher than four, but that is
of no practical concern. Finally, these gauge fields bκλ here are the same
as used throughout this chapter, contrary to the previous construction Eq.
(3.26).

3.3.3 Discussion

Exactly because the demise of the supercurrent is the defining feature of the
dual Higgs condensate, there is no automatic way to derive the expression in
terms of the dual gauge field. What is clear is that all of the gauge-invariant
components (namely bθφ, b⊥θ and b⊥φ) should be included and gain a Higgs
mass. We are free to rotate between these components, or redefine them as
we see fit. Therefore, even though the expressions Eqs. (3.26) and (3.30)
look very different, we know they contain the same physics as far as the
Lagrangian is concerned.

It may even be possible to define an explicit mapping between the two
formulations, which would clear up the confusion that is presented here. As
of yet I have not been able to find such a mapping. In the next section we
will see that naively proceeding from these formulation leads to two very
different interpretations of the dual vortex currents. Perhaps it is wisest to
accept both forms just as different models, to be called upon in the suitable
physical situation.

3.4 Vortices in the disordered phase

One of the appealing features of the vortex duality is that we have com-
plete control over the disordered side. Indeed, in dual language it is just a
Ginzburg–Landau theory of its own, with disorder parameter Φ, condensate
phase fluctuations φ and coupling to a gauge field bκλ. The disordered phase
is just a superconductor, albeit in 3+1 dimensions one with 2-form gauge
fields.

This raises the immediate question of whether there are also dual topo-
logical defects (dual Abrikosov vortices) in the disordered phase. Since we
have at hand just the theory of a (dual) superconductor, the answer is: of
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course there are. We already alluded to this in §2.4.6. But remembering
that the disordered state is in fact the Bose-Mott insulator the appearance
of such vortices is actually quite surprising. The Bose-Mott insulator is gen-
erally regarded as an exceedingly boring state of matter, where all particles
are localized, everything is gapped, and there are only the two propagat-
ing doublon and holon modes. Even the dynamic spin system active in the
fermionic Mott insulator is absent here.

Apparently, the state is richer and does allow for vortex excitations. For
clarity I shall refer to these as Mott vortices for now on. The reason that they
have not been suggested before is that usually one considers the so-called
atomic or strong-coupling limit U /t À 1. But just as for superconductors,
things become more interesting when the condensate is not so strong. Recall
that Abrikosov vortices can appear when the penetration depth λ exceeds
the coherence length, and the penetration depth is inversely proportional to
the superfluid density λ2 ∼ 1/|Ψ|2, see §2.1.2. Similarly, we expect vortices to
arise in the Mott insulator when the (dis)order parameter |Φ| is not very big,
so that the dual penetration depth λ̃ is large. The order parameter shrinks
when one approaches the phase transition, and that would be the first place
to look for them. We will have much more to say about these matters in
chapter 5. Here we just show how the vortices arise in the calculation.

3.4.1 Dual vortex current

Vortices arise when there is a non-trivial winding of the dual phase field,∮
dφ=

∮
dxµ∂µφ= 2πN. (3.32)

As before, we split the phase field in a smooth and a multivalued part, φ =
φsmooth +φMV. Then we define the dual vortex current as (cf. Eq. (2.17)),

J V
κλ = εκλµν∂ph

µ ∂
ph
ν φMV. (3.33)

These vortices communicate via the dual currents, the fluctuations in the
Mott order parameter (just as the original superfluid vortices interact via the
zero sound mode). What is the nature of these vortices? The well-understood
central physical quantity in all of our treatment here is the supercurrent wµ.
If we can see how the dual vortex current couples to the supercurrent, we
have a clear interpretation of what the dual vortices really are.
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It is possible to derive this relationship at the level of the Lagrangian,
by introducing new variables that couple to the multivalued phase in the
disordered phase. Then we define yet another gauge field that couples to the
Mott vortices, and integrating out that gauge field will show the coupling
between the Mott vortices and the original supercurrent. But we shall not
take this route because i) the calculation is rather involved and yields no
further insight, and ii) the current will seem to couple non-locally to the
Mott vortices, while it is in fact a local coupling. It is more fruitful to simply
inspect the equations of motion, and identify the physical properties from
there.

3.4.2 Equation of motion: orthogonal projection

When taking the minimal coupling prescription of Eq. (3.26), the action
reads,

L = 1
2

g(εµνκλ∂
ph
ν bκλ)2 + 1

2
|(∂µ− iεµ∥κλbκλ)Φ|2 + ã

2
|Φ|2 + β̃

4
|Φ|4. (3.34)

Varying with respect to bκλ leads to the equation of motion,

− gεκλνµ∂
ph
ν wµ+Φ2

∞εµ∥κλ(∂ph
µ φ−εµ∥ρσbρσ)= 0. (3.35)

Acting on this expression with the operator εαβκλ∂
ph
β

, contracting repeated
indices and substituting (3.33) leads to,

g∂2wµ−Φ2
∞wµ =−Φ2

∞εµ∥κλJ
V
κλ. (3.36)

This is to be compared to the Ginzburg–Landau expression Eq. (2.6) for
the magnetic field sourced by an Abrikosov vortex. Without any vortices
the right-hand side is zero, and the left-hand side indicates that the super-
current decays exponentially over characteristic length scale

√
g/Φ2∞, which

is the expected behaviour for a (Mott) insulating state. Conversely, a Mott
vortex current J V

κλ
is here a source of supercurrent locally. If we neglect the

first term, this expression says that there is current wherever there is a Mott
vortex.

Perhaps puzzling at first sight, this makes perfect sense: recall that a
superconductor expels magnetic field, but an Abrikosov vortex consists of
magnetic field permeating the superconductor through tubes, or rather vor-
tex lines. Here the “type-II Mott insulator” expels current, but the current
can penetrate locally through a vortex line.
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This equation also illustrates our earlier objections to the minimal cou-
pling prescription Eq. (3.26). On would expect that the current flows parallel
to the vortex line, just as the magnetic field does in a type-II superconductor.
In chapter 5 we see that this is indeed the case. However, Eq. (3.36) would
set the current orthogonal to the vortex world sheet. One could argue that
the vortex world sheet components are just wrongly defined, and need an
additional rotation. However, one then loses the intuitive identification of
the relation to the multivalued phase in real space as in Eq. (3.33). Further-
more, there is no natural way to perform this additional rotation. This form
does however generalize to any higher dimension.

3.4.3 Equation of motion: sum over vortex components

When taking the minimal coupling prescription of Eq. (3.30), the action
reads,

L = 1
2

g(εµνκλ∂
ph
ν bκλ)2 + 1

2
|(1

2

∑
α

δακ∂λ− ibκλ)Φ|2 + ã
2
|Φ|2 + β̃

4
|Φ|4. (3.37)

Varying with respect to bκλ leads to the equation of motion,

− gεκλνµ∂
ph
ν wµ+Φ2

∞
(1
2

∑
α

(δακ∂λφ−δαλ∂κφ)−bκλ
)= 0. (3.38)

Acting on this expression with the operator εαβκλ∂
ph
β

, contracting repeated
indices and substituting (3.33) leads to,

g∂2wµ−Φ2
∞wµ =−Φ2

∞
∑
κ

J V
κµ. (3.39)

The left-hand side is the same as Eq. (3.36), but the right-hand side is rather
different. The interpretation is as follows: a vortex line J V

κµ sources (su-
per)current in the direction µ. All of the components κ contribute to this
current. This may seem awkward now, but has a very natural interpretation
when it represents a moving line of electric current. We will elaborate on
this extensively in §5.2.

Either form of the dual vortex current, Eqs. (3.36) and (3.39), clearly
couples to supercurrent. In this regard the dual vortices exactly mirror the
behaviour of Abrikosov vortices in type-II superconductors: just as super-
conductors expel magnetic field, the Bose-Mott insulator expels supercur-
rent. And just as Abrikosov vortices let magnetic field permeate the super-
conductor in local flux lines, the dual vortices are lines of supercurrent that
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superfluid

superfluid

Figure 3.1: Proposed setup to show vortex lines in the Bose-Mott insulator. The
Mott insulator (white) should be sandwiched between two regions with superfluid
order (grey). The order parameter extends outside of the superfluid itself to pierce
through the Mott insulator, in the form of vortex lines.

penetrate the insulator. Therefore we name such systems “type-II Mott insu-
lators”. The correspondence is even more striking when it is a Mott insulator
made out of Cooper pairs, and that is the subject of chapter 5.

3.4.4 Tunnelling experiment

Because the superfluid is charge-neutral, the range of experimental tools
that can probe these materials is limited. On the other hand, cold atoms on
an optical lattice can be tuned at will to the superfluid to Mott-insulating
state [50]. Furthermore, Josephson tunnelling between two superfluids has
also been observed [65, 66]. Let us therefore sketch the outlines of an exper-
iment that would create vortices in a Bose-Mott insulator.

A Josephson junction is a weak link, that can be an insulating barrier,
a strip of vacuum, or just a constriction between to ‘reservoirs’ of super-
conducting order. As mentioned above, the same phenomenon has been ob-
served in superfluids with different chemical potential. We now propose to
make the barrier out of a Bose-Mott insulator near the quantum phase tran-
sition, see figure 3.1. In the regular Josephson effect, the supercurrent would
flow homogeneously through the barrier, the energy cost of which grows with
the volume of the barrier. But in type-II Bose-Mott insulator, the system
can let the supercurrent flow through vortex lines, the energy cost of which
grows with barrier width only. It is exactly like preferring the Abrikosov lat-
tice above the fully magnetized Meissner state in type-II superconductors.

In the charged Mott insulator there is a plethora of possibilities to prove
the existence of the Mott vortices, see §5.6.
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3.4.5 Duality squared

For completeness, let us show that the “duality squared” procedure of §2.4.6
can also be repeated in 3+1 dimensions. As for now, I only know how to do
this for the “orthogonal projection” minimal coupling prescription Eq. (3.26).
But we argued that this must capture the essential physics, so we shall pro-
ceed accordingly.

We will write down only the most important steps. The minimal coupling
term is linearized,

L = 1
2

g(εµνλκ∂
ph
ν bκλ)2 − 1

2
1
Φ2∞

v2
µ−vµ(∂µφ−εµ∥κλbκλ). (3.40)

The condensate phase φ is split into a smooth and a multivalued part. The
smooth part is integrated out to give the constraint ∂ph

µ vµ = 0, which is en-
forced by expressing vµ = εµνκλ∂

ph
ν zκλ. After several partial integrations and

rescaling bκλ→ 1p
g bκλ, this leads to,

L = 1
2

(εµνκλ∂
ph
ν bκλ)2 − 1

2
1
Φ2∞

(εµνκλ∂
ph
ν zκλ)2 + zκλJ V

κλ−
1p
g

zκλεκλµν∂
ph
ν εµ∥ρσbρσ,

(3.41)

where J V
κλ

= εκλµν∂
ph
µ ∂

ph
ν φMV is the Mott vortex current. For contractions in

the last term we use the identity

εκλµ∥εµ∥ρσ = δκρδλσ−δκσδλρ , (3.42)

where the indices on the right-hand side take values orthogonal to ∥ only.
The coupling of the z-gauge field to the b-gauge field then looks like,

1p
g

zκλεκλ∥µ(εµνρσ∂
ph
ν bρσ)= 1p

g
zκλεκλ∥µwµ. (3.43)

The gauge field bρσ only shows up in the combination wµ = εµνρσ∂
ph
ν bρσ,

which can be integrated out to yield a Meissner term for zκλ,

L =−1
2

1
Φ2∞

(εµνκλ∂
ph
ν zκλ)2 − 1

2g
z2
κλ+ zκλJ V

κλ, (3.44)

which is valid in the Lorenz gauge ∂
ph
κ zκλ = 0. Here we have a theory of

Abrikosov vortex strings J V
κλ

that have short-range interactions with each
other through the exchange of massive two-form fields zκλ. When vortices
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proliferate, they are described by a collective field Ψ, minimally coupled to
the gauge field that we have rescaled zκλ→Φ∞zκλ,

L =−1
2

(εµνκλ∂
ph
ν zκλ)2 − Φ

2∞
2g

z2
κλ

− 1
2
|(∂ph

µ − iΦ∞εµ∥κλzκλ)Ψ|2 − 1
2
α|Ψ|2 − 1

4
β|Ψ|4. (3.45)

Through the phase transition, the Mott vortices destroy the dual supercon-
ducting order so that Φ∞ vanishes. Then the gauge field zκλ decouples and
we are left with the action of a neutral superfluid Eq. (2.1), exactly our
starting point. In this way duality2 = 1 also holds in 3+1 dimensions.

3.5 Discussion

This chapter comprises the main result of this thesis: the vortex-boson du-
ality that is so well known in condensed matter physics holds in (at least)
all dimensions larger than two. The reason is that the fundamental physical
quantities are the Noether currents in the ordered phase, and their con-
servation law imposes exactly one constraint. In the disordered phase the
vortex condensate enters as a featureless fluid, whose compression mode is
the additional single degree of freedom, simultaneously responsible for the
demise of the currents, releasing the constraint. Related to this, all correla-
tion functions become short-ranged due to the disorder induced by the vor-
tices. This last statement has a very nice interpretation in terms of emergent
gauge symmetry, which is the topic of chapter 6.

Even if the currents are the principal objects, the gauge fields that can
be defined because of the conservation law have a natural interpretation as
the force carriers of the interaction between vortices. They are the dual of
the Goldstone modes. Precisely because the gauge fields couple to the vor-
tices, they also couple minimally to the vortex condensate disorder parame-
ter field, and are therefore instrumental in the (mathematical) construction
of the dual phase transition. We have noticed that there are at least two
ways to define a suitable minimal coupling, which seem equivalent at the
level of the Lagrangian. But we will see in §5.2 that the precise form is of
importance. There is room for improvement here, also considering that our
proposals Eqs. (3.26) and (3.30) are not strictly gauge invariant.

These details left aside, the formalism developed here is general and
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should be applicable in more complex situations than the simple U(1)-sym-
metry here. The next two chapters are about charged superfluids, supercon-
ductors, in which this global symmetry is coupled to a vector gauge field, the
photon. Chapter 6 alludes to its relevance for quantum liquid crystals. At
the end of the thesis, chapter 7, I will contemplate some further susceptible
cases.

3.A Degrees of freedom counting

We have determined the degrees of freedom by explicit examination of the
action and propagators. There is a more general and formal way of deriving
the propagating degrees of freedom given an action (Coulomb forces do not
fall into this general scheme). It precisely determines the gauge degrees of
freedom and the influence of constraints. This is exhaustively explained in
Ref. [37]. We will very briefly discuss this procedure for free Abelian 1- and
2-forms (op. cit. ch.19).

The Maxwell Lagrangian in d spacetime dimensions is,

L =−1
4

F2
µν =−1

2
(∂µAν−∂νAµ)2. (3.46)

The vector field Aµ has d components, so we start out with d degrees of
freedom. The action is invariant under gauge transformation Aµ → Aµ +
∂µε; furthermore this gauge transformation corresponds to a so-called first-
class constraint, which means it removes two degrees of freedom in total.
The reason for this is that we fix the vector field not only in space at one
moment in time (a time slice), but also its evolution using ∂tε. Another point
of view is that the temporal component At is set by the scalar electrostatic
potential, which is zero everywhere for a free field; the temporal component
is completely fixed by the equation of motion ∇2 Aτ = 0.

Therefore a free vector field in d dimensions has d−2 propagating degrees
of freedom, exactly the transversal polarizations of the photon.

The generalization of (3.46) for an anti-symmetric 2-form field bµν in 4
dimensions is,

L =−1
2

(εµνκλ∂νbκλ)2. (3.47)

The field has six independent components. The action is invariant under
gauge transformations,

bκλ(x)→ bκλ(x)+∂κελ(x)−∂λεκ(x). (3.48)
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Here ελ(x) is any smooth real vector field with 4 components; but there are
only three independent gauge transformations since δλκ(∂κελ−∂λεκ) = 0 al-
ways. As explained above each gauge transformation removes two degrees
of freedom. The transformations are however redundant, since another vec-
tor field,

ε′λ(x)= ελ(x)+∂λη(x), (3.49)

where η is any smooth scalar field gives exactly the same transformation
in (3.48). A free 2-form field in 4 dimensions therefore has 6− (6− 1) = 1
propagating degree of freedom.

3.B Current conservation in electromagnetism

We apply the conservation-of-current considerations to the most famous ex-
ample of the Higgs mechanism: the photon field in 3+1 dimensions coupled
to a complex scalar condensate field. This is variously known as the Abelian–
Higgs model, Ginzburg–Landau theory or scalar QED. It describes the basic
physics of the electromagnetic field in the vacuum and in a superconductor.

The electromagnetic field is a vector field Aµ(x). Its dynamics is governed
by the field strength Fµν = ∂µAµ−∂νAµ and the Maxwell action,

S =
∫

−1
4

F2
µν. (3.50)

The field strength is invariant under the gauge transformation Aµ→ Aµ+∂µε.
The vector field with gauge fix ∂µAµ = 0 has three degrees of freedom: the two
transversal photon polarizations Aθ and Aφ, and the part mediating static
Coulomb interactions A⊥.

The field strength Fµν has six independent components and is therefore
overcounting the degrees of freedom. This can be cured by imposing the
homogeneous Maxwell equations or Bianchi identities,

dF= εµνκλ∂νFκλ = 0. (3.51)

In (∥,⊥,θ,φ)-coordinates (see figure 1.3) this implies that the only non-zero
components of the field strength are F∥ν, which we collect in a vector field fν ≡
F∥ν (the ‘current’). From this point we act as if the field strength F∥ν were not
necessarily anti-symmetric; still the longitudinal component is set to zero as
long as there are no external sources: ∂ν fν = ∂νF∥ν = Jext

∥ → 0 (inhomogeneous
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Maxwell equations). The other three components of fν correspond to the
three physical degrees of freedom identified above via,

fν = pAν. (3.52)

Now we couple the photon field to a complex scalar Higgs field via |∂µΨ| →
|(∂µ− iAµ)Ψ| as in (2.33). The Higgs field describes a condensate destroying
the current conservation, so that the longitudinal component f∥ is released.
Indeed, from (3.52) this corresponds to the longitudinal polarization of the
photon: f∥ = pA∥. In terms of the field strength, it is seen to correspond to the
symmetric component F∥,∥, which is normally not taken into consideration.
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