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Chapter 2

Preliminary material

Here we present some material that is not at all new, but on which later
parts of this work are based. We only include discussion as far as is needed
to understand the following chapters of this work.

2.1 The Ginzburg–Landau model

Here we shall very shortly recap the overly familiar Ginzburg–Landau mo-
del of superconductivity, because all of the following work will use the same
order parameter language. As such it is good to set the stage such that
one can always compare with well-established results, see for instance Refs.
[28, 51].

2.1.1 Superfluid

In 1937 Lev Landau proposed a phenomenological field-theoretical model
that was capable of capturing the essential features of continuous or second
order phase transitions. It centred around the concept of an order parameter
Ψ(x), which is a function on every point in space, i.e. a field. It is capable
of distinguishing between ordered and disordered phases: in the disordered
phase, its average or expectation value is zero 〈Ψ〉 = 0, while in the ordered
phase it is non-zero 〈Ψ〉 =Ψ0 6= 0. Landau established the simplest form that
can show this behaviour,

E =
∫

d3x
1
2
|∇Ψ|2 + 1

2
α|Ψ|2 + 1

4
β|Ψ|4. (2.1)
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HereΨ is a complex scalar field. The first term represents fluctuations in the
order parameter, and can therefore be regarded as the kinetic energy. The
second term is as a mass for the order parameter, and the third causes the
energy to always be bounded from below. When α > 0 the potential energy
is minimized by |Ψ| = 0 and we are in the disordered phase. But when α< 0,
the potential energy has minima at |Ψ| = ±√|α|/β. This is sometimes called
the ‘Mexican hat potential’.

Because Ψ = |Ψ|eiϕ, the phase can still freely fluctuate, and in the so-
called London limit where the amplitude is fixed everywhere |Ψ|(x)=Ψ0, the
energy reduces to,

E =
∫

d3x
1

2g
(∇ϕ)2, (2.2)

modulo constant terms, and g poses as the coupling constant. This very sim-
ple model actually describes the dynamics of a superfluid, with the massless
zero sound mode ϕ and massive density fluctuations |Ψ|.

The parameter α is usually taken as a function of temperature, chang-
ing sign at the critical temperature Tc. This model then also contains the
scaling laws at the critical point up to the mean field level, and as such
partly explains universality, the phenomenon that microscopic details are
often unimportant in capturing the collective behaviour of many-body sys-
tems.

2.1.2 Superconductor

It was not until 1950 that this powerful concept was extended to charged
superfluids, i.e. superconductors with the help of Vitaly Ginzburg. This was
done by minimal coupling to the electromagnetic gauge potential,

E =
∫

d3x
ħ2

2m∗ |(∇− i
e∗

ħ A)Ψ|2 +α|Ψ|2 + 1
4
β|Ψ|4 + 1

2µ0
(∇×A)2. (2.3)

Here m∗ and e∗ are the mass and the electric charge of the charge carriers
(Cooper pairs as we know now). From this energy functional, we can derive
the Ginzburg–Landau equations of motion,

− ħ2

2m∗ (∇− e∗

ħ A)2Ψ+αΨ+β|Ψ2|Ψ= 0 (2.4)

1
µ0

∇×∇×A− ħe∗

m∗ |Ψ|2(∇ϕ− e∗

ħ A)= 0 (2.5)
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From the first equation, when there are no external electromagnetic fields
present, one can derive the coherence length ξ = ħ2

m∗|α| as the typical length
scale over which the value of |Ψ|(x) still fluctuates.

By action with the curl operator ∇× on the second equation, using the
definition of the magnetic field B =∇×A and the Maxwell equation ∇·B = 0,
one finds,

λ2∇2B−B=− 1
2π
Φ0(∇×∇)ϕ. (2.6)

Here we defined the London penetration depth λ =
√

m∗
µ0|Ψ|2 e∗2 and the flux

quantum Φ0 = h/e∗. When the phase field ϕ is smooth the right-hand side
vanishes, and this equation then tells us that the magnetic field is expelled
from the superconductor, as it falls off exponentially over length scale λ. This
is called the Meissner effect. We also identify,

Js =−δE
δA

= ħe∗

m∗ |Ψ|2(∇ϕ− e∗

ħ A), (2.7)

as the supercurrent. Then Eq. (2.5) can also be written as,

∇×B=µ0Js, (2.8)

which is the non-dynamic part of the Ampère–Maxwell law. Furthermore,
acting with the curl operator on Eq. (2.7), we find the London equation,

∇×Js =− 1
µ0λ2 B. (2.9)

where we again have used (∇×∇)ϕ= 0 for a smooth phase field.
It was Alexei Abrikosov’s great insight [52] that when λ> ξ/p2, it is ener-

getically more favourable to let the magnetic field penetrate through vortex
lines than to expel it altogether. Such a material is called a type-II super-
conductor. We will see in the next section that in the presence of vortices,
ϕ becomes multivalued, and then we should identify (∇×∇)ϕ= 2πδ(2)(x)N, a
2-dimensional delta function in the plane orthogonal to the vortex line times
the winding number N (see also §2.2.3). Eq. (2.6) then shows that the vortex
line is magnetic field, that falls off exponentially away from the centre.

We can take a line integral of (2.5) deep within the superconductor where
B = 0 over a closed contour C around a vortex line. We find using Stokes’
theorem,∫

S
dS ·B=

∮
C

dx ·A= 1
2π
Φ0

∮
dx ·∇ϕ=Φ0

∫
S

dS δ(2)(x)=Φ0N. (2.10)
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Here S is the area enclosed by the contour C . Thus we see that the magnetic
flux through S and therefore through the vortex line is quantized in units
of Φ0.

The electrodynamics of Abrikosov vortices is derived from a relativistic
field theory in chapter 4.

2.2 Topological defects

Once one finds oneself in an ordered state, a natural question is how it can be
made disordered. Disorder is caused by defects, a simple example of which
would be an interstitial atom or ion in an otherwise perfectly regular crystal
lattice. Such defects cost energy to make, but usually only a fixed amount in-
dependent of the system size. As such their disordering capabilities are also
not that great. It turns out that most forms of disorder are due to topological
defects, the energy of which increases with the system size. They are thus
energetically very expensive, and will in strongly ordered systems only ap-
pear in confined combinations, often pairs, which are said to be topologically
neutral. Increasing disorder amounts to deconfining such pairs (see §1.1.4).

To understand what topological defects are and how they are classified
for a specific ordered medium, one needs the mathematical machinery of
homotopy theory. It explores the concept of continuity, which turns out to
be the property of relevance in describing ordered states and the topological
defects they can support. We shall not delve deeply into these matters; a
good introduction is found in the review by David Mermin [53]. Here we will
quote some of the results as needed for the Abelian U(1)-symmetry we are
exclusively interested in.

2.2.1 Order parameter space

As explained above in §2.1.1, an order parameter is a continuous function on
every point in space. If there are long-range correlations between the values
of this function, the state is said to be ordered. The domain of the function
is called “order parameter space” M , and it can be a number, vector or any
continuous manifold. We are interested in superfluids and superconductors,
with order parameter a complex scalar field Ψ = |Ψ|eiϕ. In the completely
ordered state the amplitude obtains a so-called vacuum expectation value
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(a) Phase ordered

C

(b) Single vortex (c) Vortex pair

Figure 2.1: Configurations of the phase field in the plane. (a) A trivial state with
the phase perfectly ordered. (b) Configuration with a N = 1 vortex present. Taking
the line integral around the contour C will give 2π. The contour and therefore the
hatched area are arbitrary along as they comprise the vortex core. (c) A vortex–anti-
vortex pair. Far away from these vortices the phase is ordered, and therefore this
configuration is topological neutral.

(VEV) that is non-zero and constant throughout the medium. The phase of
Ψ has long-range correlations. Small fluctuations around this VEV cost some
energy but vanishingly little as the fluctuations die out. These fluctuations
are actually the Goldstone modes, and it is easy to see that they can only
arise for continuous order parameters, as there is no such thing as a small
fluctuation in a discrete set. The Goldstone modes communicate the rigidity
of the order parameter.

Let us first take the example of the U(1) order parameter to illustrate the
principles. When the amplitude |Ψ| has obtained an expectation value, then
only the phase ϕ is left, which can be pictured as an arrow on every point in
space. If the system is spatially 2-dimensional, the order parameter space
can be conveniently drawn just on real space. Consider the configurations in
figure 2.1. Without a defect present, the phase is perfectly ordered, barring
small fluctuations. When however the phase around a closed contour makes
a 2π rotation, there must be a singular point where the phase is not well
defined. This point is the topological defect, called a vortex for a U(1)-field.
Wherever we draw this contour, the phase change is always 2π, which is the
reason for the denomination ‘topological’. We also see that a configuration of
a vortex and an anti-vortex together is topologically neutral.

2.2 Topological defects 21



2.2.2 Homotopy groups

In the general case, due to thermal or quantum fluctuations, the system is
free to explore part of configuration space by small perturbations around the
present, ordered, state. As such we can define configurations to be equiva-
lent if they differ by continuous deformations only. All of configuration space
is then divided up in equivalence classes, and one class cannot be trans-
formed into another continuously. There is one trivial class, and all the oth-
ers are said to contain topological defects. It turns out that the equivalence
classes are classified by the homotopy groups of the order parameter space.
Mathematically, the nth homotopy group πn(M ) has as elements all the dif-
ferent ways in which an n-sphere Sn can be mapped onto the space M . For
instance the first homotopy group (or fundamental group) π1(M ) classifies
how ‘lassos’ can or cannot be contracted into a point.

From the drawings in figure 2.1, we see that such lassos characterize
point defects in a 2-dimensional plane. But in 3 dimensions, we would be
able to pull the lasso ‘over’ the singular point. If we had a singular line, the
lasso cannot be contracted. For this reason, the n-th homotopy group classi-
fies D−n−1-dimensional defects in D-dimensional space. Thus π1 classifies
point defects in 2D and line defects in 3D; and π2 classifies point defects in
3D. Now it is a result of homotopy theory that πn

(
U(1)

)
is isomorphic to the

trivial group except for n = 1, where it is the set of integers representing the
winding numbers. Therefore the only topological defects possible are point
defects in 2D and line defects in 3D, both characterized by the winding num-
ber N.

2.2.3 Multivalued fields

Almost all of the properties of vortices (or topological defects in general) can
be ascribed to the singular point or line in the vortex core. The singularity is
by definition not well-behaved analytically. Yet it turns out to be very fruitful
to try and apply field-theoretical techniques as much as we can. In fact this
is the central topic of Kleinert’s textbooks [28, 41, 42]. For us it suffices to
establish the following identity. The phase winds in units of 2π around the
vortex core, by traversing contour C . Thus the change of of the phase adds
up to 2πN, ∮

C
dϕ=

∮
C

dxm ∂mϕ= 2πN. (2.11)

22 Chapter 2. Preliminary material



Let S be the area enclosed by C . In 3D it has a normal k that is parallel to
the vortex line. Then we formally apply Stokes’ theorem,

2πN =
∮
C

dxm (∂mϕ)=
∫
S

dSk εknm∂n(∂mϕ). (2.12)

Thus, if there is a vortex present N 6= 0 the left-hand side is not zero, and we
must conclude that the derivatives of the singular field ϕ do not commute.
Therefore we are led to identify,

εknm∂n∂mϕ(x)= 2πNδ(2)
k (x). (2.13)

Here δ(2)
k (x) is a 2-dimensional delta function in the plane orthogonal to k

centred around the vortex core. Since away from the core the phase field is
smooth, the non-vanishing contribution is indeed purely attributable to the
singular point itself. In the sequel, we shall often split the phase field in a
smooth and a multivalued part,

ϕ=ϕsmooth +ϕMV, (2.14)

where εknm∂n∂mϕsmooth(x) = 0 ∀x, whereas the multivalued part satisfies the
relation above. Even though the derivatives of a multivalued field do not
commute, it does satisfy the integrability condition, [28, 42],

∂k(εknm∂n∂mϕ)= 0. (2.15)

Regarded as a physical field, we define,

JV
k = εknm∂n∂mϕ= 2πNδ(2)

k (x), (2.16)

as the vortex current. It is conserved ∂k JV
k = 0, because of the integrability

condition above. These vortex currents are the central topic of this thesis.

2.2.4 Vortex world lines and world sheets

We have seen that for U(1)-fields there are pointlike vortices in 2-dimensional
and linelike vortices in 3-dimensional space. Now we regard these objects as
physical entities as moving in spacetime. The 2D vortex point (vortex pan-
cake in superconductivity parlance) then traces out a world line in space-
time, just as any particle would. But the 3D vortex line traces out a world
sheet. This is pictured in figure 2.2. In 2+1d the direction orthogonal to
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JV
κJV

t
JV

k

x

yt

(a) Vortex world line

x

yt

κλ

(b) Vortex world sheet

Figure 2.2: Vortices in 2+1d and 3+1d (a) A point vortex will trace out a world line.
The line element JV

κ can be decomposed in a temporal density part JV
t and a spatial

current part JV
k . (b) In 3D we have a vortex line, here in the xy-plane, since the

third spatial dimension cannot be drawn. The world sheet is built up out of surface
elements JV

κλ
. The temporal components JV

tl represents the density of vorticity of the
line along l, and the spatial components JV

kl are the flow in direction k of the line
along l.

the plane is always the time direction, but in a relativistic treatment we
consider the vortex current JV

κ = εκνµ∂ν∂µϕMV where the indices take values
in (t, x, y). JV

κ (x) is just the line element of the vortex world line at x. The
temporal component JV

t is the density of vorticity defined in Eq. (2.16). The
spatial components are the ‘current’ related to this density, such that the
conservation law ∂κJV

κ = 0 is in fact the continuity equation ∂t JV
t +∂k JV

k = 0.
It is now obvious how to generalize to 3+1 dimensions. The singular field

ϕMV has the same properties as before, and since in four dimensions the Levi-
Civita symbol has four indices, our vortex current becomes an antisymmetric
2-form field,

JV
κλ = εκλνµ∂ν∂µϕMV. (2.17)

The field JV
κλ

(x) locally represents a surface element of the vortex world
sheet, defined by two non-parallel directions κ and λ. Similar as before,
the temporal components JV

tl are the density of vorticity of the vortex line
along l. A spatial line integral around this component will result in 2πN; the
normal of the area enclosed by this contour is set by the two directions t and
l. The purely spatial components JV

kl represent the flow in the direction k
of the vortex line along l. There are three independent continuity equations
∂κJV

κλ
= 0.
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This interpretation of the vortex current as field-theoretical objects will
turn out to be especially useful for vortices in superconductors (chapter 4)
and Mott insulators (chapter 5).

2.3 The Bose–Hubbard model

The study of quantum phase transitions concerns the collective behaviour of
quantum matter at zero temperature. In many respects they resemble ther-
mal phase transitions where one just has to replace thermal fluctuations by
quantum zero-point fluctuations. Yet time plays a special role, and it is use-
ful to consider extremely simple models that do feature the basic properties
of quantum phase transitions. The simplest one would be the quantum Ising
model where the dynamical variable can take only two values. One step fur-
ther is to take a continuous variable and this is called the XY -model or the
quantum rotor model. These systems are studied in depth in Sachdev’s text-
book [17]. It turns out that the latter model in the ordered state is just the
quantum field theory of a free scalar field, and as such describes Goldstone
modes such as the phase mode in a superfluid. The quantum phase transi-
tion arises when this phase, ordered in the superfluid, fluctuates so wildly
that the long-range correlations disappear. We will see in the next section
that this is equivalent to the formation of a condensate of vortices.

Here we will show how another simple model, called the Bose–Hubbard
model [54], reduces to the quantum XY -model. The reason for this is twofold.
Firstly, this model describes bosons hopping on a lattice but repelling each
other locally. This is a realistic approximation of some real-world systems,
and is in fact almost perfectly realized in cold atom experiments in opti-
cal lattices [50]. Furthermore the phase dynamics is also seen in arrays of
Josephson junctions [55, 56]. The second reason is that it shows explicitly
that the state across the phase transition is a Bose-Mott insulator. There-
fore the disordered state after unbinding of the vortices must be equivalent
to this insulating state. We will use this argument in chapter 3 to lead us to
the understanding of the vortex unbinding transition in higher dimensions.

2.3 The Bose–Hubbard model 25



2.3.1 Bose–Hubbard Hamiltonian

We will start out from a simple Hamiltonian model for lattice bosons, and
map it onto the Euclidean action of a continuum field theory, which is the
most useful form for the quantum phase transition. The Hamiltonian of the
Bose-Hubbard model on a D-dimensional hypercubic lattice is,

HBH =− t
2

∑
〈i j〉

(b†
i b j +b†

jbi )−µ
∑

i
ni + U

2

∑
i

(ni −1)ni. (2.18)

Here b†
i and bi are boson creation and annihilation operators on lattice site i,

that satisfy the commutation relation [bi ,b
†
j] = δi j. The sum over 〈i j〉 is over

nearest-neighbour sites. The number operator is ni = b†
i bi . Furthermore,

the energy scales are the boson hopping t, the on-site repulsion U and the
chemical potential µ. We shall assume that the chemical potential is tuned
so that there is a large integer number n0 of bosons per site. We call this
“zero chemical potential”. The commutation relation for n and b is,

[ni,b j]= [b†
i bi ,b j]= 0+ [b†

i ,b j]bi =−δi jbi . (2.19)

Similarly [ni,b
†
j]= δi jb

†
i . To recognize quantum phase dynamics consider the

substitution,

b†
i =

p
nieiϕi , bi = e−iϕi

p
ni. (2.20)

Here ϕi is a real scalar variable. The commutation relation for n and ϕ

follows,

[ni,b j]= δi jbi ⇒ [ni,e−iϕ j
√

n j]=−δi je−iϕ j
√

n j

⇒ [ni,e−iϕ j ]=−δi je−iφ j . (2.21)

This commutation relation corresponds to [ni,ϕ j]=−iδi j, which one can check
via the Taylor expansion of the exponential. In this way we have switched
from a description in terms of the conjugate variables b and b† into the con-
jugate variables n and ϕ. Substituting this definition in Eq. (2.18) leads
to,

H =−J
∑
〈i j〉

(1−cos(ϕi −ϕ j))+ U
2

∑
i

(ni −1)ni. (2.22)

Here we have defined J = tn0 and added a constant term for later conve-
nience. The physics of the weak- and strong-coupling limits is immediately
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clear: for large t/U, we have a superfluid where spatial fluctuations in the
phase ϕ are very costly; for small t/U the on-site repulsion dominates, the
bosons spread out evenly to minimize U

∑
i n2

i and are thereafter confined to
their lattice sites: the Mott insulator.

2.3.2 Legendre transformation and continuum limit

Since we are pursuing a relativistic quantum calculation, we shall move
from a Hamiltonian to a Lagrangian formalism. The commutation rela-
tion [ϕi,n j] = iδi j is to be compared to the canonical commutation relation
[ϕi,π j]= iħδi j. We can therefore regard as the canonical momentum π j =ħn j.
The velocity is defined by,

∂tϕ j = ∂H
∂π j

= U
ħ2π j. (2.23)

From this we find the Lagrangian by Legendre transformation,

L =∑
i
πi∂tϕi −H = ħ2

2U

∑
i

(∂tϕi)2 − J
∑
〈i, j〉

(
1−cos(ϕi −ϕ j)

)
, (2.24)

which also has units of energy. Now we can take the continuum limit in D
space dimensions,

aD ∑
i
7→

∫
dD x, ϕi −ϕ j → a∇ϕ(x), (2.25)

where a is the lattice constant. After this and expanding the cosine to lead-
ing order we find,

L = 1
aD

ħ2

2U

∫
dD x (∂tϕ)2 − J

2
1

aD

∫
dD x a2(∇ϕ)2. (2.26)

The partition function is Z = ∫
Dϕ ei/ħS, with S the action,

S =
∫

dt L = 1
aD

∫
dtdD x

[ ħ2

2U
(∂tϕ)2 − J

2
a2(∇ϕ)2

]
. (2.27)

Thus, the Bose-Hubbard model at zero chemical potential is equal to the
XY -model. We proceed to imaginary time t = iτ to give the partition function
with the Euclidean action Z = ∫

Dϕ e−
1
ħ SE where,

SE = 1
aD

∫
dτdD x

[− ħ2

2U
(∂τϕ)2 − J

2
a2(∇ϕ)2

]
≡

∫
dτdD x

1
2

Ja2−D [− 1
c2

ph

(∂τϕ)2 − (∇ϕ)2
]
. (2.28)
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2.3.3 Equivalence to superfluid/Mott insulator transition

This is to be compared with the quantum action for a superfluid (cf. Eq.
(3.13) in Ref. [54]),

SE =
∫

dτdD x
[− 1

2
ħ2κ(∂τϕ)2 − 1

2
ħ2 ρs

m∗ (∇ϕ)2
]
. (2.29)

Hence we identify the compressibility κ= 1
UaD , the superfluid density divided

by the boson mass ρs
m∗ = Ja2−D

ħ2 and the superfluid velocity cph = a
ħ
p

U J. Defin-
ing the relativistic derivative ∂ph

µ = ( 1
cph

∂τ,∇), we find a convenient form of the
action,

SE =
∫

dτdD x − 1
2

Ja2−D (∂ph
µ ϕ)2. (2.30)

One can worry what happened to the on-site repulsion term ∼ U? In fact,
in the relativistic picture everything is contained in the fluctuations of the
phase variable ϕ. In the superfluid the fluctuations are suppressed. But for
small values of J/U ∼ J2/c2

ph, the temporal correlations ∂τϕ fluctuate heav-
ily, signalling the arbitrary creation and annihilation of vortex excitations.
Thus, the destroying the superfluid takes us across the phase transition, and
the disordered superfluid is equivalent to the Bose-Mott insulating state.

Indeed, this model has two stable fixed points, separated by a continuous
phase transition governed by XY -universality in D+1 dimensions [17, 28, 32,
33, 54]. The scaling limit physics of the two stable states can be discerned by
inspecting the g ∼p

U /J → 0 (weak coupling) and g ∼p
U /J →∞ limits. In the

weak coupling limit the U(1) field breaks symmetry spontaneously and the
theory describes the superfluid state. The small fluctuations in the phase
field ϕ correspond either with a single Goldstone boson corresponding with
the zero sound mode of the superfluid, or with the spin-wave of the quantum
XY model. The strong coupling limit has an integer number of bosons n0 per
site as imposed by the choice of chemical potential. The effect of the hopping
will be to create a ‘doublon’ n0+1 and ‘holon’ n0−1 pair on two different sites
i and j: n0

i n0
j → (n0−1)i(n0+1) j. This will cost an energy U: the system turns

into a Bose-Mott insulator.

2.3.4 Emergent gauge invariance

The localization of the bosons implies a phenomenon that is well-known in
condensed matter physics [57, 58]. This simple Mott localization has in fact
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U

Figure 2.3: Cartoon picture of a Mott insulator. Because of the integer number of
particles per site, and their strong mutual repulsion, the ground state has the same
number of particles on each site. The Mott gap energy must be paid both for adding
and for removing a particle. An elementary excitation is creating a doublon–holon
pair; both the doublon and the holon can then propagate throughout the system with-
out further energy penalty. This is the doublet of gapped modes.

a profound consequence: it causes a ‘dynamical’ emergence of a gauge sym-
metry. The global U(1) symmetry controlling the weak coupling limit gets
‘spontaneously’ gauged into a compact U(1) local symmetry. In the super-
fluid b†

i →
p

n0eiϕi and the phase ϕi can undergo the global U(1) symmetry
transformation of the superfluid. However, in the strongly-coupled Mott in-
sulator the number operator of the bosons is sharply quantized on every site,

n̂i|Ψ(Mott)〉 = n0|Ψ(Mott)〉 (2.31)

and this in turn implies a gauge invariance under the multiplication by an
arbitrary phase αi,

b†
i → eiαi b†

i

bi → e−iαi bi

n̂i = b†
i bi → n̂i. (2.32)

This is the celebrated ‘stay-at-home’ U(1) gauge invariance that has played
a prominent role in the various gauge theories for high-Tc superconductivity
developed for the fermionic incarnation of the Hubbard model [58]. We will
return to this interesting feature in chapter 6.

2.3.5 Mode content of the Bose-Mott insulator

One can also immediately read off the nature of the collective modes of the
Bose-Mott insulator from the strong coupling limit. One can either remove
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or add a boson and the holon and doublon that are created can just freely
delocalize on the lattice giving rise to massive excitations with a mass 'U /2
given that the chemical potential is in the middle of the Mott gap (see Fig
2.3). The continuum theory we are dealing with requires that the length
scales are large compared to the lattice constant, a regime that is quite
different from the lattice cut-off regime exposed here. The continuum de-
scription becomes literal close to the quantum phase transition but given
adiabatic continuity we know that the strong coupling limits are still rep-
resentative for the mode counting and so forth. Starting close to the criti-
cal coupling on the Mott side, the Mott physics takes over from the critical
regime at the correlation length (or time). At larger scales the stay-at-home
gauge invariance takes over, although it now involves a volume with a di-
mension set by the correlation length. Accordingly, one will find the pair of
degenerate propagating holon/doublon modes which appear as bound states
that are pulled out of the critical continuum [31]. Similarly one finds on the
superfluid side of the quantum critical point the single zero sound Goldstone
boson at energies less than the scale set by the renormalized superfluid stiff-
ness that disappears at the quantum critical point.

The simple features we have discussed in this section are generic and
completely independent of the dimensionality of spacetime. Although per-
haps unfamiliar, they are easily identified in the context of the standard
Abelian-Higgs duality in 2+1d as discussed in the next section. In turn, they
will be quite helpful in giving a firm hold in our construction of the duality
in higher dimensions.

2.3.6 Charged superfluid

If we are interested in charged superfluids, i.e. superconductors, we must
minimally couple to the electromagnetic potential, or photon field. Now we
must recall that the gauge-covariant derivative acts on the superfluid order
parameter, which is a complex scalar field Ψ = p

ρseiϕ. Hence, the minimal
coupling prescription in the London limit (ρs constant), is,

|∂ph
µ Ψ|2 →|(∂ph

µ − i
e∗

ħ Aph
µ )Ψ|2 = ρs(∂ph

µ ϕ− e∗

ħ Aph
µ )2. (2.33)

Here e∗ is the electric charge of one boson, so of one Cooper pair. To preserve
gauge invariance, the temporal component of the gauge potential should
have the same velocity factor as the covariant derivative, and therefore we
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define Aph
µ = (−i 1

cph
V ,A). Then we include the Maxwell action for the dynam-

ics of the electromagnetic field, which is governed of course by the speed of
light c. Defining the electromagnetic field tensor Fµν = (∂µAν−∂νAµ) where
∂µ = ( 1

c∂τ,∇) and Aµ = (−i 1
c V ,A), the total action is,

SE =
∫

dτdD x
[− 1

2
Ja2−D (∂ph

µ ϕ− e∗

ħ Aph
µ )2 − 1

4µ0
F2
µν

]
. (2.34)

The identification of the dimensionful constant µ0 as the permeability of the
vacuum in units of N/A2 is accurate only in 3+1 dimensions, but that is
the case we will be mostly interested in anyway. We have established the
Euclidean action of the superconductor. The equations of motion obtained by
variation with respect to An are for instance (in real time, and substituting
Ja2−D =ħ2ρ/m∗),

1
c2 ∂t(−∂t An −∂nV )− 1

µ0
∂m(∂m An −∂n Am)− e∗ħρ

m∗ (∂mϕ− e∗

ħ Am)= 0, (2.35)

which is one of the Ginzburg–Landau equations.

2.3.7 Dimensionless variables

It is sometimes useful to rescale all variables to be dimensionless. For our
purposes this pertains especially to the charge of the dual gauge field (see
next section) which has to be 1 in these dimensionless units. Starting from
Eq. (2.34), we define the dimensionless variables denoted by a prime,

SE =ħS′
E, x = ax′, τ= a

cph
τ′, Am = ħ

e∗a
A′

m. (2.36)

We shall suppress the primes from now on. The dimensionless version of the
action Eq. (2.34) reads,

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ− Aµ)2 − 1

4µ
F2
µν. (2.37)

Here the coupling constants are,

1
g
= Ja

ħcph
,

1
µ
= ħaD−3

µ0cphe∗2 . (2.38)

The first is always dimensionless, the last is dimensionless if D = 3, in other
dimensions one has to come up with a suitable replacement for the magnetic
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constant µ0. For the chargeless superfluids one lets e∗ → 0, which will leave
only,

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ)2. (2.39)

2.4 Vortex duality in 2+1 dimensions

We will now perform the duality transformation of the superfluid action in
2+1 dimensions, and show how the phase transition is described as the pro-
liferation of vortices. In 2+1 dimensions the vortices are pointlike, and trace
out world lines in spacetime. Therefore their collective behaviour is captured
by just a quantum field theory as for ordinary point particles. For simplicity
we will proceed for the uncharged superfluid; the extension to a supercon-
ductor is straightforward by having the photon field tag along the duality
transformation, the results of which are briefly mentioned at the end of this
section. Here we show that vortices in a superfluid are just like charged par-
ticles with Coulomb interactions mediated by a dual gauge field. The phase
transition is the proliferation of the vortices, causing the interactions to be-
come short-ranged due to the Anderson–Higgs mechanism, which is exactly
like a superconductor in this analogy.

2.4.1 Dual variables

The quantum partition sum associated with the Euclidean action Eq. (2.39)
is the path integral,

Z =
∫

Dϕ e−
∫

L =
∫

Dϕ e−
∫ − 1

2g (∂ph
µ ϕ)2 . (2.40)

For small g fluctuations of the phase ϕ are costly and will be much sup-
pressed. This is the superfluid, and φ is the zero sound or phase mode.
Even though this is already a free theory, we can still linearize for the vari-
able ϕ by the introduction of an auxiliary variable wµ through a Hubbard–
Stratonovich transformation,

Zdual =
∫

DϕDwµ e−
∫ 1

2 gwµwµ−wµ∂
ph
µ ϕ, (2.41)

The auxiliary field wµ is a dual variable, in the sense that for this field the
coupling constant is g instead of 1/g. In canonical language going from ϕ
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to wµ amounts to a Legendre transform; the dual variables are in fact the
canonical momenta,

wµ =− ∂L

∂(∂ph
µ ϕ)

= 1
g
∂

ph
µ ϕ. (2.42)

The wµ is also the Noether current related to the tranformation ϕ(x)→ϕ(x)+α
under which (2.40) is invariant. In the superfluid we identify this as the
supercurrent. Integrating out the auxiliary field wµ from Eq. (2.41) will give
back the original partition sum Eq. (2.40).

2.4.2 Dual gauge field

When vortices are present in the superfluid, the otherwise smooth phase
variable ϕ is singular inside the core region (see Fig. 2.1(b)). We therefore
split it into a smooth and a multivalued part: ϕ=ϕsmooth +ϕMV. The multi-
valued part denotes vortices of winding number N via,∮

dϕMV = 2πN. (2.43)

We have,

Zdual =
∫

DϕMVDϕsmoothDwµ e−
∫

Ldual , (2.44)

Ldual =
1
2

gwµwµ−wµ∂
ph
µ ϕMV −wµ∂

ph
µ ϕsmooth. (2.45)

We can perform partial integration on the term with the smooth part of the
phase field to find,

Ldual =
1
2

gwµwµ−wµ∂
ph
µ ϕMV − (∂ph

µ wµ)ϕsmooth. (2.46)

Now we can integrate out ϕsmooth as a Lagrange multiplier for the constraint
∂

ph
µ wµ = 0. This constraint expresses the conservation of supercurrent and is

in fact the continuity equation for the supercurrent ∂twt +∇·w= 0. Thus we
see that the conservation of supercurrent is due to the smoothness of the
phase field. We can explicitly enforce this constraint by expressing it as the
curl of a non-compact U(1) gauge field,

wµ = εµνλ∂ph
ν bλ, (2.47)

which is invariant under the addition of the gradient of any smooth scalar
field ε(x),

bλ(x)→ bλ(x)+ε(x). (2.48)
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If we substitute this into Eq. (2.46) we find,

Zdual =
∫

DϕMVDbλF (bλ) e−
∫

Ldual , (2.49)

Ldual =
1
2

g(εµνλ∂
ph
ν bλ)2 −εµνλ∂ph

ν bλ∂
ph
µ ϕMV. (2.50)

Here F (bλ) is a gauge-fixing factor which we leave implicit from now on.
Because the gauge field is smooth everywhere, we can perform integration
by parts to leave,

Ldual =
1
2

g(εµνλ∂
ph
ν bλ)2 +bλεµνλ∂

ph
ν ∂

ph
µ ϕMV = 1

2
g(εµνλ∂

ph
ν bλ)2 −bλJV

λ . (2.51)

Here we have defined the vortex current JV
λ
= ελνµ∂ph

ν ∂
ph
µ ϕMV as in Eq. (2.16).

If we use the identity (εµνλ∂
ph
ν bλ)2 = 1

2 (∂µbν−∂νbµ)2 ≡ 1
2 f 2

µν, this becomes,

Ldual =
1
4

gf 2
νλ−bλJV

λ . (2.52)

This looks exactly like Maxwell electromagnetism in 2+1 dimensions, with
the fluctuating dual gauge fields bλ playing the role of the photon fields, and
the vortex currents JV

λ
are like electrically charged monopole sources. Note

that in these dimensionless units the charge of the coupling is 1. Because of
this correspondence we call the superfluid in this context the Coulomb phase
of the dual gauge fields. This equivalence is accidental in 2+1 dimensions,
as we shall discover in the next chapter.

2.4.3 Mode content of the Coulomb phase

To see that we indeed retrieve electromagnetism for the dual fields, let us
examine the two-point functions for the dual gauge field. In this context it is
most convenient to go to a coordinate system in which the spatial directions
are rotated to a longitudinal and a transversal component, see Fig. 1.3 on
page 14. In this (τ,L,T) coordinate system, the momentum vector reads pµ =
( 1

cph
ω, q,0). We are free to choose the Coulomb gauge ∂l bl = qbL = 0, such that

the longitudinal component is removed. The Lagrangian for the remaining
components is,

Ldual =
g
2

q2bτbτ+ g
2

(
1

c2
ph

ω2 + q2)bT bT −bτJV
τ −bT JV

T . (2.53)
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We see that the vortex sources emit gauge fields with propagators,

〈〈bτ(p)bτ(0)〉〉 = 1
gq2 , (2.54)

〈〈bT (p)bT (0)〉〉 = 1
g( 1

c2
ph
ω2 + q2)

= 1
gp2 . (2.55)

We recover the static long-range Coulomb force with a 1
|r| -potential, and the

single, transversely polarized massless propagating photon of 2+1d EM, re-
spectively. The static ‘photon’ reflects the well known fact that static vortices
in 2D interact via a Coulomb potential, and the transversal photon is just
zero sound while in the dual ‘force’ language it becomes explicit that this
Goldstone boson can propagate forces between sources and sinks of super-
current. We stress again that this correspondence between the ‘XY universe’
and 2+1d EM with scalar matter is quite accidental for the 2+1d case.

2.4.4 Vortex proliferation

The description above is suitable for one or several remote vortices in the
superfluid that have long-range interactions. Upon increasing the coupling
constant g, the phase fluctuations in Eq. (2.40) increase, which implies also
that the spontaneous creation and annihilation of vortex–anti-vortex pairs
becomes more frequent. These pairs are also longer-lived. The best descrip-
tion is in terms of spacetime loops of the world lines of vortex–anti-vortex
pairs. The coupling constant is then as the inverse line tension, and an in-
creasing coupling constant allows the loops to become larger and larger. At
the critical point gc the loops will have grown of the system size, and vortex
lines permeating the system can freely form and disappear. This is char-
acteristic for a condensate of particles, just as Cooper pairs can be freely
extracted from the superconducting vacuum. Thus, such a “tangle of vortex
world lines” is indeed equivalent to a “condensate of vortices”.

This statement can be made very precise, and is in fact the central topic
of Kleinert’s textbooks [28, 42]. It is easiest to go to the lattice, and calculate
the energy cost of meandering vortex world lines as chains of lattice links.
We will not repeat this treatment here, but only cite the result, which is also
established in [31, 40]. From the dual perspective it is immediately clear
what will happen: the vortex condensate forms a medium (liquid) to which
the dual gauge fields are minimally coupled. This just follows Ginzburg–
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Landau theory of §2.1. This collective vortex condensate field is represented
by a complex (dis)order parameter Φ = |Φ|eiφ, the amplitude of which corre-
sponds to the density of the vortex fluid. The disorder parameter is related
to the vortex current as,

JV
λ = iΦ̄∂λΦ− i(∂λΦ̄)Φ. (2.56)

The minimal coupling to the dual gauge field ∼ bλJV
λ

is now reflected by
the new Lagrangian,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
|(∂ph

λ
− ibλ)Φ|2 + ã

2
|Φ|2 + β̃

4
|Φ|4. (2.57)

Here we have added Ginzburg–Landau potential terms. The dual gauge
field bκ clearly acts just as the electromagnetic field would in a superconduc-
tor. Thus, when α̃< 0, the disorder parameter obtains a vacuum expectation
value |Φ| =

√ |α̃|
β̃

≡Φ∞. Only the phase φ remains as a degree of freedom, it
represents the density fluctuations of the vortex condensate, i.e. the com-
pression mode of the vortex liquid.

2.4.5 Mode content of the vortex condensate

How to count the modes of the dual superconductor? It is just the usual
business for the Anderson–Higgs mechanism. Choose coordinates (∥,⊥,T)
with ∥ parallel to the spacetime momentum pµ, and ⊥ perpendicular to both
∥ and T (Fig. 1.3). In this system the momentum becomes pµ = (p,0,0). We
see that the condensate phase φ couples only to the parallel direction,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
|(∂ph

λ
− ibλ)Φ|2

→ 1
2

(p2 +Φ2
∞)(b2

⊥+b2
T )+ 1

2
Φ2

∞(pφ−b∥)2. (2.58)

This action is invariant under the combined gauge transformations b∥ →
b∥+ pε and φ→ φ+ε. One possible gauge fix is the unitary gauge φ ≡ 0 and
in this way one shuffles the condensate mode into the “longitudinal photon”
b∥, which then becomes a true physical degree of freedom. This is sometimes
referred to as the gauge field “eating the Goldstone boson”. Alternatively,
we can choose the Lorenz gauge pb∥ ≡ 0, in which this degree of freedom is
indeed seen to originate in the condensate field φ. The field b⊥ corresponds
to the now short-ranged Coulomb force, and AT and A∥ form a degenerate
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superfluid Mott insulator

Coulomb vacuum superconductor

duality phase transition

real side

dual side

coupling constant

dual coupling constant

Figure 2.4: Overview of duality relations. The vertical correspondence is the duality;
the horizontal is the phase transition. The dual side is in terms of the interactions
between vortices: individual sources interacting via the Coulomb law; or as a su-
perconducting condensate that effects a Higgs mechanism for the dual gauge fields.
When the real coupling constant is small (the superfluid), the dual coupling constant,
which is the string tension of the vortex world lines, is large and vice versa.

pair of massive propagating modes. This matches precisely the expectations
that follow from the Bose-Hubbard model; in the superfluid/Coulomb phase
a single massless propagating mode is present corresponding with the phase
mode/photon. In the dual superconductor one finds a pair of massive propa-
gating modes corresponding with the Higgsed transversal and longitudinal
photons: these correspond with the holon and doublon excitations of the
Bose-Mott insulator while the Higgs mass of the dual superconductor just
codes for the Mott gap. The fate of the second mode when going to the super-
fluid phase was discussed in Ref. [59].

This is a good point to reflect on the correspondences in the vortex dual-
ity, see figure 2.4. The superfluid is dual to the Coulomb vacuum where the
vortices take the role of the monopole charges, and the dual gauge fields are
like photons. The phase transition is from the superfluid to the Bose-Mott
insulator which has two gapped modes. On the dual side this is the supercon-
ductor with two massive dual photons. In duality parlance, it is sometimes
said that the superfluid is dual to a superconductor; strictly speaking this is
incorrect, but the since the strength of the dualities is in phase transitions,
one often compares the weak-coupling phases of the dual sides.

In the next chapter we shall explore how this generalizes to higher di-
mensions. It turns out that not the dual gauge field but rather the supercur-
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rent itself is the quantity containing the important information.

2.4.6 Duality squared equals unity

Just to complete the duality exercise, we can ask the question whether there
can also be the analogues of Abrikosov vortices in the dual superconductor?
This is indeed the case, and it goes in exactly the same way as above. First,
introduce an auxiliary field vµ, such that,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
Φ2

∞(∂ph
λ
φ−bλ)2, (2.59)

turns into,
L = 1

2
g(εµνλ∂

ph
ν bλ)2 − 1

2Φ2∞
v2
µ−vµ(∂ph

µ φ−bµ). (2.60)

If there are dual vortices, we should split the dual phase field into a smooth
and a multivalued part, φ=φsmooth+φMV. The smooth part can be integrated
out as a Lagrange multiplier for the constraint ∂ph

µ vµ = 0. This constraint can
be enforced explicitly by introducing yet another gauge field vµ = εµνλ∂

ph
ν zλ.

The Lagrangian now reads,

L = 1
2

gw2
µ−

1
2Φ2∞

(εµνλ∂
ph
ν zλ)2 + zλJ V

λ + zλwλ. (2.61)

Here J V
λ

= ελνµ∂
ph
ν ∂

ph
µ φMV is the vortex current, and we have resubstituted

wµ = εµνλ∂
ph
ν bλ; the last term indicates how the original supercurrent cou-

ples to the z-degrees of freedom. It is at this point possible to integrate out
the supercurrents wµ, to leave a Meissner/Higgs term for the gauge fields
1

2g z2
λ
. This indicates that the interactions between vortices J V

λ
are Meissner

screened, as it should be in a (dual) superconductor.
Instead, suppose that the vortices proliferate, then they form a conden-

sate with order parameter Ψ, with its own Ginzburg–Landau potential,

L =− 1
2g

z2
λ−

1
2Φ2∞

(εµνλ∂
ph
ν zλ)2 − 1

2
|(∂λ− izλ)Ψ|2−1

2
α|Ψ|2 − 1

4
β|Ψ|4. (2.62)

We can now rescale the gauge field zλ→Φ∞zλ, to leave,

L =−Φ
2∞

2g
z2
λ−

1
2

(εµνλ∂
ph
ν zλ)2 − 1

2
|(∂λ− iΦ∞zλ)Ψ|2−1

2
α|Ψ|2 − 1

4
β|Ψ|4. (2.63)

The vortex condensate will destroy the dual order, with the effect that the
dual superfluid density Φ∞ → 0. In the above Lagrangian the order parame-
ter Ψ then decouples from the dual gauge field, and we end up with just the
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Landau action for a superfluid,

L =−1
2
|∂λΨ|2−1

2
α|Ψ|2 − 1

4
β|Ψ|4. (2.64)

Concluding, the phase transition from the dual superconductor to its disor-
dered phase is again the superfluid with which we started out. Thus indeed
“duality2 = 1”.

Note that we have seen above that vortices can form in the dual super-
conductor, so there are vortices in the Bose-Mott insulator. This is a bit
surprising result, that has been overlooked for quite a while. It will be a
topic of interest in chapter 3 and moreover 5.

2.4.7 Charged vortex duality

For charged superfluids, i.e. superconductors, one can do the same calcu-
lation, without many changes. The starting point is the Ginzburg–Landau
action Eq. (2.34), which in dimensionless units reads,

SE =
∫

dτdD x − 1
2g

(∂ph
µ ϕ− Aph

µ )2 − 1
4µ

F2
µν. (2.65)

Here 1/µ = ħaD−3

µ0 cph e∗2 . The chargeless supercurrent is defined as the canonical
momentum,

wµ =− ∂L

∂(∂ph
µ ϕ)

= 1
g

(∂ph
µ ϕ− Aµ), (2.66)

and is related in dimensionful units to the familiar charged supercurrent
as Js

µ = e∗
ħ wµ. Separating the multivalued part of the phase field, integrat-

ing out the smooth part, and enforcing the conservation of supercurrent by
introducing the dual gauge fields leads to the equivalent of Eq. (2.51),

Ldual =
1
2

g(εµνλ∂
ph
ν bλ)2 −bλJV

λ + Aµεµνλ∂
ph
ν bλ− 1

4µ
F2
µν. (2.67)

Here we see that the photon field simply couples to the supercurrent wµ =
εµνλ∂

ph
ν bλ as it should. One could integrate out the dual gauge field to find

an interaction between the vortex currents JV
λ

that is Meissner screened due
to the electromagnetic field. But instead we proceed with the duality, where
basically we just keep around the last two terms in the above expression.
Thus, after proliferation of the vortices we have,

L = 1
2

g(εµνλ∂
ph
ν bλ)2 + 1

2
Φ2

∞(∂ph
λ
φ−bλ)2 + Aµεµνλ∂

ph
ν bλ− 1

4µ
F2
µν. (2.68)
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Here we have assumed the dual London limit |Φ| = Φ∞ everywhere. One
could again integrate out the dual gauge field to find the electromagnetic
response for the Mott insulator. We will see in §5.A.4 that we indeed find
gapped poles for the conductivity instead of the delta-function response of
the superconductor.
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