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Chapter 1

Introduction

Condensed matter physics concerns the collective behaviour of a large num-
ber of particles that organize themselves into an ordered medium. It is the
qualification ‘ordered’ that sets the field apart from the study of gases or sim-
ple liquids. Thus, the primary business of a condensed matter physicist is to
discern when a system is ordered, and what sets apart one ordered medium
from the other. One step further, she could investigate how one state can
transform into another, for instance a liquid freezing into a solid or a para-
magnet going over into a ferromagnet. This is the study of phase transitions,
and in its modern incarnation is over 100 years old. The traditional way of
thinking is always about obtaining a more ordered state (solid) from a less
ordered state (liquid). This is accompanied by a lowering of the external or
internal symmetry of the system.

It had been realized first in material science that metals start to degrade
in their structural integrity but also their electronic properties by the pres-
ence of defects: aberrations in the regularity of the crystal lattice. If it is
just a missing or superfluous particle, it is called an interstitial, and it will
have limited effect on the overall properties of the material. Conversely, if
the defects are topological, their influence has bearing throughout the whole
system. Therefore those are usually confined in combinations whose topo-
logical effects cancel out each other.

The topological defects are sources of disorder. Letting more and more of
these topological defects enter the system amounts to putting more disorder
into it. It is tempting to continue this reasoning by stating that also the
transitions into a more disordered phase are therefore caused by topological
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defects. That is indeed the principal perspective in this thesis. The defects
are then the agents that restore symmetry in the system.

The alternative of focussing on disordering instead of ordering of matter
is known as a duality. Each point of view is equally valid, and one can freely
switch between the one or the other, in the ideal case via a mathematical
isomorphism. Practically speaking, there are often advantages of preferring
one approach over of the other, and it is therefore useful to develop both
the traditional and the dual methods in order to maximize the size of the
toolbox. Basically, the canonical formalism works well when the system is
mostly ordered, the dual formalism when it is heavily disordered. But it
is not just pragmatism that encourages the dual way of thinking; it also
reveals deeper truths about the physical principles that dictate the effective
collective behaviour in many-body systems.

This thesis fully embraces the dual side, and expands its applicability to
higher dimensions where it was mostly restricted to the spatial plane. Let
us now first get accustomed to dualities by some famous examples, in order
to appreciate the problems we wish to address. Along the way we encounter
many concepts that will be used copiously throughout this work.

1.1 Kramers–Wannier duality and its extensions

1.1.1 Kramers–Wannier duality

It is fitting that the first such duality was discovered in the simplest statisti-
cal physics problem: the Ising model on a square lattice. Kramers and Wan-
nier noted that the partition function in terms of the variables si ∈ {−1,+1}
on lattice sites i, as a function of inverse temperature β, could be rewritten
in terms of variables σ〈i j〉 ∈ {−1,+1} on the lattice links 〈i j〉 as a function of
the dual inverse temperature β̃∼ 1/β [1–3]. The Ising model maps to another
Ising model, yet with a different coupling constant. As such, it is a math-
ematical identity; however, it hints to an alternative understanding of the
physical principles.

This is illustrated in figure 1.1(a). The black, solid lines are the real lat-
tice with on each lattice site arrows (“spins”) that can point in two directions.
Then on each link between two sites we can define a dual spin (blue) that
points up if the neighbouring sites are parallel, and down if they are anti-
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Figure 1.1: Ising spins on the square lattice (black). On each link of the lattice we can
define a dual spin (blue) that points up if the two neighbouring spin are aligned and
down when they are anti-aligned. The reciprocal lattice is shown in blue, dotted lines.
(a) A typical configuration of spins. Note that the number of dual down spins around
each plaquette is always even. (b) If we insist on having an odd number of dual down
spin in the plaquette with the red circle, the original spins become frustrated. The
frustration can be seen at the perimeter (dashed red), which also has an odd number
of down spins.

parallel. Except for the initial condition, the dual spins contain the same
amount of information as the real spins. This is the archetypical example of
duality.

Now things get really interesting. While for the real spins is it perfectly
fine to flip any one, possibly changing the energy but not violating any rules,
notice that the number of dual spins that are pointing down around one
plaquette is always even. Purely due to the definition in terms of the original
spins, there is a constraint or conservation law for the dual spins. What
happens if we try to break this law? This is pictured in figure 1.1(b). The
red circle indicates a plaquette with only one dual down spin. If we try to
recreate the original spins, starting bottom left, we see that there is no way
to decide where to put the final spin around this plaquette. This plaquette is
therefore said to be frustrated.

The frustrated plaquette is our first example of a topological defect: if one
counts the number of down spins around the perimeter of our dual lattice,
the number of dual down spins is also odd. The influence of the topological
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defect is felt all the way to the edge of the system.
The appearance of a constraint for the dual variables, and the ill-defined-

ness of the original variables when violating this constraint is a very general
principle, and one could say that this lies at the heart of all that will be
discussed in this thesis.

Another recurring theme is that the dual coupling constant β̃ is inversely
proportional to the original coupling constant β. This is therefore known
as a strong/weak duality or S-duality. One often uses perturbation theory
to be able to make calculations at all, and therefore the duality proves its
worth in the high-temperature regime where β̃ is small, and can be used as
the expansion parameter. This already indicates that the disordered state is
actually dually ordered.

1.1.2 Ising gauge model

The basic duality of the square lattice Ising model can be extended in several
ways. The energy of the Ising model above is invariant under flipping all
spins at the same time—a global transformation—but local spin flips will
in principle change the energy of the state. However, consider plaquette
variables that count whether that plaquette has an even or odd number of
dual spins down around it. Flipping all dual spins emerging from a lattice
site will leave those plaquette variables invariant: the evenness does not
change under such local spin flips. Instead of a global we have now a local
or gauge symmetry. Any model built out of these plaquette variables will
therefore have a gauge symmetry. This was first investigated by Wegner
[2–4], and is called Ising gauge model or Z2 lattice gauge theory.

The Ising model on the square lattice is dual to another Ising model on
the reciprocal square lattice. This self-duality is coincidental. Interestingly
the Ising model on a three-dimensional cubic lattice is dual to an Ising gauge
model on the reciprocal (cubic) lattice. This is known as a global/local dual-
ity: the global symmetry turns into a local symmetry for the dual variables.
Also this phenomenon is a key ingredient of this thesis.

1.1.3 XY -model and the superfluid

In the Ising model, the real, dual and plaquette variables take one out of two
values only. This can be extended to a larger number of discrete values, but
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moreover to a continuous set, in particular a real or complex number. If in
our picture of figure 1.1(a) the arrows on each site are of fixed length but can
rotate freely in the xy-plane, then with nearest-neighbour interactions this
is known as the phase-only model or XY -model. The XY -model is invariant
under rotating all spins over a fixed angle α, i.e. under global U(1)-rotations
eiα. An unordered XY -system has the arrows pointing in random directions
whereas when their orientation is correlated over considerable length scale,
it is an ordered system.

Since we are now dealing with continuous variables, we are equipped
with the concept of smoothness, which shall turn out to be an essential prop-
erty. Even in the ordered system, there will now be small fluctuations in
the direction of the arrows around their equilibrium position, which were
unavailable in the discrete systems above. Similarly, when we disturb the
ordered system from the outside, this disturbance will propagate through the
ordered system as the equivalent of a sound wave. This is called a Nambu–
Goldstone mode, and it communicates the rigidity of the order. Goldstone
modes are present in any ordered system of continuous variables—this is
the famous Goldstone theorem [5–7]. Using a similar duality transforma-
tion as above, the Goldstone modes are expressed as dual gauge field, so it
is a global/local duality. Here we have the natural interpretation of gauge
fields are force carriers (cf. a photon), conveying the rigidity of the order
parameter.

The XY -model in the continuum limit is the simplest model that de-
scribes the freely propagating zero-sound mode in a superfluid, where the
arrows represent the superfluid phase variable. A superfluid in a rotating
vessel will show the formation of vortices, which are in fact the topological
defects. In the XY -model a vortex is a configuration where the direction
of the phase changes by a multiple of 2π when traversing a closed contour.
Therefore the vortices are the cause of the disordering of the phase rigidity.
Surely when the external angular momentum gets too large, the superfluid
will be destroyed entirely by the induced vortices.

1.1.4 Vortex unbinding transitions

But in the duality viewpoint, also thermal (or quantum) fluctuations cause
spontaneous formations of small vortex loops. These loops grow with rising
temperature, and then the thermal phase transition is also understood as
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Figure 1.2: The phase transition in terms of vortex world lines. (a) In the ordered
phase, the dual coupling constant (the vortex line tension) is large, such that it is very
costly to form vortex lines. In spacetime they only appear as small loops of creation
and annihilation of vortex–anti-vortex pairs. (b) Increasing disorder amounts to low-
ering the dual coupling constant, so that the vortex loops grow. Across the phase
transition the loops have grown to the system size, and the proliferate throughout
the whole system. This picture should always be kept in mind when reading this
thesis.

the demise of order due to vortices.
This is best understood pictorially. At low temperatures, the formation

of vortex pairs will be heavily suppressed, and only small spacetime loops
of vortex–anti-vortex pairs will appear (Fig. 1.2(a)). But as temperature
rises, it becomes entropically favourable to let the vortex lines grow—this is
the dual equivalent of the increasing population of excited states with phase
orientations different than the purely ordered ground state. At the critical
temperature, these loops grow to be of the system size, and energetically the
vortex lines can now permeate the system freely (Fig. 1.2(b)). The phase (the
arrows) is completely disordered. This is referred to as the “vortex blowout”
or the “tangle of vortex world lines” and the phase transition is the “vortex
unbinding transition”.

In principle, the discrete model like the Ising models also undergo a
defect-unbinding transition, but the effect is more striking in the continu-
ous models: in 1966 Mermin and Wagner showed that a two-dimensional
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magnetic system will always disorder due to thermal fluctuations; this ac-
tually holds for any two-dimensional system, and is known as the Mermin–
Wagner–Hohenberg–Coleman theorem [8–10]. Therefore it came as a sur-
prise when Kosterlitz and Thouless, and independently Berenzinskii, showed
that there is a vortex unbinding transition in the two-dimensional XY -model
[11, 12]. This is commonly explained as: “this phase transition is not a order–
disorder phase transition”. I will have some comments on this issue in the
conclusions, chapter 7. This theme was expanded to external (spatial) sym-
metries by Nelson, Halperin and Young, which had the most impact for clas-
sical liquid crystals [13, 14]. In this context one speaks of defect-unbinding
transitions or defect-mediated melting.

Vortices are pointlike in two spatial dimensions, and the mnemonic for
the BKT transition is, also in 2+1 dimensions, the picture of Fig. 1.2. But
a vortex is a line in three spatial dimensions. Still the phase transition
cannot be anything different than the disordering of the phase variable. The
question arises if one can generalize the vortex blowout when the vortices
are not points but extended objects. We will show in chapter 3 that that is
indeed the case.

1.1.5 Phase transitions with gauge fields

If one were to promote the global U(1)-symmetry of the superfluid to a lo-
cal or gauge symmetry, this necessitates the introduction of a vector-valued
gauge field. This is precisely the situation in the superconductor, where the
massless photon field Aµ, a vector field with gauge symmetry, couples to the
superconducting phase, the Goldstone modes. The gauge field then under-
goes the famous Anderson–Higgs mechanism [15], and becomes massive. As
a result, the photon field is expelled from the superconductor, and there are
only massive, gapped excitations in the medium. Also the interactions be-
tween vortices in the superconductor become short-ranged, which shows in
the correlation functions of the dual variables. The simplest model that fea-
tures the Higgs mechanism is the Abelian-Higgs model, and in 2+1 dimen-
sions this is precisely how the vortex unbinding transition works. Therefore,
vortex duality often goes by the name of Abelian-Higgs duality, and the dis-
ordered XY -phase is in this context a “dual superconductor”.

Now a field with a local symmetry cannot undergo a phase transition
(spontaneous symmetry breaking) by itself, this is Elitzur’s theorem [16].
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Therefore it seems natural to argue that, in the superconductor, first the
‘superfluid’ order is established, and secondarily the gauge field follows the
symmetry breaking by coupling to the Goldstone mode. That is indeed the
point of view we will take in this thesis, and will even prove to be more than
just an equivalent description when identifying the massive modes in the
3+1 dimensional disordered superfluid and superconductor (chapters 3 and
5).

1.1.6 Going quantum

In recent years there has been increasing interest in phase transitions due
to the disordering effect of quantum fluctuations instead of thermal fluctua-
tions. Such phenomena are called quantum phase transitions [17].

It has long been noted (e.g. by Feynman [18]) that the quantum mechan-
ical weight factors in the path integral are just like Boltzmann factors if one
transforms to imaginary time t → iτ. As such, as a dynamical quantum field
theory in D dimensions is easily mapped to a statistical mechanics problem
in D +1 dimensions, where the role of time is played by temperature. This
correspondence was originally used to carry over knowledge from thermal
physics to quantum many-body systems; for instance the textbook by Mahan
carries out many calculations at a finite temperature, to let temperature go
to zero at the very end [19].

In quantum phase transitions this is taken one step further. It is not just
equilibrium physics, but also phase transitions that are closely mimicked.
One now has a coupling constant that represents the strength of quantum
fluctuations, and which is therefore the analogue of the temperature. For in-
stance, in high-temperature superconductors it is the number of free charge
carriers that plays this role (see §5.1.2). Despite the numerous similarities,
quantum phase transitions are more intricate and eventually richer than
thermal ones.

This is most prominently seen by the phenomenon of spontaneous sym-
metry breaking. In second-order phase transitions, the system spontane-
ously chooses one of many ground states, for instance one particular direc-
tion of the U(1)-spins. It will cost a lot of energy to change this order: it
is rigid. In classical, thermal systems, only one direction can be chosen.
But in quantum systems, any superposition of ground states is just as valid.
Therefore, the quantum system allows for much more interesting ordering
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patterns. Also the excitation spectrum is affected in a similar way.

In much of what follows, the quantum nature of the phase transition is
not really emphasized. One needs to keep in mind though, that the system
under investigation are inherently quantum mechanical in nature, and they
are dominated by the Goldstone modes arising from quantum rigidity. Only
in chapter 6 will be make a sharp distinction between classical and quantum
systems, and discussion on the classicalness of quantum system takes place
in §7.2.4.

1.1.7 Other dualities

Up to know we have only discussed the simplest dualities: strong/weak and
local/global dualities in the Ising model and in U(1)-symmetry, which is the
simplest continuous symmetry, and is Abelian, i.e. two consecutive symme-
try transformations commute.

Higher symmetry groups, especially non-Abelian groups such as SU(2)
for spins, are much more complicated; in particular, the “braiding” of vortex
(world) lines follows the symmetry structure, and may also be non-Abelian.
While this opens up many interesting avenues such as in the fractional
quantum Hall effect and topological quantum computation, it leads to am-
biguities in defining the tangle of vortex world lines as the disordered state.
There has be some progress on the mathematical side using quantum groups
or Hopf algebras [20–26].

Dualities are prevalent in string theory, in fact they are one the appealing
mathematical features of that framework. In this context, the strong/weak
duality is called S-duality. In several instances it relates one string theory
to another. The underlying principle is the same: local variables one side
turn into extended or topological objects on the other side, which unbind as
the dual coupling constant grows smaller.

Almost all of what follows focussed on the Abelian U(1)-symmetry. Only
in chapter 6 we will passingly address the space groups of general relativity
and of elasticity. Trouble is avoided by focussing on the translations sub-
group, which is Abelian.

1.1 Kramers–Wannier duality and its extensions 9



1.2 The road to higher-dimensional vortex duality

The application of the Abelian-Higgs duality to many-body physics had been
identified and studied for over three decades [27–36]. Even though it is still
unfamiliar to many researchers in the field, once the basic concept has been
grasped, the framework is quite simple and rather elegant. One reason why
it remains to reside in relative obscurity may be that it has not really led to
new predictions, but had been confined to placing known results in a differ-
ent light.

Furthermore, vortex duality has been mostly restricted to 2+1 dimen-
sions. The reason, which we shall discuss extensively in §2.2, is that in
that case the vortices act just as point particles do: in spacetime they trace
out world lines, and we capture those in a regular quantum field theory. In
higher dimensions, the vortices becomes extended objects like lines or sur-
faces. As long as they are distant from each other (strong coupling limit of
the vortices), the duality works fine: dual gauge fields mediate interactions
between individual vortex sources. The dual gauge field is just the Hodge
dual of the Goldstone scalar field, i.e. a free d−2-form field, and the dynam-
ics of such a free tensor field is well known (see e.g. [37]).

However trying to effect the phase transition is really difficult. One
wishes to form a condensate of the extended vortex world sheets, in which
their number is no longer conserved. In other words: we are looking for a
quantum field theory of extended objects. This is the subject of string field
theory, and its progress has been severely limited [38, 39]. This was recog-
nized for instance in Ref. [40, §2.5], and therefore not pursued any longer.

It is amusing to trace back how this work was initiated originally. The
correspondence between spacetime deformations of general relativity (GR)
and elasticity in crystals has been noted by many authors. In recent years,
the mathematical physicist Hagen Kleinert has explored this relation in
depth by imagining a “world crystal” deformed by topological defects [41, 42].
Then the defects are like sources of curvature and the stress tensor cor-
responds to the Einstein tensor. He also recognized that the dynamics is
slightly off, leading to wrong correlation functions, and tried to solve this
with a “floppy world crystal”, which is in a sense “looser” than an ordinary
crystal. The deeper reason is that even in the continuum limit the crystal re-
members that both translational and rotational symmetry are broken, while
GR is practically translationally invariant (see §6.2).
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A different proposal was put forward by Kleinert and Zaanen [43] that
GR does not correspond to a crystal, but to a quantum liquid crystal. In such
a material, part of the spatial symmetry is restored by reviving translational
invariance. The route to this symmetry restoration is precisely via the un-
binding of topological defects, in this case the crystals dislocations. While the
claim was made that this should hold for any dimension, the calculation was
done in 2+1 dimensions only. However, gravity in 2+1 dimensions is simple,
or boring, in the sense that there are no propagating modes—no gravitons.
The real magic happens in four spacetime dimensions, where GR predicts
two graviton polarizations as massless spin-2 modes. Gravitons have not
been detected directly, and a huge effort is currently invested to find them in
the form of gravitational waves [44].

Thus, I set out to identify the hydrodynamic modes of quantum liquid
crystals in 3+1 dimensions that should correspond to gravitons, building
upon the work done by Cvetkovic and Zaanen in 2+1 dimensions [31, 40,
45]. Many parts are readily generalized to higher dimensions, but soon we
bumped into the obstacle mentioned above: the unbinding transition of ex-
tended topological defects in higher dimensions. Therefore it was necessary
to take a few steps back, to really comprehend where the difficulties in the
vortex duality lie.

It was fortunate that at about that time, Marcel Franz just published
a work on this topic [46], continuing an idea by Rey [47] into the realm
of condensed matter physics. Some research had in fact been done, starting
with Marshall & Ramond in the context of string theory [48]. These attempts
take the dual gauge field as the central object and start from there. Then it
is logical to extrapolate the Anderson–Higgs mechanism from vector fields
to tensor fields and suggest that the vortex condensate will turn the higher-
form gauge field massive. Another approach was taken in Ref. [49].

However, we soon noted that there was a flaw in this argument, which
leads to an overcounting in the number of degrees of freedom. In condensed
matter physics we often have the advantage that the systems under con-
sideration are accessible in the laboratory, in computer simulations, and by
several theoretical approximations. As such, we knew that the vortex dual-
ity in the continuum XY -model should eventually reproduce the results of
a firmly established lattice model, namely the Bose-Hubbard model. This
model has been realized almost perfectly in cold atom experiments [50].

1.2 The road to higher-dimensional vortex duality 11



Our guiding principle was therefore to obtain the characteristics of the
Mott insulating state (the strong-coupling limit of the Bose-Hubbard model)
from the vortex condensate, in particular a doublet of degenerate gapped
modes in any dimension. In other words: we needed to generalize those
properties of the vortex duality from 2+1 to higher dimensions that carry the
information of these massive propagating modes. Naively Higgsing the dual
tensor gauge field will not do this for you. We were finally able to perceive
that one should focus on the conserved currents rather than on the dual
gauge fields, and this enabled a comprehensive generalization of the vortex
duality which should hold for any order–disorder transition in condensed-
matter systems in any dimension higher than two (chapter 3).

As we struggled through unexplored territory, it became clear that the
vortex lines as spacetime world sheets interacting via dual gauge fields con-
tain a huge amount of information that can be extracted directly in the
dual language. In condensed matter physics, most work on vortices is re-
lated to laboratory-based setups in superconductors and superfluids, and
the mathematical niceties of extended defects that play a large role in for
instance cosmology and string theory are glossed over or not even acknowl-
edged. Conversely the fact that a vast body of knowledge on vortex lines has
been collected does not reflect back on the high-energy community, which is
demonstrated by the unwillingness to admit what are called Nielsen–Olesen
strings are just relativistic Abrikosov lines, and what is called the Abelian-
Higgs model is just relativistic Ginzburg–Landau theory.

In this light, even on the weakly-coupled side of the phase transition, the
electrodynamics of Abriksov vortices turns out to be completely contained in
the dual, relativistic description of the vortex world sheet. By incorporating
the time direction on even footing, the well-known magnetic equations are
directly generalized into similar equations for the electric field. It turns
out that all basic effects of vortex electrodynamics are captured in a single
equation, which is the subject of chapter 4.

The most interesting aspect of the duality is that it is truly dual: the
vortex condensate supports vortices of its own, and when these condense we
are back to the original weak-coupling phase (see §§2.4.6, 3.4.5). This is not
just an enjoyable gimmick, but moreover a true physical prediction. Already
present in neutral 2+1 dimensional systems, it is most striking in charged
3+1 dimensional systems. Where the defects in superconductors are Abriko-
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sov vortex lines of magnetic flux, the duality suggests vortex lines of electric
current in Bose-Mott insulators. This unexpected result may be directly ac-
cessible for experimentalists to find in underdoped cuprate superconductors,
and will be investigated in chapter 5.

Now that the vortex duality has be generalized to higher dimensions for
the simple U(1)-symmetry superfluids and superconductors, we can finally
direct it to the original problem of gravitons in quantum liquid crystals. Un-
fortunately the full calculation is not yet completed to include in this the-
sis. However, the wisdom acquired in chapter 3 demotes that calculation in
terms of gauge fields to be of secondary importance, at least in the relativistic
limit. The conserved currents (the stress tensor c.q. Einstein tensor) dictate
the physical content of the model, and symmetry considerations do the rest.
In fact, the local conservation law of the currents and the emergence of a
conserved quantity in the vortex condensate, i.e. the density of the vortex
liquid, are in harmony and closely connected. This general principle follows
from the duality construction, and is established in condensed matter phy-
sics under the name of emergent gauge invariance. In the final chapter 6 we
will show that the two gauge principles are indeed opposite sides of the same
coin. Then we come full circle by illustrating these emergence phenomena
in quantum liquid crystals, and show that a quantum nematic liquid crystal
has to correspond to the linearized approximation of gravity, containing the
two graviton modes.

We shall start off with one chapter of preliminary material (ch. 2) that
collects known results on which the rest of the work is built. In the conclud-
ing part (ch. 7) we summarize all obtained results, try to contextualize their
impact on condensed matter physics and beyond, and present open questions
and new waypoints as directions of research.

1.3 Conventions

vortex duality I shall use the term “vortex–boson duality” throughout this
thesis, or “vortex duality” tout court. This exactly describes what is happen-
ing, and is completely unambiguous. Alternative names are “XY-duality” or
“Abelian-Higgs duality”. The latter is only applicable in 2+1 dimensions, but
quite common in the literature. Furthermore here we dualize the Goldstone
boson of the Abelian-Higgs model, whereas in high-energy physics often the

1.3 Conventions 13



t

x

y

τ

LT

‖⊥

pµ

Figure 1.3: We often use two coordinate systems related to the momentum pµ of
the gauge particle. In the (τ,L,T)-system (dotted lines), the temporal direction is
preserved, and the spatial ones are separated in longitudinal and transversal. This
system is useful in the Coulomb gauge and when Lorentz invariance is broken. In a
relativistic context, more appropriate is the (∥,⊥,T)-system (solid lines), where the τ

and L-directions are rotated so that one is parallel to the spacetime momentum pµ.
This direction ∥ is also called longitudinal. The spatial-transversal directions are the
same as in the previous system. In higher dimensions D +1, there are simply more
spatial-transversal directions T1, . . . ,TD−1.

gauge field is dualized.

metric In relativistic expressions we use the “spacelike convention” for the
Minkowski metric: ηµν = diag(−1,1,1,1). The reason is that the spatial parts
will carry the same sign as the quantities in common static, non-relativistic
expressions, such as the Hamiltonian. We will often work in imaginary time
t → iτ, with Euclidean metric δµν = diag(1,1,1,1). Then the integrand in the
path integral reads eiS/ħ → e−SE/ħ and looks like a Boltzmann factor. For
the momentum i∂µ → pµ we use pµ = (pτ,q) = ( 1

cω,q). In imaginary time the
frequency here is strictly speaking a Matsubara frequency ωn, but unless
there is room for confusion, we suppress the label n.

Fourier components It is often useful to use coordinate systems related to
Fourier components, as shown in figure 1.3.
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units Wherever dimensionful quantities are present we express them in
SI-units, for which the Ampère–Maxwell law reads,

∇×B− 1
c
∂tE=µ0J. (1.1)

This is to be compared to this relation in the quite common Gaussian cgs-
units,

∇×B− 1
c
∂tE= 4π

c
J. (1.2)

The reason for this choice is that in relation to experiments it is easier to
refer to Ampères than to statcoulombs per second. Additionally it will turn
out to be quite useful to keep around the magnetic constant µ0, as it signals
contributions from the Maxwell electromagnetic field as opposed to electric
current due to moving charges.

current There will repeatedly appear two kinds of sources or currents in
this thesis: the electromagnetic current (density) and the vortex current.
Since they do both act as current/sources in the equations, both are repre-
sented by some form of the conventional letter J. For clarity, the vortex
current will always carry a superscript label V to distinguish is from the ma-
terial current in superconductors and Mott insulators. Vortex currents in
the superfluid/superconductor are denoted by the Roman symbol JV, and in
the Mott insulator by the script symbol J V.

spacetime dimensions A capital letter “D” will be used when referring
to exclusively spatial dimensions, and a small letter “d” when referring to
spacetime dimensions. Thus a 2D particle traces out a world line in 2+1d
spacetime.
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