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6|The galaxy-subhalo con-
nection in low-redshift
galaxy clusters from weak
gravitational lensing

We measure the gravitational lensing signal around satellite galaxies in galaxy clusters at
z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with
a large sample of spectroscopically-confirmed cluster members. We use extensive image simula-
tions to assess the accuracy of shape measurements of faint, background sources in the vicinity
of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes
the shapes of backgroud galaxies appear more radial than they really are. We account for this
bias by applying a correction that depends on both lens size and magnitude. We also deter-
mine and apply a scale-dependent boost factor to account for contamination of the source sample
by cluster members. We measure the satellite lensing signal robustly down to scales of roughly
30 kpc, but we cannot constrain the matter density profiles of subhaloes. We estimate the sub-
halo mass as the mass bound to the subhalo, consistent with the definition of common subhalo
finders, and provide a direct measurement of the subhalo-to-stellar-mass relation, logmbg/M⊙ =
(11.73±0.05)+ (0.77±0.11) log[m⋆/(2×1010 M⊙)], broadly consistent with the corresponding relation
for central galaxies. The slope of this relation is robust to both the adopted mass-concentration
relation and the definition of subhalo mass. We also constrain the mass segregation of subhaloes
by measuring the lensing signal as a function of projected cluster-centric distance. We find no sta-
tistically significant evidence for mass segregation, in qualitative agreement with predictions from
numerical simulations.

Cristóbal Sifón, Ricardo Herbonnet, Henk Hoekstra, et al.,
in preparation
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6.1. Introduction

According to the hierarchical structure formation paradigm, galaxy clusters grow by
the continuous accretion of smaller galaxy groups and individual galaxies. Initially, each of
these systems is hosted by their own dark matter halo, but as a galaxy falls into a larger
structure, tidal interactions transfer mass from the infalling galaxy into the new host. The
galaxy then becomes a satellite and its dark matter halo, a subhalo.

Detailed studies on the statistics of subhaloes from numerical N-body simulations have
revealed that subhaloes are severely affected by their host haloes. Dynamical friction makes
more massive subhaloes sink towards the centre faster, while tidal stripping removes mass
preferentially from the outskirts of massive subhaloes closer to the centre. These two effects
combined destroy the most massive subhaloes soon after infall (e.g., Tormen et al. 1998;
Taffoni et al. 2003), a result exaggerated in simulations with limited resolution (e.g., Klypin
et al. 1999; Taylor & Babul 2005; Han et al. 2016). Tidal stripping makes subhaloes more
concentrated than field haloes of the same mass (e.g., Ghigna et al. 1998; Springel et al.
2008; Moliné et al. 2016), and counterbalances the spatial segregation induced by dynamical
friction (van den Bosch et al. 2016).

One of the most fundamental questions is how these subhaloes are linked to the satellite
galaxies they host, which are what we can observe in the real Universe. Taking N-body
simulations at face value results in serious inconsistencies with observations, the most
famous of which are known as the “missing satellites” (Klypin et al. 1999; Moore et al.
1999) and “too big to fail” (Boylan-Kolchin et al. 2011) problems. It has since become
clear that these problems may arise because baryonic physics has a strong influence on the
small-scale distribution of matter. Energetic feedback from supernovae at the low-mass
end, and active galactic nuclei at the high-mass end, of the galaxy population affect the
ability of dark matter (sub)haloes to form stars and retain them. In addition, the excess
mass in the centre of galaxies (compared to dark matter-only simulations) can modify each
subhalo’s susceptibility to tidal stripping (e.g., Zolotov et al. 2012).

Despite these difficulties, given the current technical challenges of generating cosmolog-
ical high-resolution hydrodynamical simulations (in which galaxies form self-consistently),
N-body simulations remain a valuable tool to try to understand the evolution of galaxies
and (sub)haloes. In order for them to be applied to real observations, however, one must
post-process these simulations in some way that relates subhaloes to galaxies, taking into
account the aforementioned complexities (and others). For instance, semi-analytic models
contain either physical or phenomenological recipes whether or not to form galaxies in
certain dark matter haloes based on the mass and assembly history of haloes (e.g., Bower
et al. 2006; Lacey et al. 2015). A different method involves halo occupation distributions
(HODs), which assume that the average number of galaxies in a halo depends only on host
halo mass. Because they provide an analytical framework to connect galaxies and dark
matter haloes, HODs are commonly used to interpret galaxy-galaxy lensing and galaxy
clustering measurements through a conditional stellar mass (or luminosity) function (e.g.,
Seljak 2000; Peacock & Smith 2000; Mandelbaum et al. 2006b; Cacciato et al. 2009; van
den Bosch et al. 2013).

One of the key aspects of these prescriptions is the stellar-to-halo mass relation. While
many studies have constrained the stellar-to-halo mass relation of central galaxies (e.g.,
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Hoekstra et al. 2005; Heymans et al. 2006b; Mandelbaum et al. 2006b, 2016; More et al.
2011; van Uitert et al. 2011, 2016; Leauthaud et al. 2012; Velander et al. 2014), this is not
the case for satellite galaxies, whose stellar-to-subhalo mass relation (SHSMR) remains
essentially unexplored, and the constraints so far are limited to indirect measurements.
Rodríguez-Puebla et al. (2012) used abundance matching (the assumption that galaxies
rank-ordered by stellar mass can be uniquely mapped to [sub]haloes rank-ordered by total
mass) to infer the SHSMR using the satellite galaxy stellar mass function, and Rodríguez-
Puebla et al. (2013) extended these results using galaxy clustering measurements. They
showed that the SHSMR is significantly different from the central stellar-to-total mass
relation, and that assuming an average relation when studying a mixed population can
lead to biased results (see also Yang et al. 2009).

Instead, only stellar dynamics and weak gravitational lensing provide direct ways to
probe the total gravitational potential of a galaxy. However, the quantitative connection
between stellar velocity dispersion and halo mass is not straightforward (e.g., Li et al.
2013b; Old et al. 2015), and only weak lensing provides a direct measurement of the total
surface mass density (Fahlman et al. 1994; Clowe et al. 1998). Using deep Hubble Space
Telescope (HST) observations, Natarajan et al. (1998, 2002, 2007, 2009) measured the
weak (and also sometimes strong) lensing signal of galaxies in six clusters at z = 0.2−0.6.
After fitting a truncated density profile to the ensemble signal using a maximum likelihood
approach, they concluded that galaxies in clusters are strongly truncated with respect to
field galaxies. Using data for clusters at z ∼ 0.2 observed with the CFH12k instrument on
the Canada-Hawaii-France Telescope (CFHT), Limousin et al. (2007) arrived at a similar
conclusion. Halkola et al. (2007) and Suyu & Halkola (2010) used strong lensing measure-
ments of a single cluster and a small galaxy group, respectively, and also found evidence for
strong truncation of the density profiles of satellite galaxies. However, Pastor Mira et al.
(2011) have argued that the conclusion that cluster galaxies are truncated from these
(strong and weak) galaxy-galaxy lensing measurements are driven by the parametrization
of the galaxy density profiles rather than constraints from the data themselves.

Recent combinations of large weak lensing surveys with high-purity galaxy group cat-
alogues have allowed direct measurements of the average subhalo masses associated with
satellite galaxies using weak galaxy-galaxy lensing (Li et al. 2014, 2016, Chapter 5). How-
ever, these studies did not focus on the SHSMR but on the segregation of subhaloes by
mass within galaxy groups, by measuring subhalo masses at different group-centric dis-
tances. The observational results are consistent, within their large errorbars, with the mild
segregation seen in numerical simulations and semi-analytic models (Han et al. 2016; van
den Bosch et al. 2016).

In this work, we present weak gravitational lensing measurements of the total mass of
satellite galaxies in 50 massive galaxy clusters at z < 0.15. Our images were taken with the
MegaCam instrument on CFHT, which provides a larger field of view (1 sq. deg.) than
CFH12k. This large field of view allows us to focus on very low redshift clusters and take
advantage of the < 1′′ seeing (corresponding to 1.84 kpc at z = 0.1) of our observations. We
can therefore probe the lensing signal close to the galaxies themselves, at a physical scale
equivalent to what can be probed in a cluster at z ∼ 0.5 with HST, but out to the clusters’
virial radii. In addition, the low-redshift clusters we use have extensive spectroscopic ob-
servations available from various data sets, compiled in Chapter 4, so we do not need to
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rely on uncertain photometric identification of cluster members.
This chapter is organized as follows. We summarize the galaxy-galaxy lensing formalism

in Section 6.2. We describe our data set in Section 6.3, taking a close look at the source
catalogue and the shapes of background sources in Section 6.4. We present our modelling
of the satellite lensing signal in Section 6.5, and discuss the connection between mass and
light in satellite galaxies in Section 6.6.

We adopt a flat Λ cold dark matter (ΛCDM) cosmology with Ωm = 0.315, based on
the latest results from cosmic microwave background observations by Planck Collabo-
ration (2015a), and H0 = 70kms−1Mpc−1. In this cosmology, 10′′ = {9.8,18.4,26.1}kpc at
z = {0.05,0.1,0.15}. As usual, stellar and (sub)halo masses depend on the Hubble constant
as m⋆ ∼ 1/H 2

0 and m ∼ 1/H0, respectively.

6.2. Weak galaxy-galaxy lensing

Gravitational lensing distorts the images of background (“source”) galaxies as their
light passes near a matter overdensity along the line-of-sight. This produces a distortion
in the shape of the background source, called shear, and a magnification effect on the
source’s size (and consequently its brightness). Starting from a measurement of the shape
of an object in a cartesian frame with components (γ1,γ2) (see Section 6.4.1), the shear
can be computed as (

γt

γ×

)
=

(−cos 2ϕ −sin 2ϕ
sin 2ϕ −cos 2ϕ

)(
γ1

γ2

)
, (6.1)

where ϕ is the azimuthal angle of the lens-source vector, γt measures the ellipticity in the
tangential (γt > 0) and radial (γt < 0) directions and γ× measures the ellipticity in directions
45◦ from the tangent. Because of parity symmetry, we expect 〈γ×〉 = 0 for an ensemble of
lenses (Schneider 2003) and therefore γ× serves as a test for systematic effects.

The shear is related to the excess surface mass density (ESD), ∆Σ, via

∆Σ(R) ≡ Σ̄(< R)− Σ̄(R) = γtΣc, (6.2)

where Σ̄(< R) and Σ̄(R) are the average surface mass density within a radius1 R and within
a thin annulus at distance R from the lens. The critical surface density, Σc, is a geometrical
factor that accounts for the lensing efficiency,

Σc = c2

4πG

Ds

D lD ls
, (6.3)

where, D l, Ds, and D ls are the angular diameter distances to the lens, to the source and be-
tween the lens and the source, respectively. The ESD for each bin in lens-source separation
is then

∆Σ=Σc

∑
i wiγt,i∑

i wi
, (6.4)

1As a convention, we denote three-dimensional distances with lower case r and two-dimensional distances
(that is, projected on the sky) with upper case R.
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where the sums run over all lens-source pairs in a given bin and the weight of each source
galaxy is given by

wi = 1

〈ϵ2
int〉+ (σγ,i )2

. (6.5)

Here, σγ is the measurement uncertainty in γt due to shot noise in the images (see Sec-
tion 6.4.1). We set the intrinsic root-mean-square galaxy ellipticity, 〈ϵ2

int〉1/2, to 0.25.
In fact, the weak lensing observable is the reduced shear, g ≡ γ/(1−κ) (where κ=Σ/Σc

is the lensing convergence), but in the weak limit κ≪ 1 so that g ≈ γ. However, close to
the centres of galaxy clusters the convergence is of order unity, so this approximation is
not accurate anymore. To account for this, the lensing model presented in Section 6.5 is
corrected using

g (R) = γ(R)

1− Σ̄(R)/Σc
= ∆Σ(R)/Σc

1− Σ̄(R)/Σc
. (6.6)

6.2.1. Statistical errors: data covariance

Because the gravitational potential of satellites in a cluster is traced by the same
background source galaxies, data points in the ESD are correlated. Following Viola et al.
(2015), we can re-arrange Equation 6.4 to reflect the contribution from each source galaxy.
The data covariance can then be written as

Covmni j = 〈ϵ2〉1/2

∑
s
(
Csi ,mCs j ,n +Ssi ,mSs j ,n

)(∑
s Zsi ,m

)(∑
s Zs j ,n

) , (6.7)

where index pairs m,n and i , j run over the observable bins (e.g., stellar mass) and lens-
source separation, R, respectively, and C , S and Z are sums over the lenses:

Csi =−∑
l

wl sΣ
−1
c,l s cos2ϕl s ,

Ssi =−∑
l

wl sΣ
−1
c,l s sin2ϕl s ,

Zsi =
∑

l
wl sΣ

−2
c,l s ,

(6.8)

and we assume zero covariance between clusters. In Equations 6.7 and 6.8, we explicitly
allow for the possibility that the source weight, w , may be different for each lens-source
pair (as opposed to a unique weight per source). This is the case when we consider the
corrections to the shape measurements from lens contamination discussed in Section 6.4.1.

In addition to the data covariance there is, in principle, a contribution to the mea-
surement uncertainty from sample variance. By comparing Equation 6.7 to uncertainties
estimated by bootstrap resampling, in Chapter 5 we showed that the contribution from
sample variance is less than 10% for satelite galaxy-galaxy lensing measurements when
limited to small lens-source separations (R ≲ 2 Mpc).

6.3. Data set
In this section we describe the lens and source galaxy samples we use in our analysis.

In the next section, we make a detailed assessment of the shape measurement and quality
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cuts on the source sample using extensive image simulations.

6.3.1. Cluster and lens galaxy samples

The Multi-Epoch Nearby Cluster Survey (MENeaCS, Sand et al. 2012) is a targeted
survey of 57 galaxy clusters in the redshift range 0.05 ≲ z ≲ 0.15 observed in the g and r
bands with MegaCam on the Canada-France-Hawaii Telescope (CFHT). The image pro-
cessing is described in detail in van der Burg et al. (2013); all images have seeing ≲ 0.8′′.
In Chapter 4, we compiled a large sample of spectroscopic redshift measurements in the
direction of 46 of these clusters, identifying a total of 7945 spectroscopic members. Since,
Rines et al. (2016) have published additional spectroscopic redshifts for galaxies in 12 ME-
NeaCS clusters, six of which are included in Chapter 4 but for which the observations
of Rines et al. (2016) represent a significant increase in the number of member galaxies.
We select cluster members in these 12 clusters in an identical way as in Chapter 4. From
the member catalogue of Chapter 4 we exclude all brightest cluster galaxies (BCGs),
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Figure 6.1: Relation between stellar mass and r -band
luminosity for all satellites with stellar mass measure-
ments. The color scale shows the two-dimensional
histogram while the bottom and right histograms
show the individual distributions. The black line is
the best-fit relation, shown in the legend.

and refer to all other galaxies as satellites. Be-
cause the shapes of background galaxies near
these members is very likely to be contami-
nated by light from the BCG, we also exclude
all satellite galaxies within 10′′ of the BCGs
to avoid severe contamination from extended
light. Finally, we impose a luminosity limit
Lsat < min(2L⋆,0.5LBCG), where L⋆(z) is the r -
band luminosity corresponding to the charac-
teristic magnitude, m⋆

phot(z) of the Schechter
(1976) function, fit to red satellite galaxies
in redMaPPer galaxy clusters over the red-
shift range 0.05 < z < 0.7 (Rykoff et al. 2014).2
We choose the maximum possible luminosity,
2L⋆, because the BCGs in our sample have
LBCG ≳ 3L⋆, so this ensures we do not include
central galaxies of massive (sub)structures
that could, for instance, have recently merged

with the cluster. In addition, we only include satellites within 2 Mpc of the BCG. At larger
distances, contamination by fore- and background galaxies becomes an increasingly larger
problem. Our final spectroscopic sample consists of 5414 satellites in 51 clusters.

In addition, we include red sequence galaxies in all MENeaCS clusters in order to im-
prove our statistics. We measure the red sequence by fitting a straight line to the colour-
magnitude relation of red galaxies in each cluster using a maximum likelihood approach
(C. Sifón et al., in prep.). Following the results of Chapter 4, we include only red se-
quence galaxies brighter than Mr =−19 and within 1 Mpc of the BCG.3 When we include

2Equation 9 of Rykoff et al. (2014) provides a fitting function for the i -band m⋆
phot(z), which we convert

to r -band magnitudes assuming a quiescent spectrum, appropriate for the majority of our satellites, using
EzGal (http://www.baryons.org/ezgal/, Mancone & Gonzalez 2012).

3Here, Mr is the k +e–corrected absolute magnitude in the r -band, calculated with EzGal using a pas-

http://www.baryons.org/ezgal/
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red sequence galaxies, we also use the seven clusters without spectroscopic cluster mem-
bers. Therefore our combined spectroscopic plus red sequence sample includes 9059 cluster
members in 57 clusters. Throughout, we refer to the spectroscopic and spectroscopic plus
red sequence samples as ‘spec’ and ‘spec+RS’, respectively.
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Figure 6.2: Stellar mass and cluster-centric distributions for the
four bins in stellar mass used in Section 6.6.1 (top) and in cluster-
centric distance used in Section 6.6.2 (bottom). Thin and thick
histograms show the distributions of the spectroscopic and the
spectroscopic-plus-red-sequence samples, respectively.

Using u- and i -band data taken
with either MegaCam or the Wide-
Field Camera on the Isaac New-
ton Telescope in La Palma, van der
Burg et al. (2015) estimated stel-
lar masses for the 46 clusters with
spectroscopic data from Chapter 4.
Stellar masses were estimated by fit-
ting each galaxy’s spectral energy
distribution using fast (Kriek et al.
2009) assuming a Chabrier (2003)
initial mass function. The only fac-
tor determining whether a particu-
lar galaxy has a stellar mass esti-
mate or not is whether the cluster
it resides in has u- and i -band data.
We therefore regard the subsample
of satellites with stellar masses as a
representative subsample of our full
catalogue. We therefore also include
galaxies in clusters without stellar
mass catalogues (corresponding to
roughly 15% of the galaxies) by as-
signing stellar masses to them based
on a fit to the stellar masses as a function of r -band luminosity, L⋆. For each galaxy,
we assign its stellar mass from a normal distribution centred on this relation and with a
spread given by the scatter in Figure 6.1. The relation we use is

logm⋆ = (9.981±0.002)+ (1.138±0.005)
(
logL/L∗+0.56

)
, (6.9)

and is shown in Figure 6.1. We have checked that the inclusion of galaxies without stellar
masses through the above procedure does not bias any of our results.

In order to characterize the connection between satellite galaxies and their host sub-
haloes, we split the sample by stellar mass (Section 6.6.1) and cluster-centric distance
(Section 6.6.2), each time splitting the sample in four bins. We show the stellar mass and
cluster-centric distributions of the resulting subsamples in Figure 6.2, and list the average
values in Table 6.1.

sively evolving Charlot & Bruzual (2007, unpublished, see Bruzual & Charlot 2003) model with formation
redshift zf = 5.
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6.3.2. Source galaxy sample

We construct the source catalogues in an identical manner to Hoekstra et al. (2015),
except for one additional constraint discussed in Section 6.4. The biases in the shape
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Figure 6.3: Observed number density of background
sources as a function of lens-source separation, θls,
and distance from the lens to the cluster centre, Rsat,
for all 57 MENeaCS clusters, after applying all the
cuts described in Section 6.3.

measurements of the sources, depending on
how the source sample is defined, have been
characterized in great detail by Hoekstra et al.
(2015). Although the study of Hoekstra et al.
(2015) refers to a different cluster sample,
both samples have been observed with the
same instrument under very similar condi-
tions of high image quality, so we can safely
take the analysis of Hoekstra et al. (2015)
as a reference for our study. Specifically, we
select only sources with r -band magnitudes4

20 < mphot < 24.5, with sizes rh < 5 pix and
an additional constraint on δmphot, the dif-
ference in estimated magnitude before and af-
ter the local background subtraction (see Sec-
tion 6.4). Compared to Hoekstra et al. (2015),
who used 22 < mphot < 25, we choose different

limits at the bright end because our cluster sample is at lower redshift and therefore clus-
ter members are brighter, and at the faint end because our data are slightly shallower,
complicating the shape measurements of very faint sources.
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Figure 6.4: Magnitude and size distribution of satel-
lites in the MENeaCS spec+RS sample. The loga-
rithmic color scale shows the number of galaxies per
two-dimensional bin, while black histograms show the
one-dimensional distributions. Cyan circles show the
coordinates used in the image simulations.

The source density after applying these
cuts is ns = 10.5 arcmin−2. Unlike most clus-
ter lensing studies (e.g., Hoekstra et al. 2012;
Applegate et al. 2014; Umetsu et al. 2014),
we do not apply a colour cut to our source
sample, since this only reduces contamination
by ∼30% (Hoekstra 2007). Instead, we follow
Hoekstra et al. (2015) and correct for contam-
ination in the source sample by applying a
‘boost factor’ to the measured lensing signal
to account for the dilution by cluster mem-
bers (e.g., Mandelbaum et al. 2005), defined
here as

B(θls) = ns,data(θls)

ns,sim(θls)

〈ns,sim(∞)〉
〈ns,data(∞)〉 . (6.10)

We define ns(∞) as the number density as far
as possible from the cluster, such that the
measurement is contaminated by cluster members as least as possible. Because of the

4We denote r -band magnitudes with mphot in order to avoid confusion with subhalo masses, which we
denote with lower case m and subscripts depending on the definition (see Section 6.5.2).
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low redshift of our cluster sample, the field of view is sometimes not sufficient to probe a
region truly devoid of cluster galaxies, but this has no impact on our results.

In the case of satellite galaxy-galaxy lensing there is a particularly high number density
of lenses, which act as masks in our source sample in the regions where we most care about
the signal—as close as possible to the lenses. In Figure 6.3, we show the source density
as a function of both lens cluster-centric distance, Rsat, and lens-source separation, θls.
The source density is fairly independent of both quantities, except for a sharp decrease at
θls < 20′′, caused by the presence of cluster members which hide background sources (see
Section 6.4.2). There is also a slight (∼10%) decrease in ns around lenses closer to the
cluster centre, which can similarly be attributed to the higher lens density.

Roughly 20% of our satellites reside in clusters at z < 0.06, at which redshift the max-
imum distance from the centre within the 1 sq. deg. field of view of MegaCam (i.e., 30′)
corresponds to 2 Mpc. At larger radii the average signal may be biased since progres-
sively fewer lenses from fewer clusters contribute to the measurements. We therefore only
consider lens-source separations R < 2Mpc (where R = D A(z)θls) for our analysis.

6.4. Bias assessment and calibration through image simulations

In order to assess the impact of the lenses on our source sample (Section 6.4.2) and
shape measurements (Section 6.4.1), we inject bright galaxies into the image simulations
produced by Hoekstra et al. (2015). We place round galaxies modelled by Sérsic (1968)
profiles with index n = 4 in a regular grid in the simulated images, separated at least 60′′
from each other. Figure 6.4 shows the distribution of magnitudes, mphot, and sizes, seff, in
the data, and the parameter space sampled with the simulations. The light profiles of the
simulated lenses are truncated at 5× seff, where seff is the effective, or half-light, radius of
the Sérsic profile. Galaxies are truncated to avoid confusion of light coming from different
lenses, which would alter the inferred bias.

6.4.1. Shape measurements

To measure the galaxy-galaxy lensing signal we must be able to accurately infer the
shear field around the lenses by measuring the shapes of as many background galaxies as
possible. Most of these sources are faint and of sizes comparable to the image resolution,
quantified by the point spread function (PSF). Blurring by the PSF leads to a multiplicative
bias, µ, while an anisotropic PSF introduces an additive bias, c (e.g., Heymans et al. 2006a).
The measured (or observed) shear is therefore related to the true shear by

γobs(θ) = (
1+µ

)
γtrue(θ)B−1(θ)+ c . (6.11)

Note that µ, c and B(θ) depend on both the shape measurement method and the dataset
on which the method is applied. As with any bias, it is not the magnitude of µ or c that is
important but the accuracy with which it is known; this determines the accuracy to which
they can be corrected for.

We measure galaxy shapes by calculating the moments of galaxy images using the
KSB method (Kaiser et al. 1995; Luppino & Kaiser 1997), incorporating the modifications
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by Hoekstra et al. (1998, 2000). Hoekstra et al. (2015) used extensive image simulations
to assess the performance of KSB depending on the observing conditions and background
source ellipticity, magnitude and size distributions. We adopt the size– and signal-to-noise–
dependent multiplicative bias correction obtained by Hoekstra et al. (2015). Instead of
correcting each source’s measured shape, we apply an average correction to each data
point, since the latter is more robust to uncertainties in the intrinsic ellipticity distribution
(Hoekstra et al. 2015).
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Figure 6.5: Average tangential additive bias, c∆Σ ≡
Σcct, for the four stellar mass bins studied in Sec-
tion 6.6.1, from low (M1) to high (M4) stellar mass.
Note the smaller extent of the horizontal axis com-
pared to other similar figures.

As is customary in galaxy-galaxy lensing
studies (and similarly in cluster lensing stud-
ies), Hoekstra et al. (2015) ignored the ad-
ditive bias in Equation 6.11 because the az-
imuthal averaging of source shapes washes out
any spatial anisotropy (in other words, ad-
ditive biases in γ1 and γ2 vanish when pro-
jected into γt). However, unlike the case of
cluster lensing, our measurements are focused
on the immediate surroundings of thousands
of lenses, such that galaxy light may bias the
shape measurements of fainter background
sources. Given that the light profile always de-
creases radially, the azimuthal averaging can
introduce an additive bias in γt (as opposed
to γ1,2). In Section 6.A we show, using the im-
age simulations described above, that we can
model this (negative) bias, ct, as a function
of lens-source separation, lens magnitude and
size, and we correct each source’s shape mea-
surement for this bias. For reference, a frac-

tion of order 10−6 lens-source pairs have |ct| > 0.01.
For illustration, we show in Figure 6.5 the average c∆Σ ≡Σcct obtained for real galaxies

binned into four stellar mass bins (see Section 6.6.1). As expected, the correction is larger
for more massive galaxies, which are on average larger.

6.4.1.1. Sensitivity to background subtraction

The shape measurement algorithm proceeds in two steps. The first is to detect sources
using a global background measurement, while the second is to measure the shapes of these
detected objects. In the second step, a local background is determined by measuring the
brightness in an annulus with inner and outer radii of 16 and 32 pixels, with all detected
galaxies masked. This annulus is split into four quadrants and the background is subtracted
by fitting a plane through them. This background subtraction works well in general, but
in some cases, the background subtraction significantly modifies the estimated magnitude
of the test galaxy. Since the simulations do not have a diffuse background component, a
proper background subtraction would leave the galaxy magnitude untouched. Therefore
changes in the magnitude pre- and post-background subtraction, which we denote δmphot,
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suggest that the shape measurement process is not robust for that particular galaxy. The
simulations indeed contain a population of sources with large values of δmphot. We discard
all source galaxies that meet the following criteria:

δmphot > 0.0607+0.0363mphot −0.0152m2
phot +0.0053m3

phot,

or

δmphot <−0.1607−0.0363mphot +0.0152m2
phot −0.0053m3

phot,

(6.12)

which represent the edges of the distribution of δmphot, after accounting for the spread
as a function of mphot that arises due to measurement noise. Inspecting the location of
the galaxies thus discarded in the real data, we find that they are mostly located either
near bright, saturated stars (which have been discarded in previous steps by masking
stellar spikes and ghosts), or close to big galaxies with resolved spiral arms or other similar
features, that make the plane approximation of the background a very bad fit of the local
background. Equation 6.12 therefore effectively acts as a step to identify blended objects.
We have verified that the calibration of the shape measurements by Hoekstra et al. (2015)
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Figure 6.6: Top: average number densities of back-
ground sources in the data (dashed) and the image
simulations (solid), as a function of lens-source sep-
aration, for four bins in stellar mass. The decrease
in source density towards θls = 0 is produced by ob-
scuration, while the excess density in the data com-
pared to the image simulations corresponds to con-
tamination, by cluster members. Bottom: best-fit
boost factors. Lens-source separations below which
the source density is less than half of the large-scale
value are masked.

remains unchanged when discarding these
galaxies (which were included in their sample).
Typically, an additional 10–12 % of sources are
masked by Equation 6.12.

6.4.2. Obscuration and contamination
by cluster members

Lens galaxies affect the number of detected
objects in their vicinity for two reasons: big
lenses act as masks on the background source
population, while small ones enter the source
sample. We refer to these effects as obscuration
and contamination, respectively. Since cluster
galaxies are randomly oriented (see Chapter
4), contamination by cluster members dilutes
the recovered lensing signal. Obscuration, in
turn, has two effects: it reduces the statisti-
cal power of small-scale measurements, and it
complicates the determination of contamina-
tion, since number density of sources is also af-
fected by it. We resort to the image simulations
described above to assess these two effects.

Figure 6.6 shows the source densities mea-
sured in the data (i.e., Figure 6.3 collapsed over
the vertical axis) and in the real simulations,
as a function of lens-source separation, θls. The
simulated average source densities have been
obtained by performing a weighted sum of the
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source densities measured in simulations with
different lens properties. Here, the weights cor-
respond to the number of lenses in the MENeaCS sample with the same magnitude and
size of each image simulation setup as per Figure 6.4. Both the data and the simulations
show a sharp decrease in the source number density at lens-source separations θls < 20′′.
This decrease effectively means that we have no constraining power below scales θls ∼ 10′′,
corresponding to 18 kpc at the median redshift of our sample, z = 0.1. This is well beyond
the half-light radius of our lenses (see Figure 6.4), and severely limits our ability to con-
strain the density profile of galaxies at the smallest scales. One possibility to overcome this
is to model and subtract lens galaxies from the images to be able to recover a larger source
density in the innermost regions; we will explore this in future work.

While both the data and the simulations show a sharp decline in the source density
at small scales, the source density profiles are in fact different in an important way. The
number density in the image simulations start to decrease at larger scales and do so more
slowly than the number densities measured from the data. This difference is produced
by cluster members contaminating our source sample, which tends to compensate for the
obscuration produced by the lens galaxy on the fainter sources. The bottom panel of
Figure 6.6 shows the excess of source galaxies in the real data compared to the simulations,
which represents the boost factor defined in Equation 6.10.

Therefore to correct the lensing signal, we repeat the procedure above separately for
each considered bin (e.g., in stellar mass). That is, we first generate a two-dimensional
histogram of mphot and log seff and weight-average the number densities measured in the
image simulations. We fit for a boost factor of the form B(θls) ∝ 1/θls, which we find
provides a good description of the data (shown for the four stellar mass bins in the bottom
panel of Figure 6.6). Finally, we average DA(z)B(θls) weighting by the lens distribution to
obtain B(R), and apply the latter to the average ct-corrected signal per bin.

Due to lensing, sources are magnified as well as sheared, and this may bias the inferred
source number counts discussed in this section, which would have an effect on the boost
correction. The increase in flux boosts the number counts relative to an unlensed area of
the sky, but the decrease in effective area works in the opposite direction. The net effect
depends on the intrinsic distribution of source galaxies as a function of magnitude, and
cancels out for a slope d log Nsource/dmphot = 0.40 (Mellier 1999). In fact, this slope is 0.38–
0.40 for the MegaCam r -band data (Hoekstra et al. 2015), so we can safely assume that
contamination by cluster members fully explains the excess ns seen in Figure 6.6.

6.4.3. Resulting lensing signal

Figure 6.7 shows the resulting lensing signal from satellites in MENeaCS clusters,
corrected by both ct(θls) and B(R). We make the distinction in the arguments of both
corrections because the former is applied to each lens-source pair, while the latter is applied
as an average correction after stacking all lenses in each bin. We compare the ESDs of the
four bins in satellite stellar mass for the spec and spec+RS samples. The signals from the
two samples are consistent at the scales where the subhalo dominates, R ≲ 100kpc. In more
detail, the signal from the spec+RS sample is slightly lower than the signal from the spec
sample at the smallest scales. This is expected, as in general the more massive galaxies
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Figure 6.7: Excess surface mass density (ESD) of satellite galaxies binned by stellar mass. Grey circles and
black triangles show the ESD of the spectroscopic and spectroscopic-plus-red sequence samples, respectively.
Errorbars are the square roots of the diagonal terms of the covariance matrix. The dashed horizontal line shows
∆Σ= 0 for reference. In our analysis we only use data points up to 2 Mpc, marked by the vertical dotted line.

have been targeted in the spectroscopic observations; this is reflected also in the average
stellar masses listed in Table 6.1. We base our analysis is on the spec+RS sample, which
contains a larger sample of lenses.

At intermediate scales, 0.3 ≲ R/Mpc ≲ 2, the two samples produce different signals. In
particular, the signal from the spec+RS sample is higher. This is a consequence of the fact
that we only include red sequence galaxies out to 1 Mpc, so the spec+RS sample is on
average closer to the cluster centre than the spec sample. Therefore, the peak of the host
cluster signal happens at smaller R. Beyond the peak the two signals are consistent, because
all galaxies come from the same clusters. See Figure 5.3 for a graphical representation.

6.5. Satellite galaxy-galaxy lensing model

We interpret the galaxy-galaxy lensing signal produced by subhaloes following the for-
malism introduced by Yang et al. (2006, see also Li et al. 2013a), and applied to observations
by Li et al. (2014, 2016) and in Chapter 5. This formalism assumes that measurements
are averages over a large number of satellites and clusters, such that the stacked cluster
is (to a sufficient approximation) point-symmetric around their centres and well-described
by a given parametrization of the density profile. A similar method was introduced by
Pastor Mira et al. (2011), which however does not rely on such parametrization by virtue
of subtracting the signal at the opposite point in the host cluster. A different approach is
to perform a maximum likelihood reconstruction of the lensing potential of cluster galaxies
accounting for the cluster potential, which must be well known a priori (e.g., Natarajan &
Kneib 1997; Geiger & Schneider 1998) or modelled simultaneously with the cluster galaxies
(Limousin et al. 2005). This method has been applied in several observational studies (e.g.,
Natarajan et al. 1998, 2009; Limousin et al. 2007). By nature, however, this maximum like-
lihood approach is well-suited for studies of galaxies in single, rather than stacked, clusters.
We discuss results from the literature using either method after presenting our analysis,
in Section 6.6. In the following we describe our modelling of the satellite galaxy-galaxy
lensing signal.

The ESD measured around a satellite galaxy is a combination of the contributions from
the subhalo (including the galaxy itself) at small scales, and that from the host halo at
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larger scales,

∆Σsat(R) =∆Σ⋆(R|m⋆)+∆Σsub(R|mbg,csub)+∆Σhost(R|Mh,ch), (6.13)

where ∆Σ⋆ represents the contribution from baryons in the satellite galaxy, which we model
as a point source contribution throughout, such that

∆Σ⋆(R|m⋆) = m⋆

πR2 . (6.14)

Here, we take m⋆ to be the median stellar mass of all satellites in the corresponding
sample (e.g., a given bin in satellite luminosity). In Equation 6.13, R refers to the lens-
source separation in physical units; mbg is the average subhalo mass (see below) and csub its
concentration; and Mh and ch are the average mass and concentration of the host clusters.
In the remainder of this section we describe the other two components in Equation 6.13.
Detailed, graphical descriptions of these components can be found in Yang et al. (2006),
Li et al. (2013a) and Chapter 5.

6.5.1. Host cluster contribution

Numerical simulations reveal that the density profiles of dark matter haloes are well
described by a Navarro-Frenk-White (NFW, Navarro et al. 1995) profile,

ρNFW(r ) = δc ρm

r /rs (1+ r /rs)2 , (6.15)

where ρm(z) = 3H 2
0 (1+ z)3Ωm/(8πG) is the mean density of the Universe at redshift z and

δc = 200

3

c3

ln(1+ c)− c/(1+ c)
. (6.16)

The two free parameters, rs and c ≡ r200/rs, are the scale radius and concentration of the
profile, respectively. Stacked weak lensing measurements have shown that this theoretical
profile is a good description, on average, of real galaxy clusters as well (Oguri et al. 2012;
Umetsu et al. 2016). We therefore adopt this parametrization for the density profile of the
host clusters.

The concentration parameter is typically anti-correlated with mass. This relation, re-
ferred to as c(M) hereafter, has been the subject of several studies (e.g., Bullock et al.
2001; Duffy et al. 2008; Macciò et al. 2008; Prada et al. 2012; Dutton & Macciò 2014).
Most of these studies parametrize the c(M) relation as a power law with mass (and some
with redshift as well), with the mass dependence being typically very weak. Since our
sample covers relatively narrow ranges in both quantities (i.e., cluster mass and redshift),
the exact function adopted is of relatively little importance. We therefore parametrize the
mass-concentration relation as a power law with mass,

ch(M200,h) = ac

(
M200,h

1015M⊙

)bc

(6.17)

where M200,h is the host halo mass within r200,h, and ac and bc are free parameters that
we marginalize over. As in Chapter 5, we account for the observed separations between
the satellites and the cluster centre (which we assume to coincide with the BCG) in each
observable bin to model the total host halo contribution to Equation 6.13.
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6.5.2. Subhalo contribution

Although in numerical simulations satellite galaxies are heavily stripped by their host
cluster, the effect on their density profile is not well established. For instance, Hayashi
et al. (2003) found that, although tidal stripping removes mass in an outside-in fashion,
tidal heating causes the subhalo to expand; the resulting density profile is similar in shape
to that of a central galaxy (which has not been subject to tidal stripping). Similarly, Pastor
Mira et al. (2011) found that the NFW profile is a better fit than truncated profiles for
subhaloes in the Millenium Simulation (Springel et al. 2005), and that the reduction in
mass produced by tidal stripping is reflected only as an overall decrease in the amplitude
of the density profiles of subhaloes accreted earlier.

We therefore assume that the density profile of subhaloes can also be described by an
NFW profile. However, we adopt the subhalo mass-concentration relation recently derived
by Moliné et al. (2016), which depends on both the subhalo mass and its position within
the halo,

csub(m200, x) = c0

(
1+

3∑
i=1

[
ai log

(
m200

108 h−1M⊙

)]i
)
× [

1+b log x
]

, (6.18)

where x ≡ rsat/rh,200 (defined in three-dimensional space), c0 = 19.9, ai = {−0.195,0.089,0.089}
and b =−0.54.

Note that the quantity m200 is used for mathematical convenience only, but is not well
defined physically. Instead, we report subhalo masses within the radius at which the subhalo
density matches the background density of the cluster at the distance of the subhalo in
question (which we denote rbg), and refer to this mass simply as m. This radius rbg scales
roughly with cluster-centric distance as rbg ∝ (Rsat/r200,h)2/3 (see also Natarajan et al. 2007,
for a comparison between m and m200). The reported subhalo masses are therefore similar
to those that would be measured by a subhalo finder based on local overdensities such as
subfind (Springel et al. 2001a).

Because the density profile is a steep function of cluster-centric distance, we take the
most probable three-dimensional cluster-centric distance, 〈rsat〉, to be equal to the weighted
average of the histogram of two-dimensional distances, Rsat:

〈rsat〉 =
∑

i n(Rsat,i )Rsat,i∑
i n(Rsat,i )

, (6.19)

where the index i runs over bins of width ∆Rsat = 0.1Mpc (see Figure 6.2).

6.5.3. Fitting procedure

We fit the model presented above to the data using the affine-invariant Markov Chain
Monte Carlo (MCMC) ensemble sampler emcee (Foreman-Mackey et al. 2013). This sam-
pler uses a number of walkers (set here to 5000) which move through parameter space
depending on the position of all other walkers at a particular step, using a Metropolis
Hastings acceptance criterion (see Goodman & Weare 2010, for a detailed description).
The loss function to be maximized is defined as

L = 1

(2π)k2/2

k∏
m=1

k∏
n=1

1√
det(Cmn)

×exp

[
−1

2
(O−E)T

mC−1
mn(O−E)n

]
, (6.20)
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where k = 4 is the number of bins into which the sample is split (i.e., stellar mass or cluster-
centric distance bins); O and E are the observation data vector and the corresponding model
predictions, respectively; C is the covariance matrix; det(·) is the determinant operator; and
the index pair (i , j ) runs over data points in each bin (m,n). As implied by Equation 6.20,
we account for the full covariance matrix, including the covariance both within and between
observable bins.

We adopt flat priors for all parameters. For subhalo and host halo masses, the priors
are non-zero over the ranges 107 ≤ m/M⊙ ≤ 1015 and 1013 ≤ Mh/M⊙ ≤ 1016, respectively.
We also adopt flat priors for the parameters characterizing the host density profile, in the
ranges 0 ≤ ac ≤ 10 and −1 ≤ bc ≤ 1.

6.6. The connection between mass and light in satellite galaxies

6.6.1. The subhalo-to-stellar mass relation

We first bin the sample by stellar mass, as shown in the top-left panel of Figure 6.2.
The ESD of the four bins, along with the model fit, are shown in Figure 6.8. The model
is a good description of the data. For reference, this model has χ2 = 14.0. Since there are
36 data points and 9 free parameters, there are nominally 26 degrees of freedom, but we
caution that ‘degrees of freedom’ is ill-defined for nonlinear models with covariant data
points (Andrae et al. 2010), so the interpretation of the χ2 statistic is not straightforward.
The best-fit masses resulting from this model are shown in Figure 6.9. We fit a power law
relation between subhalo and stellar masses using the BCES X2|X1 estimator (Akritas &
Bershady 1996), and find a sub-linear relation,

mbg

M⊙
= 1011.89±0.07

(
m⋆

2×1010M⊙

)0.77±0.11

. (6.21)

We remind the reader that this relation applies to the subhalo mass, mbg, within the
radius rbg where the subhalo density equals the host halo background density. If we re-
place mbg with m200, the normalization increases by a factor 2.45 but the best-fit slope is
indistinguishable from that reported in Equation 6.21.
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Figure 6.8: Excess surface mass density of the spec+RS sample, binned by stellar mass as shown in the legends
(same as the black triangles in Figure 6.7). The black line shows the best-fitting model from the MCMC and
the dark and light grey regions show the 68 and 95% credible intervals, respectively. The horizontal dashed line
shows ∆Σ= 0 for reference.
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Table 6.1: Average properties of stellar mass and cluster-centric distance bins used in Sections 6.6.1 and 6.6.2. Each column corresponds to the values of the
fiducial spectroscopic-plus-red-sequence sample, the sample of galaxies (both spectroscopic and red sequence) that have a stellar mass measurement, and the
spectroscopic-only sample (with and without stellar mass measurements). Note that the ‘with-m⋆’ columns reflect the number of clusters that have three- or
four-band photometry, as opposed to those that have only two. See Section 6.3.1 for details on these samples.

Binning Bin Range Nsat 〈Rsat/Mpc〉 log〈m⋆/M⊙〉
observable label spec+RS with-m⋆ spec spec+RS with-m⋆ spec spec+RS with-m⋆ spec

log(m⋆/M⊙)

M1 [9.0−10.0) 4199 1546 1756 0.69 0.71 0.92 9.59 9.60 9.64
M2 [10.0−10.4) 2501 1591 1742 0.80 0.81 0.93 10.19 10.20 10.20
M3 [10.4−10.7) 1396 1035 1105 0.84 0.86 0.93 10.54 10.54 10.54
M4 [10.7−11.2] 963 737 811 0.88 0.92 0.94 10.88 10.87 10.88

Rsat (Mpc)

D1 [0.05−0.40) 2509 2021 1044 0.24 0.24 0.24 9.94 9.94 10.14
D2 [0.40−0.70) 2433 1989 1145 0.55 0.55 0.55 9.93 9.94 10.16
D3 [0.70−1.20) 2817 2358 1633 0.90 0.91 0.94 9.96 9.97 10.16
D4 [1.20−2.00] 1821 1655 1818 1.57 1.57 1.57 10.17 10.17 10.17

Table 6.2: Marginalized posterior estimates of fits to the satellite lensing signal. Masses are in units of M⊙. Uncertainties correspond to 68% credible intervals.
All parameters have flat priors, in the following ranges: 107 ≤ mbg/M⊙ ≤ 1015, 1013 ≤ Mh/M⊙ ≤ 1016, 0 ≤ ac ≤ 10 and −1 ≤ bc ≤ 1.

Observable log〈m1〉 log〈m2〉 log〈m3〉 log〈m4〉 ac bc log〈Mh,1〉 log〈Mh,2〉 log〈Mh,3〉 log〈Mh,4〉
m⋆ 11.17+0.31

−0.47 11.69+0.23
−0.32 12.10+0.18

−0.23 12.06+0.22
−0.30 4.8+1.0

−1.2 −0.73+0.38
−0.16 15.33+0.30

−0.23 15.23+0.34
−0.20 15.39+0.32

−0.25 15.54+0.29
−0.29

Rsat 11.07+0.30
−0.45 11.36+0.26

−0.37 11.55+0.28
−0.39 11.59+0.31

−0.46 3.8+1.5
−1.5 −0.13+0.27

−0.26 15.20+0.27
−0.33 15.88+0.09

−0.17 15.60+0.30
−0.53 15.69+0.23

−0.48
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We also assess the robustness of the SHSMR to the parametrization of the c(M) relation
by adopting that of Duffy et al. (2008) instead of that of Moliné et al. (2016). The slope of
the SHSMR is 0.75±0.07, fully consistent with Equation 6.21. However, subhalo masses are
then on average (81±12)% of those shown in Figure 6.9. Therefore while subhalo masses are
somewhat dependent on the adopted c(M) relation, the slope of the SHSMR is insensitive
to it.

Rodríguez-Puebla et al. (2013) combined galaxy clustering measurements and abun-
dance matching predictions to obtain the SHSMR5 in galaxy groups, separating centrals
from satellites a priori using the galaxy spectroscopic group catalogue of Yang et al. (2007).
As shown in Figure 6.9, their results differ substantially from our measurements, under-
estimating the subhalo mass by almost an order of magnitude at approximately the pivot
stellar mass m⋆ ∼ 2×1010 M⊙. It may be that this difference arises because of the differ-
ent halo masses probed in both works. To get a sense of this effect, we use the fact that
the subhalo mass function, n (m|Mh), depends on host halo mass such that the normalized
subhalo mass function, n (m/Mh) is universal, and the slope of the SHSMR quoted in Equa-
tion 6.21. The groups used by Rodríguez-Puebla et al. (2013) have typical masses slightly
above Mh = 1013 M⊙ (Yang et al. 2007), so the average subhalo could be up to 50 times more
massive in the MENeaCS clusters. On the other hand, the SHSMR has a slope ∼ 0.8, so
we estimate “corrected” stellar masses through m⋆,1/m⋆,0 = (m1/m0)0.8 = 500.8 ≈ 23 (where
subscripts “0” and “1” refer to the original and adjusted masses, respectively). Therefore,
the SHSMR should be increased by a factor 50/23 ≈ 2.2. As shown by the thin brown line
in Figure 6.9, this correction significantly reduces the difference, and brings the results
of Rodríguez-Puebla et al. (2013) in excellent agreement with measurements in EAGLE.
(Note that EAGLE probes halo masses Mh ∼ 1014 M⊙, so the same argument would push
the EAGLE SHSMR up by a factor 1.4.) Of course, this correction is inaccurate, and only
meant to give a rough idea of the effect of halo mass. In particular, the correction assumes
a constant slope for m(m⋆) over the full stellar mass range, which is obviously not the case
for the SHSMR of Rodríguez-Puebla et al. (2013).

We also show in Figure 6.9 various determinations of the stellar-to-halo mass relation
(SHMR) of central galaxies from the literature (Leauthaud et al. 2012; Velander et al. 2014;
Mandelbaum et al. 2016; van Uitert et al. 2016), where halo mass refers to M200,h.6 These
have all been determined with weak lensing measurements, and are broadly consistent
with each other. Both Velander et al. (2014) and Mandelbaum et al. (2016) divided their
samples into red and blue centrals, and we only show the results for red galaxies since
MENeaCS satellites are in their great majority red as well (see van der Burg et al. 2015).

The comparison between the central SHMR and the satellite SHSMR is however not
straightforward. In principle, we may consider in the case of central galaxies that Mbg =
M200,h, so at least the mass definitions are consistent. Even then, identifying the progenitors
of present-day satellites is not an easy task, as there is evidence that most satellites in
massive clusters today were part of smaller groups long before entering their current hosts.
In the context of the decreased star formation of satellite galaxies, this is usually referred

5Rodríguez-Puebla et al. (2013) used their measurements to fit for m⋆(m), which due to intrinsic scatter
cannot be directly inverted to obtain m(m⋆). Instead, we invert it by Monte Carlo-sampling their relation,
including intrinsic scatter, and binning the data points by m⋆.

6We scale all these relations to the value of H0 adopted in this work.
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Figure 6.9: Stellar-to-subhalo mass relation. Black circles correspond to the best-fit subhalo masses of spectro-
scopic plus red sequence satellites, assuming the subhalo mass-concentration relation of Moliné et al. (2016).
The grey line and shaded regions show the best-fit linear relation using the BCES X2|X1 estimator and the 68%
confidence interval on the fit, respectively. Subhalo masses refer to the mass within rbg (see Section 6.5.2). We
show for comparison the subhalo-to-stellar mass relation of satellites in galaxy groups derived from clustering
measurements applied to abundance matching by Rodríguez-Puebla et al. (2013), and the stellar-to-halo mass
relations (where halo mass refers to M200,h) of central galaxies from galaxy-galaxy lensing measurements by
Leauthaud et al. (2012) and van Uitert et al. (2016) and specifically of red central galaxies by Velander et al.
(2014) and Mandelbaum et al. (2016). The thin brown line shows the SHSMR of Rodríguez-Puebla et al. (2013)
boosted by a factor 2.2 to illustrate the effect of the different halo masses of groups used in that work.

to as ‘pre-processing’ (e.g., McGee et al. 2009; Gabor & Davé 2015; Haines et al. 2015).
The impact of this pre-processing on the total mass content of present-day satellites is not
known.

The SHMR of central galaxies, like that of satellite galaxies derived by Rodríguez-
Puebla et al. (2013), follows a broken power law, with a transition stellar mass of approxi-
mately 5×1010 M⊙. Given the few data points and the limited range in stellar mass covered
here, a double power law fit is not justified, and we cannot place strong constraints on the
shape of the SHSMR, beyond noting that a single power law is a good description given
the current observational constraints.
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Figure 6.10: Excess surface mass density of satellites binned by cluster-centric distance as shown in the legends.
Lines and symbols are the same as Figure 6.8.

6.6.2. Subhalo mass segregation

In this section we explore the dependence of subhalo mass and the ratio between total
and stellar masses on the distance to the cluster centre. van den Bosch et al. (2016) have
shown using N-body simulations that, even after collapsing the line-of-sight component, the
projected halo-centric distance still preserves some of the correlation of subhalo physical
parameters with the binding energy, which is closely related to the time a subhalo has
spent in the halo. However, after multiple orbits the correlation is significantly reduced
because at any particular (projected) distance from the halo centre there are subhaloes
with a wide range of infall times. In an average sense, therefore, binning by cluster-centric
distance, Rsat, is binning by time since infall (although with very large uncertainties on the
binning quantity). We might therefore expect satellites at similar Rsat to have been part
of a similar halo-subhalo interaction. Hence the reason to bin by Rsat is to test whether we
can infer a different degree of transformation for subhaloes in different bins.

Figure 6.10 shows the measured ESD and best-fit model when we split the satellite
sample into four Rsat bins. Because of the finite extent of our data, we cannot draw full
circles with large lens-source separations around most lenses, so additive biases do not
cancel out. For this reason, in this section we only use measurements out to R = 0.6 Mpc. At
larger separations the signal is dominated by the host clusters, with little to no contribution
from the subhaloes, and we have verified that subhalo masses are not affected by this
cut. The best-fit model shown in Figure 6.10 has χ2 = 14.3 with 17 ‘nominal’ degrees of
freedom (see discussion in Section 6.6.1). We also note that when binning by m⋆ as in
Section 6.6.1, cluster-centric distances are mixed such that these biases effectively cancel
out, and therefore large lens-source separations are not significantly affacted by the finite
extent of our images.

van den Bosch et al. (2016) have also shown that the parameter that correlates most
strongly with both binding energy and halo-centric distance is the ratio m/macc, where
macc is the mass of the subhalo at the time of its accretion onto the main halo. This is
because of the average relation between time a subhalo has spent in the host halo (or
the accretion redshift, for a given redshift of observation) and the subhalo’s distance to
the halo centre, combined with the strong dependence of the mass ratio to the time since
accretion as a result of tidal stripping.

We show the ratio of total (subhalo) mass to (galaxy) stellar mass as a function of
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Figure 6.11: Best-fit subhalo-to-stellar mass ratio as a function of projected distance to the cluster centre, in
units of the best-fit r200 of the host cluster. Small open circles show the results of Chapter 5 for satellites in
galaxy groups. Uncertainties show 68% credible intervals. As in Figure 6.9, all subhalo masses refer to the mass
within rbg. The grey band shows a prediction for the total-to-stellar mass ratio from numerical simulations from
van den Bosch et al. (2016), which give m/macc as a function of cluster-centric distance, combined with the
macc(m⋆) predictions from Wang et al. (2013), taking the median stellar masses in each Rsat bin (cf. Table 6.1).
The width of the grey band shows a 20% uncertainty on the model, adopted for illustration.

cluster-centric distance in Figure 6.11. Consistent with Chapter 5, we find no statistically
significant evidence for a dependence of mbg/m⋆ with Rsat. The values obtained in Chapter
5 are also shown for comparison, but note that they have been obtained under different
assumptions for the concentration of subhaloes and their spatial extent (cf. Sections 5.3.3
and 6.5.2). To allow a fair comparison (which should nevertheless be taken with caution),
we adjust the subhalo masses obtained in Chapter 5 to be consistent with those reported
in this Chapter. In Chapter 5, we adopted the mass-concentration relation of Duffy
et al. (2008) for the density profiles of subhaloes. Following the discussion of the previous
section, we divide the masses reported in Chapter 5 by 0.81 to correct for the different
concentrations. We also calculate mbg for the subhaloes in Chapter 5, taking the best-
fit host halo masses (cf. Table 5.2) and average group-centric distances (Table 5.1). At
Rsat ∼ 0.2−0.3Mpc, the total-to-stellar mass ratio in galaxy groups derived in Chapter 5
is marginally smaller (at the ∼ 2σ level) than that in galaxy clusters derived here. This
may point to a host halo mass dependence of the subhalo-to-stellar masses, but a definitive
claim requires smaller errorbars.

We also show a prediction from numerical simulations and semi-analytic models. For
this, we first use the average m/macc (where macc is the subhalo mass at the time of accre-
tion) as a function of projected distance from van den Bosch et al. (2016).7 We combine

7van den Bosch et al. (2016) used subhalo masses obtained by the subhalo finder rockstar (Behroozi
et al. 2013), which uses phase-space information to determine the membership of dark matter particles
to a given subhalo, and has been shown to give larger subhalo masses than subfind, especially at low
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these predictions with the predictions for macc(m⋆) from Wang et al. (2013), assuming
four different values for the stellar masses, given by the median masses for each bin quoted
in Table 6.1, including a 20% uncertainty for illustration.8 These predictions are in good
agreement with our measurements, and show that we do not expect to see a trend with
cluster-centric distance even when normalizing by stellar mass, if the stellar masses increase
with Rsat, as in our case (cf. Table 6.1 and Figure 6.2). Furthermore, any segregation at
fixed stellar mass is too mild to be detected with current uncertainties. Several previous
observational studies have focused on the mass segregation of subhaloes. However, differ-
ences in the adopted density profiles, mass definitions, and the fact that some works did
not report the masses of the host clusters (nor normalized cluster-centric distance by host
cluster size), preclude a detailed comparison with our results. To contextualize our results,
we nevertheless compare these studies to the present one in a qualitative sense.

Using galaxy-galaxy lensing measurements of subhaloes in redMaPPer clusters (which
have an average mass Mh ∼ 1014 M⊙; Rykoff et al. 2014), Li et al. (2016) found that the
subhalo-to-stellar mass ratio increases by an order of magnitude from Rsat ∼ 0.2Mpc to
Rsat ∼ 1Mpc, when assuming a truncated NFW density profile, marginalizing over both the
truncation radius and the concentration. Their trend with projected distance is stronger
than that found here and than that predicted by N-body simulations and semi-analytical
models (Han et al. 2016, see also Figure 6.11). As hinted by the comparison of the present
results with Chapter 5, this may be due to a dependence of the mass segregation on the
mass of the host cluster, but again we note that the uncertainties in both our studies and
in Li et al. (2016) also allow for both no segregation and no dependence on cluster mass.
Interestingly, Roberts et al. (2015) found a strong dependence of the segregation of stellar
mass on host cluster mass, such that galaxies in more massive clusters are not segregated.
Note that the segregation in stellar mass measured by Roberts et al. (2015) is, as expected,
opposite that suggested by Li et al. (2016) for the total-to-stellar mass ratio, because the
former is not as prone to tidal stripping as it is to dynamical friction.

Okabe et al. (2014) measured the lensing signal of galaxy- and group-scale subhaloes
in the Coma cluster using observations with the Subaru telescope. They found that, while
subgroup-scale subhaloes (which they analyzed individually) are better fit by truncated
profiles, a stack of individual luminous galaxies is well-fit by a simple NFW model like
the one adopted in this work, with no discernible truncation radius. This suggests that,
maybe, the stacking of subhaloes with varying truncation radii, produces an average signal
in which a truncation radius is no longer discernible, consistent with the findings of Pastor
Mira et al. (2011) using the Millenium simulation (Springel et al. 2005). However, this
contrasts with the results of Natarajan et al. (1998, 2002, 2007, 2009) and Limousin et al.
(2007), who found evidence for galaxy truncation when studying galaxies in a few galaxy
clusters at z = 0.2 − 0.6. Moreover, these studies found significant evidence for smaller
truncation radii (or, equivalently, more compact cores) in galaxies closer to the cluster
centres. It is unclear whether the methodology itself allowed the latter set of authors to

halo-centric radii (Knebe et al. 2013). Therefore the comparison between the predictions and observational
results in Figure 6.11 should be done with care.

8Wang et al. (2013) report the m⋆(macc), which because of intrinsic scatter cannot be directly inverted
to obtain macc(m⋆). Instead, we obtain the latter by sampling the m⋆(macc) relation including intrinsic
scatter, and then taking the average macc when binning by m⋆.
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detect a truncation radius while our methodology is more limiting in this respect (see
Section 6.1 for a discussion of the different formalisms) , or if the parametrization of the
subhalo mass density profile has any influence on this discrepancy, as argued by Pastor Mira
et al. (2011). We do note that the azimuthal averaging necessarily washes out anisotropic
information which is in fact used by the maximum likelihood approach. We have verified
that, even if we bin the sample into only two or three bins (rather than four), we still cannot
constrain the shape of the density profiles, due to the hard limit imposed by obscuration
by cluster members (Section 6.4). Since the papers above do not show the signal from
which their results are derived, it is difficult to assess the origin of the different conclusions
we reach compared to theirs. The papers by Natarajan et al. used Hubble Space Telescope
observations, which opens up that the possibility that a measurement of the density profiles
of subhaloes requires data taken from space. However, this is not the case of Limousin
et al. (2007), who in fact also used CFHT data for their measurements. As shown in
Figure 6.6, the source density drops to roughly 50% at a distance of 20 kpc (at z = 0.1)
due to obscuration by cluster members. It is therefore unlikely that truncation radii of
order 10–20 kpc, as measured by Limousin et al. (2007), can be detected directly with
weak lensing measurements using ground-based observations, irrespective of the method
employed. Subtracting the light of lens galaxies from the images before the source sample is
constructed might improve small-scale measurements; we will explore this in future work.

6.6.3. Host clusters

As discussed in the previous sections, in modelling the satellite lensing signal we must
model the contribution from the host halo as well, even if it has little impact on the subhalo
masses. However, since our measurements extend at most to R = 1Mpc, we cannot break the
degeneracy between host mass and concentration. Nevertheless, we list for completeness the
best-fit values for the host clusters in Table 6.2. When binning by stellar mass, the best-fit
power law for the concentration is significantly steeper than the values bc ∼−0.1 suggested
by numerical simulations (e.g., Duffy et al. 2008; Dutton & Macciò 2014), but this is due
to the strong degeneracy of the concentration with mass, which pushes the average masses
to unrealistically large values. As shown in Chapter 5, the mass and concentration of
the host clusters produce different changes in the satellite lensing signal, which are easily
discernible if the measurements extend beyond the turnover of the host signal (at R ≳ 2Mpc
for massive clusters). Since this is not our case, our data can accomodate varying values
for both concentrations (which change the slope of the increase in signal at intermediate
scales) and masses (which reflect as an overall normalization at intermediate to large
scales). These uncertainties in the parameters of the density profile of host haloes has no
significant impact on the constraints on subhalo masses.

6.7. Conclusions
We present the average masses of satellite galaxies in massive galaxy clusters at 0.05 <

z < 0.15 using weak galaxy-galaxy lensing measurements. We use a combination of deep,
high-quality, wide-field observations of galaxy clusters (Sand et al. 2012) and extensive
archival spectroscopic data (compiled in Chapter 4). Using extensive image simulations
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of bright lenses in the foreground of a population of field galaxies resembling the sources
in the analysis, we model and account for biases arising from (i) shape measurements, due
to confusion of light from the lens with the faint sources, and (ii) contamination of the
source sample by faint cluster members (Section 6.4).

We model the lensing signal from subhaloes using an NFW profile and the subhalo
mass-concentration relation measured from N-body simulations by Moliné et al. (2016),
which depends on cluster-centric distance as well. We split the sample in bins of stellar mass
and measure the subhalo-to-stellar mass relation (SHSMR) of galaxies in massive clusters.
This is the first measurement of the SHSMR from weak lensing. Fitting the resulting masses
with a power-law relation, we find logmbg = (11.73±0.05)+ (0.77±0.11) logm⋆. The slope
of this relation is robust to both the adopted subhalo mass-concentration relation and the
subhalo mass definition. The SHSMR is broadly consistent with the corresponding relation
for central galaxies, but a more detailed comparison requires the use of simulations.

We also study the masses of subhaloes at different cluster-centric distances with the
aim of studying the evolution of subhaloes within clusters. Similar to recent results, we
cannot constrain the truncation radii of subhaloes, while previous studies based on a differ-
ent formalism have claimed significant detections. We also find no statistically significant
evidence for mass segregation, consistent with recent results and with predictions from a
combination of numerical simulations and semi-analytic models. Although direct compar-
ison with the observational literature is complicated by the use of different definitions and
conventions, the results of this chapter are consistent with Chapter 5, but most other
works have found at least some evidence for mass segregation (e.g., Natarajan et al. 2002;
Li et al. 2016). The origin of these discrepancies is not clear, and more work is needed to
elucidate it.

Our measurements of mass segregation are broadly consistent with predictions from
numerical simulations, while the SHSMR is almost an order of magnitude higher than that
inferred from abundance matching applied to galaxy clustering measurements. A more
detailed interpretation of our measurements in the context of these predictions requires
a detailed analysis of hydrodynamic simulations, where both the satellites and their host
haloes can be selected to match the observational situation. With these simulations we
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Figure 6.12: Tangential biases measured in three
sets of image simulations. The legend shows the
magnitude and size (in pixels) of each set. The
three examples correspond to big bright (yellow tri-
angles), average (brown squares), and small faint
(black circles) simulated lenses, and illustrate the
range of biases in our sample. The relevance of
each set with respect to the real satellite galaxies
can be seen in Figure 6.4. Data points with er-
rorbars show measured tangential shear and solid
lines show Gaussian fits to each set of simulations.
Empty points are biased because they are adjacent
the chosen truncation radius of the lenses, and are
excluded from the fits.
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would also be able to test some assumptions of our model, most notably the concentration
of the subhalo density profile, and reveal the origin of the observed connection between
mass and light in cluster galaxies.

6.A. Lens-induced bias on the shape measurements
Extended light from bright lens galaxies affects measurements of sources, such that

their shapes are estimated to be more radially elongated than they really are. This induces
a negative additive bias in the coordinate frame of the lens galaxy, which we label ct.
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In order to account for this bias we
measure the shapes of galaxies in the
image simulations of Hoekstra et al.
(2015), after injecting bright lens galax-
ies in a grid pattern (separated by 1 ar-
cmin from each other). These injected
lenses are modelled as a Sérsic (1968)
profile (i.e., I (r ) ∝ r 1/n) using galsim
(Rowe et al. 2015), with a power-law
index n = 4. Details about the simu-
lated source population can be found
in Hoekstra et al. (2015). The image
simulations have a constant shear ap-
plied to them, which cancels out when
we average shape measurements tan-
gentially around the lenses. Therefore
any measured shear in the tangential
frame can be attributed to a bias in-
duced by extended light from the lenses.
The lenses we inject into the simula-
tions span the ranges 14 ≤ mphot ≤ 20
and 3 ≤ seff/pix ≤ 40 (corresponding to
0.′′55 ≤ seff ≤ 7.′′40), and are compared to the magnitude and size distribution (as measured
with galfit in Chapter 4) in the MENeaCS data in Figure 6.4.

We show the measured ct for three sample sets of simulations in Figure 6.12. We find
that the bias profiles can be well modelled in each bin as a Gaussian centred at θls = 0,

ct(θls) = abias exp

[
−θ2

2σ2
bias

]
. (6.22)

We then fit the best-fit parameters abias and σbias as functions of lens magnitude and size,

abias =−0.81−1.22(mphot −16)−0.36log(seff/15pix),

σbias = 6.27−14.01log(mphot/16)+7.04log(seff/15pix).
(6.23)

Figure 6.13 shows the best-fit individual values of abias and σbias and the values pre-
dicted by Equation 6.23. While at face value Equation 6.23 is not a good description of the
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measurements in the simulations for the full (mphot,seff) space (and especially for σbias),
the discrepancy is limited to the extremes of this space. One notable discrepancy is roughly
a 25% difference in the prediction of σbias for (mphot, seff) = (14,30) (here, sizes are given in
pixels). However, as shown in Figure 6.4, this combination of magnitude and size accounts
for much less than 1% of the lenses in our sample. The other notable difference happens
at (mphot, seff) = (18,3), but the bias introduced by such small, faint galaxies is negligible
to start with. Moreover, as can be seen in Figure 6.13, the difference arises because of the
degeneracy between the amplitude and width of the Gaussian, such that the predicted bias
is negligible as well.


