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5|The masses of satellites in
GAMA galaxy groups from
100 square degrees of KiDS
weak lensing data

We use the first 100 sq. deg. of overlap between the Kilo-Degree Survey (KiDS) and the
Galaxy And Mass Assembly (GAMA) survey to determine the galaxy halo mass of ∼10,000
spectroscopically-confirmed satellite galaxies in massive (M > 1013h−1M⊙) galaxy groups. Separat-
ing the sample as a function of projected distance to the group centre, we jointly model the satellites
and their host groups with Navarro-Frenk-White (NFW) density profiles, fully accounting for the
data covariance. The probed satellite galaxies in these groups have total masses log Msub/(h−1M⊙) ≈
11.7−12.2 consistent across group-centric distance within the errorbars. Given their stellar masses,
log M⋆,sat/(h−2M⊙) ∼ 10.5, such total masses imply stellar mass fractions of M⋆,sat/Msub ≈ 0.04h−1.
The average subhalo hosting these satellite galaxies has a mass Msub ∼ 0.015Mhost independent
of host halo mass, in broad agreement with the expectations of structure formation in a ΛCDM
universe.

Cristóbal Sifón, Marcello Cacciato, Henk Hoekstra, et al.,
2015, MNRAS, 454, 3938
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5.1. Introduction

Following a hierarchical build-up, galaxy groups grow by accretion of smaller groups
and isolated galaxies. Tidal interactions tend to transfer mass from infalling galaxies to the
(new) host group, with the former becoming group satellites. The favoured cosmological
scenario posits that galaxies are embedded in larger dark matter haloes, with masses that
largely exceed the stellar masses, a conclusion supported by a variety of observations (see,
e.g., the reviews by Trimble 1987; Einasto 2013). Accordingly, satellite galaxies are hosted
by ‘subhaloes,’ whose masses and distribution contain information on the properties of
dark matter itself (e.g., Libeskind et al. 2013).

Because dark matter is (at least to a good approximation) dissipationless and baryons
are not, it is subject to stronger tidal disruption than the baryonic component: energy losses
cause baryons to sink to the centre of the potential more efficiently than dark matter, and
therefore baryons are more resistant to tidal disruption (White & Rees 1978). This latter
fact produces a unique prediction of the dark matter hypothesis: a satellite galaxy will
be preferentially stripped of its dark, rather than stellar, matter. Thus, tidal stripping
can be observed by comparing the total and stellar masses of satellite galaxies, such that
galaxies accreted earlier have smaller mass-to-light ratios than galaxies accreted recently
or (central) galaxies that have not been subject to tidal stripping by a larger host (e.g.,
Chang et al. 2013a).

Numerical simulations predict that tidal stripping is stronger within more centrally
concentrated host haloes, and is more severe for more massive satellites (e.g., Tormen et al.
1998; Taffoni et al. 2003; Contini et al. 2012). Different infall timescales and concentrations
induced by baryons (compared to dark matter-only simulations) can alter both the radial
distribution and density profiles of subhaloes, consequently affecting tidal stripping in
a radially-dependent manner (Romano-Díaz et al. 2010; Schewtschenko & Macciò 2011),
although this baryon-induced radial dependence could plausibly be (partially) compensated
by feedback from active galactic nuclei (AGN; Romano-Díaz et al. 2010).

Observationally, the primary difficulty lies in estimating the total masses of satellite
galaxies. Weak gravitational lensing is currently the only option available to measure the
total mass of statistical samples of galaxies. So-called (weak) galaxy-galaxy lensing provides
a direct measure of the masses of lensing galaxies through the observation of their distor-
tion of the images of background galaxies, without assumptions about the dynamical state
of the system (e.g., Brainerd et al. 1996; Courteau et al. 2014). Weak lensing is an intrinsi-
cally statistical observational measurement: outside the strong lensing regime (typically a
few tenths of arcsecond) the distortion induced in each background galaxy is much smaller
than the typical galaxy ellipticity. Such measurements require high-quality multi-colour
images that allow both accurate shape measurements and photometric redshift determi-
nation of faint, distant background sources. Measuring the lensing signal around satellite
galaxies (hereafter ‘satellite lensing’, see, e.g., Yang et al. 2006) is particularly challenging
because of i) the small relative contribution of the satellite galaxy to the lensing signal
produced by the host galaxy group; ii) source blending at small separations, which hampers
our ability to measure shapes reliably (and which is enhanced in high-density regions); and
iii) particular sensitivity to contamination by field galaxies. This latter point is critical:
since the dark matter haloes around satellite galaxies are expected to be stripped, isolated
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galaxies will significantly contaminate the lensing signal since they are not stripped, thus
complicating a meaningful interpretation of the signal. Therefore, satellite lensing requires
a clean sample of satellite galaxies to allow a proper interpretation of the signal. Satellite
galaxies can usually be identified easily in massive galaxy clusters with high purity by use
of, for instance, the red sequence (e.g., Rozo et al. 2015, see also Chapter 4), which in
principle requires only two-band photometry. Indeed, most satellite lensing measurements
so far have concentrated on massive galaxy clusters with deep Hubble Space Telescope
(HST) observations in which bright cluster members can be easily identified (Natarajan
et al. 2002; Limousin et al. 2007; Natarajan et al. 2009), sometimes with the aid of strong
lensing measurements (Natarajan et al. 2007). Some of these studies have claimed detec-
tions of satellite truncation, but it seems likely that they are mostly attributable to the
parameterization of subhalo density profiles rather than direct detections (Pastor Mira
et al. 2011).

Because galaxy groups have fewer satellites than massive clusters, lensing measure-
ments of galaxy group satellites require larger samples and have only been possible thanks
to recent large optical surveys with high image quality. Furthermore, because the red se-
quence is generally not so well established in galaxy groups compared to galaxy clusters,
accurate group membership determination requires high-completeness spectroscopic ob-
servations. Lacking such data, most measurements in galaxy groups to date have relied on
more indirect means of estimating subhalo masses. Gillis et al. (2013) used an optimized
density estimator on galaxies selected from Canada-France-Hawaii Telescope Lensing Sur-
vey (CFHTLenS, Heymans et al. 2012; Erben et al. 2013) and showed that the lensing
signal of galaxies in high-density environments is inconsistent with the predictions of a
model that does not include halo stripping, providing indirect evidence for tidal stripping
in galaxy groups. Such differentiation was only possible because their high-density envi-
ronment galaxies were mostly satellites, due to their carefully calibrated density estimator.
Recently, Li et al. (2014) presented the first direct detection of the lensing signal from satel-
lite galaxies in galaxy groups. They took advantage of the overlap between deep imaging
from the CFHT-Stripe82 Survey (CS82, e.g., Comparat et al. 2013) and the Sloan Digital
Sky Survey (SDSS, York et al. 2000) Data Release 7 (Abazajian et al. 2009) spectroscopic
catalogue. Yang et al. (2007) used this SDSS catalogue to construct a clean galaxy group
catalogue with centrals and satellites identified individually; although Li et al. (2014) had
only ∼1,000 lens galaxies, their sample was essentially free of contamination by central
galaxies. This allowed them to use weak lensing to directly measure the masses of satel-
lites in galaxy groups for the first time, albeit with limited constraining power.

In this paper we present a direct measurement of the lensing signal from satellite
galaxies in galaxy groups by combining a sample of spectroscopically confirmed galaxy
groups from the Galaxy And Mass Assembly survey (GAMA, Driver et al. 2011), and
background galaxies with high-quality shape measurements from the Kilo-Degree Survey
(KiDS, de Jong et al. 2013; Kuijken et al. 2015). We use these measurements to constrain
the masses of satellite galaxies as a function of projected distance from the group centre.
By converting, in an average sense, these projected distances into 3-dimensional distances,
we can study the evolution of satellite masses as they fall into galaxy groups.

This chapter is organized as follows. In Section 5.2 we describe the galaxy samples we
use as lenses and lensed background sources. In Section 5.3 we summarize the measurement
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of galaxy-galaxy lensing and describe our modelling of satellites and their host groups. We
present our results in Section 5.4 and summarize in Section 5.5. We adopt a flat ΛCDM
cosmology with Ωm = 0.315, consistent with the latest cosmic microwave background mea-
surements (Planck Collaboration 2015a), and H0 = 100h kms−1Mpc−1. We explicitly include
the dependence on h where appropriate. Throughout we use the symbol 〈X 〉 to refer to
the median of distribution X .

5.2. Galaxy samples

5.2.1. Lens galaxies: satellites in the GAMA galaxy group catalogue

GAMA1 is a spectroscopic survey which measured redshifts for 238,000 galaxies over
a total of 286deg2 carried out with the AAOmega spectrograph on the Anglo-Australian
Telescope (AAT). GAMA is 98% spectroscopically complete down to mr = 19.8 even in
the most crowded regions (Baldry et al. 2010; Driver et al. 2011; Liske et al. 2015). Here
we use data over three different regions on the sky, centred at right ascensions 9h, 12h
and 15h (the G09, G12 and G15 fields), which overlap with SDSS data. Below we briefly
describe the GAMA galaxy group sample constructed by Robotham et al. (2011), who
discuss the properties, possible systematics, and limitations of the catalogue in greater
detail. Galaxy photometric properties such as luminosity and stellar mass are measured
from the five-band optical SDSS imaging. In particular, we use the stellar masses derived
by Taylor et al. (2011) by fitting Bruzual & Charlot (2003) synthetic stellar spectra to the
broadband SDSS photometry.

The GAMA galaxy group catalogue was constructed using a 3-dimensional Friends-
of-Friends (FoF) algorithm, linking galaxies in projected and line-of-sight separations. We
use version 7 of the group catalogue (G3Cv7), which contains 23,838 groups with NFoF ≥ 2,
where NFoF is the number of spectroscopic members grouped together by the FoF algorithm
(each group has NFoF−1 satellites). Group properties such as velocity dispersion and total
luminosity2 were calibrated to mock galaxy catalogues processed in the same way as the
real data and were optimized for groups with NFoF ≥ 5. A visual inspection of the phase
space (distance-velocity plane) of GAMA groups confirms that groups with NFoF < 5 are
significantly contaminated by interlopers, while member selection for groups with NFoF ≥ 5
is in better agreement with the expectation of a smooth distribution of galaxies with
a maximum velocity that decreases with radius (e.g., Mamon et al. 2010). We therefore
restrict our study to groups with NFoF ≥ 5, in the 68.5 sq. deg. of unmasked area overlapping
with the first release of KiDS lensing data (see Section 5.2.2). In all, we use 9683 satellites
hosted by 1467 different groups3. These are the same groups used by Viola et al. (2015).

Robotham et al. (2011) identified the central galaxy in each group using three defini-
tions of group centre: the weighted centre of light, an iterative method rejecting the galaxy

1http://www.gama-survey.org/
2The total luminosity of a group is the sum of the luminosities of its member galaxies, corrected for

spectroscopic incompleteness at the low-mass end (see Robotham et al. 2011).
3This is the total number of satellites considered in this work, and includes satellites that do not fall

within the currently available KiDS data but reside in a group which is less than 2h−1Mpc away from the
center of the closest KiDS field. 9357 (97%) of these satellites fall within the KiDS footprint (see Table 5.1).

http://www.gama-survey.org/
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Table 5.1: Median properties of satellite galaxies binned by projected distance to the group centre, Rsat. Nsat is the total number of satellites considered while
N KiDS

sat is the number of satellites that fall within the 100 sq. deg. of KiDS imaging used in this work. Errorbars are 16th and 84th percentiles.

Bin Rsat range Nhost Nsat N KiDS
sat 〈NFoF〉 〈Rsat〉 〈zsat〉 log〈M⋆,sat〉 log〈Lhost〉

(h−1Mpc) (h−1Mpc) (h−2M⊙) (h−2L⊙)

1 0.05 – 0.20 1263 3714 3541 7+5
−2 0.12+0.05

−0.05 0.17+0.09
−0.09 10.45+0.26

−0.09 11.10+0.17
−0.23

2 0.20 – 0.35 1235 3152 3042 7+5
−2 0.25+0.05

−0.04 0.19+0.10
−0.09 10.51+0.22

−0.10 11.15+0.14
−0.26

3 0.35 – 1.00 785 2817 2773 8+7
−3 0.43+0.16

−0.08 0.21+0.10
−0.07 10.66+0.15

−0.14 11.33+0.10
−0.25
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farthest away from the center of light until one galaxy remained (the ‘iterative’ centre),
and the brightest cluster galaxy (hereafter BCG). All galaxies that are not centrals are
classified as satellites. In most cases (∼90%) the iterative central galaxy coincides with the
BCG, while the centre of light is more discrepant. Viola et al. (2015) performed a detailed
analysis of the lensing signal of GAMA groups comparing the different centre definitions
and confirm the results of Robotham et al. (2011): the BCG and the iterative centre both
represent the group centre of mass to a good degree, while the centre of light is a very poor
indicator of the group centre. In this work we use the central-satellite classification that
uses the BCG as the central, and therefore measure the lensing signal around all group
members except the BCGs.

5.2.2. Lensed background sources: the Kilo-Degree Survey

KiDS4 is an ESO Public Survey being conducted with the 2.6 m VLT Survey Telescope
(VST) in Cerro Paranal, Chile, which surveys the sky in the ug r i bands. Each 1 sq. deg.
pointing is observed four times (‘exposures’) in the u-band and five times in the other
bands. Upon completion, KiDS will cover 1,500 sq. deg.: half of the survey area will be
on a 9◦-wide patch around the celestial equator and the other half on a similarly-shaped
region around a declination of −31◦ (de Jong et al. 2013). In total, KiDS overlaps with four
GAMA patches: three in the equator (the three used in this work) and one in the south
(G23), for a total of 240 sq. deg.. In this work, we use an unmasked area of 68.5 sq. deg.
over ∼ 100 sq. deg. of overlap currently available (de Jong et al. 2015).

KiDS data were reduced using two different pipelines: a reduction based on Astro-
WISE (McFarland et al. 2013) used to measure Gaussian-weighted aperture photometry
(Kuijken 2008) and photometric redshifts with the Bayesian Photometric Redshift (BPZ)
code (Benítez 2000), and a theli reduction (Erben et al. 2013) used to measure galaxy
shapes with lensfit (Miller et al. 2007, 2013; Kitching et al. 2008). We briefly describe each
in the following and refer to de Jong et al. (2015) and Kuijken et al. (2015) for details,
including tests of systematic effects on shape measurements and photometric redshifts.

5.2.2.1. Photometric redshifts

Photometric redshifts use the coadded images from the KiDS public data releases DR1
and DR2 (de Jong et al. 2015) as input. These were processed using a pipeline largely based
on the Astro-WISE optical pipeline (McFarland et al. 2013) which includes crosstalk
and overscan corrections, flat fielding, illumination correction, satellite track removal and
background subtraction, plus masking for bad pixels, saturation spikes and stellar haloes.
A common astrometric solution was calculated per filter using a second-order polyno-
mial. Individual exposures were regridded and co-added using a weighted mean procedure.
Photometric zero-points were first derived per CCD by comparing nightly standard star
observations to SDSS DR8 (Aihara et al. 2011) and zero-point offsets were subsequently
applied to the g r i data, based on a comparison of the photometry between the CCDs in
the five exposures. This yields a homogeneous photometry over 1 sq. deg..

4http://kids.strw.leidenuniv.nl/

http://kids.strw.leidenuniv.nl/
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The point spread function (PSF) of the stacked images was homogenized by convolving
them with a Gaussian kernel with varying width, such that each resulting image has a
circular, Gaussian PSF with constant width across the field of view. A ‘Gaussian Aperture
and PSF’ (GAaP, Kuijken 2008) photometry can be obtained such that the resulting
aperture photometry is independent of seeing (see Appendix A of Kuijken et al. 2015).
The flux of a galaxy can then be measured consistently within the same physical aperture
in all bands, which is necessary for unbiased galaxy colour estimates.

GAaP photometry was finally compared to SDSS photometry in order to obtain an
absolute photometric calibration. Photometric redshifts were estimated using GAaP mag-
nitudes with BPZ, following Hildebrandt et al. (2012). Kuijken et al. (2015) compared
the photometric redshifts to ∼17,000 spectroscopic redshifts in the zCOSMOS (Lilly et al.
2007) and ESO/GOODS (Vanzella et al. 2008; Balestra et al. 2010) surveys. They found
that the peak of the posterior distribution, zB , is biased by less than 2% in the range
0.005 < zB < 1.0. However, for lenses at zl ≲ 0.3, as in our case, the lensing efficiency (cf.
Equation 5.2) does not vary significantly for sources beyond zs = 0.5. In order to have a
larger number of sources for which to measure shapes, we therefore use all galaxies in the
range 0.005 < zB < 1.2. In the context of the CFHTLenS survey, Benjamin et al. (2013)
have shown that the stacked photometric redshift posterior distribution, p(z), estimated
by Hildebrandt et al. (2012) in this zB range is a fair representation of the true (i.e., spec-
troscopic) redshift distribution. We therefore use the full p(z) in our lensing analysis (see
Section 5.3).

5.2.2.2. Shape measurements

The r -band data were also reduced with the theli pipeline (Erben et al. 2013), inde-
pendently of the Astro-WISE pipeline, in order to measure the shapes of galaxies. We
used only the r -band data for shape measurements, since the r -band observing conditions
are significantly better than in the other three bands (see de Jong et al. 2013); combining
different bands is not expected to result in a useful improvement in shape measurements.
We used SExtractor (Bertin & Arnouts 1996) to detect objects on the stacked r -band
image, and used the resulting catalogue as input to lensfit, which is used to simultaneously
analyze the single exposures. Lensfit is a Bayesian method that returns for each object
an ellipticity and an associated weight, ws , which quantifies the measurement uncertainty
after marginalizing over galaxy position, size, brightness, and bulge-to-disk ratio. It inter-
polates the PSF over a 2-dimensional polynomial across the image in order to estimate
the PSF at the location of each galaxy. The number density of galaxies in the unmasked
region that pass the photometric redshift cuts having ws > 0 is ngal = 8.88galarcmin−2 and
the effective number of galaxies is neff = (σϵ/A)

∑
i ws,i = 4.48galarcmin−2 (see Chang et al.

2013b; Kuijken et al. 2015); the root-mean-square (rms) ellipticity of galaxies is σϵ = 0.279.
We correct for noise bias, which produces a signal-to-noise ratio (S/N) -dependent correc-
tion factor, m, between the mean ellipticity measurements and the shear (e.g., Melchior &
Viola 2012; Refregier et al. 2012; Viola et al. 2014, see Section 5.3), using the correction
calculated for CFHTLenS using extensive image simulations by Miller et al. (2013), which
Kuijken et al. (2015) demonstrate is appropriate for the current KiDS catalogue. We also
correct the galaxy shapes for an additive bias, c, introduced by imperfect PSF modelling
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following Heymans et al. (2012). See Kuijken et al. (2015) for details.
In performing the lensing analysis we have decided to blind ourselves to the final results.

By doing this we ensure that the analysis does not depend on the results, and minimize the
risk of confirmation bias. This is an especially important concern in this era of precision
cosmology. At the start of the project we contacted an external person (unknown to all
members of the KiDS collaboration except for the contact person), who generated three
additional catalogues by rescaling the galaxy ellipticities by factors unknown to us. We
carried out the full analysis four times, one for each ellipticity catalogue. Only when the
team was convinced about the analysis carried out with the four ellipticity catalogues, the
analysis was frozen with no further changes to the results and we contacted the external
person again to reveal the true catalogue. A detailed description of the shape analysis and
catalogue blinding of KiDS data is given in Kuijken et al. (2015).

5.3. Galaxy-galaxy lensing of satellite galaxies

Gravitational lensing produces a differential deflection of light coming from background
galaxies when it passes through an inhomogeneous mass distribution, and most strongly
along a mass concentration. The observable effect is a coherent distortion on both the shape
and the size of background sources around the lens. The shape distortion, γt, is referred
to as shear, and in the weak lensing limit is much smaller than the typical ellipticities
of galaxies and can only be measured statistically by averaging over many background
sources. The average tangential shear relates to the excess surface mass density (ESD) at
a projected distance5 R of the lens, ∆Σ(R), through

∆Σ(R) ≡ Σ̄(< R)− Σ̄(R) =Σcγt(R) , (5.1)

where Σ̄(< R) is the average surface density within R, Σ̄(R) is the average surface density at
R (more precisely, within a thin shell R+δR) and the critical density, Σc, is as a geometrical
factor that accounts for the lensing efficiency,

Σc = c2

4πG

D(zs)

D(zl)D(zl, zs)
. (5.2)

Here, D(zl), D(zs), and D(zl, zs) are the angular diameter distances to the lens, to the source
and between the lens and the source, respectively. Therefore the redshifts of the lenses and
sources are essential to relate the tangential distortions of the sources to the projected
mass density of the lens.

We calculate D(zl) for each lens galaxy using its spectroscopic redshift from GAMA
and marginalize over the full probability distribution of the photometric redshift of each
background source, p(zs). Specifically, for every lens-source pair we calculate

Σ̃−1
c,l s =

4πG

c2 D(zl)
∫ ∞

zl

dzs p(zs)
D(zl, zs)

D(zs)
. (5.3)

5As a convention, we list 3-dimensional distances in groups with lower case r , and distances projected
in the plane of the sky with capital R.
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Each lens-source pair is then assigned a weight that combines the lensfit weight and the
lensing efficiency,

wl s = wsΣ̃
−2
c,l s . (5.4)

The ESD in a bin centred on a projected distance R is then calculated as

∆Σ(R) =
(∑

l s wl sϵtΣ̃c,l s∑
l s wl s

)
1

1+K (R)
(5.5)

where the sum is over all lens-source pairs in the radial bin, ϵt is the tangential component
of the ellipticity of each source around each lens, and

K (R) =
∑

l s wl sms∑
l s wl s

≃ 0.1, (5.6)

where m is the multiplicative correction for noise bias (Miller et al. 2013; Kuijken et al.
2015).

The ESD around a satellite galaxy at a projected distance Rsat from the group centre,
∆Σsat(R|Rsat), is given by

∆Σsat(R|Rsat) =∆Σsub(R)+∆Σhost(R|Rsat) , (5.7)

where ∆Σsub is the ESD of the subhalo in which the satellite galaxy resides and ∆Σhost is
the ESD of the host galaxy group, measured around the satellite galaxy. We describe the
measured satellite lensing signal in Section 5.3.1 before discussing our modelling of both
terms of Equation 5.7 in Sections 5.3.2 and 5.3.3. In doing this, we follow the discussion
by Yang et al. (2006).

5.3.1. The satellite lensing signal

We show in Figure 5.1 the stacked ESD of all 9683 satellites residing in groups with
NFoF ≥ 5. We also show the ESD around all galaxies in the GAMA catalogue, which is
dominated by (central) field galaxies (Robotham et al. 2011). The lensing signal around the
two samples is qualitatively different. In terms of Equation 5.7, the ESD of central galaxies
can be described by ∆Σhost(R|Rsat = 0) alone (see van Uitert et al. (2016) for a detailed
comparison of the lensing signal of different lens samples). The bottom panel of Figure 5.1
shows ∆Σ×, which is defined analogously to Equation 5.1 using the shear measured at
45◦ rotations from the direction tangential to the lens. ∆Σ× should be consistent with
zero because of parity symmetry (Schneider 2003), and therefore serves as a check for
systematic effects. As shown in Figure 5.1, ∆Σ× is consistent with zero for both samples at
all lens-source separations.

Although in Figure 5.1 we show the lensing signal for separations 0.01 ≤ R/(h−1Mpc) ≤
10, we only use measurements of ∆Σ in the range 0.02 ≤ R/(h−1Mpc) ≤ 2 in our analysis.
Separations outside this range are marked in Figure 5.1 by grey bands. At smaller separa-
tions, blending with and obscuration by group members become significant and therefore
the S/N is very low; at larger separations the coverage is highly incomplete due to the
patchiness of the current KiDS data, making measurements less reliable. We assess the
effect of the patchy coverage by measuring the lensing signal around random locations on
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Figure 5.1: Top: Excess surface density around all satel-
lites residing in groups with NFoF ≥ 5 (black points) and
around all galaxies in the GAMA catalogue (cyan cir-
cles). Bottom: corresponding cross signals, multiplied by
projected separation, R, to make the errorbars of compa-
rable size throughout the radial range (units are omitted
for clarity). Dotted horizontal lines in both panels show
∆Σ= 0. We used different bins to measure the signal of
each sample for clarity. The grey bands show projected
separations that are not used in our analysis.

the images, which should be consistent
with zero. The signal is indeed consistent
with zero for separations R ≲ 5h−1Mpc,
but at separations R ≳ 5h−1Mpc the lens-
ing signal around random points deviates
significantly from zero (see Viola et al.
2015). This indicates that systematic ef-
fects are affecting the shear estimation at
such distances. We do not try to correct
for such effects and instead conservatively
discard measurements at separations R >
2h−1Mpc.

The errorbars in Figure 5.1 correspond
to the square root of the diagonal elements
of the covariance matrix, described in Sec-
tion 5.A. In principle, the lensing covari-
ance matrix includes contributions from
shape noise and sample (‘cosmic’) vari-
ance. Shape noise arises because galax-
ies are intrinsically elliptic and because
noise in the images introduces additional
uncertainties in the shape measurements
(see, e.g., Hoekstra et al. 2000), while sam-
ple variance accounts for the finite frac-
tion of the sky observed. As we show in
Section 5.A, the contribution from sam-
ple variance can be safely neglected for our
purposes and we therefore include only the
contribution from shape noise, which can be calculated directly from the data (see Section
3.4 of Viola et al. 2015). In addition to the covariance between data points (as in the
case of Figure 5.1), we also compute the covariance between data points around lenses in
different bins of projected distance from the group centre, Rsat (see Figure 5.9).

The signal shown in Figure 5.1 has a high S/N, but its interpretation is complicated
by the mixing of satellites with a wide range of properties. van Uitert et al. (2016) use this
satellite sample to study the stellar-to-halo mass relation by binning the sample in stellar
mass and redshift. Here, we bin the sample by projected distance to the group centre; this
binning is shown in the top-left panel of Figure 5.2 (see also Table 5.1). We find that this
particular binning allows us to study each bin with high enough S/N. We take the distance
from the group centre as a proxy for time since infall to the group (e.g., Gao et al. 2004;
Chang et al. 2013a) and study the evolution of the mass in satellites as these galaxies
interact with their host groups. As shown in Figure 5.2 (top right), the three radial bins
have similar stellar mass distributions, their medians differing by only 0.2 dex (Table 5.1).
In contrast, the group redshift and luminosity distributions of bin 3 are different from
the other two bins. Because we separate groups by satellite distance, we essentially split
groups by size. Only the most massive (i.e., the most luminous) groups in the sample
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Figure 5.2: Top: Satellite distributions of distance to the BCG (left) and stellar mass (right); bottom: Group
distributions of redshift (left) and total luminosity (right); for the radial bins defined in Table 5.1. Note that
each group can contribute to more than one bin in the lower panels.

have satellites at Rsat > 0.35h−1Mpc. Additionally, because GAMA is a magnitude-limited
survey, groups at high redshift are on average more luminous (i.e., more massive), which
causes the different redshift distributions.

5.3.2. Host group contribution

The average density profile of galaxy groups is well described by a Navarro-Frenk-White
(NFW, Navarro et al. 1995) profile,

ρNFW(r ) = δcρm

(r /rs)(1+ r /rs)2 , (5.8)

where ρm(z) = 3H 2
0 (1+ z)3ΩM /(8πG) is the mean density of the Universe at redshift z and

δc = 200

3

c3

ln(1+ c)− c/(1+ c)
. (5.9)

The two free parameters, rs and c ≡ r200/rs , are the scale radius and concentration of the
profile, respectively. However, we use the concentration and the mass6, M200, as the free
parameters for convenience. We further assume the mass-concentration relation, c(M , z),

6Here M200 is the mass within a radius r200, which encloses a density ρ(< r200) = 200ρm (z).
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Figure 5.3: Illustration of the contribution from the host group, ∆Σhost(R|n(Rsat)), to Equation 5.7. Left: Red lines
show the contribution to the signal around satellites at different distances from the group centre in logarithmic
bins, with opacity scaling with the number density of objects in each bin, n(Rsat), corresponding to the cyan
histogram in the top-left panel of Figure 5.2. The thick black line is the weighted average of the red lines (cf.
Equation 5.12) and represents the group contribution to the lensing signal around our sample of satellites with
0.05 ≤ Rsat/(h−1Mpc) ≤ 0.20 in a group with log M200 = 13.4 and c = 6, and is reproduced in the middle and right
panels. The black dashed line shows the excess surface density of the same group when measured around the
group centre. Middle: Varying group mass at fixed concentration. Right: Varying group concentration at fixed
mass. Note that the vertical scale in the middle and right panels is zoomed in with respect to the left panel. All
masses are in units of h−1M⊙.

of Duffy et al. (2008), allowing for a free normalization, f host
c . That is,

c(M200, z) = f host
c

[
10.14

(
M200

2×1012h−1M⊙

)−0.089

(1+ z)−1.01
]

. (5.10)

The average surface density of the host group measured at a projected distance Rsat
from the group centre is simply the azimuthal average of Σhost around the satellite,

Σ̄host(R|Rsat) = 1

2π

∫ 2π

0
dθΣNFW

(√
R2

sat+R2 +2RRsat cosθ

)
, (5.11)

and the contribution to the satellite ESD follows from Equation 5.1. We use the analytical
expression for the projected surface density of an NFW profile, ΣNFW(R), derived by Wright
& Brainerd (2000).

In reality we observe a sample of satellites at different distances to their respective
group centres; therefore the total group contribution is

∆Σhost(R|n(Rsat)) =
∫ Rmax

sat
Rmin

sat
dRsatn(Rsat)∆Σhost(R|Rsat)∫ Rmax

sat
Rmin

sat
dRsatn(Rsat)

, (5.12)

where n(Rsat) is the number density of satellites at Rsat. We use Equation 5.12 to model
the host group contribution to Equation 5.7 throughout. Our implementation differs from
that introduced by Yang et al. (2006) and applied by Li et al. (2014) in that they fit for
Rsat, whereas we use the measured separations to fix n(Rsat).

We illustrate the difference between ∆Σhost(R|Rsat) and ∆Σhost(R|n(Rsat)) in the left panel
of Figure 5.3, for the innermost bin considered in this work (see Table 5.1 and the top left
panel of Figure 5.2). The left panel of Figure 5.3 shows that ∆Σhost(R|Rsat) of a single
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group-satellite pair has a sharp minimum at R = Rsat where Σ(R) is maximal and therefore
∆Σ < 0; ∆Σhost(R|Rsat) increases abruptly further out and then drops back to the group’s
outer profile, matching the group profile measured around the group centre. Accounting for
the distribution of group-centric distances shifts this minimum to R < 〈Rsat〉, and makes
both the peak and the dip significantly less pronounced; including the distribution of
projected distances is critical to properly model the statistical properties of the lensing
signal which cannot be captured by fitting for an average value. Similarly, the middle
and right panels of Figure 5.3 show the effect of different host masses and concentrations
on ∆Σhost(R|n(Rsat)). A higher mass increases its amplitude at all scales where the host
contribution dominates, whereas a higher concentration mostly enhances the ESD signal
around the peak and produces a more pronounced dip.

Our model ignores the contribution from baryons in the central group galaxy, which
are noticeable at scales R < 0.05h−1Mpc (Viola et al. 2015). Because baryons are more
concentrated than dark matter, they can make the total density profile steeper than a
pure NFW. Viola et al. (2015) have shown, however, that the amplitude of the baryonic
contribution (modelled as a point mass) is not degenerate with any other group parameter
in their halo model. Therefore we expect baryons in the BCG to have no impact on our
results.

5.3.3. Satellite contribution

Pastor Mira et al. (2011) studied the density profiles of subhaloes in the Millenium
simulation (Springel et al. 2005) and found that they are well fit by an NFW profile,
with no evidence for truncation at any separation from the group centre. As discussed by
Hayashi et al. (2003), while tidal disruption removes mass preferentially from the outskirts,
tidal heating causes the subhalo to expand after every orbit. The two effects compensate in
terms of the density distribution such that a defined truncation radius cannot be discerned
in subhaloes. We therefore model subhaloes as NFW profiles (Equation 5.8). We assume
the c(M , z) relation of Duffy et al. (2008); in analogy to Equation 5.10, we set f sub

c = 1. To
account for the baryonic contribution to the subhalo mass, we include a point mass in the
centre with a mass equal to the median stellar mass for each bin (Table 5.1). Our model
for the satellites therefore has a single free parameter per radial bin, namely Msub(< r200).

For comparison, we also implement a theoretically-motivated model where subhaloes
are tidally stripped by the host potential. In this model, a subhalo in a circular orbit is
truncated at the radius at which the accelerations due to the tidal force from the host halo
equals that arising from the gravitational force of the subhalo itself. This radius is given
by

rt =
[

Msub(< rt)

(3−∂ ln M/∂ lnr ) Mhost(< rsat)

]1/3

rsat (5.13)

(King 1962; Binney & Tremaine 1987; Mo et al. 2010), where, for an NFW profile,

∂ ln MNFW

∂ lnr
= r 2

(rs + r )2

[
ln

(
rs + r

rs

)
− r

rs + r

]−1

(5.14)

and rs is the scale radius of the host halo. Note that in Equation 5.13 the truncation
radius, rt, depends on the 3-dimensional distance to the group centre, rsat, which is not
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Figure 5.4: The satellite lensing signal, ∆Σsat, for different satellite properties. The group contribution is kept
fixed at the fiducial value (i.e., the thick solid line) from Figure 5.3. Top left: The dashed line shows the excess
surface density of a NFW profile with c = 10 and log M200 = 11.62. Truncating this profile through Equation 5.15
at rt = 0.03h−1Mpc ≈ 2.6rs produces the solid line, with a total mass log Msub = 11.2, which is reproduced in
all other panels. The glitch in the solid line is produced by the sharp truncation of the density profile and is
continuous but non-differentiable. Top right: Varying Msub, keeping both c = 10 and rt = 0.03h−1Mpc fixed.
Bottom left: Varying the concentration, keeping both log Msub = 11.2 and rt = 0.03h−1Mpc fixed. Bottom right:
Varying the truncation radius, keeping both c = 10 and log Msub = 11.2 fixed. Note that the normalization of the
inner profile changes because we fix the mass within the truncation radius, which is itself changing. All masses
are in units of h−1M⊙.

an observable. We draw 3-dimensional radii randomly from an NFW profile given the
distribution of projected separations, Rsat, for each bin. We additionally force rt ≤ r200,
although the opposite rarely happens.

We model the truncation itself in a simple fashion, with an NFW profile instantaneously
and completely stripped beyond rt,

ρt (r ) =
{
ρNFW(r ) r ≤ rt

0 r > rt.
(5.15)

Note that, in addition to rt, this profile is defined mathematically by the same parameters,
c and M200, as a regular NFW, even though they are not well-defined physically; when
referring to truncated models we report the proper physical masses, Msub ≡ Msub(< rt). We
use the analytical expression for the ESD of the density profile given by Equation 5.15
derived by Baltz et al. (2009). In the leftmost panel of Figure 5.4 we show the ESD
corresponding to such profile, compared with the ESD obtained assuming our fiducial
NFW profile. The sharp truncation of the profile creates a glitch in the ESD around
satellite galaxies at the radius of truncation which is continuous but non-differentiable and
which, given our errorbars (cf. Figure 5.1), has no impact on our results. The other panels
show the effect of the three parameters describing the truncated subhalo density profile,
Equation 5.15 (the full NFW profile follows the same description but without the sharp
cut at rt): as for the group profile, the mass and concentration affect the normalization
and slope of the profile, respectively; the rightmost panel shows changes in rt for the same
subhalo mass within rt, which is why the normalization of the different curves is different.
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Figure 5.5: Excess surface density around satellite galaxies in the three radial bins summarized in Table 5.1
and shown in the legends in units of h−1Mpc. Black points show lensing measurements around GAMA group
satellites using KiDS data; errorbars correspond to the square root of the diagonal elements of the covariance
matrix. The solid black line is the best-fit model where subhaloes are modelled as having NFW density profiles,
and orange and yellow shaded regions mark 68% and 95% credible intervals, respectively. Dashed lines show the
contribution of a point mass with a mass equal to the median stellar mass of each bin, which is included in the
model.

5.4. Results

We show the ESD around satellites in each of the three radial bins in Figure 5.5.
Qualitatively, the signal looks similar to that of Figure 5.1, and the features described in
Section 5.3 are clearly seen in each of the panels. The dip in the signal close to the typical
Rsat is smooth, as anticipated in Section 5.3.2, and moves to higher R with increasing Rsat,
as expected. As in Figure 5.1, the errorbars correspond to the square root of the diagonal
elements of the covariance matrix (see Section 5.A).

After describing the fitting procedure in Section 5.4.1, we summarize our constraints
on group properties in Section 5.4.2 and on the satellite masses in Section 5.4.3. In Sec-
tion 5.4.4 we carry out a proof-of-concept comparison of our results to predictions from
semi-analytical models of subhalo statistics and we discuss the effect of contamination in
the group sample in Section 5.4.5.

5.4.1. Fitting procedure

We fit the data in Figure 5.5 with the model described in Section 5.3 for each of the
radial bins, using the median redshift of each galaxy sample, 〈zsat〉, as listed in Table 5.1.
We use a single normalization f host

c for the c(M , z) relation of groups in the three bins.
Our model therefore has seven free parameters: the three (weighted average) masses of
the satellites, the three group masses, and a normalization to the c(M , z) relation of Duffy
et al. (2008) which applies to all groups across satellite radial bins.

We implement the model described above in a Markov Chain Monte Carlo (MCMC)
using emcee7 (Foreman-Mackey et al. 2013), which is based on an affine-invariant ensemble

7http://dan.iel.fm/emcee/current/

http://dan.iel.fm/emcee/current/


106 Satellite galaxy-galaxy lensing in KiDS×GAMA

Table 5.2: Priors, marginalized posterior estimates and derived parameters of the satellites and host groups in
the three radial bins. All priors are uniform in linear space in the quoted range. We use medians as central values
and all uncertainties are 68% credible intervals. The normalization of the group c(M , z) relation, f host

c , is the
same for the three radial bins. The best-fit model has χ2 = 24.7 with 28 degrees of freedom (PTE = 0.64).

Parameter Units Prior Bin 1 Bin 2 Bin 3
log Msub h−1M⊙ [7,13] 11.84+0.24

−0.34 11.84+0.24
−0.35 12.18+0.19

−0.24
f host
c 1 [0,2] 0.53+0.19

−0.14 ✓ ✓
log Mhost h−1M⊙ [10,15] 13.58+0.07

−0.07 13.62+0.07
−0.08 14.11+0.07

−0.07
Derived Parameters

〈M⋆,sat〉/〈Msub〉 h−1 – 0.04+0.02
−0.03 0.04+0.02

−0.03 0.03+0.01
−0.02

〈Msub/Mhost〉 1 – 0.018+0.014
−0.010 0.016+0.013

−0.009 0.012+0.007
−0.005

〈Mhost〉/〈Lhost〉 h M⊙/L⊙ – 300+49
−45 265+46

−42 386+66
−61

sampler. This sampler works by using a number of ‘walkers’ (in our case, a few hundred),
each of which starts at a slightly different position in parameter space. Each step is drawn
for each walker from a Metropolis-Hastings proposal based on the positions of all other
walkers at the previous step (see Goodman & Weare 2010, for details about the algorithm).
The likelihood L is given by

L = 1

(2π)9/2

3∏
m=1

3∏
n=1

1p|Cmn |
exp

[
−1

2
(O−E)T

mC−1
mn(O−E)n

]
, (5.16)

where Om and Em are the measurements and model predictions in radial bin m, respec-
tively; C−1

mn is the element of the inverse covariance matrix that accounts for the correlation
between radial bins m and n; and |Cmn | is the corresponding determinant. We therefore
account for covariance both within and between radial bins in our MCMC. We assume
flat, broad priors for all parameters, as listed in Table 5.2.

The data are well fit by the model of Section 5.3. The best-fit model is shown in
Figure 5.5 and gives χ2 = 24.7 with 28 degrees of freedom, with a probability to exceed
PTE = 0.64. Joint 2-dimensional posterior distributions for the seven free parameters are
shown8. Marginalized posterior estimates for all seven parameters, together with 68% cred-
ible intervals, are reported in Table 5.2, which also lists the stellar mass fractions, fractional
satellite masses, and group mass-to-light ratios derived from the posterior mass estimates.

5.4.2. Group masses and mass-concentration relation

Before discussing the results for the satellite galaxies, we explore the constraints on
group masses and the group c(M , z) relation. The masses of the same galaxy groups have
been directly measured by Viola et al. (2015), which provides a valuable sanity check of
our estimates.

We find that the normalization of the c(M , z) relation is significantly lower than the
fiducial Duffy et al. (2008) relation, f host

c = 0.53+0.19
−0.14 (where the fiducial value is f host

c = 1).
8We show and list the results in logarithmic space for convenience, but the analysis has been carried

out in linear space and the reported uncertainties correspond to the uncertainties in linear space expressed
on a logarithmic scale.
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Figure 5.6: Joint 2-dimensional (lower off-diagonal panels, with contours at 68 and 95% joint credible regions)
and marginalized 1-dimensional (diagonal panels) posterior distributions of free parameters of the model described
in Section 5.3, with subhaloes modelled with NFW density profiles. In the diagonal panels, black dashed and
dotted lines mark marginalized 68 and 95% credible intervals, respectively, and vertical red solid lines mark the
maximum likelihood estimate. Red crosses in off-diagonal panels show the joint best-fit values. All masses are
in units of h−1M⊙ and are numbered according to the radial bin to which they correspond.

This normalization implies concentrations c ≈ 3 for these groups. For comparison, using
the same parameterization as we do, Viola et al. (2015) measured f host

c = 0.84+0.42
−0.23. Our

smaller errorbars are due to the fact that we do not account for several nuisance parame-
ters considered by Viola et al. (2015) in their halo model implementation. Most notably,
accounting for miscentring significantly increases the uncertainty on the concentration,
since both affect ∆Σ at similar scales (Viola et al. 2015). Indeed, when they do not account
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for miscentring, Viola et al. (2015) measure f host
c = 0.59+0.13

−0.11, consistent with our measure-
ment both in the central value and the size of the errorbars. While this means that our
estimate of f host

c is biased, accounting for extra nuisance parameters such as miscentring
is beyond the scope of this work; our aim is to constrain satellite masses and not galaxy
group properties. As shown in Figure 5.6, f host

c is not correlated with any of the other
model parameters and therefore this bias in f host

c does not affect our estimates of the
satellite masses.

Group masses are consistent with the results from Viola et al. (2015) (with the same
caveat that the small errorbars are an artifact produced by our simplistic modelling of
the host groups). Specifically, our average mass-to-light ratios follow the mass-luminosity
relation found by Viola et al. (2015), M200 ∝ L1.16±0.13

200 . As shown in Figure 5.6, group
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Figure 5.7: Top: Marginalized posterior mass esti-
mates of satellite galaxies from the full NFW (black,
large points) and truncated NFW (grey, small points)
models, and the dashed black line shows the NFW
masses within the same truncation radii for com-
parison. Horizontal errorbars are 68% ranges in (3-
dimensional) rsat/r200 per bin. The black solid line
shows the radial dependence of subhalo mass pre-
dicted by the numerical simulations of Gao et al.
(2004) with an arbitrary normalization. Bottom:
Stellar-to-total mass ratios in each bin.

are forced to follow the same mass-
concentration relation determined by Equa-
tion 5.10. Groups in the third bin are on
average ∼ 3.4± 0.8 times more massive than
groups in the first radial bin. This is a se-
lection effect, arising because groups in each
bin must be big enough to host a significant
number of satellites at the characteristic ra-
dius of each bin. For example, groups in the
first radial bin have9 log〈Mhost,1/(h−1M⊙)〉 =
13.46+0.06

−0.06 and 〈c1〉 ≈ 3.3, which implies a scale
radius 〈rs,1〉 = 0.19h−1Mpc, beyond which the
density drops as ρ ∝ r−3 (cf. Equation 5.8).
The average 3-dimensional distance of satel-
lites to the group centre (see Section 5.3.3) in
the third radial bin is 〈rsat,3〉 = 0.46h−1Mpc.
At this radius, the average density in groups
in the first radial bin is seven times smaller
than at 〈rs,1〉.

As mentioned above, our simplistic mod-
elling of groups does not affect the posterior
satellite masses significantly. Therefore it is
sufficient that our group masses are consis-
tent with the results of Viola et al. (2015),
and we do not explore more complex mod-
els for the group signal. For a more thorough
modelling of the lensing signal of groups in the
KiDS-GAMA overlap region, see Viola et al.
(2015).

9Throughout, we quote masses and radii for a given radial bin by adding an index from 1 to 3 to the
subscript of each value.
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5.4.3. The masses of satellite galaxies

We detect the signal from satellites with significances >99% in all three radial bins.
Satellite masses are consistent across radial bins. We show the marginalized posterior
estimates and 68% credible intervals in Figure 5.7 as a function of 3-dimensional group-
centric distance, rsat (in units of the group radius r200).

Figure 5.7 also shows the subhalo mass as a function of 3-dimensional separation
from the group centre found in numerical simulations by Gao et al. (2004). Note that
we compare here only the trend with radius, not the normalization. Fitting a power law,
Msub ∝ (rsat/r200)a , to the data in Figure 5.7 we find a = 0.3± 0.5 (ignoring horizontal
errorbars), consistent with the trend predicted by Gao et al. (2004) but also with no
dependence on group-centric distance. The bottom panel shows the average stellar mass
fractions, which are also consistent with each other, 〈M⋆,sat/Msub〉 ∼ 0.04h−1.

We also show in Figure 5.7 the results obtained for the truncated theoretical model.
The difference between each pair of points depends on the posterior rt estimated in each
bin through Equation 5.13. Specifically, we find 〈rt〉 = {0.04+0.02

−0.01,0.06+0.03
−0.02,0.09+0.04

−0.02} h−1Mpc.
We remind the reader that these are theoretical predictions from Equation 5.13 rather than
observational results. For comparison, we also show in Figure 5.7 the masses obtained by in-
tegrating the posterior NFW models up to said truncation radii, shown by the dashed line.
These masses are fully consistent with the truncated model, implying that the difference
between the black and grey points (which show Msub(<r200) and Msub(<rt), respectively)
in Figure 5.7 is only a matter of presentation; the data cannot distinguish between these
two models.

After we submitted this work, Li et al. (2016) presented similar, independent satellite
lensing measurements. They used ∼7,000 satellites in the redMaPPer galaxy group cat-
alogue (Rykoff et al. 2014) with background sources from CS82 and also measured the
lensing signal in three bins in projected radius. They find comparable constraints that are
consistent with ours.

5.4.4. The average subhalo mass

We can link the results presented in Section 5.4.3 to predictions from numerical simu-
lations. Comparisons of the satellite populations of observed galaxies (or groups) provide
valuable insights as to the relevant physical processes that dominate galaxy formation, as
highlighted by the well known ‘missing satellites’ (Klypin et al. 1999; Moore et al. 1999)
and ‘too big to fail’ (Boylan-Kolchin et al. 2011) problems, which suggest either that our
Universe is not well described by a ΛCDM cosmology, or that using numerical simulations
to predict observations is more complicated than anticipated. While the former may in
fact be true, the latter is now well established, as the formation of galaxies inside dark
matter haloes depends strongly on baryonic physics not included in N -body simulations,
and the influence of baryons tends to alleviate these problems (Zolotov et al. 2012).

Here we specifically compare the average subhalo-to-host mass ratio, ψ≡ Msub/Mhost,
to ΛCDM predictions through the subhalo mass function, which describes the mass dis-
tributions of subhaloes for a given dark matter halo mass. In numerical simulations, the
resulting subhalo mass function is a function only of ψ (e.g., van den Bosch et al. 2005;
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Jiang & van den Bosch 2016). As summarized in Table 5.2, we find typical subhalo-to-host
mass ratios in the range 〈ψ〉 ∼ 0.015, statistically consistent across group-centric distance.
We obtain these values by taking the ratio Msub/Mhost at every evaluation in the MCMC.
For comparison, the values we obtain using the truncated model are 〈ψtNFW〉 ≈ 0.005, also
consistent across radial bins.

We compare our results to the analytical evolved (that is, measured after the subhaloes
have become satellites of the host halo, as opposed to one measured at the time of infall)
subhalo mass function proposed by van den Bosch et al. (2005),

dN

dψ
∝ 1

ψ

(
β/ψ

)α exp
(−ψ/β

)
, (5.17)

where α= 0.9 and β= 0.13, and calculate the average subhalo-to-host mass ratio,

〈ψ〉 =
[∫ ψmax

ψmin

dN

dψ
dψ

]−1 ∫ ψmax

ψmin

ψ
dN

dψ
dψ, (5.18)

where ψmin ≈ 10−3 is approximately the minimum fractional satellite mass we observe
given the results of Section 5.4.3, and ψmax = 1 is the maximum fractional satellite mass
by definition. Integrating in this range gives 〈ψ〉 = 0.0052.

There are many uncertainties involved in choosing a ψmin representative of our sample,
such as survey incompleteness and the conversion between stellar and total mass; we defer
a proper modelling of these uncertainties to future work. For reference, changing ψmin by a
factor 5 modifies the predicted 〈ψ〉 by a factor ∼3. Considering the uncertainties involved,
all we can say at present is that our results are consistent with ΛCDM predictions.

5.4.5. Sensitivity to contamination in the group catalogue

Two sources of contamination in the group catalogue have been neglected in this analy-
sis. The spectroscopic group satellite catalogue used in this work has a high, but not 100%,
purity. For groups with NFoF ≥ 5 the purity approaches 90%; groups with fewer members
have significantly lower purity (Robotham et al. 2011). Li et al. (2013a) have shown that
a contamination fraction of 10% in the satellite sample would lead to a +15% bias in the
inferred satellite masses, well within the reported uncertainties (which amount to up to a
factor two).

The second source of contamination is the misidentification of the central galaxy in a
group, such that the true central galaxy would be included in our satellite sample. This
effect is similar to that explained above, except that contaminating galaxies now reside
in particularly massive halos (namely, the groups themselves). Based on comparisons to
GAMA mock galaxy catalogues, Robotham et al. (2011) found that the fraction of BCGs
correctly identified with the central galaxy of dark matter halos is around 70− 75% for
groups with NFoF ≥ 5. Viola et al. (2015) have directly measured the offset probability of
BCGs from the true minimum of the potential well. They found that the BCG is as good a
proxy for the centre as the iterative centre of Robotham et al. (2011), which according to
mock group catalogues are well centred in ∼ 90% of the groups. There are very few groups
with NFoF ≫ 5 (Robotham et al. 2011), and therefore the lensing signal of a central galaxy
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in our sample would probably have ∆Σ(R ≈ 0.05h−1Mpc) ≈ 100h M⊙ pc−2 (see Figure 7 of
Viola et al. 2015). If we assume (conservatively) that 20% of the BCGs do not correspond
to the central galaxy in their groups, then 0.20/7 = 3% (where 〈NFoF〉 ∼ 7, cf. Table 5.1)
of our satellites would be central galaxies. Therefore the total signal in the inner regions
(R ≈ 0.05h−1Mpc) would be ∆Σtot = 0.03× 100+ 0.97×∆Σtrue

sub ≃ 40h M⊙ pc−2, which yields
∆Σtrue

sub = 38h M⊙ pc−2. Therefore central galaxy misidentification induces a +5% bias on the
signal, which implies roughly a +15% bias on the mass.

Together, these two effects add up to a ∼20−25% bias in our satellite mass estimates.
Such a bias is safely within our statistical uncertainties. Therefore our results are insensitive
to plausible levels of contamination in the group catalogue, both from satellites that are
not really group members and from misidentified central galaxies.

5.5. Conclusions

We used the first 100 sq. deg. of optical imaging from KiDS to measure the excess
surface mass density around spectroscopically confirmed satellite galaxies from the GAMA
galaxy group catalogue. We model the signal assuming NFW profiles for both host groups
and satellite galaxies, including the contribution from the stellar mass for the latter in the
form of a point source. Taking advantage of the combination of statistical power and high
image quality, we split the satellite population into three bins in projected separation from
the group centre, which serves as a (high-scatter) proxy for the time since infall. We fit
the data with a model that includes the satellite and group contributions using an MCMC
(see Section 5.3 and Figure 5.5), fully accounting for the data covariance. As a consistency
check, we find group masses in good agreement with the weak lensing study of GAMA
galaxy groups by Viola et al. (2015), even though we do not account for effects such as
miscentring or the contribution from stars in the BCG.

This model fits the data well, with χ2/d.o.f. = 0.88 (PTE = 0.64). We are able to constrain
total satellite masses to within ∼ 0.3 dex or better. Given these uncertainties, the estimated
masses are insensitive to the levels of contamination expected in the group catalogue.
Satellite galaxies have similar masses across group-centric distance, consistent with what
is found in numerical simulations (accounting for the measured uncertainties). Satellite
masses as a function of group-centric distance are influenced by a number of effects. Tidal
stripping acts more efficiently closer to the group centre, while dynamical friction makes
massive galaxies sink to the centre more efficiently, an effect referred to as mass segregation
(e.g., Frenk et al. 1996). In addition, by binning the sample in (projected) group-centric
distance we are introducing a selection effect such that outer bins include generally more
massive groups, which will then host more massive satellites on average. Future studies
with increased precision may be able to shed light on the interplay between these effects
by, for instance, selecting samples residing in the same host groups or in bins of stellar
mass.

As a proof of concept, we compare our results to predictions from N -body simulations.
These predict that the subhalo mass function is a function only of the fractional subhalo
mass, ψ≡ Msub/Mhost. Our binning in satellite group-centric distance produces a selection
effect on host groups, such that each bin probes a (slightly) different group population,
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which allows us to test such prediction. The average fractional mass in all three bins
is consistent with a single value (within large errorbars), 〈ψ〉 ∼ 0.015. This is broadly
consistent with the predictions of numerical simulations. We anticipate that weak lensing
of satellite galaxies will become an important tool to constrain the physical processes
incorporated in semi-analytic models of galaxy formation and, ultimately, hydrodynamical
simulations.

5.A. Full satellite lensing correlation matrix and the contribution
from sample variance

As mentioned in Section 5.3.1, we calculate the covariance matrix directly from the data
including only the contribution from shape noise (see Section 3.4 of Viola et al. 2015). In
Figure 5.9 we show the corresponding correlation matrix, defined as

C′
mni j =

Cmni j√
Cmmi i Cnn j j

, (5.19)

where Cmni j is the covariance between the i -th and j -th elements of radial bins m and n,
respectively (where m,n = 1,2,3). In reality the lensing covariance also includes a contri-
bution from sample (‘cosmic’) variance, but we have ignored it in our analysis. Below we
justify this decision.
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Figure 5.8: Comparison of the variances cal-
culated analytically (solid), which account only
for shape noise, and by bootstrapping (dashed),
which also account for sample variance, for the
diagonal sub-panels of the covariance matrix as
per Figure 5.9. The red and blue lines have been
offset vertically for clarity.

The contribution from sample variance can in
principle be estimated by bootstrapping the lens-
ing signal over individual KiDS fields. However,
there are two caveats to this approach. First, the
101 KiDS fields used here do not produce enough
independent bootstrap samples to properly es-
timate the full covariance matrix for our satel-
lite samples, which is a symmetric 36×36 matrix
(containing 648 independent elements) including
sample variance for the three radial bins. Sec-
ond, using single KiDS fields as bootstrap el-
ements means that the elements are not truly
independent from each other, because lenses in
one field do contribute to signal in neighbour-
ing fields. In fact, we calculate the lensing signal
of each galaxy including background galaxies in
neighbouring fields.

The latter point is not crucial for our analysis
since, as shown in Figure 5.5, the signal produced
by satellite subhaloes is confined to the smallest
scales, R ≲ 0.3h−1Mpc. Therefore, we can esti-
mate the relative contribution from sample vari-
ance to the covariance matrix by comparing the diagonal sub-panels of the covariance
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Figure 5.9: Full satellite lensing correlation matrix within and between radial bins as shown by the label at the
top of each plot.

matrices estimated directly from the data (the ‘analytical’ covariance) and by bootstrap-
ping over KiDS fields. Note that the bootstrap covariance also accounts for shape noise
in addition to sample variance. Therefore the ratio between the bootstrap and analytical
covariances is a measure of the relative contribution of sample variance to the satellite lens-
ing covariance. It should be noted, however, that the bootstrap covariance can be biased
high by as much as 40% (Norberg et al. 2009).

We show this comparison in Figure 5.8 for each of the three radial bins, where we
compare

p
Cmmi i estimated from the analytic (i.e., data) and bootstrap covariances. Both

methods lead to similar values up to the largest angular separations. There is a hint of a
nonzero contribution from sample variance at scales R > 0.3h−1Mpc, where the bootstrap
variance is ∼ 10% larger than the analytical variance. As stated above, the satellite contri-
bution to ∆Σ is confined to scales smaller than these. We conclude that, for the purpose
of this work, we can safely ignore sample variance.




