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TUTORIAL

Understanding the Behavior of Systems Pharmacology
Models Using Mathematical Analysis of Differential
Equations: Prolactin Modeling as a Case Study

S Bakshi1, EC de Lange1, PH van der Graaf1,2*, M Danhof1 and LA Peletier3

In this tutorial, we introduce basic concepts in dynamical systems analysis, such as phase-planes, stability, and bifurcation
theory, useful for dissecting the behavior of complex and nonlinear models. A precursor-pool model with positive feedback is
used to demonstrate the power of mathematical analysis. This model is nonlinear and exhibits multiple steady states, the
stability of which is analyzed. The analysis offers insight into model behavior and suggests useful parameter regions, which
simulations alone could not.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 339–351; doi:10.1002/psp4.12098; published online 12 July 2016.

Mechanism-based and systems pharmacology-based mod-
els are increasingly used in the pharmacological studies.1,2

These models are increasingly complex and are based on
differential equations (DEs). DE-based models have been
used in physics, engineering, and biology for a long time,
for example, to model motions of objects, transfer of heat,
as well as cell cycles and firing of neurons. Well-developed
mathematical and computational methods exist for solving
(where possible), analyzing the dynamics of, and simulating
the DE-based models. Computational methods play a big
role in simulating such models, but may offer only a limited
picture of model behaviors, particularly for nonlinear mod-
els. Nonlinear models can exhibit rich and counterintuitive
behaviors, which can be difficult to understand through sim-
ulations alone. Mathematical techniques, such as dynami-
cal systems analysis, on the other hand: (1) provide better
insight into the behavior of these models; (2) show how
many steady states a model has and which ones are sta-
ble, which may allow us to reject a model even before any
data fitting is performed; (3) allow predicting which regions
of parameter space provide meaningful results (for exam-
ple, stability for required steady states); (4) suggest ways in
which a model can be reduced or altered to better describe
the biological system at hand, and (5) predict the outcome
of simulations, which helps in verifying and understanding
simulation results.

Rich literature exists in the field of mathematical biology
in which these techniques are applied to complex and non-
linear models of biological systems.3–6 Usually, these mod-
els are mechanism based in that they are built on
knowledge of the underlying mechanical, physical, or bio-
logical system. In pharmacology, however, the underlying
system is often only partially understood and models are
based on a mix of biological and physiological information
as well as experimentally obtained data. This raises new
questions, such as the validity of the model under condi-
tions for which no data are available, and often experiments
are designed to challenge a proposed model.

In order to demonstrate all the working steps in a typical
dynamical systems analysis in a pharmacological context,
we focus this tutorial on a specific case study: the response
of prolactin (PRL) to antipsychotic drugs, and, specifically,
a model that has been used to account for this response.
This model is based on the classical “precursor-pool
model.” We have deliberately chosen this simple model as
a starting point because it is a turnover model. Such mod-
els are ubiquitous in pharmacology, and therefore more
familiar to a pharmacologist than some of the mathematical
biology models. We would like to emphasize, though, that
the techniques presented here are applicable to a wide
range of DE-based models. Precursor-pool models have
been in use in the pharmacokinetic (PK) pharmacodynamic
(PD) literature for a long time and are used to explain the
tolerance and rebound components of a drug response.7–11

These are precursor-dependent indirect response models,
which assume that the tolerance (or rebound) results from
depletion (or accumulation) of finite pools of precursors that
are responsible for the drug effect. The pool model has
been applied to the PRL response after administration of
antipsychotic drugs, in order to explain the tolerance after
repeated drug administration at closely spaced intervals. To
account for the effect of an antipsychotic drug (remoxipride)
in rats, the original PRL pool model8 was modified by
ref. 12 to include a positive feedback (PF) component. The
modified model is nonlinear. When the same model is used
to study the effects of risperidone in rats, simulations find
that the model predicts one PRL baseline for some doses
but a higher baseline for other doses (discussed further
below). With mathematical analysis we are able to under-
stand precisely why the model shows this behavior. More-
over, we are able to predict this counterintuitive behavior
through analysis. Without this insight one would have to
rely on serendipitous discovery of such behavior through
simulations.

We begin this tutorial by presenting some basic steps in
the dynamic analysis of ordinary differential equation (ODE)
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models, using the basic precursor-pool model as an exam-
ple. We demonstrate the process of the determination of
steady states followed by nondimensionalization. We then
illustrate the phase-plane analysis, which is a transparent
geometric tool to gain insight into the dynamics of two-ODE
systems. We then apply these techniques to the pool model
with PF to understand the counterintuitive behavior in an
apparently simple ODE model. We further use this model
to demonstrate concepts, such as bifurcation analysis, for
determination of parametric dependence of stability proper-
ties of a model, and to explain the counterintuitive behavior
shown by the pool model with PF.

DYNAMICAL SYSTEMS ANALYSIS OF ODE

MODELS—A STEP-WISE GUIDE

In this tutorial, we focus on small models with two ODEs. We

present the analysis within the framework of a specific exam-

ple, the classical “precursor-pool model” in pharmacology.10

Precursor-pool model
The typical precursor-pool model describes the dynamics of

two quantities, referred to as the “precursor” often denoted

by “P” and the “response” denoted by “R.” It is based on the

assumption that there is a finite pool of precursors, which

produces the response. Thus, it is a two-compartment model

involving a precursor pool and a response compartment.

The dynamics of a pool model is described by the system of

DEs:

dP
dt

5ks2kr P; (1)

dR
dt

5kr P2kel R: (2)

Here P denotes the precursor concentration in the pool, R

the response, ks the synthesis rate of precursors, kr the

release rate constant of precursors, and kel the elimination

rate constant of the response. Note that Eq. 1 is identical

to the widely used indirect response model.
A steady state of a system is a state that is constant in

time (i.e., rate of change of all variables is zero). Let P0

and R0 denote the steady state concentrations of P(t) and

R(t), respectively. Then we conclude upon substitution into

the system (Eq. 1) that:

ks2kr P050 and kr P02kel R050: (3)

Solving this pair of algebraic equations, we obtain the fol-

lowing expressions for P0 and R0:

P05
ks

kr
and R05

kr P0

kel
5

ks

kel
: (4)

Step 1: Nondimensionalization
Nondimensionalization is the process of converting a model

with dimensional variables and parameters into one that

has dimensionless variables and parameters. This process

typically reduces the number of parameters in the model by

grouping some of them together. The applications of this
approach in the PK-PD literature can be found in refs. 13
and 14.

There are several advantages of using the nondimen-
sional form of a model:

• The nondimensional system is often simpler, whereas it
still retains the dynamical structure of the original
model.

• The nondimensional model contains fewer (dimension-
less) parameters that determine the characteristic fea-
tures of the dynamics described by the model.

• The nondimensional variables and parameters can be
compared to each other through their magnitudes. By
contrast, the dimensional quantities, which may have dif-
ferent units, cannot be compared meaningfully with each
other.

Choosing alternate time and concentration scales can also
allow one to zoom into various subprocesses making up the
dynamics of the system. Thus, the presence of different time
scales in a model can be exploited to obtain simplified mod-
els that describe a particular aspect of the dynamics, such
as a startup, a transition, or large-time behavior. Segel and
Slemrod15 nicely illustrate the tasks and challenges of nondi-
mensionalization using the Michaelis-Menten reaction kinet-
ics. For examples in which different time and concentrations
ranges are used to dissect complex models, we refer to
Schmidt et al.14 and Peletier et al.16

Making the system dimensionless involves comparing the
variables to conveniently chosen reference values. Thus,
for the precursor-pool model, the steady state values, also
referred to as baseline values, P0 and R0 can be used to
define corresponding dimensionless variables u and v:

u5
P
P0

5
kr

ks
� P and v5

R
R0

5
kel

ks
� R:

We have yet to choose an appropriate reference value for
the time. Suitable candidates are the turnover times of the
first or the second equation (i.e., 1=kr or 1=kel ). Using 1=kel

as a reference time we substitute

s5kel t

Thus, the dimensionless variables are defined by:

u5
P
P0

5P
kr

ks
; v5

R
R0

5R
kel

ks
; s5t kel : (5)

They yield the dimensionless system of:

du
ds

5að12uÞ; (6)

dv
ds

5u2v ; (7)

where a, is a dimensionless constant that is the ratio of the
two time scales in the model, the one for the pool compart-
ment (1=kr ) and one for the response compartment (1=kel ):
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a5
kr

kel
:

We see that the dimensionless model (Eqs. 6 and 7) has

just one parameter, as compared to three in the original

model (Eqs. 1 and 2). Thus, for different values of kr and

kel with the same ratio a, plotting the scaled concentrations

results in identical plots, rather than plotting the dimension-

al concentrations.
Plainly, by the definition of the dimensionless variables u

and v, the steady state of the dimensionless model is:

ðu; vÞ5ð1; 1Þ:

Note that we could equally well have chosen 1=kr as a ref-

erence time. This would have yielded a slightly different

dimensionless system: the parameter a in the first equation

would have disappeared, while a parameter 1=a would

have appeared as a factor of ðu2vÞ in the second

equation.

Step 3: Phase-plane analysis
The “phase-plane” is a geometric representation of the

dynamics of a two-dimensional system of ordinary differen-

tial equations and is a useful tool for acquiring insight into

the global and local dynamics of the system.
Points in the (u, v)-plane represent states of the system,

and Eqs. 6 and 7 uniquely determine its subsequent behav-

ior. As time progresses, the state ðuðsÞ; vðsÞÞ traces a tra-

jectory in the phase plane, which is also called an “orbit.”

The velocity q—speed and direction—is defined by the

state (u, v) through the DEs:

q5
du
ds
;
dv
ds

� �
5ðað12uÞ; u2vÞ

Thus, at every point in the phase plane, the DEs define a

direction of the velocity field.

In analyzing the behavior of the solution orbits, two

curves are especially useful: the curves along which the

vector field is vertical (i.e., du=ds50 (Cu)) and the curves

along which it is horizontal (i.e., dv=ds50 (Cv)). In other

words, Cu and Cv each denote a curve along which the rate

of change of u and v is zero, respectively. They are called

the “null clines” of the system. Using Eqs. 6 and 7, we find

that they are given by:

Cu :
du
ds

50 : u51; (8)

Cv :
dv
ds

50 : v5u: (9)

Plainly, points where the null clines intersect are the

steady-state points. In this example, we see that there

exists a unique point of intersection ðu; vÞ5ð1;1Þ. A given

null cline divides the phase plane in two different regions:

one where the rate of change of the respective variable is

positive and one where it is negative. In the phase plane of

the pool model, shown in Figure 1a, Cu divides the plane

such that on its left-hand side the rate of change of u is

positive (indicated by the green rightward arrows, and on

its right side the reverse is true (green leftward arrows).

These directional arrows are obtained by studying the

respective differential equation. Similar arguments apply to

Cv. The directions of change of v in these two regions are

indicated by blue downward and upward arrows. Thus, the

two null clines divide the plane into four regions, denoted

here by I, II, III, and IV, each with a distinct resultant vector

direction. In region I, the velocity vector q points SE (&), in

region II it points SW (.), in region III NW (-) and in

region IV NE (%). In Figure 1a, we show the directions of

the vector field in the four regions schematically.
In Figure 1b, we show orbits of the system (Eqs. 6 and

7) for a50:2 starting at the points ðu; vÞ5ðuð0Þ; vð0ÞÞ,
where uð0Þ5 0.4, 0.8, 1.5, 2.0, 2.5, 3.0, and vð0Þ50,

together with the null clines Cu (green) and Cv (blue). They

Figure 1 (a) Directions of the vector field in the four regions I, II, III, and IV in the phase plane divided by the null clines Cu (green)
and Cv (blue). Please refer to the text for description of the blue and green arrows. (b) Orbits in the phase plane for a50:2 starting
at ðu; vÞ5ðuð0Þ; vð0ÞÞ where u(0) 5 0.4, 0.8, 1.5, 2.0, 2.5, 3.0, and vð0Þ50, as well as the null clines Cu (green) and Cv (blue)
(MATLAB model code provided in Supplementary Figure S1).
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all converge to the unique steady state point ðu; vÞ5ð1; 1Þ.
We note that the orbits cross Cv horizontally and do not

cross Cu.
In pharmacology, dependent variables often represent

concentrations that cannot become negative. It is possible

to use the phase plane to determine whether a model is

likely to predict negative concentrations. We encourage

readers to work through Exercise A.1 in order to determine

whether P and R may become negative in this example.

Orbits do not intersect
Observe that the orbits shown in Figure 1a do not inter-

sect. This is a general property of autonomous systems

(i.e., systems in which the time variable does not appear

explicitly), as is the case in the pool model (Eqs. 6 and 7),

where the right-hand sides are functions of the dependent

variables u and v only. In contrast, if a parameter depends

upon time, for example, in case of a drug-effect component,

which changes in response to drug concentration changes

in time, then the system is not autonomous any longer.
Suppose to the contrary that two orbits intersect at a

point Q. Then Q would be the starting point for two different

orbits when we let time run backward. This contradicts the

uniqueness property. The uniqueness property requires that

when the right-hand sides of the system of DEs are smooth

functions of the dependent variables, as they are in the sys-

tem of Eqs. 6 and 7, then through every point (u,v) the

phase plane passes one and only one orbit.

Orbits do not cross Cu

We observe in Figure 1a that although orbits cross the null

cline Cv, they do not cross the null cline Cu. The reason is

that Cu is not only a null cline but also an orbit (see exer-

cise A.2).

Stability
We note that the arrows in the phase plane all point to the

unique stationary point ðu; vÞ5ð1;1Þ. This suggests that

this point is stable, in fact asymptotically stable in that:

ðuðsÞ; vðsÞÞ ! ð1; 1Þ as s!1: (10)

We observe that as the orbits—whether from above or

below—converge upon the stationary point (1,1), they are

ultimately tangent to the null cline Cv. In Figure 2a, we

demonstrate that this property is related to the value of a
and changes as a become large.

Impact of the parameter a

If a � 1, then kr � kel and uðsÞ quickly moves to its null cline

Cu, much faster than vðsÞ. Therefore, the orbit will reach its lim-

it point from below. On the other hand, If a � 1, then kr � kel

and the inequalities are reversed. Now vðsÞ quickly moves up

toward its null cline Cv while uðsÞ moves relatively slowly. Note

that orbits in region III can leave region III and enter region IV

before converging to the steady state for a50:1. However, if

orbits begin in region II (or IV), they must stay in region II (or

IV), regardless of the value of a (see exercise A.3).

Quasi-steady state
In pharmacology, it is not uncommon that time scales are

very different, for instance that kr � kel or, conversely, kr �
kel. In such a situation, it is possible to reduce the system

to a simpler one because the two quantities rapidly reach a

quasi-steady state and then together move slowly toward

the final steady state. A classic example of the application

of quasi-steady state approximation to a biochemical reac-

tion is the derivation of the Michaelis-Menten equation in

enzyme kinetics.15 However, in this tutorial, we briefly intro-

duce the method using the example of the pool model.
Suppose that kr � kel and hence a � 1. When we divide

the first equation by a and write e51=a, we obtain:

e
du
ds

512u ðe� 1Þ

dv
ds

5u2v :

8>><
>>:

(11)

This is a classic “singular perturbation problem.” Following

standard theory,17 we may conclude that uðsÞ very quickly

Figure 2 (a) Orbits in the phase plane for a50:1 and a 5 10 starting at ðu; vÞ5ð2:5; 0Þ. Both orbits converge toward the unique steady
state ðu; vÞ5ð1; 1Þ but, depending on a, along very different routes (MATLAB model code provided in Supplementary Figure S2).
(b) Graphs of the functions uðsÞ (in red) and vðsÞ (in blue) which solve Eqs. 13 and 14 for a 5 10.

Understanding the Behavior of Systems Pharmacology
Bakshi et al.

342

CPT: Pharmacometrics & Systems Pharmacology



jumps to its limit value u 5 1 (while vðsÞ hardly moves) and

then stays there—in quasi-equilibrium—for all later time.

Thus, we may then approximate the system (Eq. 11) by the

reduced system:

0 512u
dv
ds

5u2v :

8<
: (12)

Thus, after this initial jump, we have to good approximation

uðsÞ51 and the function vðsÞ solves the equation:

dv
ds

512v : (13)

This equation can be solved explicitly: for vð0Þ5a the solu-

tion is given by:

vðsÞ512ð12aÞe2s: (14)

In Figure 2b, we show graphs of the solutions uðsÞ and vðsÞ
of the Eqs. 13 and 14 when the initial data are uð0Þ50 and

vð0Þ50 for a 5 10 (i.e., e51=a50:1). Notice the rapid initial

jump of the function uðsÞ, so that uðsÞ � 1 for most of the

interval over which vðsÞ converges to its limit 1 (i.e., for

most of the time, the first Eq. of 11) was in a quasi-

equilibrium or quasi-steady state.
Arguments, such as used above, for a large can also be

used when a is small (i.e., when kr � kel).

SUMMARY AND DISCUSSION

We have explained how the dynamic and steady-state

behavior of a system of two ordinary first-order DEs can be

studied by going through steps of finding steady states,

introducing dimensionless variables and analysis of the

orbits in the phase-plane, yielding insight into issues of sta-

bility, and parameter dependence. As a case study, the

classic precursor-pool model has been used. This model

consists of two linear turnover equations in the dependent

variables only, and thus has a unique steady state.
In the next section, we present a case study in which

these steps are applied to two modified pool models that

have been used by, respectively, refs. 8 and 12 in the study

of the Lactotroph-Prolactin system. This introduces two

new elements: (i) the impact of a drug on the system,

which causes some of the coefficients to depend on time t,

and (ii) nonlinearity because of a positive feedback loop in

the system. Here, this results in multiple steady states.

PROLACTIN BEHAVIOR IN THE BODY: APPLICATION

OF THE POOL MODEL

PRL is a polypeptide hormone with a primary role in regula-

tion of lactation in humans. PRL is predominantly secreted

by specialized cells in the anterior pituitary gland called the

lactotrophs.18 Antipsychotic drugs, such as remoxipride,

chlorprothixene, and risperidone, stimulate the release of

PRL in the blood, which leads to side effects, such as
galactorrhea and menstrual disturbances.19

It has been observed that the interval between two doses
of an antipsychotic medication determines the intensity of
the PRL response in plasma. For closely spaced doses,
the response to the second dose is lower than that to the
first dose, whereas for widely spaced dosing intervals, both
the responses are of comparable intensity. In order to
investigate this phenomenon further, eight healthy male vol-
unteers were given two doses of the drug remoxipride at
various intervals. The resulting plasma PRL response was
measured.20 Results showed that for 8 and 12-hour inter-
vals, the plasma PRL peak following the second dose is
smaller than the first, whereas for a 48-hour interval
both the doses elicit peaks of comparable intensity (see
Figure 1 in ref. 20 and Figure 4 in ref. 8).

In ref. 8, a precursor-pool model has been proposed to
explain the observed dampening of the PRL response in
plasma with a precursor compartment for lactrotroph PRL
and a central compartment for plasma PRL. When a stimu-
latory drug is administered it increases the release of PRL
from lactotrophs. Figure 3a shows the schematic represen-
tation of the pool model.

A drug challenge leads to the depletion of the PRL pool as
the zero-order PRL synthesis rate in the lactotroph compart-
ment is unable to quickly replenish the pool. This leads to
the reduction in intensity of the response to the subsequent
closely spaced drug challenges. Eqs. 15 and 16 describe the
dynamics of PRL concentration in the lactotroph and the
plasma compartment, respectively, in the presence of a drug.

dP
dt

5ks2kr ð11SðCÞÞP; (15)

dR
dt

5kr ð11SðCÞÞP2kel R: (16)

Here, P denotes the lactotroph PRL concentration, R
denotes the plasma PRL concentration, and S(C) denotes

Figure 3 (a) Schematic representation of the precursor-pool
model for prolactin (PRL) response involving a drug-intervention
through the stimulatory drug effect function S(C) on the elimina-
tion of PRL from the lactograph compartment. (b) Schematic
representation of the modified pool model for PRL response,
involving a positive feedback of the PRL concentration in the
plasma compartment on the PRL-production rate in the lacto-
graph compartment modeled by a nonnegative nondecreasing
function f(R).

Understanding the Behavior of Systems Pharmacology
Bakshi et al.

343

www.wileyonlinelibrary/psp4



a relation between drug concentration and the degree of

stimulation of PRL release. Various functional forms for
S(C) were tested by the authors and the maximum effect
(Emax) function was found to be the most suitable.8 Thus,
the following equation:

SðCÞ5 Smax C
SC501C

: (17)

In the absence of a drug (i.e., when C 5 0), Eqs. 15 and 16
are identical to Eqs. 1 and 2, as presented in an earlier
section above. Thus, from the analysis we presented, we
know that the PRL pool model has a unique steady state
(P0, R0) given by:

P05
ks

kr
; R05

kr P0

kel
5

ks

kel
; (18)

and that this steady state is asymptotically stable.
In Figure 4a, we show a simulation of the concentrations

R and P, respectively, in the prolactin and the lactograph
compartment according to the model in Eqs. 15 and 16
with parameter values of ref. 8. In this simulation, a simple
mono-exponential drug concentration has been used. The
concentrations are normalized with respect to their baseline
values R0 and P0 in order to compare them. Figure 4b
shows the same simulation plotted in a phase plane. The

null clines for R and P are also normalized with R0 and P0.
The pool model is a simple linear model and lacks physi-

ological and mechanistic detail. Stevens et al.,12 modified
the pool model to incorporate the experimentally observed
interaction between plasma PRL and the PRL synthesis
rate in lactotrophs. In the next section, we study the impact
of this positive feedback on the PRL synthesis rate.

Pool model with positive feedback
Stevens et al.12 applied the pool model to repeated remox-
ipride challenge data from rats. They found that when the
two remoxipride doses are closely spaced, the original pool

model (which was developed using clinical data) leads to

slight overprediction of PRL response to the second drug

challenge. As preclinical data are richer than clinical data, it
is possible that mechanistic (complex) models are needed

to explain the data, whereas simpler models are adequate
for the more limited clinical data. Stevens et al.12 argued

that a variable PRL synthesis rate (ks) could be necessary

to obtain a better fit (personal communication). Experimen-
tal evidence suggested that PRL may regulate its own syn-

thesis rate in lactotrophs. It has been shown that the

plasma PRL signals through cell-surface receptors present
on the lactotrophs via the JAK/STAT pathway.21 PRL has

also been shown to signal via the MAPK pathway.22 Estro-
gen, which is an endogenous stimulator of PRL synthesis,

also signals through the MAPK pathway.21,23 Thus, Stevens

et al.12 hypothesized that the signaling that ensues follow-
ing binding of PRL to PRL receptors on lactotrophs may

result in the increased synthesis of PRL in the lactotrophs
in a positive-regulatory manner. Authors postulated that an

increase in plasma PRL levels could function as an indica-

tor of the emptying of the pool. Hence, they argued that
increased plasma PRL levels may positively regulate the

PRL synthesis rate in the lactotrophs in order to replenish
the pool. Thus, they modified the pool model by adding a

positive feedback (f(R)) in the form of an Emax function and

showed that the modified model fits data from the remoxipr-
ide challenge in rats well.12 Figure 3b shows the modifica-

tion of the pool model due to the addition of the positive
feedback denoted by f(R).

The equations for the modified pool model are:

dP
dt

5ks 11fðRÞ½ �2kr ½11SðCÞ�P; (19)

dR
dt

5kr ½11SðCÞ�P2kel R: (20)

Here, the function f(R), which models the positive feedback,

is defined by:

Figure 4 (a) Graphs of R(t) (red) and P(t) (blue), normalized with respect to their baseline values R0 and P0, of the system (Eqs. 15
and 16) for system parameters ks 5 26 ng � mL21 h21, kr 50:091 and kel 5 2.2, h21 and pharmacokinetic (PK) data Smax 5 66 and
SC50522; CðtÞ5D3e2kat for D 5 3, ka50:2 h21 (R0512 and P05286 ng � mL21). (b) The same simulation plotted in the phase plane
(MATLAB model code provided in Supplementary Figure S4).
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f ðRÞ5f0ðRÞ � HðR2R0Þ; f0ðRÞ5
EmaxðR2R0Þ

EC501ðR2R0Þ
: (21)

The positive feedback is considered to be only active when

R > R0. This condition—in ref. 12 referred to as the “if con-

dition”—is incorporated as a Heaviside function HðR2R0Þ,
which is simply a mathematical representation of the “if

condition” used by authors. Thus, HðR2R0Þ51 for R > R0

and HðR2R0Þ50 for R � R0. The functional form of S(C) is

given by Eq. 17, as in the case of the original pool model.
Stevens et al.12 used the model given by Eqs. 19 and 20

to fit plasma PRL response shown by rats to repeated

remoxipride challenge at various dosing intervals. The

parameter estimates obtained from this model fit are listed

in Supplementary Table 1. As in case of human subjects,

the dosing interval plays a role in determining the intensity

of the response to the second drug challenge. In case of

rats, however, the time scale is different to that in humans.

Furthermore, the drug PK in humans and in rats also

occurs on different time scales owing to the interspecies

differences.

Counterintuitive behavior
When Drs. Proost and Taneja attempted to use the PK

model developed by Kozielska et al.24 to drive the positive

feedback model given by Eqs. 19 and 20 to model the ris-

peridone challenge data in rats, they observed counterintui-

tive behavior of the PRL response (private communication).

Specifically, they found that, depending on the drug dose D,

the PRL concentration R converged to different steady

state (or baseline) values. For example, for doses 0.05 and

2 mg/kg, the plasma PRL levels return to R0, whereas for

doses 0.1 and 1 mg/kg they reach a higher value at steady

state (cf. Figure 5). We also point out that even in the

absence of any drug, the plasma PRL settles at a higher

steady state rather than the baseline R0 value, which would

be expected from the original pool model.8 This raised the

question “why R eventually reaches R0 steady state for

some doses, whereas for other doses it reaches a higher

steady state in the simulations.” Note that in vivo the exis-

tence and approach to a higher steady state has not been

observed. Note also that the steady state value reached in

these simulations does not monotonically increase with

drug dose.
It is interesting to note that when the PRL concentration

converges to the baseline R0, it does so from below (i.e.,

the concentration first drops below the baseline and then

converges monotonically toward it).

Nondimensionalization
In the following sections, we present the analysis of this

model without the inclusion of the “if condition” in order to

understand the behavior of the model. We have already

identified the units of all variables and parameters in the

model (Supplementary Table 1). P0 and R0, as given in

Eq. 18, is the expected steady state of this model. There-

fore, we use P0 and R0 to nondimensionalize the lactotroph

PRL and plasma PRL concentrations, respectively. Thus,

the nondimensionalization scheme is:

s5kel t; u5
P
P0

; v5
R
R0

;

a5
kr

kel
; b5Emax; c5

EC50

R0
: (22)

Thus, the nondimensionalized equations are:

du
ds

5a 11
bðv21Þ

c1ðv21Þ2wðsÞ � u
� �

; (23)

dv
ds

5wðsÞ � u2v ; (24)

where wðsÞ511SðCðs=kel ÞÞ denotes the drug effect, which

can vary as a function of time, depending upon the drug

PK.

Steady-state analysis
While considering steady states, we need to remember that

the parameter wðsÞ depends on time as it incorporates drug

PK C(t). For the purpose of this analysis, we assume that

the drug is administered as a continuous infusion so as to

reach a steady-state drug concentration. Thus, we can

assume that the drug concentration C reaches its steady

state faster as the PK half-life is much shorter than the PD

half-life. This allows us to use a constant (nonzero) drug
concentration in order to study the PD steady state in the

presence of the drug. Thus, for a constant (nonzero) drug

concentration wðtÞ � �w.
From Eqs. 23 and 24, we conclude that at steady state

we have:

�w � u5v and �w � u511
bðv21Þ

c1ðv21Þ ; (25)

Eliminating �w � u from the two equations in Eq. 25 yields:

ðv21Þðv212b1cÞ50; (26)

which is a quadratic equation in variable v and has two

solutions:

v51 and v511b2c: (27)

The two steady states are therefore:

ðu0; v0Þ5ð1=�w; 1Þ and ðu1; v1Þ5ðð11b2cÞ=�w; ð11b2cÞÞ
(28)

where the former corresponds to the baseline ðP0;R0Þ
steady state in the dimensional form. Note that the two

steady-state values of v are independent of the parameter
�w (i.e., they are independent of the [constant] drug concen-

tration), however, that is not the case for the u steady

states.

Bifurcation. When a steady state x (which may be v0 or v1)

depends on a parameter k, then the graph of x vs. k is

called a “branch” of steady-state solutions. When two

branches intersect, one speaks of “bifurcation” and the point

of intersection is called a “bifurcation point.” In Figure 7b,
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we graph the solutions v0 and v1 against the parameter com-

bination k5b=c, under the assumption that c 5 1, so that

k5b. The graphs are straight lines that intersect at k 5 1,

showing that the system undergoes a bifurcation as k
increases past one. The point of intersection ðk; vÞ5ð1;1Þ is

the bifurcation point.

Phase-plane analysis
In this section, we present the phase-plane analysis of the

positive feedback model. We utilize this analysis in order to

gain insight into the model behavior, specifically with

respect to steady states, their stability, and bifurcation.

Note that the analysis we present here applies to the case

when the drug concentration C(t) is constant with time (i.e.,

CðtÞ5C 	 0). Here, we consider the special case C 5 0.

The null clines are given by:

Cu :
du
ds

50 : u5
1
�w

11
bðv21Þ

c1ðv21Þ

� �
; (29)

Cv :
dv
ds

50 : v5�w � u: (30)

In Figure 6, we sketch the phase diagram for the positive

feedback model for C 5 0 (i.e., wðsÞ51). Note that Eq. 29

contains an Emax-type function, so the corresponding null

cline is a curve (rather than a straight line) similar to an

Emax function.

Steady states. It can be seen that the two null clines inter-

sect each other at two points (shown with black dots in the

figure), which implies that the model has two steady states

(except when k 5 1, when the two steady states merge).

Vector fields. The two null clines divide the phase-plane in

five distinct regions, identified as I to V (Figure 6a). Vector

fields are sketched in each region as in the sections above.

These vector fields indicate the direction of orbits in each

region (Figure 6a).

Stability of steady states. Observing the vector fields close

to the two steady states shows that the orbits behave differ-

ently in the vicinity of each steady state. It can be seen that

all orbits seem to move toward the higher steady state.

When all the orbits in the vicinity of a critical point (i.e., the

steady state, in this case) converge toward the critical point

as t !1, such a critical point is called a “node.”
By inspecting the vector field closely one can prove that:

I. Orbits move SE (&) and may exit through Cu to enter

III or through Cv to enter IV or V, or converge to the

steady state between III and V.
II. Orbits move SW (.), cannot leave the region and con-

verge to the steady state between IV and II.
III. Orbits move NE (%), cannot leave the region and con-

verge to the steady state between IV and II.
IV. Orbits from region IV move NW (-) and can do the

following:
1. leave IV in finite time either through Cv to enter II or

V, or through Cu to enter III.
2. Stay in IV for all time and converge to either (u0, v0)

(only one orbit) or to (u1, v1).
V. Orbits move SW (.), cannot leave the region and leave

the first quadrant.

Upper steady state. We conclude that all orbits in the vicini-

ty of the upper steady state converge to this critical point

as t !1, so that this steady state is stable.

Lower steady state. Orbits starting in the vicinity of the low-

er steady state may enter region III and then converge to

the upper steady state, or they may enter V and leave the

first quadrant, or they may do neither and converge to the

lower steady state (only one orbit does this). Evidently, this

steady state is unstable and is called a “saddle point.”

Figure 5 (a) Counterintuitive dose-dependent steady-state response displayed by the modified pool model of prolactin (PRL) response
with positive feedback. Note that all the simulations are started in the neighborhood of the steady state from the linear pool model,8

which is also the desired steady state after the addition of the positive feedback. (b) The plasma pharmacokinetic (PK) shown by the
drug simulated using the PK model for s.c. dose of risperidone24 (MATLAB model code provided in Supplementary Figure S5)
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REMARKS
Note that we have not used any values of the parameters
(i.e., these stability properties are derived from the structure
of the model itself).

Bifurcation and stability
We have shown that the model undergoes a bifurcation as
the critical parameter k increases past one. This is an
example of a “transcritical bifurcation,” (i.e., a bifurcation
point where the steady state [k; x ] moving along a branch
that passes through it), that changes from stable to unsta-
ble or unstable to stable. We have seen that the upper

steady state is the stable one. For k < 1 that is v0 and for

k > 1 it is v1. Thus, as the parameter k passes through the

bifurcation point (k 5 1), stability is “exchanged” from v0

to v1. Figure 7a shows geometrically how in the phase

plane this transition takes place as k passes from k < 1 to

k > 1 and Figure 7b shows the values of the two steady

states and their stabilities as a function of the bifurcation

parameter.

Physiologically desired steady state. The positive feedback

model is a modified version of the original pool model, for

Figure 6 (a) Phase diagram of the nondimensionalized prolactin (PRL) pool model with positive feedback (Eqs. 23 and 24). Five
regions I to V are identified and directions of vector fields in each region are sketched. The vector fields in the vicinity of the steady
states are such that the lower steady state is unstable whereas the higher one is stable. (b) Phase diagram of the nondimensionalized
PRL pool model with positive feedback including the “if condition” (Eqs. 31 and 32). Five regions I to V are identified and directions of
vector fields in each region are sketched. The vector fields in the vicinity of the steady states are such that the lower steady state is
stable from below whereas the higher one is globally stable.

Figure 7 (a) Changes in the phase-diagram as a function of the bifurcation ratio b=c. Notice that for b5c (the bifurcation point), the two
steady states of v coalesce into just one steady state v 5 1. (b) Bifurcation diagram showing the two steady states of plasma prolactin
(PRL) concentration v and their stability as a function of the bifurcation parameter b=c (MATLAB model code provided in Supplementa-
ry Figure S7).
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which v051 is the sole steady state. Thus, for the positive

feedback model v051 is the physiologically desired base-

line plasma PRL concentration. This steady state is only

stable when k5b=c < 1. Note that in the dimensional form

the ratio b=c5ðEmaxR0Þ=EC50. This parametric restriction

can be implemented while data fitting is performed, so as

to ensure that the expected steady state is stable.

Dynamics of the model without the “if condition”
When we use parameter values from ref. 12, we find that

the bifurcation parameter is k51:74 > 1. This implies that

the v0, which corresponds to R0, is the lower steady state

and is unstable. The other steady state v1 is stable (the val-

ue of this steady state in dimensional form is given as R15

15:49 ng/mL).
Figure 8a,b show the simulations of the positive feed-

back model given by Eqs. 23 and 24 for different doses

D of risperidone: D50:05; 0:1;1 and 2 mg/kg (ref. 24 and

Figure 5). The left panel shows graphs of v vs. t and the

right panel shows orbits in the (u, v)-plane. All orbits start

from the lower baseline (1,1).

Observations about the orbits in the phase plane
1. The orbits move into the NW direction (i.e., v increases

and u decreases.) Moreover, they all leave the baseline

in the same direction.
2. v reaches its maximum before u reaches its minimum.

3. For the larger doses, the orbits nearly coincide for a

long time.
4. The orbits all return to a neighborhood of the baseline

(1,1).
5. After the orbits have returned to the neighborhood of the

baseline, there is a dichotomy:
(a) Along two of the orbits (for doses 0.05 and 2 mg/kg) u

and v continue to increase and these orbits eventually

reach the higher steady state (u1, v1).
(b) Two other orbits (for doses 0.1 and 1 mg/kg) take a

turn and u and v begin to decrease. These orbits enter

region V and leave the first quadrant. See Supplemen-

tary Material for the proof of why v becomes negative

even though it denotes concentration.

DISCUSSION

The first observation can be understood from the fact that

when we multiply Eq. 24 by a and add the resulting equa-

tion to Eq. 23, we obtain:

d
ds
ðu1avÞ � 50 when v � 1:

(i.e., in a neighborhood of the initial condition) the orbit is

tangent to the line:

Figure 8 Simulations of the positive feedback model (Eqs. 23 and 24) without the if condition (a and b) and with the if condition
(Eqs. 31 and 32) (c and d) for different doses D of risperidone: D50:05; 0:1; 1 and 2 mg/kg. The drug pharmacokinetic (PK) is simulat-
ed using the PK model for s.c. dose of risperidone.24 (a and c) Dynamics of v vs. time. (b and d) Orbits of u and v plotted in the
respective phase planes (MATLAB model code provided in Supplementary Figure S8).
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u1av511a;

which is independent of the drug dose, and hence the

same for each drug dose.
The second observation can be inferred from the two

equations: when v reaches its maximum value, Eq. 24

states that wðsÞu5v , which, when used in the equation for

du=ds, we see that du=dt < 0 for the given constants, so

that the minimum of u is still to follow.
For larger doses, the orbits initially nearly coincide,

because—as seen in Figure 8b—for D 5 1 and 2 mg/kg,

C(t) � SC50 5 0:08 for larger times, so that:

wðsÞ511SðCðs=kel ÞÞ � 11Smax:

The dichotomy can now be understood as follows: the

orbits return to a neighborhood of the baseline point (1,1).

Because this is a saddle point, as is evident from the phase

plane shown in Figure 6a, small variations in the way the

orbit approaches may have dramatic consequences for the

way the orbit leaves the neighborhood: it may enter region

V and leave the first quadrant, it may enter region III and

move to the higher steady state v1, or, in an exceptional

case, it may approach v0. However, it can be shown that

there exists only one such orbit.

Dynamics of the model with the “if condition”
In the pool model with positive feedback section above, we

presented the positive feedback model without an “if” condi-

tion (Eqs. 19 and 20). The nondimensionalize version of

the positive feedback model with the if condition is:

du
ds

5a 11
bðv21Þ

c1ðv21ÞHðv21Þ2wðsÞ � u
� �

; (31)

dv
ds

5wðsÞ � u2v ; (32)

where the Heaviside function Hðv21Þ mathematically rep-

resents the if condition1 Hðv21Þ50 if v � 1 and Hðv21Þ5
1 if v> 1. The null clines for the model with the if condition

are:

Cu :
du
ds

50 : u5
1
�w

11
bðv21Þ

c1ðv21ÞHðv21Þ
� �

; (33)

or, alternatively:

Cu :
du
ds

50 : u5
1
�w

11
bðv21Þ

c1ðv21Þ

� �
for v > 1; and (34)

u5
1
�w

for v � 1: (35)

Cv :
dv
ds

50 : v5�w � u: (36)

Notice that for v � 1, the Cu does not depend upon v. Fig-

ure 6b shows the phase plane for the model with if condi-

tion. The null clines divide the first quadrant in five disjoint

regions (I to V), in which regions II, III, and IV are as in Fig-

ure 6a, whereas the regions I and V are different.

Figure 8c,d show the simulations of the model with the if
condition given by Eqs. 31 and 32 for different doses D of
risperidone: D50:05; 0:1;1 and 2 mg/kg (ref. 24 and
Figure 5). Figure 5c shows graphs of v vs. t and
Figure 5d shows orbits in the (u, v)-plane. All orbits start
from the lower baseline (1,1).

Observations about the orbits in the phase plane
1. Steps 1 to 4 are identical to those shown by the model

without the “if condition.”
2. After the orbits have returned to the neighborhood of the

baseline, there is a dichotomy in this model too:
3. Along two of the orbits (for doses 0.05 and 2 mg/kg) u

and v continue to increase and these orbits eventually
reach the higher steady state (u1, v1).

4. Two other orbits (for doses 0.1 and 1 mg/kg) take a turn
and u and v begin to decrease. These orbits enter
region V and of the phase plane (Figure 6b) and contin-
ue onward to approach the lower steady state (1,1).

DISCUSSION

The initial movement of the orbits for the model with the “if
condition” is the same as that for the model without the “if
condition.” This is because the if condition does not affect
the dynamics until an orbit reduces v below 1. At this point,
the if condition is activated and effectively “switches off”
the positive feedback. The resulting model is linear and
has (1,1) as the only steady state (which is also stable).
Thus, once an orbit enters region V of the phase plane in
Figure 6b, it can only proceed toward the lower steady
state.

CONCLUSIONS

Through the mathematical analysis, so far we have tried to
understand why the simulation of the positive feedback
model with the if condition exhibits convergence to different
steady states in an apparent dose-dependent manner.
Through steady-state analysis we have learned that the
nonlinearity in the model has resulted in multistationarity.
Phase-plane analysis has shown that the higher of the two
steady states is always stable, whereas the lower steady
state is stable from below. Furthermore, it has given a
parametric condition under which the desired steady state
can be (higher, and therefore,) always stable. For the
parameters used by Stevens et al.,12 the desired steady
state is the lower one, which is only stable from below. Sim-
ulating the model and plotting the orbits in the phase plane
has shown that some orbits do not activate the if condition,
and approach the higher steady state, whereas other orbits
do activate the if condition and approach the lower steady
state. This explains why the model exhibits convergence to
two different steady states in response to different doses.

We noted in the dynamics of the model without the if
condition section, that all the orbits move toward the vicinity
of the lower steady state (and therefore on the border of
activation of the if condition). Whether an orbit for certain
doses does or does not activate the if condition would
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depend, not just upon the relative timescales of drug clear-
ance, the PRL elimination rate, and PRL secretion rate, but
also upon the accuracy of the numerical solver used. This
sensitive behavior arises due to the characteristic vector
field near the lower steady state and as such is very diffi-
cult to predict mathematically. Thus, even if one could use
a fully accurate numerical solver, this unpredictable behav-
ior would remain as it is a structural property of this model.
This underlines the importance of using mathematical anal-
ysis to gain an insight into model behavior.

SUMMARY

In this tutorial, we have outlined the basic steps in dynami-
cal systems analysis of ODE models. We have shown how
the expressions for steady states can be obtained, how the
stability of various steady states can be assessed, and how
the parametric dependence of stability can be studied. We
have also shown how phase planes can be very useful to
gain knowledge about the dynamics of the system. We
have illustrated all these steps with the help of the linear as
well as a nonlinear variant of the pool model of PRL
response. We have demonstrated how an apparently sim-
ple two ODE model can hide various interesting behaviors,
which would be hard to uncover or understand through sim-
ulations alone. Three of the current authors also co-
authored the pool model with the PF article,12 however, the
full scope of the model behavior remained unexplored at
the time. Thus, simulations alone may not be relied upon
and some insight into model behavior gained through such
analytical techniques becomes crucial. Furthermore, such
analyses could generate experimentally testable hypothe-
ses to validate (or falsify) a model. Thus, modeling could
inform pharmacological experimentation and vice versa.

We note that the techniques presented here are particu-
larly well suited for analysis of small to medium size mod-
els. In particular, the phase-plane analysis is suitable for
2-ODE models. The 2-ODE models may exhibit only a limit-
ed set of long-time behaviors, namely asymptotic or oscilla-
tory approach to steady states or sustained oscillations (not
to mention lack of a steady state altogether). As we go
from 2-ODE to 3-ODE models, the range of possible
behaviors explodes and one can even expect chaotic
behavior. Systems pharmacology models are expected to
be larger and even more complex and their dynamical
behaviors are likely to hide an even greater degree of com-
plexity. However, as argued by Shankaran et al.,25 many
large systems networks are formed of modules or motifs of
small networks. Understanding the behavior of these small
networks thoroughly using the techniques mentioned in this
article can increase confidence in the understanding of the
bigger networks.26,27 At the same time, a few mathematical
techniques, such as quasi-steady state analysis and model
reduction, informed by small parameter values may be use-
ful to reduce the model size while retaining essential behav-
ior. We hope that this tutorial not only equips the reader
with a few techniques of mathematical analysis, but also
highlights why and how mathematics may be useful for
ODE-based models in PK-PD analysis.
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