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Chapter 1

Introduction

Brachial plexus injury

A brachial plexus injury (BPI) is caused by traction on the brachial plexus during 
delivery or due to a high-energy road traffic accident in young adults 1, 2. Multiple 
synonyms are used for an obstetric brachial plexus injury (OBPI), including neonatal, 
congenital and perinatal brachial plexus palsy. However OBPI is the most preferred 
terminology in Europe and is therefore used in this thesis 3. The incidence of an 
OBPI during delivery varies between 0.4 and 2.9 per 1000 live births 4-6. The upper 
part of the brachial plexus (C5,C6) is most often affected, resulting in variable 
weakness of active  shoulder and elbow flexion movements 7. Elbow extension, 
wrist and hand function are additionally impaired when the C7, C8, T1, medial 
trunk and inferior trunk are involved. An isolated injury of the lower brachial plexus 
(C8-T1) is rare. 

The first focus for therapy is on the type of injury of the peripheral nerve, 
for that matter, to the severity of the traction injury which may extend from 
minimal (axonotmesis) to severe (neurotmesis and avulsion) traction, as addressed 
in previous theses 8, 9. However, little attention has been paid to the effects on 
the end organ of the nerve: the muscle and its sequelae on functionality for the 
patient. A large variety of outcome measures have been used to evaluate the 
natural history and the effect of treatment, however there is no consensus on which 
outcome measures are the most appropriate 10, 11. The International Classification of 
Functioning, Disability and Health (ICF) is a worldwide accepted model providing 
a universal language for the description of functioning and includes the domains 
Body Structures, Body Functions, Activities and Participation as well as Personal and 
Environmental Factors 12. ICF Core Sets are generally used to describe the typical 
spectrum of problems of functioning and health patients with a specific condition 
(e.g. brachial plexus injury). An important base for the optimal management of OBPI 
is an in-depth understanding, systematic consideration and sound measurement 
of the impact of OBPI on health and health-related domains of these patients. To 
date however, no universally accepted overall framework is available to assess the 
outcome of patients with (obstetric) BPI. 

Muscle degeneration

Long-term denervation results in muscle degeneration including muscle atrophy, 
fatty degeneration and interstitial fibrosis in the muscle. Current literature 
on muscle degeneration in the upper extremity of BPI only focuses on total 
muscle cross sectional area (CSA) and on a qualitative assessment of muscle 
fatty degeneration including the Goutallier score as a surrogate for contractile 
CSA, which is the true functional part of the muscle 13-20. The inter-observer 
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reliability of the Goutallier score is moderate even in experienced hands 21, 22. 
Furthermore, qualitative assessment of fatty degeneration is less sensitive in 
detecting small differences 23 24, 25. Quantitative measurements which assess the 
decrease in contractile CSA compared to the sound extremity could improve 
insight in the extent of muscle degeneration and would thus facilitate a better 
treatment strategy. 

Muscle denervation and subsequent muscle degeneration results in functional 
limitations, contractures and osseous deformities. With respect to the elbow, 
the main complication occurring during follow-up is a flexion contracture, with 
a prevalence of 50 to 90% 26, 27. Flexion contractures limited to 10° to 30° can 
be treated by range of motion exercises and nighttime splinting. In a minority 
of cases, however, if the contracture exceeds 30°, additional treatment is 
needed such as serial casting 26, 27. Although serial casting is frequently applied 
and globally considered to be the preferred therapy, literature is limited on 
the effect of stretching by serial casting for elbow contractures. Other clinical 
consequences of muscle degeneration around the elbow include supination 
contractures and limited active elbow flexion for which surgical procedures are 
being performed including forearm osteotomies, biceps rerouting and Steindler 
elbow flexorplasty 28-33.

Around the shoulder, muscle degeneration often results in internal rotation 
contractures, with a subsequent posterior humeral subluxation in the growing 
child, glenoid retroversion and glenoid and humeral head malformation 16, 17, 34. The 
prevalence of internal rotation contractures can be as high as 39% depending on 
the extent and severity of the BPI 35, 36. Muscle degeneration is most prominent in 
the subscapular muscle 16, 17. Treatments of internal rotation contractures include 
surgical subscapular release combined with transfer of the latissimus dorsi and/
or teres major tendon to the rotator cuff to create active external rotation 37-39. 
Disadvantages of subscapular release and/or tendon transfer include weaker 
adduction and potential partial power loss of internal rotation with a subsequent 
risk for an external rotation contracture of the shoulder. Therefore, coracohumeral 
ligament releases have been advocated by our group. An even less invasive method 
to address this internal rotation contracture of the shoulder is the injection of 
botulinum toxin A (BTX-A) 40, 41. There have been some reports on BTX-A injections 
but no clear conclusions could be drawn from these studies since heterogeneity of 
included patients as well as technique were large (i.e. number and units of BTX-A 
injections, variety of muscles, combination with tendon transfer surgery etc.) 42-47. 
Other surgical procedures to improve shoulder functionality of BPI patients include 
arthodesis of the shoulder, glenoid anteversion osteotomies and humeral rotation 
osteotomies 48-51.
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Muscle regeneration

The regenerative potential of skeletal muscle is determined by muscle stem cells, 
which are called satellite cells. These are quiescent mononucleated cells that are 
sequestered between the basal lamina and the plasma membrane of the myofibers 
and can be identified by the expression of the paired box transcription factor Pax7 
52, 53. The number of satellite cells in adult human has been shown to range from 7% in 
young age (20 years old) to 1% of all skeletal muscle nuclei in old age (73 years old) 54. 
In response to injury, they become activated, proliferate, differentiate and fuse to 
existing muscle fibers or fuse together to form new myofibers during regeneration of 
damaged skeletal muscle 55. This regenerative potential is influenced by replicative 
and stress-induced premature senescence and apoptosis of these cells. 

Replicative senescence is indicated by exhaustion of the pool of available 
satellite cells and their proliferative capacity which is limited by the mitotic clock 56-58. 
Progressive erosion of telomeres after each cell division leads to critically short 
telomere length and the activation of replicative senescence through a p53 and p21 
dependent pathway 59. The erosion of telomeres can be prevented by the catalytic 
subunit of the human telomerase reversed transcriptase (hTERT) leading to extension 
of replicative life 60.  Furthermore, lack of differentiation may contribute to poor 
functional recovery of long-term denervated muscle 61, 62. Up-regulation of the 
p16 dependent pathway results in proliferative arrest before telomeres reach their 
critical length known as stress induced premature senescence 63, 64. The regenerative 
potential of satellite cells is also limited by the extent of apoptosis. Upon denervation, 
the susceptibility of satellite cells to apoptosis has been shown to increase 65, 66. 
Satellite cell activity can be modulated by a microenvironment inducing inflammatory 
cytokines, however  underlying factors influencing the regenerative potential of 
satellite cells have not yet been identified 58, 67. 

Cell therapy has the goal to repair damaged cells and to replenish the exhausted 
satellite cell pool by (systemic or local) injection of cells with myoregenerative properties. 
Transplantation of primairy satellite cells has been shown to improve the properties 
of reinnervated skeletal muscles 68. However, poor cellular survival and limited cell 
dissemination hampers successful satellite cell transplantation. Furthermore, only few 
transplanted cells fuse with host muscle cell fibers. This suggests that a subpopulation 
of myogenic cells (i.e. stem cells) may be optimally suited for transplantation 69, 70. 
Bone marrow (BM)-derived cells migrate to the site of muscle injury and contribute to 
the satellite cell pool 71-73. The injection of autologous BM-derived mononuclear cells 
(MNCs) has been applied in clinical studies focusing on the muscles of the heart and 
leg 74-77. Cell therapy could potentially regenerate partially denervated muscle in BPI 
by replenishment of the satellite cell pool and re-establishment of vascular and neural 
connections which are essential for muscle growth and function 78, 79. 
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Aim of this thesis

The aim of this thesis is to evaluate determinants of outcome, which will have 
an effect on overall functionality of the patient with a BPI.  Deterioration of 
functionality will either occur immediate after the injury, but will also occur years 
after the initial peripheral nerve injury. They are generally, but not exclusively, 
related to the primary target organ of the nerve: the muscle. Secondary to these 
impaired muscles with subsequent impaired movement of the extremities, joint 
development in the growing child will be affected. This will have effect at the 
functionality level of the patient. To this end, outcome measures of functionality 
using the ICF model are developed (chapter 2). At the clinical level, muscle and 
joint deformities and their treatment options are addressed (chapter 3, 4, 5). At 
the cellular level, a deteriorated muscle is characterized in both inflammatory as 
well as nerve injury patients (chapter 6, 7). Finally, a possible treatment option with 
cell therapy for this muscle in nerve injury patients is used (chapter 8). The results 
of this thesis are summarized and future perspectives of muscle degeneration and 
regeneration for patients with BPI are considered in the discussion (chapter 9).
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