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Chapter 4 starts with summarizing the traditional method of describing spin in
the curved space-time – Mathisson-Papapetrou formalism. In the spinning par-
ticle approximation, I explain an alternative complementary formalism for spin
dynamics. I derive equations of motion for point-like objects in curved space-
time by using the Poisson-Dirac brackets and the minimal Hamiltonian. Then our
method is compared with the traditional one in a qualitative way. The conserved
quantities are developed in the Schwarzschild space-time. Since the closed set of
Poisson-Dirac brackets is model independent, the analysis has been extended with
gravitational and electric Stern-Gerlach interactions by introducing non-minimal
Hamiltonians. Also modified conservation laws emerge reflecting the spin-orbit
coupling. The equations of motions are also obtained from the conservation of the
energy-momentum tensor.





4

Spinning Bodies in Curved Space-time

4.1 Spinning particles

In general relativity (GR), given the metric gµν , the motion of test (single-pole)
particles is determined by the geodesic equations of motion. Thus the single-pole
particle doesn’t have any internal structure [2]. The dynamical equations can be
obtained from the covariant conservation of the energy-momentum tensor. A spin-
ning particle in GR is a pole-dipole particle. Therefore its motion is generalised
on a world line rather than geodesics. The evolution equations for spinning parti-
cles were derived (similar to test particles) by applying the conservation law for the
energy-momentum tensor of matter Tµν , together with the Einstein field equations;
and famously known as Mathisson-Papapetrou (MP) equations [59]:

Dpµ

dτ
= −1

2
Rµνκλu

νSκλ, (4.1.1)

DSµν

dτ
= pµuν − uµpν , (4.1.2)

where pµ is the total 4-momentum of the particle, uµ = dxµ/dτ is the time like
tangent vector (uµuµ = −1) to the world line along which the particle moves i.e.,
centre of mass line used to make the multipole reduction, τ is the proper time along
this world line, and Rµνκλ is the Riemann tensor.

The energy-momentum vector pµ and the intrinsic angular-momentum ten-
sor Sµν can be constructed by computing integrals of components of the energy-
momentum tensor and their first moments over the volume of the body, using
suitable boundary conditions [60]:

Sµν =

∫
x0=const

(
T ν0δxµ − Tµ0δxν

)√
−g d3x (4.1.3)

pµ = muµ − uν
DSµν

dτ
(4.1.4)

The quantity m ≡ −pσuσ is the particle’s mass in the rest frame and it reduces
to ordinary mass when the spin vanishes. The evolution equations (4.1.1) and
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4. Spinning Bodies in Curved Space-time

(4.1.2) are not a closed set of first order differential equations i.e., the system has
10 equations, but has 13 unknown quantities: u(3), p(4) and S(6). Therefore it
needs additional spin supplementary conditions (SSC) to fix a unique world line,
and such that, it makes it possible to keep track of aspects of the structure of the
body. A SSC fixes a centre of reference e.g. the centre of mass and different SSC
defines a different centre of mass world line. Thus the MP equations describe the
evolution of pµ and Sµν along the centre of mass world lines uµ.

In literature there are many supplementary conditions, but for our discussion
we choose to explore with Tulczyjew-Dixon (TD) condition;

Sµνpν = 0, (4.1.5)

which is claimed to be more physical [61, 62]. For an excellent review on various
supplementary conditions and their relation we refer to [63]. The MP equations
along with above conditions are called as Mathisson-Papapetrou-Dixon (MPD)
model [64]. Further analysis concludes that different supplementary conditions
lead to the same physical motion [63].

These highly non-linear (full) equations have been studied through numerical
analysis [65–67]. The analytical solutions are very difficult even in highly symmetric
space-times. The physical reason is that the particle has non-zero size i.e., a small
extended body, whose internal structure is described by its spin (4.1.3). But through
linearising the differential equations (4.1.1) and (4.1.2), an analytical description is
achieved.

The dynamical equations imply, spin-orbit coupling, i.e., spin couples to the
curvature of the background space-time. Therefore the spin force pushes the particle
away from the geodesic. Then the deviation from geodesic motion should be very
small compared with the curvature tensor of the space-time, which enforces a limit
on the particle’s spin [64]. Under these assumptions, the back reaction of the
particle and the gravitational radiation emitted by the particle in its motion are
neglected. This leads to consider the linear approximation of the spin; in this limit
pµ and uµ are parallel: pµ ≈ muµ. Neglecting the higher order terms, equations
(4.1.1) and (4.1.2) reduce to

D(muµ)

dτ
= −1

2
Rµνκλu

νSκλ +O(2), (4.1.6)

DSµν

dτ
= O(2). (4.1.7)

Which implies the mass of the particle remains constant along the motion: dm/dτ =

0 and the spin tensor is parallel transported along the path. Then the TD condition
reduces to the so-called Pirani condition:

Sµνuν = 0. (4.1.8)
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4.2. Spinning-particle approximation

Equations (4.1.6), (4.1.7) and (4.1.8) constitutes the Mathisson-Papapetrou-Pirani
(MPP) model. Note, the Pirani vector (say) Zµ = Sµνuν = 0, throughout the
evolution.

Finally we conclude this section with some additional references for generali-
sation of this method. A similar analysis has been extended for charged spinning
particle (pole-dipole approx.) in a given gravitational as well as electromagnetic
field, by Dixon and Souriau [68–71]. The dynamical equations of motion for an
extended body in a given gravitational field were deduced by Dixon in multipole
approximation to any order [61, 62, 72]. The MP model has been extended for
massless particles i.e., null multipole reduction world line by Mashhoon [73].

4.2 Spinning-particle approximation

In addition to the above well-known method, there is an other complementary
approach to the subject [74] . It constructs effective equations of motion for point-
like objects, which is an idealization of a compact body, at the price of neglecting
details of the internal structure by assigning the point-like object an overall position,
momentum and spin. This is also known as the spinning-particle approximation,
and is used for the semi-classical description of elementary particles as well. A large
variety of models for spinning particles is found in the literature [75–85].

We take the second point of view for the description of spinning test masses
in curved space-time, using an effective hamiltonian formalism similar to the one
introduced in ref. [86]. One of the advantages of this description is that it can be
applied to compact bodies with different types of spin dynamics, such as different
gravimagnetic ratios. In this way specific aspects of the structure can still be
accounted for.

4.3 Covariant Hamiltonian Formalism

Hamiltonian dynamical systems are specified by three sets of ingredients: the phase
space, identifying the dynamical degrees of freedom, the Poisson-Dirac brackets
defining a symplectic structure, and the hamiltonian generating the evolution of
the system with given initial conditions by specifying a curve in the phase space
passing through the initial point. The parametrization of phase-space is not unique,
as is familiar from the Hamilton-Jacobi theory of dynamical systems. Changes
in the parametrization can be compensated by redefining the brackets and the
hamiltonian. A convenient starting point for models with gauge-field interactions
is the use of covariant, i.e. kinetic, momenta rather than canonical momenta; see [87]
and references cited there for a general discussion, and [86] for the application to
spinning particles.
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4. Spinning Bodies in Curved Space-time

The spin degrees of freedom are described by an antisymmetric tensor Σµν ,
which can be decomposed into two space-like four-vectors by introducing a time-
like unit vector u: uµuµ = −1, and defining

Sµ =
1

2
√
−g

εµνκλ uνΣκλ, Zµ = Σµνuν . (4.3.1)

By construction both four-vectors S and Z are space-like:

Sµuµ = 0, Zµuµ = 0. (4.3.2)

In the following we take u to be the proper four-velocity of the particle. Then S

is the Pauli-Lubanski pseudo-vector, from which a magnetic dipole moment can be
constructed, whilst the components of Z, which will be referred to as the Pirani
vector, can be used to define an electric dipole moment [88, 89]. Observe that we
can invert the relations (4.3.1) to write

Σµν = − 1√
−g

εµνκλ uκSλ + uµZν − uνZµ. (4.3.3)

Therefore, if the Pirani vector vanishes: Z = 0 [90], the full spin tensor can be
reconstructed from S. However, in general this is not the case in our formalism. It
is also interesting to note that in addition one can define a third space-like vector

Wµ = − 1√
−g

εµνκλuνSκZλ = (Σµν − uµZν)Zν , (4.3.4)

orthogonal to the other ones:

W · u = W · S = W · Z = 0. (4.3.5)

Together (u, S, Z,W ) form a set of independent vectors, one time-like and three
space-like, which can be used to define a frame of basis vectors carried along the
particle world-line.

4.3.1 Covariant phase-space structure

The full set of phase-space co-ordinates of a spinning particle thus consists of the
position co-ordinate xµ, the covariant momentum πµ and the spin tensor Σµν , with
anti-symmetric Dirac-Poisson brackets

{xµ, πν} = δµν , {πµ, πν} =
1

2
ΣκλRκλµν ,

{Σµν , πλ} = Γ µ
λκ Σνκ − Γ ν

λκ Σµκ,{
Σµν ,Σκλ

}
= gµκΣνλ − gµλΣνκ − gνκΣµλ + gνλΣµκ.

(4.3.6)
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4.3. Covariant Hamiltonian Formalism

The brackets imply that π represents the generator of covariant translations, whilst
the spin degrees of freedom Σ generate internal rotations and Lorentz transforma-
tions. It is straightforward to check that these brackets are closed in the sense that
they satisfy the Jacobi identities for triple bracket expressions. Thus they define a
consistent symplectic structure on the phase space.

To get a well-defined dynamical system we need to complete the phase-space
structure with a hamiltonian generating the proper-time evolution of the system.
In principle a large variety of covariant expressions can be constructed; however if
we impose the additional condition that the particle interacts only gravitationally
and that in the limit of vanishing spin the motion reduces to geodesic motion, the
variety is reduced to hamiltonians

H = H0 +HΣ, H0 =
1

2m
gµνπµπν , (4.3.7)

where HΣ = 0 whenever Σµν = 0. In the following sections we focus first on
the dynamics generated by the minimal hamiltonian H0. However, we also con-
sider extensions with gravitational and electric Stern-Gerlach forces [80]. Thus the
choice of hamiltonians can be enlarged further by including spin-spin interaction
via space-time curvature and charges coupling the particle to vector fields like the
electromagnetic field [86,88].

Eqs. (4.3.6) and (4.3.7) specify a complete and consistent dynamical scheme
for spinning particles. Note that the choice of hamiltonian is fixed by further
physical requirements, and can differ for different compact objects. In that sense the
hamiltonian is an effective hamiltonian, suitable to describe the motion of various
types of objects in so far as the role of other internal degrees of freedom can be
restricted to their effects on overall position, linear momentum and spin.

4.3.2 Minimal equations of motion

The simplest model for a massive free spinning particle in the absence of Stern-
Gerlach forces and external fields is obtained by restricting the hamiltonian to the
minimal geodesic term H0. By itself this hamiltonian generates the following set of
proper-time evolution equations:

ẋµ = {xµ, H0} ⇒ πµ = mgµν ẋ
ν , (4.3.8)

stating that the covariant momentum π is a tangent vector to the world line, pro-
portional to the proper four-velocity u = ẋ. Next

π̇µ = {πµ, H0} ⇒ Dτπµ ≡ π̇µ − ẋλΓ ν
λµ πν =

1

2m
ΣκλR ν

κλµ πν , (4.3.9)

which specifies how the world line curves in terms of the evolution of its tangent
vector. Finally the rate of change of the spin tensor is

Σ̇µν = {Σµν , H0} ⇒ DτΣµν ≡ Σ̇µν + ẋλΓ µ
λκ Σκν + ẋλΓ ν

λκ Σµκ = 0. (4.3.10)
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4. Spinning Bodies in Curved Space-time

In these equations the overdot denotes an ordinary derivative w.r.t. proper time τ ,
whereas Dτ denotes the pull-back of the covariant derivative along the world line
xµ(τ). By substitution of eq. (4.3.8) into eq. (4.3.9) one finds that

D2
τx

µ = ẍµ + Γ µ
λν ẋ

λẋν =
1

2m
ΣκλR µ

κλ ν ẋ
ν , (4.3.11)

which reduces to the geodesic equation in the limit Σ = 0. The world line is
the solution of the combined equations (4.3.11) and (4.3.10) satisfying some initial
conditions. This world line is a curve in space-time along which the spin tensor is
covariantly constant (Fig. 4.1).

It has been remarked by many authors [86, 91–93], that the spin-dependent
force (4.3.9) exerted by the space-time curvature on the particle is similar to the
Lorentz force with spin replacing the electric charge and curvature replacing the
electromagnetic field strength. In this analogy the covariant conservation of spin
along the world line is the natural equivalent of the conservation of charge.

Even though the spin tensor is covariantly constant, this does not hold for
the Pauli-Lubanski and Pirani vectors S and Z individually. Indeed, due to the
gravitational Lorentz force

DτS
µ =

1

4m
√
−g

εµνκλΣκλΣαβRαβνρu
ρ,

DτZ
µ =

1

2m
ΣµνΣαβRαβνρu

ρ,

(4.3.12)

where Σµν is the linear expression in terms of Sµ and Zµ given in eq. (4.3.3).
We observe that the rate of change of both spin vectors is of order O[Σ2]. In
particular, as Z is not conserved in non-flat space-times the condition Z = 0 cannot
be imposed during the complete motion in general. Indeed, the evolution of the
system is completely determined by eqs. (4.3.8, 4.3.9, 4.3.10), and leaves no room
for additional constraints.

We close this section by remarking that the gravitational Lorentz force for unit
mass 1/2 ΣκλR µ

κλ νu
ν can be interpreted geometrically as the change in the unit

vector uµ generated by transporting it around a closed loop with area projection in
the xκ-xλ-plane equal to Σκλ.

4.4 Effective Hamiltonian and MPD formalism: a comparison

The dynamical equations in the MP formalism are not a closed set of first order
differential equations. The system has 10 equations, but has 13 unknown quantities:
u(3), p(4) and S(6). Thus one needs spin supplementary conditions to solve them.
SSC define world lines traced by differently defined centres of mass. The most
commonly used SSC is TD condition (4.1.5). The system is commonly known
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4.4. Effective Hamiltonian and MPD formalism: a comparison

as MPD formalism. The full MPD equations are very difficult to solve even in the
highly symmetric space-times. Therefore one linearizes MPD formalism which leads
to MPP model. Then the coupled equations (4.1.6), (4.1.7) and (4.1.8) constitutes
the closed system.

Figure 4.1. Compares the world lines [94] traced by effective hamiltonian formalism and
MPD model. The thick black line is the world line along which the spin tensor (Σκλ) is
covariantly constant, and uµ is the tangent vector to this world line. Dotted lines are the
world lines followed by some preferred centre of mass in the MPD model. Green double
arrows represents the dipole vector Zµ which quantifies the difference between centre of
mass world lines and the world line of spin tensor (thick, black line).

Where as in the hamiltonian dynamics, the system is described by a set of 2N
phase-space variables satisfying first-order differential equations in the evolution
parameter (proper time). Then by fixing initial conditions the evolution of the sys-
tem is completely and uniquely determined. For spinning particles the phase-space
is 14-dimensional: x(4), π(4), Σ(6). These are subject to 14 first-order differential
equations (4.3.8), (4.3.9) and (4.3.10). Thus the evolution of the system is com-
pletely determined by the initial conditions. Therefore we don’t need any SSC in
our formalism.

The linearized form of MPD formalism precisely coincides with the original
equations of motion (4.3.10) and (4.3.11) in our formalism, whose solution is the
spin tensor parallelly transported along the world line. Then if we consider the
linearized form of our equations of motion, neglecting quadratic or higher order
terms in the spin-tensor Σµν , the right-hand side of equations (4.3.12) vanishes,
and it is possible to require the Pirani condition Zµ = 0 at all times. Thus the
usual MPP dynamics can be recovered in linearized form from our equations.

In the MPD formalism the equations of motion are constructed in a such a way
that, if one fixes an initial condition a constraint on the dipole, such as the Pirani
constraint Zµ = 0; it holds true throughout the evolution. In other words, the
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4. Spinning Bodies in Curved Space-time

equation of motion for Zµ has been replaced by an algebraic constraint Zµ = 0.
This is because of the fact that the canonical momentum pµ in the MPD model is
different from the kinetic momentum πµ in our formalism. Thus the analysis of the
evolution equations are complicated in MPD model.

In contrast, in our formulation the momentum is always strictly kinetic: πµ =

muµ, but the dipole Zµ is dynamical and non-vanishing in general. Therefore the
mass-dipole constraint has been replaced by a proper equation of motion (4.3.12),
which determines how Zµ evolves even if it vanishes initially.

The two formulations are not necessarily contradicting each other. In the MP
case the solution of the dynamical equations is the world line on which the SSC is
always true and so it traces the centre of mass (dotted lines in Fig. 4.1). Since it
accounts for the internal structure of the particle, the spin dynamics is complicated.
In our case the spin-dynamics is simple and straightforward, but the center of mass
is not necessarily located on the world-line, as signalled by the non-zero mass dipole.
Therefore the solution of our equations of motion is the world line in which the spin
tensor is covariantly constant (thick, black line). Thus its a matter of choice.

One of the major advantage in our formalism is that the back reaction of the
particle motion on the space-time geometry can be calculated unambiguously. This
is accounted by the energy-momentum tensor which exhibits the effect of the mass
dipole.

4.5 Conservation laws

The Hamiltonian formalism we have developed is also convenient for deriving con-
stants of motion. There are two classes of constants in the theory. The universal
constants which exist for any space-time geometry and the constants of motion
emerging as a result of symmetries of the space-time. These constants commute
with the hamiltonian in the sense of the brackets.

4.5.1 Universal conserved quantities

For the spinning body in curved space-time, there exist universal constants of mo-
tion, irrespective of the specific geometry of the space-time manifold. By con-
struction the time-independent hamiltonian represented by (4.3.7) is a constant of
motion. In particular for the minimal geodesic hamiltonian H0 we have

H0 = −m
2
, (4.5.1)

defining the particles mass. The above equation is equivalent to normalizing proper
time such that uµuµ = −1. In addition there are two constants of motion for the
spin: the total spin I as a result of local Lorentz invariance

I =
1

2
gκµgλνΣκλΣµν = SµS

µ + ZµZ
µ, (4.5.2)
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4.5. Conservation laws

and the pseudo-scalar spin-dipole product:

D =
1

8

√
−g εµνκλΣµνΣκλ = S · Z. (4.5.3)

Note, I and D are quadratic expressions in spin. In the Hamiltonian formalism all
these three constants obey obviously

{H0, H0} = 0, {I,H0} = 0, {D,H0} = 0. (4.5.4)

4.5.2 Geometrical conserved quantities

Furthermore, there may exist conserved quantities J(x, π,Σ) resulting from sym-
metries of the background geometry, as implied by Noether’s theorem [61, 95, 96].
They are solutions of the generic equation

{J,H0} =
1

m
gµνπν

[
∂J

∂xµ
+ Γ κ

µλ πκ
∂J

∂πλ
+

1

2
ΣαβRαβλµ

∂J

∂πλ
+ Γ κ

µα Σλα
∂J

∂Σκλ

]
= 0.

(4.5.5)
The symmetries of the space-time manifest themselves as Killing vectors. Here due
to spin-orbit coupling, the conserved quantities implied by Noether’s theorem are
linear combinations of momentum [96] and spin components:

J = αµπµ +
1

2
βµν Σµν , (4.5.6)

with
∇µαν +∇ναµ = 0, ∇λβµν = R κ

µνλ ακ. (4.5.7)

These equations imply that α is a Killing vector on the space-time, and β is its
anti-symmetrized gradient:

βµν =
1

2
(∇µαν −∇ναµ) . (4.5.8)

Similarly constants of motion quadratic in momentum [97] are of the form:

J =
1

2
αµνπµπν +

1

2
β λ
µν Σµνπλ +

1

8
γµνκλΣµνΣκλ, (4.5.9)

where the coefficients have to satisfy the ordinary partial differential equations

∇λαµν +∇µανλ +∇ναλµ = 0,

∇µβκλν +∇νβκλµ = R ρ
κλµ ανρ +R ρ

κλν αµρ,

∇ργµνκλ = R σ
µνρ βκλσ +R σ

κλρ βµνσ.

(4.5.10)

Thus α is a symmetric rank-two Killing tensor, and the coefficients (β, γ) satisfy a
hierarchy of inhomogeneous Killing-like equations determined by the αµν . In the
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4. Spinning Bodies in Curved Space-time

case of Grassmann-valued spin tensors Σµν = iψµψν the coefficient γ is completely
anti-symmetric and the equations are known to have a solution in terms of Killing-
Yano tensors [98].

The constants of motion (4.5.6) linear in momentum are special in that they
define a Lie algebra: if J and J ′ are two such constants of motion, then their bracket
is a constant of motion of the same type. This follows from the Jacobi identity

{{J, J ′} , H0} = {{J,H0} , J ′} − {{J ′, H0} , J} = 0. (4.5.11)

Thus, if {ei}ri=1 is a complete basis for Killing vectors:

αµ = αieµi , eνj∇νe
µ
i − e

ν
i∇νe

µ
j = f k

ij e
µ
k ,

the constants of motion define a representation of the same algebra:

Ji = eµi πµ +
1

2
∇µeiν Σµν ⇒ {Ji, Jj} = f k

ij Jk. (4.5.12)

Evidently such constants of motion are helpful in the analysis of spinning particle
dynamics [51,95,99].

4.6 Non-minimal hamiltonian: gravitational Stern-Gerlach force

So far we have studied the dynamics of compact spinning objects generated by
the minimal geodesic hamiltonian H0. In this section we consider the non-minimal
extension including the spin-spin interaction via space-time curvature:

H = H0 +HΣ, HΣ =
κ

4
RµνκλΣµνΣκλ. (4.6.1)

The Dirac-Poisson brackets (4.3.6) remain the same (obviously). It is straightfor-
ward to derive the equations of motion:

ẋµ = {xµ, H} ⇒ πµ = mgµν ẋ
ν ,

π̇µ = {πµ, H} ⇒ Dτπµ =
1

2m
ΣκλR ν

κλµ πν −
κ

4
ΣκλΣρσ∇µRκλρσ,

Σ̇µν = {Σµν , H} ⇒ DτΣµν = κΣκλ (R µ
κλ σΣνσ −R ν

κλ σΣµσ) .

(4.6.2)

Comparing again with the electro-magnetic force, the middle equation implies that
in addition to the gravitational Lorentz force there is a gravitational Stern-Gerlach
force, coupling spin to the gradient of the curvature. Therefore the coupling param-
eter κ has been termed the gravimagnetic ratio [81,100]. Like in the electromagnetic
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4.7. Non-minimal hamiltonian: electric Stern-Gerlach force

case [101] the Pauli-Lubanski and Pirani-vectors are affected by this Stern-Gerlach
force:

DτS
µ =

1

4m
√
−g

εµνκλΣκλΣαβ
(
Rαβνσu

σ − κ

2
Σρσ∇νRρσαβ

)
,

DτZ
µ = −κΣκλR µ

κλ νZ
ν +

(
κ+

1

2m

)
ΣµνΣκλRκλνσu

σ − κ

4m
ΣµνΣκλΣρσ∇νRκλρσ.

(4.6.3)
The second equation simplifies strongly for the special value

κ = − 1

2m
. (4.6.4)

In that case an initial condition Zµ = 0 is conserved up to terms of cubic order in
spin.

4.6.1 Extension of conservation laws to non-minimal dynamics

For the extended hamiltonian the conditions for the existence of constants of mo-
tion are modified. The total spin I defined in (4.5.2) is still conserved, but the
conserved hamiltonian now is of course H = H0 + HΣ. Finally we prove that the
constants of motion J of the form (4.5.6) are preserved under this modification of
the hamiltonian. To see this, observe that

{J,HΣ} = −κΣµνΣρσ
(

1

4
αλ∇λRµνρσ + βµλR

λ
νρσ

)
. (4.6.5)

For the Killing-vector solutions (4.5.7) the right-hand side takes the form

ΣµνΣρσ
(

1

4
αλ∇λRµνρσ + βµλR

λ
νρσ

)
=

1

2
ΣµνΣρσ (∇µ∇ρ∇σ +∇ρ∇µ∇σ)αν

=
1

2
ΣµνΣρσ (∇µ∇ρ +∇ρ∇µ)βσν = 0,

(4.6.6)
due to the anti-symmetry of the tensor βσν .

4.7 Non-minimal hamiltonian: electric Stern-Gerlach force

In this section we further extend our formalism with the non-minimal hamiltonian
generating electric Stern-Gerlach forces. The spinning particle with charge q, in the
presence of external fields subject to spin-dependent forces coupling to gradients in
the fields like the well-known Stern-Gerlach force [82,86,88,102] in electrodynamics.
Such forces can be modeled in our approach by additional spin-dependent terms in
the hamiltonian:

H = H0 +HSG, HSG =
κ

4
RµνκλΣµνΣκλ +

λ

2
FµνΣµν . (4.7.1)
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4. Spinning Bodies in Curved Space-time

Here the electromagnetic coupling term λ
2 FµνΣµν requires modification of the

Poisson-Dirac brackets. Therefore

{πµ, πν} =
1

2
ΣκλRκλµν + qFµν . (4.7.2)

The remaining brackets are same as in (4.3.6). Then using this non-minimal hamil-
tonian in the brackets to construct equations of motion we get

πµ = mgµνu
ν ,

mgµνDτu
ν =

1

2
ΣκλRκλµνu

ν + qFµνu
ν − κ

4
ΣρσΣκλ∇µRρσκλ −

λ

2
Σκλ∇µFκλ,

(4.7.3)
and

DτΣµν =
(
κΣρσR µ

ρσ λ + λFµλ

)
Σνλ −

(
κΣρσR ν

ρσ λ + λF νλ
)

Σµλ. (4.7.4)

4.7.1 Extension of conservation laws to non-minimal dynamics

The universal constants of motion (4.5.1), (4.5.2) and (4.5.3), hold true for charged
spinning particles as well. But the constants of motion depending on the symmetries
of the geometry are altered because of the presence of charge. They are constructed
in terms of Killing vectors and tensors. In particular constants of motion J of the
form

J = γ + αµπµ +
1

2
βµνΣµν , (4.7.5)

exist if

∇µαν +∇ναµ = 0, ∇λβµν = Rµνλκα
κ, ∂µγ = qFµνα

ν . (4.7.6)

Thus αµ is a Killing vector and βµν its curl:

βµν =
1

2
(∇µαν −∇ναµ) , (4.7.7)

whilst a solution for γ can be found if the Lie-derivative of the vector potential with
respect to α vanishes:

αν∂νAµ + ∂µα
νAν = 0 ⇒ γ = qAµα

µ. (4.7.8)

This requirement in fact states that the electromagnetic and gravitational fields
must both exhibit the same symmetries for an associated constant of motion to
exist.

Remarkably, using eqs. (4.7.7, 4.7.8) and the Bianchi identities for Fµν and
Rµνκλ it is straightforward to generalize the theorem of ref. [47], that any constant
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of motion (4.7.5) remains a constant of motion in the presence of Stern-Gerlach
forces:

{J,HSG} = κΣµνΣρσ
(
−1

4
αλ∇λRρσµν +R λ

ρσµ βλν

)

+λΣµν
(
−1

2
αλ∇λFµν + F λ

µ βλν

)
= 0.

(4.7.9)

4.8 Equations of motion from energy-momentum conservation

In the previous sections the equations of motion for a relativistic spinning particle
were obtained starting from a closed set of brackets (4.3.6) and the choice of a
hamiltonian. The same equations can be derived by energy-momentum conservation
using an appropriate energy-momentum tensor [103, 104]. This tensor then also
defines the source term in the Einstein equations to compute the back reaction of
the particle on the space-time geometry; indeed, the Einstein equations require the
energy momentum to be divergence-free

Gµµ = Rµν −
1

2
gµνR = −8πGTµν ⇒ ∇µGµν = −8π∇µTµν = 0. (4.8.1)

This identity is to be guaranteed by the equations of motion. For a neutral particle
described by the minimal hamiltonian this follows by taking (3.4.3)

Tµν0 = m

∫
dτ uµuν

1√
−g

δ4 (x−X)+
1

2
∇λ
∫
dτ
(
uµΣνλ + uνΣµλ

) 1√
−g

δ4 (x−X) .

(4.8.2)
The covariant divergence of Tµν0 is

∇µTµν0 =

∫
dτ

(
m
Duν

Dτ
− 1

2
ΣκλR ν

κλ µu
µ

)
1√
−g

δ4 (x−X)

+
1

2
∇λ
∫
dτ
DΣνλ

Dτ

1√
−g

δ4 (x−X) = 0.

(4.8.3)

and vanishes upon applying the equations of motion (4.3.10, 4.3.11) with q = 0.
Similarly, for a particle subject to the gravitational Stern-Gerlach force with the
hamiltonian H0 +HSG the correct expressions is

Tµν = Tµν0 + κTµν1 , (4.8.4)

where

Tµν1 =
1

2
∇κ∇λ

∫
dτ
(
ΣµλΣκν + ΣνλΣκµ

) 1√
−g

δ4 (x−X)

+
1

4

∫
dτ Σρσ

(
R ν
ρσλ Σλµ +R µ

ρσλ Σλν
) 1√
−g

δ4 (x−X) .

(4.8.5)
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Again performing standard operations from tensor calculus including Ricci- and
Bianchi-identities leads to the result

∇µTµν1 =
1

4

∫
dτ ∇νRρσκλ ΣρσΣκλ

1√
−g

δ4 (x−X)

+
1

2
∇λ
∫
dτ Σρσ

(
R λ
ρσκ Σκν −R ν

ρσκ Σκλ
) 1√
−g

δ4 (x−X) .

(4.8.6)

Combining this with the expression (4.8.3) for ∇µTµν0 it follows that the divergence
of the full energy-momentum tensor vanishes

∇µ (Tµν0 + κTµν1 ) = 0, (4.8.7)

provided the non-minimal equations of motion (4.6.2) hold. Finally, one can also
take into account the electro-magnetic Lorentz- and Stern-Gerlach forces by addi-
tional contributions

T emµν = F λ
µ Fνλ −

1

4
gµνFκλF

κλ − λ

2
gµν

∫
dτFκλ Σκλ

1√
−g

δ4 (x−X) . (4.8.8)
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