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Chapter3 explores the motion of test particles in curved space-time in the Hamil-
tonian formalism. I develop the particle’s dynamics with the Poisson brackets, the
minimal Hamiltonian and the conserved quantities. Then applying the formalism in
the Schwarzschild space-time, the circular orbits and the Innermost Stable Circular
Orbit are found. By describing the effective potential, the various kinds of orbits:
circular, eccentric, scattering and plunging orbits are explained. Further exploring
the geodesic deviation method, the fully relativistic first order perturbation theory
for eccentric orbits are obtained. From the frequency analysis and stability crite-
rion the method of finding the Innermost Stable Circular Orbit is generalized. The
chapter is concluded with the equations of motion obtained from the conservation
of the energy-momentum tensor.





3

Motion in Curved Space-time

3.1 Hamiltonian Formalism

The basic machinery of GR has been described in the previous chapter. Now we
want to investigate the dynamics of test particles in curved space-time with in the
Hamiltonian framework. Hamiltonian formalism includes three sets of ingredients:
equations of motion, phase-space and the conserved quantities.

The equations describe test particle dynamics are so-called geodesic equations.
We have derived geodesic equations of motion starting from the standard variational
procedure and also from the Hamiltonian dynamics. In the following sections it is
further shown that, it can be obtained from the principles of energy-momentum
conservation.

The phase-space formulation of motion in curved space-time is being con-
structed with the closed set of covariant Poisson-Dirac brackets, obeying Jacobi
identities. It consists of the position co-ordinate xµ and the covariant momentum
πµ, and therefore its anti-symmetric bracket is:

{xµ, πν} = δµν , (3.1.1)

all other possible brackets vanish. These brackets are independent of the specific
Hamiltonian. Therefore, in principle we can use varieties of covariant Hamiltonians
with the brackets to obtain the equation of motion. However, here we are interested
in studying the geodesic motion of the test particle in curved space-time i.e., the
particle’s interaction is strictly gravitational. Therefore as described in the previous
chapter the appropriate Hamiltonian is

H =
1

2m
gµν(x)πµπν . (3.1.2)

Then the proper-time evolution equations for phase-space co-ordinates are obviously
generated by computing the brackets. It is important to note that this Hamiltonian
describes the particle’s mass as a universal constant of motion for any space-time:

H = −m
2

⇒ gµνu
µuν = −1. (3.1.3)
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3. Motion in Curved Space-time

It is called the Hamiltonian constraint in the literature.

3.2 Symmetries, Killing vectors, and Constants of motion

In addition to the universal constants of motion eq. (3.1.3), there exists conserved
quantities as a result of symmetries of space-time. Emmy Noether discovered that
physical quantities such as energy, momentum, angular momentum, etc. which
remain constant during the evolution of the system are related to symmetries of
the dynamics. Thus symmetries lead to conservation laws, and knowing a conserved
quantity of a dynamical system allows to reduce the dimension of the phase space
in which the system is defined.

From special theory of relativity we know that suitable coordinate transforma-
tions on the Minkowski metric leaves the metric invariant, giving rise to the Poincaré
group of symmetries. Similarly, the standard metrics on the two- or three-sphere
have rotational symmetries because they are invariant under rotations of the sphere.
We can describe this in two ways: either as an active transformation, in which we
rotate the sphere and nothing changes, or as a passive transformation, in which we
do not move the sphere, and we just rotate the coordinate system. These descrip-
tions are equivalent.

In the context of geometry we define symmetry as an invariance of the metric
under a coordinate transformation. The symmetries of a metric are called isome-
tries. Quantitatively, we start with a manifold M, with coordinates xµ. Let the
metric in these coordinates be gµν(x). Suppose we make an infinitesimal change of
coordinates

xµ → x′µ = xµ − ξµ(x) (3.2.1)

For detecting continuous symmetries we require the invariance of the line element
under infinitesimal transformations. We know that the metric tensor transforms as

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (3.2.2)

Using the invariance of the metric under an isometry we can also write

g′µν(x′) = gµν(x′) ' gµν(x)− ξλ∂λgµν(x). (3.2.3)

The infinitesimal coordinate transformation also implies

∂xα

∂x′µ
' δαµ + ∂αξ

µ,
∂xβ

∂x′ ν
' δβν + ∂αξ

ν . (3.2.4)

Combining these results the Lie derivative of the metric w.r.t. the displacement
vector ξµ must vanish:

Lξgµν ≡ ξλ∂λgµν + ∂µξ
λgλν + ∂νξ

λgµλ = 0. (3.2.5)
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3.2. Symmetries, Killing vectors, and Constants of motion

Using the metric postulate
∇λgµν = 0, (3.2.6)

this can be rewritten covariantly as

Lgµν = ∇µξν +∇νξµ = 0. (3.2.7)

Vector fields satisfying these equations are called the Killing vectors. Now we will
establish the conserved quantities associated with these Killing vectors.

3.2.1 Constants of motion

In classical mechanics, the angular momentum of a particle moving in a rotationally
symmetric gravitational field is conserved. In GR the concept of symmetries of
a newtonian gravitational field is replaced by symmetries of the metric, and we
therefore expect conserved quantities associated with the presence of Killing vectors.

Let us consider a massive particle moving along a geodesic of a spacetime which
admits a Killing vector ξα. The geodesic equations written in terms of the particle’s
four-velocity uα = dxα/dτ read

duα

dτ
+ Γαβνu

βuν = 0, (3.2.8)

by contracting the above equation with ξα, we find

ξα

[
duα

dτ
+ Γαβνu

βuν
]
≡ d (ξαu

α)

dτ
− uα dξα

dτ
+ Γαβνu

βuνξα = 0 (3.2.9)

Since
uα
dξα
dτ

= uβuν
∂ξβ
∂xν

(3.2.10)

therefore eq. (3.2.9) becomes,

d(ξαu
α)

dτ
− uβuν

[
∂ξβ
∂xν
− Γαβνξα

]
≡ d(ξαu

α)

dτ
− uβuνξβ;ν = 0. (3.2.11)

Since ξβ;ν is antisymmetric in β and ν, while uβuν is symmetric, the term uβuνξβ;ν

vanishes, and eq. (3.2.11) finally becomes

d(ξαu
α)

dτ
= 0 ⇒ ξαu

α = gαµξ
µuα = const. (3.2.12)

Eq. (3.2.12) can re-written as ξµπµ = constant ≡ J (let’s say), where πµ = mgµνu
ν .

It is also straight forward to check the quantity J is a constant of the particle motion,
by demanding its brackets to vanish with the Hamiltonian:

{J,H} = 0 ⇒ Ji = ξµi πµ (3.2.13)

Thus, for every Killing vector there exists an associated conserved quantity.
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3. Motion in Curved Space-time

3.3 Spherical symmetry

The Einstein Field Equations are a complicated set of non-linear equations with
10 unknown functions of space-time. These equations are most easily solved in
space-times with a maximal number of symmetries as these give rise to a maximal
number of constants of motion. This accessibility makes using spherically symmetric
spacetimes all the more attractive as a starting point. Birkhoff’s theorem classifies
all vacuum spherically symmetric spacetimes.

A spacetime is spherically symmetric if it admits an SO(3) group of isometries.
In particular every point will lie on some round sphere, on which the rotation group
acts transitively, which means that one can go from any point on the sphere to any
other point by means of a rotation. Further a space-time is said to be stationary or
static, if it exhibits the property of time-translation symmetry. Static spherically
symmetric metrics admit four Killing vectors, one of which is timelike, while the
remaining three are spacelike, representing the Lie algebra of the rotation group
SO(3).

The most general, static and spherically symmetric metric can be expressed in
spherical polar coordinates with the ansatz [16]

ds2 = −f(r)dt2 + g(r)dr2 + r2
(
dθ2 + sin2θdϕ2

)
. (3.3.1)

The coefficients f(r) and g(r) are fixed by requiring the asymptotic limit i.e., for
r →∞, the metric should be Minkowskian: ds2 = −dt2+dr2+r2

(
dθ2 + sin2θdϕ2

)
.

Due to isotopy and time independence these coefficients cannot depend on (t, θ, ϕ)

and no linear terms in dθ and dϕ.
Note that this metric is diagonal. Therefore the metric and its inverse has the
following components only

gtt = −f(r) grr = g(r) gθθ = r2 gϕϕ = r2sin2θ

gtt = − 1

f(r)
grr =

1

g(r)
gθθ =

1

r2
gϕϕ =

1

r2sin2θ
.

(3.3.2)

The next steps are standard, we first compute the non-vanishing components of
affine connections Γµλν = Γµνλ = 1

2 g
µκ (gκλ,ν + gκν,λ − gλν,κ) :

Γttr = Γtrt =
1

2

f ′

f
Γrtt =

1

2

f ′

g
Γrrr =

1

2

g′

g

Γθrθ = Γθθr =
1

r
Γrθθ = − r

g
Γrϕϕ = − r

g
sin2θ

Γϕrϕ = Γϕϕr =
1

r
Γϕθϕ = Γϕϕθ = cot θ Γθϕϕ = −sin θ cos θ.

(3.3.3)
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3.3. Spherical symmetry

where ′ stands for ∂
∂r . Then the Riemann tensor contracted to get Ricci tensor

Rµν = ∂νΓρρµ − ∂ρΓρµν + ΓσρµΓρνσ − ΓσµνΓρρσ, (3.3.4)

and as a result

Rtt =
1

2

f ′′

g
+

1

4

f ′ 2

fg
− 1

4

f ′g′

g2
+

1

2r

f ′

g

Rrr =
1

2

f ′′

f
+

1

4

f ′ 2

f2
− 1

4

f ′g′

fg
+

1

2r

g′

g

Rθθ = −1 +
1

g
+

r

2g

(
f ′

f
− g′

g

)
Rϕϕ = sin2θ Rθθ

(3.3.5)

The non-diagonal components Rµν with µ 6= ν vanish. These geometric quantities
are more general. Therefore it can be used for any static spherically symmetric
space-time like Schwarzschild, Reissner-Nordstrøm etc.

3.3.1 The Schwarzschild solution

We now want to find an exact solution of Einstein’s equations in vacuum Rµν = 0

(for µ 6= ν), which is spherically symmetric and static. This will be the relativistic
generalization of the newtonian solution for a pointlike mass ϕ = −M/r and it will
describe the gravitational field in the exterior of a non-rotating body. The solution
will be obviously in the form of eq. (3.3.1), where the coefficients f and g are fixed
in the following way:

The linear combination of time and radial equations of Ricci tensor implies

Rtt
f

+
Rrr
g

=
1

r

g′

g2
+

1

r

f ′

gf
= 0, (3.3.6)

which reveals a simple relation between f and g:

g′

g
= −f

′

f
⇒ log(g) = −log(f) + constant, or g ∝ 1

f
. (3.3.7)

Now, we fix the proportionality constant between f and g as follows. Imagine we
are extremely far away from the star (for example), then the metric should reduce
to the Minkowski metric. So in the limit r →∞ we have g = f = 1. This fixes the
proportionality constant to be 1. Therefore g = 1/f .

Then we only need to compute one of them from one of the differential equations
(3.3.5). Let’s consider Rθθ component and replace g with 1/f . We have

Rθθ = 1− rf ′ − f = 0 ⇒ f(r) = 1 +
C

r
, (3.3.8)
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3. Motion in Curved Space-time

where C is some constant we want to determine. We can fix the constant by
resorting to the weak-field limit which should reproduce the Newtonian gravitational
potential ϕ. In the weak-field limit we just have

f(r) = 1 + 2ϕ(r), where ϕ = −M
r
, (3.3.9)

so the constant C = −2M . Then the complete line element in Droste co-ordinates;
with M the mass, r the radius of the object,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2θdϕ2

)
. (3.3.10)

This is the famous Schwarzschild metric: a unique, static and spherically symmetric
vacuum solution, according to Birkhoff’s theorem; obtained by the astronomer Karl
Schwarzschild [54] in 1916, the very same year that Einstein published his field
equations. It was apparently discovered independently by Johannes Droste [55], a
student of Lorentz at Leiden University, around the same time.

The Schwarzschild metric (3.3.10) looks divergent at r = 2M , the Schwarzschild
radius. As can be seen by switching to other co-ordinates this is actually a co-
ordinate singularity, not a physical singularity of space-time. But the Schwarzschild
radius defines a characteristic gravitational scale for any celestial object, related to
the formation of a horizon. For the earth or even for the sun the radius is actually
very smaller than the radius of the object itself. To compute the radius we need to
insert G and c back to the expression and find

Rs =
2GM

c2
(3.3.11)

which is about 3 km for the sun. So, for most astronomical objects this number
is so small that we don’t need to consider it. However, objects smaller than their
Schwarzschild radius disappear behind the horizon and become black holes.

3.3.2 Geodesic equations of motion and effective potential

We now want to consider the motion of a freely falling particle in the Schwarzschild
space-time. The analysis can be simplified by using the constants of motion as im-
plied by the Noether’s theorem; because of the spherical symmetry of the Schwarz-
schild metric, there exists four constants associated with the Killing vectors (3.2.13):
Ji = ξµi πµ. Then

E = ξ0π0, Jj = ξαj πα (3.3.12)

where E is the particle’s energy; Jj = (J1, J2, J3) is the total angular momentum
of the system. Without loss of generality we can choose the coordinate system such
that θ = π/2 ⇒ uθ = 0, this way the trajectory lies on the plane perpendicular
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3.3. Spherical symmetry

to the orbital angular momentum. Here the total angular momentum is strictly
orbital, and the direction chosen to be z-axis. Then we write the equations of
motion (3.2.8) in the component form [56]:

dut

dτ
= − 2M

r (r − 2M)
urut,

(3.3.13)

dur

dτ
= −M (r − 2M)

r3
ut 2 +

M

r(r − 2M)
ur 2 + (r − 2M)uϕ 2,

(3.3.14)

duϕ

dτ
= −2

r
uruϕ. (3.3.15)

With z-axis being the choice of the angular momentum, the constants J1 and J2

turns out to be zero i.e., J1 = J2 = 0. Then we are left with the remaining two
constants from (3.3.12); ε = E/m energy per unit mass and ` = J3/m angular
momentum per unit mass,

ε =

(
1− 2M

r

)
ut, ` = r2sin2θ uϕ = r2uϕ. (3.3.16)

To establish the particle’s orbits, we investigate the equations (3.3.13), (3.3.14) and
(3.3.15). Eq. (3.3.13) can be re-written as

d

dτ

[
ln(ut) + ln

(
1− 2M

r

)]
= 0, (3.3.17)

which can be integrated as ln
[
ut
(
1− 2M

r

)]
= constant or

ut
(

1− 2M

r

)
= constant (3.3.18)

Similarly eq. (3.3.15) is re-written as

1

r2

d

dτ

(
r2uϕ

)
= 0, ⇒ r2uϕ = constant. (3.3.19)

From the Killing constants (3.3.16), we interpret (3.3.18) and (3.3.19) as ε and `.
This implies geodesic equations (3.3.13) and (3.3.15) doesn’t give any new result.
Thus we are left with the radial geodesic equation (3.3.14) only. Upon using the
Killing constants (3.3.16) for ut and uϕ, it turns out be

dur

dτ
= − Mε2

r (r − 2M)
+

M

r(r − 2M)
ur 2 +

`2

r4
(r − 2M).

(3.3.20)

35



3. Motion in Curved Space-time

a relation for (ε, `). A second relation between these quantities are given by the
Hamiltonian constraint: gµνuµuν = −1, similarly by using the Killing constants
(3.3.16) we express(

1− 2M

r

)
ut 2 − ur 2

1− 2M
r

− r2 uϕ 2 = 1 ⇒ ur 2 +

(
1− 2M

r

)(
∆ +

l2

r2

)
= ε2.

(3.3.21)
or

E =
1

2
ur 2 +

1

2

[(
1− 2M

r

)(
∆ +

l2

r2

)
− 1

]
(3.3.22)

where, E = (ε2 − 1)/2 is the total energy. Note, ∆ is 1 for massive particles and 0

for massless particles. If the particle is massless, the geodesic equation cannot be
parametrized with the proper time. In this case the particle worldline has to be
parametrized using an affine parameter λ such that the geodesic equation takes the
form (3.2.8), and the particle tangent vector is uα = dxα/dλ. The derivation of the
constants of motion associated to a spacetime symmetry, i.e. to a Killing vector, is
similar as for massive particles, recalling that by a suitable choice of the parameter
along the geodesic J = {E, Ji}. Then since for massless particles m2 = 0, the
Killing constants ε and ` are identified as energy and angular momentum.

Eq. (3.3.22) has the form of an energy equation with a "kinetic energy" term,
ṙ2 plus a function of r, "potential energy" equalling a constant. Thus the motion
in the radial coordinate is exactly equivalent to a particle moving in an effective
potential Veff (r) where

Veff (r) =
1

2

[(
1− 2M

r

)(
∆ +

l2

r2

)
− 1

]
. (3.3.23)

Then the simplest orbits one can start with are circular orbits i.e., r = R, for which
we can differentiate the potential and set it to zero: ∂rVeff (r) = 0, which results:

`2(R− 3M) = ∆MR2 (3.3.24)

Thus we conclude, the circular geodesics exists only for R > 3M , for massive
particles (∆ = 1) and R = 3M implies null geodesic which is interpreted as light
ring for massless particles (∆ = 0). Further evaluating the second derivative of the
potential yields

∂2Veff (r)

∂r2
= 2∆

M

R3

(R− 6M)

(R− 3M)
(3.3.25)

we observe the circular orbits for R ≥ 6M are stable and positive; R = 6M implies
the flex point. Then the circular orbits between the radius 3M ≤ R < 6M are
necessarily unstable.
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3.3. Spherical symmetry

We show the above results qualitatively in Fig. 3.1 [50]. Massive test particles obey
four kinds of orbits in Schwarzschild space-time. The Schwarzschild potential has
one maximum and one minimum if `/M > 12. The following 4 points describes the
Fig. 3.1 from the top:

(i). The circular orbits exists at the radii, when the potential has minimum
or maximum. The orbit at maximum will be in unstable equilibrium, because a
small perturbation will through the particle to infinity or the particle will reach the
singularity at r = 0.

(ii). For E < 0, the particle bounds between two turning points. The cross
symbols are the turning points: the closest approach to the centre is the perihelion
and the farthest approach is the aphelion.

(iii). When E is positive and less than the maximum of the effective potential,
then the orbit is scattering. That is the particle comes from infinity and orbits the
centre and then moves out to infinity.

(iv). If E is greater than the maximum, then the particle comes from infinity
and plunges into the centre.

Now re-writing eq. (3.3.24) for R results,

R =
`2

2M

(
1 +

√
1− 12M2

`2

)
(3.3.26)

which relates the radius of the orbits to angular momentum per unit mass `. Thus
the minima of the potential lies at a special value of ` = 2

√
3M , called as the In-

nermost Stable Circular Orbit (ISCO). ISCO can also be predicted through a more
general method: stability criterion, obtained by evaluating the geodesic deviations
between the neighbouring geodesics. This is presented in the next section.
Then returning to the radial geodesic equation (3.3.20); for circular orbits, it yields

ε2 =
`2

MR

(
1− 2M

R

)2

⇔ uϕ

ut
=

√
M

R3
(3.3.27)

which is a well known Kepler’s result. Thus the geodesic equation (3.2.8) can be
viewed as a generalisation of the Kepler’s law. Finally, using the above result
(3.3.27) along with the normalisation condition (3.3.21), we uniquely express, for
circular orbits the Killing constants (ε, `) in terms of the mass M and the radius R
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3. Motion in Curved Space-time

Figure 3.1. The effective potential Veff (r) and its relation to the total energy E is shown
in the left, where the vertical axis is Veff (r) and the horizontal axis is r/M . Horizontal
lines indicate the vale of E. The shapes of the corresponding orbits are plotted in polar
coordinates r and ϕ, in the plane. The dark region (dot) in each plot is r < 2M .

of the black hole

εcirc =

(
1− 2M

R

)√(
1− 3M

R

) , `circ =

√
MR(

1− 3M
R .
) . (3.3.28)

We conclude this section with re-writing (3.3.16); the angular frequency of the
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3.3. Spherical symmetry

circular orbits in terms of (M,R) by using (3.3.28)

uϕ ≡ ωcirc =
1

R2

√
MR(

1− 3M
R

) . (3.3.29)

3.3.3 Geodesic Deviation: Tidal forces

The equivalance principle is only valid locally, at each point. Two neighbouring
mass points which are each in free fall will fall differently. Hence if two such points
are physically connected, they will feel a force coming from difference in the way
that they free fall. These forces are known as tidal forces.

Thus we are interested in the rate of change of the displacement between the two
curves along the geodesic, i.e. the acceleration of the separation [57,58]. Therefore,
we consider two geodesic paths traced by the near by test particles, with coordinate
vectors, xλ(τ) and x′λ(τ). Then δxλ(τ) = x′λ(τ) − xλ(τ) is the difference of two
nearby geodesics. If vν = dxν/dτ is the tangent vector to a curve xν(τ), then
uλ = vνDνδxλ is the velocity of the displacement. Thus from the geodesics analysis
we have that

uλ = vνDνδxλ =
dδxλ

dτ
+ Γλµνv

νδxµ. (3.3.30)

This leads to the acceleration,

aλ = vνDν(uλ) =
d

dτ

(
dδxλ

dτ
+ Γλµνv

νδxµ
)

+ Γλµνu
νvµ

=
d2δxλ

dτ2
+ ∂ρΓ

λ
µνv

νvρδxµ − ΓµρσΓλµνδx
µvρvσ

+Γλµνv
ν dδx

µ

dτ
+ Γλµν

(
dδxν

dτ
+ Γνρσv

ρδxσ
)
vµ

(3.3.31)

where we have used the geodesic equation dvµ

dτ = −Γµρσv
ρvσ in the third term on

the second line. Then expanding the geodesic equations

d2xλ

dτ2
+ Γλµν(x)

dxµ

dτ

dxν

dτ
= 0,

d2x′λ

dτ2
+ Γλµν(x′)

dx′µ

dτ

dx′ν

dτ
= 0,

(3.3.32)

to lowest order in x′ν(τ)− xν(τ) = δxν(τ) to find an equation for δxν(τ);

d2δxλ

dτ2
+ 2Γλνρv

ν dδx
ρ

dτ
+ ∂ρΓ

λ
νσδx

ρvνvσ = 0, (3.3.33)
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3. Motion in Curved Space-time

inserting this equation into (3.3.31), we obtain

aλ = −∂ρΓλνσδxρvνvσ − ΓµρσΓλµνδx
µvρvσ + ∂ρΓ

λ
µνv

νvρδxµ + ΓλµνΓνρσv
ρvµδxσ

= −R λ
ρµν vµvνδxρ.

(3.3.34)
The Riemann curvature tensor R λ

ρµν in the above equation implies that we can
measure the curvature by examining the proper acceleration of the separation of
two nearby geodesics. With this definition we can re-write the equation of geodesic
deviation eq. (3.3.33) in the simple form,

D2
τδx

µ −R µ
λκ ν v

κvνδxλ = 0. (3.3.35)

The equation of geodesic deviation controls the congruence of nearby geodesics. In a
flat space-time, the curvature tensor vanishes, and hence D2

τδx
µ = d2

τδx
µ = 0. This

means that two initially parallel geodesics remain parallel at all times. In curved
space-times however, the Riemann tensor is non-vanishing, and as a consequence
a freely moving observer sees a relative acceleration of nearby freely moving test
particles, which manifests as tidal effect. This method can also be used to obtain
the eccentric bound orbits of a test mass in the Schwarzschild space-time.

3.3.4 Stability of bound orbits and ISCO

The horizon of a Schwarzschild black hole is located at R = 2M, and the ISCO is
found at a larger value of R. By analysing the effective potential we concluded it
is at R = 6M . Here we start from the above described geodesic deviation method
and analyse the ISCO in the Schwarzschild space-time, in a more generalised way.

The circular orbits found in the previous sections can be used as a special
reference orbits to solve the geodesic deviation equations (3.3.33) to obtain the
stability criterion for bound orbits. Note, it is easy to work with non-covariant
variations (3.3.33) rather than the covariant ones (3.3.35). The conservation of
angular momentum implies the motion of the particles in the equatorial plane:
θ = π/2 i.e., δθ = 0. Thus the allowed deviations from the circular orbits are
parametrized by δxµ = (δt, δr, δϕ) only. Then the deviation equations are written
in the compact form 

d2

dτ2 α d
dτ 0

β d
dτ

d2

dτ2 − κ −γ d
dτ

0 η d
dτ

d2

dτ2




δt

δr

δϕ

 = 0 (3.3.36)
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where the coefficients are evaluated on the circular reference orbit and are given by

α =
2M

R(R− 2M)

√
R

R− 3M
β =

2M(R− 2M)

R3

√
R

R− 3M
,

γ =
2(R− 2M)

R

√
M

R− 3M
, η =

2

R2

√
M

R− 3M
,

κ =
3M

R3

R− 2M

R− 3M
.

(3.3.37)

Then solving the operator (3.3.36) for its eigen frequency ωd of the oscillations;
λ being its eigen values and are related through, λ± = ±iω,

ωd =
√
ηγ − αβ − κ =

√
M

R3

R− 6M

R− 3M
. (3.3.38)

The real eigenvalues corresponds to stable circular orbits and the imaginary ones
leads to unstable orbits [58]. Then it is straight forward to conclude from eq.
(3.3.38), the eigenvalues are real only for R ≥ 6M . Therefore, we predict R = 6M

is the ISCO. Thus the value of ISCO obtained from the stability criterion and
from minimising the effective potential are the same. Though the machinery to
arrive at ISCO through stability criterion is apparently tedious, this method has
advantage when we include additional degrees of freedom; spin and/or charge to
the test particles [48].

The generic solution for geodesic deviated bound orbits are periodic and the
detailed analysis are given in the references [57]. The frequency ωd of those orbits
can be interpreted as the relativistic generalization of an epicycle and it differs from
that of circular orbits frequency (3.3.29) ωcirc

ωd ≈ ωcirc
(

1− 3M

R

)
(3.3.39)

Therefore the point of closest approach – the periastron, shifts during each orbit
by a fixed amount δϕ,

δϕ = 2π

(
ωcirc
ωd
− 1

)
≈ 2π

(
3M

R

)
(3.3.40)

In the geodesic deviation method, we develop an approximate analytical solu-
tion to the equations of motion and study the generic bound orbits close to circular
orbits. Then by analysing the frequency of such orbits, we predict the ISCO. The
difference in the frequency of bound orbits to that of circular orbits results in pe-
riastron shift. The periastron shift calculated through this approximation [57] and
the one which is obtained directly by integrating the conservation of the absolute
4-velocity (3.3.21) (a standard exercise [50] for the well-known precession of the
periastron in general relativity) are exactly the same.
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3. Motion in Curved Space-time

3.4 Energy-momentum conservation: equations of motion

The equations of motion has been derived from the standard variational procedure
and from the Hamiltonian formalism. Here we present an independent proof of the
equations of motion from an appropriate energy-momentum tensor.

The Einstein’s tensor is covariantly conserved as a result of contraction of the
Bianchi identity,

Gµν = Rµν −
1

2
gµνR = −8πGTµν , ∇µGµν = ∇µRµν −

1

2
∇νR = 0, (3.4.1)

This implies, Einstein field equation is consistent only if the energy-mometum tensor
Tµν is also covariantly conserved. Thus,

∇µTµν = 0. (3.4.2)

the source term Tµν has the same property as Gµν . Then the energy-mometum
tensor Tµν for a test particle moving on a world-line Xµ(τ) is defined by the proper-
time integral1

Tµν0 =
m√
−g

∫
dτ uµuνδ4 (x− ξ(τ)) (3.4.4)

where ξ(τ) is the position coordinate of the particle in the phase-space. Then the
covariant divergence of Tµν0 vanishes for the particle moving on geodesics:

∇µTµν0 =
m√
−g

∫
dτ

Duν

Dτ
δ4 (x− ξ(τ)) = 0. (3.4.5)

Therefore,
Duν

Dτ
= 0, ⇒ ẍµ + Γµλν ẋ

λẋν = 0. (3.4.6)

Thus we have obtained the geodesic equations of motion in another alternate way.
This is an obvious result in GR. In the following chapters we prove the similar
computation is also possible for non-trivial cases, like including the spin-dependent
forces.

1The square root is included because we define the delta-function as a scalar density of weight
1/2, such that for scalar functions f(x)∫

d4y δ4(x− y)f(y) = f(x). (3.4.3)

42


