
Towards an improved regulatory framework of free software :
protecting user freedoms in a world of software communities and
eGoverments
Siewicz, K.

Citation
Siewicz, K. (2010, April 20). Towards an improved regulatory framework of free software :
protecting user freedoms in a world of software communities and eGoverments. Meijers-
reeks. E.M. Meijers Institute of Legal Studies, Leiden. Retrieved from
https://hdl.handle.net/1887/15276

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/15276

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/15276

Towards an Improved Regulatory Framework of Free Software

Protecting user freedoms in a world of
software communities and eGovernments

Krzysztof Siewicz

Towards_an_Improved_def.indd 1Towards_an_Improved_def.indd 1 23-02-2010 10:49:0923-02-2010 10:49:09

Towards_an_Improved_def.indd 2Towards_an_Improved_def.indd 2 23-02-2010 10:49:1023-02-2010 10:49:10

Towards an Improved
Regulatory Framework
of Free Software

Protecting user freedoms in a world of
software communities and eGovernments

PROEFSCHRIFT

Ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 20 april 2010

klokke 15.00 uur

door

Krzysztof Siewicz

Geboren te Warschau, Polen in 1979

Towards_an_Improved_def.indd 3Towards_an_Improved_def.indd 3 23-02-2010 10:49:1023-02-2010 10:49:10

Promotiecommissie:

Promotores: Prof. dr. H. J. van den Herik
 Prof. mr. A. H. J. Schmidt

Overige leden: Prof. dr. F.M.T. Brazier (Delft University of Technology)
 Prof. mr. R.E. van Esch
 Prof. dr. H. Franken
 Prof. mr. drs. C. Stuurman (Universiteit van Tilburg)
 Prof. dr. D. Visser

 SIKS dissertation series no. 2010-08
 The research reported in this thesis has been carried out under the

auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.

The research was partially funded by the Netherlands organization for
international cooperation in higher education (Nuffic), as a part of the
Huygens Scholarship Programme. The remaining part of this research
was self-funded.

Lay-out: AlphaZet prepress, Waddinxveen

ISBN 978-83-930580-0-6

Copyright © Krzysztof Siewicz, 2010, this work is available under a Creative Commons
Attribution-No Derivative Works 3.0 Unported License, full text of the license available at:
http://creativecommons.org/licenses/by-nd/3.0/legalcode

Towards_an_Improved_def.indd 4Towards_an_Improved_def.indd 4 23-02-2010 10:49:1023-02-2010 10:49:10

 Preface

The first microcomputer in my home came in the 1980s. Using it was not
easy at all, certainly not when compared to using personal computers nowa-
days. At that time, it was necessary to know the commands (the source code)
to let the computer do anything apart from blinking the command prompt.
However, this was sufficiently intriguing to stimulate me to learn the basics
of programming and attend a computer course at high school. During the
course, around 1997, I first came across Free Software. It was a rough GNU/
Linux distribution assembled by my high school teacher. Well, I must admit,
it did not catch my attention then. The reason might have been that I already
knew that I would like to study a different type of source code – the law.
Paradoxically, becoming a lawyer has raised my interest in Free Software.
Surely, source codes are important and knowing them is more than fun. But
what matters even more are rights and obligations that come together with
the code. Indeed, during my law studies I realised that the freedoms, which
Stallman longs for, are legal rights. As a lawyer, I also understand that these
freedoms cannot be taken for granted. Actually, it is not so easy to obtain the
freedoms, and it is even harder to protect them. In other words, user free-
doms tend to be very much alike other freedoms that the society struggled
for in the past, and particularly in the recent past.

This observation has led me to setting myself a task: to design a frame-
work that is able to protect the freedoms adequately. Then, I decided to
make my task harder in two ways. First, I thought it would be a good idea
to learn how the law actually works. So, while doing my research I have also
practised law. I hope that this has strengthened the thesis in the direction of
a more practice-oriented dissertation. Second, I submitted my ideas to Pro-
fessor Jaap van den Herik and Professor Aernout Schmidt and asked them
to become my supervisors. They willingly accepted and as a consequence
my task became a crash-course on proper research, reasoning, and writing.
They revised each chapter of this thesis some hundreds of times. Perhaps
the most important thing that Jaap has taught me is to do everything to
make the reader feel comfortable. Aernout has taught me in particular not
to expect that problems will solve themselves. Having them both as super-
visors was a thrilling experience, which I enjoyed even more as the final
result approached.

When I now give my work a second thought, in retrospect the task was
much more easy. I have had the firm support of my parents and my beloved
wife. Whenever I came to Leiden, my Dutch friends were eager to help me.
In particular, I wish to thank Franke van der Klaauw, Hugo Kielman, and
Wouter Koelewijn who made me feel at home. I also want to thank for the
free (as in “freedom”) atmosphere that the partners and my colleagues at
Grynhoff Woźny Maliński have created.

Warszawa, August 2009

Towards_an_Improved_def.indd 5Towards_an_Improved_def.indd 5 23-02-2010 10:49:1023-02-2010 10:49:10

Towards_an_Improved_def.indd 6Towards_an_Improved_def.indd 6 23-02-2010 10:49:1123-02-2010 10:49:11

 Table of Contents

Preface 5

List of Abbreviations 11

List of Legislations 13

List of Model Licenses 15

List of Cases and Patents 17

List of Figures 19

List of Tables 19

1 Introduction1 21
1.1 The main scene of play 22

1.1.1 The software scene 22
1.1.2 The standards scene 24
1.1.3 Four combinations of software and standards 26

1.2 Actors and their audience 27
1.2.1 Actors and their audience in the software scene 27
1.2.2 Actors and their audience in the standards scene 31

1.3 Problem statement 33
1.4 Research questions 40
1.5 Research methodology 40
1.6 Structure of the thesis 42

2 Definitions and basic notions 43
2.1 Free Software 43

2.1.1 Subject matter of the Free Software Definition 45
2.1.2 Requirements of the Free Software Definition 45
2.1.3 Addressees of the FSD 49
2.1.4 Conclusion on Free Software Definition 51

2.2 Open Source Software 52
2.3 Open standards 53
2.4 Software communities 56
2.5 eGovernment 57

Towards_an_Improved_def.indd 7Towards_an_Improved_def.indd 7 23-02-2010 10:49:1123-02-2010 10:49:11

8 Table of contents

3 Regulatory framework of Free Software 59
3.1 Identification of rules for software and relations between

them 62
3.1.1 Free Software licenses 63
3.1.2 Other rules for software 73
3.1.3 Conclusion on rules for software and relations

between them 95
3.2 Identification of rules for standards and relations between

them 96
3.2.1 Rules that lead to closed standards 96
3.2.2 Rules that lead to open standards 103
3.2.3 Conclusion on rules for standards and relations

between them 110
3.3 Reconstruction of a model of the current framework 111

3.3.1 Rules that regulate software 111
3.3.2 Rules that regulate standards 111
3.3.3 Regulatory environment 112
3.3.4 Graphical presentation of the model of the current

framework 114
3.4 Chapter conclusions 116

4 Communitarian protection of user freedoms 117
4.1 Limitations and restrictions of the freedoms 118

4.1.1 License proliferation and incompatibilities 120
4.1.2 License revocability 122
4.1.3 Inter partes nature of licenses 123
4.1.4 Software-related patents 125
4.1.5 Contracts with distributors 126
4.1.6 Liability rules 127
4.1.7 Non-legal regulators of software 128
4.1.8 Closed standards 128
4.1.9 Regulatory environment 129
4.1.10 Conclusion on limitations and restrictions of the

freedoms 129
4.2 The freedoms in software communities 130

4.2.1 License proliferation and incompatibilities 134
4.2.2 License revocability 138
4.2.3 Inter partes nature of licenses 139
4.2.4 Software-related patents 141
4.2.5 Contracts with distributors 142
4.2.6 Liability rules 143
4.2.7 Non-legal regulators 144
4.2.8 Closed standards 145
4.2.9 Regulatory environment 145
4.2.10 Conclusion on the freedoms in software communities 146

4.3 Chapter conclusions 147

Towards_an_Improved_def.indd 8Towards_an_Improved_def.indd 8 23-02-2010 10:49:1123-02-2010 10:49:11

9Table of contents

5 User freedoms in eGovernments 149
5.1 User freedoms in a world without eGovernments 153
5.2 User freedoms in Closed eGovernments 154

5.2.1 Closed eGovernment (A) 155
5.2.2 Closed eGovernment (B) 156
5.2.3 Semi-Closed eGovernment 157
5.2.4 Evaluation of user freedoms in Closed eGovernments 159

5.3 User freedoms in Open eGovernments 160
5.3.1 Open eGovernment (A) 161
5.3.2 Open eGovernment (B) 165
5.3.3 Supra-Open eGovernment 167
5.3.4 Evaluation of user freedoms in Open eGovernments 172

5.4 Chapter conclusions 172

6 Proposal of an improved regulatory framework 175
6.1 Inefficiencies of the current framework and possible

improvements 176
6.1.1 License proliferation and incompatibilities 177
6.1.2 License revocability 179
6.1.3 Inter partes nature of licenses 181
6.1.4 Software-related patents 182
6.1.5 Contracts with distributors 184
6.1.6 Liability rules 185
6.1.7 Non-legal regulators of software 187
6.1.8 Closed standards 188
6.1.9 Regulatory environment 191
6.1.10 Evaluation of the inefficiencies of the current

framework 192
6.2 Appropriate improvements in the framework 193

6.2.1 Proper organization of communities 193
6.2.2 Regulation of eGovernments 196
6.2.3 Free Software legislation 198
6.2.4 Restriction of software-related patents 199
6.2.5 Promotion of open standards 202
6.2.6 Internationalization of the framework 204

6.3 Construction of a proposal of an improved framework 206
6.4 Chapter summary 207

7 Conclusions and further research 211
7.1 Answers to research questions 211
7.2 Answers to the problem statement 214
7.3 Provisional impact of our proposed framework 215

7.3.1 Rules created if the improvements are implemented 215
7.3.2 Impact of the new rules on the existing rules 218
7.3.3 Conclusions on the provisional impact of our

proposed framework 220
7.4 Further research 221

Towards_an_Improved_def.indd 9Towards_an_Improved_def.indd 9 23-02-2010 10:49:1123-02-2010 10:49:11

10 Table of contents

References 223

Summary 229

Samenvatting 231

Curriculum vitae 234

Siks Dissertation Series 235

Meijers Ph.D. list 242

Towards_an_Improved_def.indd 10Towards_an_Improved_def.indd 10 23-02-2010 10:49:1123-02-2010 10:49:11

 List of Abbreviations

API Application Programming Interface

Art. article

BSD Berkeley Software Distribution

CeCILL Ce(A)C(nrs)I(NRIA)L(ogiciel)L(ibre)

cf confer, (lat.) “compare”

CFI Court of First Instance (of the European Communities)

Dz. U. Dziennik Ustaw, Polish official journal for the publication of
laws

ECJ European Court of Justice

ed. editor(s)

e.g. exempli gratia, (lat.) “for example”

EPO European Patent Office

et al. et alii, (lat.) “and others”

etc. et cetera, (lat.) “and so on”

et seq. et sequens, (lat.) “and the following”

ETSI European Telecommunications Standards Institute

EIF European Interoperability Framework

FN footnote

FSD Free Software Definition

FSF Free Software Foundation

GNU GNU is Not Unix (a recursive acronym)

HTML Hypertext Mark-up Language

htm, html a suffix of a name of a file written in HTML

http:// hypertext transfer protocol

id. idem, (lat.) “the same”

IDABC Interoperable Delivery of European Government Services to
public Administrations, Businesses and Citizens, a programme
managed by the European Commission

Towards_an_Improved_def.indd 11Towards_an_Improved_def.indd 11 23-02-2010 10:49:1123-02-2010 10:49:11

12 List of Abbreviations

i.e. id est, (lat.) “that is”

IEC International Electrotechnical Commission

ISO International Standards Organization

IT Information Technology

NDA non-disclosure agreement

NSA Naczelny Sąd Administracyjny, Polish Supreme Administrative
Court

OJ Official Journal of the European Community

op. cit. opus citatum, (lat.) “the work cited”

OSD Open Source Definition

OSI Open Source Initiative

PDF Portable Document Format

pdf a suffix of a name of a file in a PDF

PKN Polski Komitet Normalizacyjny, Polish Standardization
Committee (Polish national SSO)

RAND reasonable and non-discriminatory

RF royalty-free

Sec. section

SSO standard-setting organization

U.S. The United States of America

WIPO World Intellectual Property Organization

WTO World Trade Organization

WWW The World Wide Web

ZUS Zakład Ubezpieczeń Społecznych, Polish Social Insurance
Office

12

Towards_an_Improved_def.indd 12Towards_an_Improved_def.indd 12 23-02-2010 10:49:1123-02-2010 10:49:11

 List of Legislations

Berne Convention Berne Convention for the Protection of Literary
and Artistic Works (as amended on September 28,
1979)

Copyright Treaty WIPO Copyright Treaty (1996)

DMCA Digital Millennium Copyright Act, 112 Stat. 2860
(1998)

EC Treaty Treaty Establishing the European Community
(as amended on 2 October 1997 by the Amsterdam
Treaty)

Electronic Markets
Competition Directive

Directive 2002/77/EC on competition in the
markets for electronic communications networks
and services (OJ L 249, 17.09.2002, P. 21)

EPC European Patent Convention (1973)

E-Commerce Directive Directive 2001/31/EC on certain legal aspects
of information society services, in particular
electronic commerce, in the Internal Market
(OJ L 178, 17.07.2000, p. 1-16)

IT and
Telecommunications
Standardization
Decision

Decision 87/95 of 22.12.1986 on standardization
in the field of information technology and
telecommunications (OJ L 36, 7.2.1987, P.31).

New York Convention New York Convention on the Recognition and
Enforcement of Foreign Arbitral Awards (1958)

Paris Convention Paris Convention for the Protection of Industrial
Property (as amended on September 28, 1979)

PCT Patent Cooperation Treaty (as amended on October
3, 2001)

Polish Civil Code Act of 23 April 1964 the Civil Code (Dz.U. of 1964
no. 16 item 93, as amended)

Polish Constitution Act of 2 April 1997 the Constitution of the Republic
of Poland (Dz.U. of 1997 no. 78 item 483)

Polish Copyright Act Act of 4 February 1994 on copyright and
neighbouring rights (Dz.U. of 2006 no. 90 item 631,
consolidated version, as amended)

Towards_an_Improved_def.indd 13Towards_an_Improved_def.indd 13 23-02-2010 10:49:1123-02-2010 10:49:11

14 List of Legislations

Polish Criminal Code Act of 6 June 1997 the Criminal Code (Dz.U. of 1997
no. 88 item 553, as amended)

Polish Industrial
Property Act

Act of 30 June 2000 Industrial Property Law (Dz.U.
of 2003 no. 119 item 1117, consolidated version, as
amended)

Polish Informatization
Act

Act of 17 February 2005 on the informatization of
entities performing public tasks (Dz.U. of 2005
no. 64 item 565, as amended)

Polish Public
Information Act

Act of 6 September 2001 on access to public
information (Dz.U. of 2001, no. 112 item 1198,
as amended)

Polish Unfair
Competition Act

Act of 16 April 1993 on unfair competition (Dz.U.
of 2003 no. 153 item 1503 consolidated text, as
amended)

Public Procurement
Directive

Directive 2004/18/EC on the coordination of
procedures for the award of public works
contracts, public supply contracts and public
service contracts (OJ L 134, 30.4.2004, p. 114.)

Public Sector
Information Directive

Directive 2003/98/EC on the re-use of public
sector information (OJ L 345, 31.12.2003, p. 90.)

Rental Directive Directive 92/100/EEC on rental right and lending
right and on certain rights related to copyright in
the field of intellectual property (OJ L 346,
27.11.1992, p. 61-66)

Software Directive Directive 91/250/EEC on the legal protection of
computer programs (OJ L 122, 17.5.1991, p. 42–46)

Standards Directive Directive 98/34/EC laying down a procedure for
the provision of information in the field of
technical standards and regulations and of rules in
information society services (OJ L 204, 21.7.1998,
P 37.)

TRIPS WTO Agreement on Trade-Related Aspects of
Intellectual Property Rights (1994)

UCC Uniform Commercial Code

UCITA Uniform Computer Information Transactions Act

U.S. Copyright Act Copyright Act, 17 U.S.C. Sec. 101 (1976, as
amended)

Towards_an_Improved_def.indd 14Towards_an_Improved_def.indd 14 23-02-2010 10:49:1123-02-2010 10:49:11

 List of Model Licenses

AGPL Affero General Public License, at: http://www.fsf.org/
licensing/licenses/agpl.html

BSD-type license a type of a permissive Free Software license, originally
used for the Berkeley Software Distribution

CeCILL a set of model licenses drafted within the Ce(A)C(nrs)
I(NRIA)L(ogiciel)L(ibre) project, available at: http://
www.cecill.info/licences.en.html

Eclipse Public
License

a model license available at: http://www.eclipse.org/
org/documents/epl-v10.php

EUPL European Union Public License, at: http://europa.
eu.int/idabc/en/document/2623/5585#eupl

FLA Fiduciary License Agreement, at: http://www.
fsfeurope.org/projects/ftf/FLA.en.pdf

GPL, GPLv2,
GPLv3

GNU General Public License, its version 2 or 3,
respectively, at: http://www.fsf.org/licensing/
licenses/gpl.html

LGPL GNU Lesser General Public License, at: http://www.
fsf.org/licensing/licenses/lgpl.html

MPL Mozilla Public License, at: http://www.mozilla.org/
MPL/MPL-1.1.html

MSPL Microsoft Public License, at: http://opensource.org/
licenses/ms-pl.html

Open Software
License

a model license available at: http://www.opensource.
org/licenses/osl-3.0.php.

SleepyCat License a model license available at: http://www.opensource.
org/licenses/sleepycat.php

Sun Industry
Standards Source
License

a model license available at: http://www.OpenOffice.
org/licenses/sissl_license.html

Towards_an_Improved_def.indd 15Towards_an_Improved_def.indd 15 23-02-2010 10:49:1223-02-2010 10:49:12

Towards_an_Improved_def.indd 16Towards_an_Improved_def.indd 16 23-02-2010 10:49:1223-02-2010 10:49:12

 List of Cases and Patents

European cases

13/77, SA G.B.-Inno-B.M. v. ATAB, 16.11.1977, 1977 E.C.R. 02115
C-18/88, RTT v. GB-Inno-BM SA, 11.01.1988, 1991 E.C.R. I-05941
66/86, „Ahmed Saeed Case”, 11.04.1989, 1989 E.C.R. 00803
C-35/96, Commission v. Italy, 18.06.1998, 1998 E.C.R. I-03851
C-198/01, „CIF Case”, 9.9.2003, 2003 OJ C 264 P. 9
Case T-201/04, Microsoft v. the Commission

U.S. cases

Aro Mfg. Co. v. Convertible Top Replacement Co. 377 U.S. 476, 84 S.Ct. 1526
(U.S.Mass. 1964.)

In re Bilski 545 F.3d 943 (Fed. Cir. 2008) (en banc)
Jacobsen v. Katzer 535 F.3d 1373 (2008).
Lotus Development Corporation v. Borland International, Inc. 516 U.S. 233

(1996)).
M.A. Mortenson Co. v. Timberline Software Corp. 970 P.2d 803 (Wash. Ct. App.

1999), aff‘d, 998 P.2d 305 (Wash. 2000)
Microstar v. Formgen, Inc. 942 F. Supp. 1312 (S.D. Cal. 1996), aff‘d in part, rev‘d

in part on other grounds, 154 F.3d 1107 (9th Cir. 1998)
ProCD v. Zeidenberg 86 F.3d 1447 (7th Cir. 1996)
Rambus Inc. v. Infineon Technologies Holding North America Inc. 318 F.3d 1081

(C.A.Fed. Va. 2003)
State Street Bank & Trust v. Signature Financial Services 149 F.3d 1368 (Fed. Cir.

1998), cert. denied, 119 S.Ct. 851 (U.S. Jan 11, 1999)
Symbol Technologies Inc. v. Proxim Inc. 2004 WL 17701290 (D.Del.)
Wallace v. Free Software Foundation, at: http://www.groklaw.net/pdf/Wal-

laceFSFGrantingDismiss.pdf.

German cases

Harald Welte v. D. GmbH, at: http://www.jbb.de/judgment_dc_frankfurt_
gpl.pdf.

Polish cases

decision of the Polish Supreme Court of 20 May 1999 (I CKN 1139/97)
decision of the Polish Supreme Court of 28 November 2003 (IV CK

206/2002)
decision of the Polish Supreme Administraive Court dated 16 September

2004 (OSK 600/04)

Towards_an_Improved_def.indd 17Towards_an_Improved_def.indd 17 23-02-2010 10:49:1223-02-2010 10:49:12

18 List of Cases and Patents

European Patent Convention cases

International Business Machines, Corp./Computer program product, Decision of
the EPO Technical Board of Appeal 3.5.1 dated 1 July 1998, T 1173/97 (OJ
10/1999, 609)

Patents

PL 123 820, published on 25 September 1984
PL 116 724, published on 31 March 1983

Towards_an_Improved_def.indd 18Towards_an_Improved_def.indd 18 23-02-2010 10:49:1223-02-2010 10:49:12

 List of Figures

Figure 1.1: Actors and audience in proprietary software 28
Figure 1.2: Actors and audience in Free Software 30
Figure 2.1: Relations between the FSD and copyright law 47
Figure 2.2: Addressees of the FSD 50
Figure 3.1: Example development and distribution chains 60
Figure 3.2: Proliferation of licenses 74
Figure 3.3: Using programs under different Free Software licenses 75
Figure 3.4: Incompatibility of licenses 78
Figure 3.5: Rules for software and relations between them 95
Figure 3.6: Rules for standards and relations between them 110
Figure 3.7: Uniformity 112
Figure 3.8: Regulatory environment 112
Figure 3.9: Graphical presentation of the model of the current framework 115
Figure 4.1: Copyleft 123
Figure 4.2: The right to fork 124
Figure 6.1: Our improved framework as proposed in Chapter 6 207

 List of Tables

Table 1.1: Four combinations of software and standards 26
Table 3.1: Four combinations between who distributes and what is
 distributed 61

Towards_an_Improved_def.indd 19Towards_an_Improved_def.indd 19 23-02-2010 10:49:1223-02-2010 10:49:12

Towards_an_Improved_def.indd 20Towards_an_Improved_def.indd 20 23-02-2010 10:49:1223-02-2010 10:49:12

1 Introduction1

We live in a world full of information technologies. These technologies sup-
port us in an increasing number of tasks. The diversity of tasks in which they
are able to support us is dazzling. For example, currently almost complete
virtual worlds are created, in which everybody may play a role of their own
choice with an entertainment scene as background. Similar technologies as
used there may provide researchers with powerful tools for scientific data
gathering and analysis. Additionally, the technologies facilitate smooth and
worldwide marketing, in such a way that entrepreneurs can easily meet
demands of distant and diverse customers. Communications and electronic
commerce pleasantly coincide, the technologies allow us to organize team-
work efficiently. At the same time, governments all over the world use the
technologies in an attempt to organize the governance of society, by intro-
ducing various eGovernment schemes. eGovernment may be an aid to the
execution of our legal rights and obligations. It may also aim at promoting
the participation of the whole society in decision-making processes in mat-
ters of public interest and at facilitating the exchange of public information.
In many different support technologies Free Software plays an important
role.

This thesis is based on the premise that a worldwide regulatory frame-
work should be adopted to protect users of Free Software. Such a framework
should consist of rules (and relations between them) that protect user free-
doms as articulated by Richard M. Stallman.1 In our study, we analyse the
protection of the users in the world of (1) software communities and (2)
eGovernments, as both of these phenomena influence user freedoms. There-
fore, we start analysing whether and to what extent the current regulatory
framework protects the freedoms under such influence. The players and the
issues they are dealing with are considered as the main scene of play. It is our
task to describe their roles and the consequences of their behaviour. If our
analysis leads to the conclusion that the protection is not adequate, we will
aim at proposing an improved regulatory framework.

In this chapter we provide an introduction to the analysis of the current
framework. In Section 1.1, we describe the main scene of play, that is the
world where human beings and computer programs cooperate. In Section
1.2, we introduce the actors of this scene and their audience. In Section 1.3,
we formulate our Problem Statement (PS). We do this by taking a closer look

1 R.M. Stallman, Free Software Defi nition, at: http://www.gnu.org/philosophy/free-sw.html.

An alternative version of the same document is available at: http://www.fsf.org/licensing/

essays/free-sw.html.

Towards_an_Improved_def.indd 21Towards_an_Improved_def.indd 21 23-02-2010 10:49:1223-02-2010 10:49:12

22 Chapter 1

at software communities and eGovernments in relation to user freedoms. In
Section 1.4, we take the regulatory framework and the user freedoms as
articulated by Stallman to formulate three Research Questions (RQs). In Sec-
tion 1.5, we present the research methodology used in the thesis in order to
answer the RQs. In Section 1.6, we give the structure of the thesis.

1.1 The main scene of play

It is hard to imagine (1) what the possibilities will be of an increasing techno-
logical support, as well as (2) which limitations we will face. Certainly, the
support comes in the form of intelligent computer programs. Some of the
programs may be special or even unique and will thus perform specific
tasks, but there will also be many tasks that may be accomplished by pro-
grams that are massively produced and do not have to be customized much.
Some of these programs may be instructed to perform their tasks autono-
mously. Additionally, the programs may be designed to communicate with
each other, or with our human counterparts over a network. So, we envisage
a world where human beings and computer programs cooperate to accom-
plish any imaginable task that may be undertaken by a human alone or by a
group of humans or by intelligent agents.2

A minimal requirement for a world of seamless cooperation between
humans and computer programs is that all these programs work efficiently
and properly. Below, we distinguish between two layers of such a world: (1)
the layer related to software itself and (2) the layer related to standards used
by software to interoperate. We would like to call these layers scenes, since it
facilitates our description. The two scenes host a variety of activities that
affect the working of the programs. We describe them in Subsection 1.1.1
and 1.1.2, respectively. In Subsection 1.1.3, we complete the description by
presenting four combinations. They result from combining two extreme
types of the software spectrum with two extreme types of the standards
spectrum.

1.1.1 The software scene

It is well known that so far (1) every software contains errors (“bugs”) and
(2) no software possesses all features that users need. Hence, if programs are
to work efficiently and properly, their development should be organized in a

2 In general, an agent can be a human or a computer. The notion “intelligent agents” origi-

nates from the domain of Artifi cial Intelligence. An intelligent agent is a collection of

software that is able to take intelligent decisions, and to act intelligently. Most agents do

so autonomously (for lawyers this is a diffi cult point to understand). In computer science,

research aims at the development of BDI agents (i.e., agents with a belief, a desire, and an

intention), see, e.g., Wikipedia, BDI software agent, at: http://en.wikipedia.org/wiki/

BDI_software_agent.

Towards_an_Improved_def.indd 22Towards_an_Improved_def.indd 22 23-02-2010 10:49:1223-02-2010 10:49:12

23Introduction

way that minimizes the occurrences of bugs. Also, in the ideal case all neces-
sary features should be included in programs before users start using them.
However, many bugs are revealed only after software is already distributed
to users. Similarly, only then it often becomes apparent that some features of
the program are not in place. This means that appropriate repairs (“patches”)
should be developed while the program is already serving its supportive
purpose. Additionally, appropriate procedures for the development of fea-
ture upgrades (or updates) of the already used programs should be provided
for. Moreover, after a patch, an upgrade, or an update (jointly: an improve-
ment) is developed, it should be swiftly distributed to users so that they can
benefit from the improved support and not have to continue using software
that works improperly.

The need of correcting bugs and including new features in a dynamic
environment means that it is not possible to use a given program unmodi-
fied for a significantly long time. Usually, every now and then the program
has to be improved to remove its bugs or add new features. Since improve-
ments require modifications, virtually all software is under continuous mod-
ification. For the time being, modification of software requires access to
human-readable source codes.3 Conversely, to use a program in its support-
ive function, a machine-readable object code (“binary”) has to be made avail-
able to the user. After modification, source codes are translated into binaries
in a process called “compilation”.4 Binaries may be distributed and used
separately from source codes. Theoretically, if source codes are not available,
a sufficiently skilled person may use binaries to fix bugs or include new fea-
tures (e.g., by way of decompilation).5 But in practice, the most preferable
way to modify a program is to access its source codes.6

Here, we may conclude that access to source codes is the first necessary
condition for the ability to control the working of a program. In passing, we
note that additional access to binaries is not necessary, since they may be

3 In the future, it may be left to autonomous non-human agents (see, e.g., Wikipedia, Self-
modifying code, at: http://en.wikipedia.org/wiki/Self-modifying_code).

4 We refer here to source codes written in compiled languages. There are also other pro-

gramming languages that allow to execute source code directly, without compilation

(interpreted languages). Programs written in interpreted languages are sometimes deli-

berately obfuscated in order to prevent users from accessing source codes. For the purpo-

ses of this thesis such an obfuscated code in an interpreted language may be considered

as a “binary” as well. For more details see: Wikipedia, Programming language, at: http://

en.wikipedia.org/wiki/Programming_language.

5 Decompilation is a way of reverse engineering a program, which leads to a reconstruc-

tion of source codes of the decompiled program from its binaries. See: Wikipedia, Decom-
pilation, at: http://en.wikipedia.org/wiki/Decompilation.

6 One reason why decompilation is usually not preferred is the law. For example, under

Art. 6 of the Software Directive, decompilation of a program is only allowed if it is indis-

pensable to obtain the information necessary to achieve the interoperability of an inde-

pendently created computer program with the decompiled program, and provided some

other strict conditions are met at the same time.

Towards_an_Improved_def.indd 23Towards_an_Improved_def.indd 23 23-02-2010 10:49:1223-02-2010 10:49:12

24 Chapter 1

rather easily produced using source codes.7 By looking at (the number or
weight) of the conditions on the access to source codes, it is possible to dis-
tinguish many different types of software. For our study we would like to
identify the following two extreme types of software.

(1) Proprietary software. Computer programs are developed in private
(the process of eliminating bugs and including new features is sub-
ject to exclusive control). This means that access to source codes is
restricted to certain persons only. Also, only certain persons are al-
lowed to distribute proprietary software. Additionally, there are re-
strictions on the use of proprietary software.

(2) Free Software. The participation in the development of computer
programs is not restricted (the process of eliminating bugs and in-
cluding new features is not subject to exclusive control). This means
that access to source codes is not restricted. Also, there are no restric-
tions as to who is allowed to distribute Free Software. Obviously,
there are no restrictions on the use of Free Software.8

Between these two extreme types we observe a spectrum of possibilities, all
of which we call the software scene. It would be impractical to attempt to con-
struct a regulatory framework for all of these possibilities and to analyse
such a framework successfully. Thus, for the sake of clarity, in this thesis we
would like to downsize the spectrum of the types of software to the two
extremes mentioned above.

1.1.2 The standards scene

Usually, a computer program is not used in a vacuum. Currently, most pro-
grams are used together with other programs. For example, they communi-
cate over a network. A program works efficiently and properly in such a situ-
ation if only it is able to interoperate with other programs. Programs
interoperate using protocols, interfaces, and data formats. For one program
to interoperate with another program, the program has to support a proto-
col, an interface, or a data format that the other program also supports. In
other words, both programs have to use a common standard to interoperate.
To make a program use the common standard, it has to be developed accord-

7 Assuming that a user has access to compilers or interpreters, as well as suffi cient engi-

neering skills. Since average user usually does not have such access or skills, access to

binaries can be considered as necessary for such users to control the working of programs

to the same extent as the access to source codes.

8 We consider Free Software simultaneously as a name and as a concept that should be

written with capital letters. We concur with the majority of publications and will capita-

lize the concept throughout the text. We do not capitalize proprietary software. We pre-

sent a more elaborate defi nition of Free Software in Section 2.1.

Towards_an_Improved_def.indd 24Towards_an_Improved_def.indd 24 23-02-2010 10:49:1223-02-2010 10:49:12

25Introduction

ingly. Thus, access to the program’s source code is the first necessary condition
of interoperability, since without source codes it is not possible to develop
programs. However, it is not a sufficient condition.

Apart from having access to the program’s source codes, one also has to
know what is the common standard exactly. This information (usually
referred to as “interoperability information”) should most preferably be pro-
vided in a way accessible and understandable for a human being, in a docu-
ment called “standard specification”. If the information is not provided in
such a way, it might still be possible for a sufficiently skilled person to reverse
engineer another program that uses the standard in order to reconstruct the
interoperability information. Reverse engineering can be performed in par-
ticular by (1) analysing the output of another program that already supports
the standard, (2) decompiling the binaries of such a program, or (3) studying
its source codes. However, reverse engineering is usually impracticable. The
preferred method is to use the standard specification. Thus, the second nec-
essary condition of interoperability is access to the standard specification.

Here, we may conclude that there are two necessary conditions for a pro-
gram to work efficiently and properly with other programs: (1) access to the
source codes of the program, and (2) access to the specification of a standard
(a protocol, an interface, or a data format) used by other programs. Only
then a working interoperable program can be developed and distributed to
users. In passing, we note that access to source codes or binaries of such oth-
er programs is not necessary, as long as the standard specification is avail-
able.9 By looking at (the number or weight) of the conditions on the access to
standard specifications, it is possible to distinguish many different types of
standards. We would like to identify the following two extreme types.

(1) Closed standards. Protocols, interfaces, and data formats are de-
signed in private and subject to exclusive control. The control en-
compasses who may use, develop, and distribute programs that
comply with a closed standard. This means that access to specifi ca-
tions of closed standards is restricted to certain persons only.

(2) Open standards. The participation in the design of protocols, inter-
faces, and data formats is not restricted, and no-one is precluded
from using, developing, and distributing programs that comply with
an open standard. This means that access to specifi cations of open
standards is not restricted to anyone.10

9 Sometimes, standard specifi cations are accompanied by a reference implementation, that

is a piece of source code of a program that uses the standard. The availability of the refe-

rence implementation is an additional aid in understanding of the specifi cation and the

implementation of the standard in other programs.

10 We present a more elaborate defi nition of open standards in Section 2.3.

Towards_an_Improved_def.indd 25Towards_an_Improved_def.indd 25 23-02-2010 10:49:1323-02-2010 10:49:13

26 Chapter 1

As is the case in the software scene, between these two extreme types of stan-
dards we observe a spectrum of possibilities. We call this spectrum the stan-
dards scene. Later on, we will explain that any standard which does not meet
the definition of an open standard as given in this thesis (see Section 2.3) is to
be considered a closed standard, at least from the point of view of the Free
Software users. Thus, in the remainder of the thesis we would like to down-
size the spectrum of standards to the two extremes only.

1.1.3 Four combinations of software and standards

In the two subsections above, we split the main scene of play into a software
scene and a standards scene. Each subscene consists of a spectrum with two
extreme types. Based on these four extremes we may distinguish four com-
binations that will guide our research throughout the thesis. They are given
in Table 1.1.

Closed standards (CS) Open standards (OS)

Proprietary software

(PS)
PS CS PS OS

Free Software

(FS)
FS CS FS OS

Table 1.1: Four combinations of software and standards

Theoretically, all of the above four combinations are equally possible. The
proprietary software approach does not exclude a possibility that a proprie-
tary program uses an open standard (PS OS). In such a case, although the
development and distribution of such a program is restricted, the develop-
ment and distribution of Free Software programs that are able to interoper-
ate with such a program is not restricted. As a result, users can freely use
such Free Software. However, many developers of proprietary software
design it to use closed standards only (PS CS). In such a case, the ability of
other developers to develop interoperable software is restricted. There are
also restrictions in distribution of software that uses closed standards.11 The
use of such programs is restricted as well. Nevertheless, Free Software devel-
opers sometimes attempt to make their programs interoperable with other
programs that use closed standards (FS CS).12 But the most preferred way of
developing Free Software is to design it according to open standards (FS OS).
The distribution and use of FS OS is also the least-restricted one.

11 For example, such a distribution can constitute a violation of a patent material to the

closed standard. See: Subsection 3.2.1.

12 We elaborate on such a situation in Subsection 3.2.2.

Towards_an_Improved_def.indd 26Towards_an_Improved_def.indd 26 23-02-2010 10:49:1323-02-2010 10:49:13

27Introduction

1.2 Actors and their audience

There are many persons that attempt to bring us closer to the world of seam-
less cooperation between computer programs and human beings. They play
various roles in all of the four combinations of Table 1.1 by developing or
distributing software. For the purpose of this thesis, it is desirable to take a
closer look at these actors and to describe their roles. We will also pay some
attention to their audience. We first discuss (1) actors and their audience in
the software scene, and then (2) actors and their audience in the standards
scene.

1.2.1 Actors and their audience in the software scene

Generally speaking, proprietary software (PS OS and PS CS) results in a
strong dichotomy between the actors and the audience. Conversely, Free
Software (FS OS and FS CS) blurs the line between the actors and the audi-
ence. Important actors in the Free Software scene are software communities.
eGovernments play important roles both in the proprietary software scene
as well as in the Free Software scene. The roles of eGovernments are impor-
tant, mostly because of the impact that activities such as software procure-
ment have on all other actors and the audience in the software scene.

Below, we discuss (1) actors and their audience of proprietary software,
and (2) actors and their audience of Free Software.

(1) Actors and audience of proprietary software
The working of proprietary software is under exclusive control of a limited
number of persons (copyright holders). Only they have access to source
codes of this software and decide who may play an active role in its develop-
ment and distribution, as well as who may use it. Conversely, users do not
have individual control over proprietary software.13 Their role is restricted
to the consumption of binaries as delivered by the distributors. Certainly,
this is not to say that a user demand for bug fixes and new features is not
met. It rather means that users have to rely on copyright holders of a given
piece of proprietary software to have their demand for properly working
programs satisfied. So, we may definitely refer to all users of proprietary
software as “audience”. Consequently, only the copyright holders of propri-
etary software, and the developers and distributors appointed by them can
be referred to as “actors”.

We illustrate the above findings in Figure 1.1.

13 It is possible to provide examples of proprietary software that is delivered in a form high-

ly customizable for users. Nevertheless, such customization is either performed by per-

sons authorized by the copyright holder, or the copyright holder (not the user) controls

the degree of the possible customization.

Towards_an_Improved_def.indd 27Towards_an_Improved_def.indd 27 23-02-2010 10:49:1323-02-2010 10:49:13

28 Chapter 1

Figure 1.1: Actors and audience in proprietary software

In Figure 1.1 we see black dots illustrating actors that play an active role in
the scene of proprietary software. They are the developers and distributors
employed or otherwise contracted by the copyright holder (usually, the
copyright holder is a firm). Grey dots illustrate users of the program, the
consuming audience. The boundary between the former group and the latter
group is solid. The users may not easily cross it, since they neither have
access to source codes, nor they are allowed to develop or distribute the soft-
ware by its copyright holders.

Some governments choose to introduce eGovernment based on proprie-
tary software. However, government procurement of a proprietary program
does not remove the control of the program from the hands of its copyright
holder. In particular, the copyright holder may still control the development
of this software and control who may become a distributor of this program.
Consequently, the government on their own may not control the working of
this program. Also, the government may not freely choose between various
distributors of a given proprietary program. The government may only
choose between the distributors appointed by the copyright holder. Thus,
the government can only play a passive role as all other users of proprietary
software.

(2) Actors and audience of Free Software
The line between actors and audience is much more blurred on the Free Soft-
ware scene.14 Copyright holders release this software from their exclusive
control (although they retain copyright protection). They allow any user to
step into an active role of a developer by eliminating bugs or including new
features. Also, anyone is allowed to become a distributor of a given piece of
Free Software. This means that both developers and distributors of this soft-

14 As of now, thousands of programs are being developed as Free Software. In August 2008

there have been approx. 85,000 projects under one of the most popular Free Software

license, the GNU GPL v2, at a popular repository SourceForge (http://Sourceforge.net).

Towards_an_Improved_def.indd 28Towards_an_Improved_def.indd 28 23-02-2010 10:49:1323-02-2010 10:49:13

29Introduction

ware are generally self-appointed. So, everyone can become an “actor” in the
Free Software scene. However, nobody is required to play such an active
role. Thus, a user may remain passive and form a part of the “audience”.
Still, even members of the audience can entrust the roles of developers or
distributors to any person of their choice.

Probably the most active actors of the Free Software scene are “hackers”.15
Generally speaking, hackers are technologically-savvy users who value the
possibility of developing and distributing useful software tools without
restrictions. They do so because they like to control the working of software
and they are motivated to improve it, and to enable other users to use the
improvements. Hackers are motivated for many different reasons. Some of
the reasons are: (1) ethical reasons, (2) economic reasons, and (3) personal
reasons. First, some hackers develop or distribute Free Software because
they simply believe it is the right thing to do. Second, some hackers do so
because they are getting paid for it.16 Third, some hackers develop or distrib-
ute Free Software because it solves their problem (performs a particular
task), because by doing so they gain peer recognition, or because they other-
wise improve their social status in such a way.

Firms are also important actors in the Free Software scene. Firms do not
exercise exclusive control over Free Software as it is the case with firms in
the proprietary software scene, at least not directly. Still, firms contribute to
the development of Free Software, as well as they distribute it. They are
attracted to developing and distributing Free Software in particular by the
fact that in such a way they support their business models. The term “Open
Source Software” has been promoted to convey the technical superiority and
commercial benefits of Free Software (see Section 2.2).

Many actors in the Free Software scene (including hackers and firms)
work alone,17 but some of them participate in communities. Communities
are groups of actors who cooperate in fixing bugs and in including new fea-
tures of a given program (see Section 2.4). Communities may also organize
distribution of Free Software and provide guidance on its use. An important
community has been originated by Stallman, under the name of “GNU
Project”.18 Since the 1980s, many other programs have been developed and
distributed as Free Software, not necessarily related to GNU. Most promi-
nent examples of Free Software include, e.g., the Linux Kernel, Debian

15 A hacker is properly defi ned as “a person who delights in having an intimate under-

standing of the internal workings of a system, computers and computer networks in par-

ticular.” (RFC1392, at: http://rfc.net/rfc1392.html).

16 For example, according to some studies more than 70% of Linux kernel developers are

getting paid for their work on Linux (See: The Linux Foundation, Linux Foundation Pub-
lishes Study on Linux Development, http://linux-foundation.org/weblogs/

press/2008/03/31/linux-foundation-publishes-study-on-linux-development-statistics-

who-writes-linux-and-who-supports-it/).

17 In Chapter 4 we refer to this as the “individual development and distribution of Free

Software” or “individual exercise of the freedoms”.

18 See: http://gnu.org, http://savannah.gnu.org.

Towards_an_Improved_def.indd 29Towards_an_Improved_def.indd 29 23-02-2010 10:49:1323-02-2010 10:49:13

30 Chapter 1

GNU/Linux, Apache, or Mozilla.19 Many Free Software programs have
attracted large and well organized communities.

Outside of the communities there are other actors who at their choice
may: (1) develop Free Software on their own, privately; (2) form a group of
active developers outside of the existing community of a given program; (3)
become an individual distributor of Free Software.

Apart from the above-described actors, there is also the audience in the
Free Software scene. The audience is formed out of such users of Free Soft-
ware who are not copyright holders, developers, or distributors of this soft-
ware. Such users do not participate in software communities as well. The
audience uses Free Software in a manner similar to proprietary software (by
simply running the binaries on their computers, without paying attention to
source codes). Still, there is a difference between the users who form the
audience of Free Software and the users who form the audience of proprie-
tary software. The difference is that the former have a choice whether to
remain passive or become actors, while the latter do not have such a choice.

From the above we may conclude that users are not bound to play pas-
sive roles in the Free Software scene. Many users of Free Software actively
develop the software or distribute it to other users. Such users play active
roles, either individually (such as by becoming a hacker), by using a firm, or
within a software community. We illustrate this in Figure 1.2.

Figure 1.2: Actors and audience in Free Software

In Figure 1.2 we see black dots that illustrate users (i.e., developers or dis-
tributors) who play an active role in the development or distribution of a
Free Software program. They are, for example, individual hackers or firms.
Some of them form a software community. Others develop or distribute the
same program individually, outside of the community, or in a “competing”
community. Grey dots illustrate passive users of the program (the audience).

19 See respectively: http://kernel.org, http://debian.org, http://apache.org, http://mozilla.org.

Towards_an_Improved_def.indd 30Towards_an_Improved_def.indd 30 23-02-2010 10:49:1323-02-2010 10:49:13

31Introduction

The boundary between the actors and the audience is dashed. Users may
easily cross it, since source codes of the program are available to them for
development or distribution.

The government may procure Free Software for use in eGovernment. As
a result of such a procurement, control over Free Software is not given to any
particular entity on an exclusive basis. The government and other users are
allowed to continue using the same Free Software developed or distributed
by actors of their free choice. The government could as well remain a passive
user of Free Software, but they may also undertake software development or
become distributors of this software to other users. In particular, the govern-
ment can participate in software communities or develop Free Software on
their own. Also, the government might stimulate proactive individuals to
become developers or distributors. For example, the government can do so
by collaborating with the communities in many different ways.

1.2.2 Actors and their audience in the standards scene

We start by recalling the two conditions necessary for the ability to control
the working of a program. They are: (1) access to source codes, and (2) access
to interoperability information, most preferably as included in specifications
of standards. In Subsection 1.2.1 we analysed the actors and their audience
in the software scene, i.e., in the use of source codes. In this subsection we
take a closer look at the actors and audience in the standards scene, i.e., in the
use of interoperability information (standard specifications).

Governments play an important role in the standards scene. In particu-
lar, government-procured software allows to use eGovernment services. In
order to be able to use these services, users have to obtain programs that
interoperate with programs used by the government.20 Thus, whether the
programs used in eGovernments are designed to interoperate using an open
or a closed standard is a material factor.21

Below we focus on the roles of the actors that use Free Software (both FS
CS and FS OS). We analyse two situations in the standards scene: (1) a situa-
tion wherein a Free Software program is required to interoperate with anoth-
er program designed according to a closed standard (FS CS), and (2) a situa-
tion wherein a Free Software program is required to interoperate with
another program designed according to an open standard (FS OS).22

20 A user of eGovernment services may be an individual, a fi rm, a public agency, a non-

governmental organization, or another entity.

21 Cf. Table 1.1 and accompanying text.

22 In both of these situations, the other programs may be proprietary software or Free Soft-

ware. The other programs may be also programs used by governments to provide

eGovernment services.

Towards_an_Improved_def.indd 31Towards_an_Improved_def.indd 31 23-02-2010 10:49:1323-02-2010 10:49:13

32 Chapter 1

(1) Actors and audience of closed standards
Closed standards are protocols, interfaces, and data formats that are exclu-
sively controlled. Usually, the exclusive control is exercised by the firm that
designed a standard (the “designer”). The designer may refuse to reveal
interoperability information to the developers of a Free Software program.
In such a case, Free Software developers could still be able to access this
information using various techniques (we discuss them in detail in Subsec-
tion 3.2.2). If they succeed, it leads to the development of a Free Software
program that uses a closed standard. Then, the Free Software developers and
distributors may be referred to as actors. However, perfect interoperability is
rarely reached in such a situation. Also, the development, distribution, or
even use of programs that use closed standards can be restricted, because
designers could impose conditions on the use of these standards (e.g., by
enforcing a patent). So, in practice only the designers of closed standards are
actors. The designers may allow other persons to become actors, but they
may also decide to put everyone else in the position of the audience.

For eGovernment, some governments procure software designed to use
a closed standard. The government does not become an actor in such a way,
since the control over the working of programs which use that standard
remains in the hands of the designer of the standard. In particular, the
designer of such a standard retains exclusive control over who is authorized
to develop programs which are able to interoperate using that standard.
Obviously, users have to procure programs that interoperate with eGovern-
ment software, since otherwise they may not use the services of eGovern-
ments. But only the developers authorized by the designer of closed stan-
dards used in eGovernment software can develop properly interoperable
programs. Sometimes, only the authorized distributors can distribute such
programs. This allows the designer to stimulate users to procure selected
software only.

In some cases eGovernments based on closed standards may even (1)
effectively isolate a particular distributor from its competitors, (2) direct
users to play the role of passive consumers, and (3) prevent the developers
of Free Software from developing this software. In other words the use of a
closed standard in eGovernments contributes to making the audience con-
sisting out of everyone but the designer of this standard or persons appoint-
ed by the designer.

(2) Actors and audience of open standards
Open standards are not exclusively controlled. By definition, no-one is able
to restrict anyone in developing their programs to use an open standard. In
particular, Free Software developers that intend to make their programs
interoperate using open standards may do so freely. Also, Free Software dis-
tributors may then distribute such interoperable programs without restric-
tions that may apply to closed standards. When using open standards a high
degree of interoperability is possible. This means that anyone may become
an actor in the scene of open standards. No-one, however, is required to play

Towards_an_Improved_def.indd 32Towards_an_Improved_def.indd 32 23-02-2010 10:49:1423-02-2010 10:49:14

33Introduction

an active role and everyone may remain the audience by simply using soft-
ware designed according to open standards (either proprietary or Free Soft-
ware).

If the government chooses software based on open standards for eGov-
ernment, both proprietary and Free Software developers may continue to
develop programs that interoperate with such software. Anyone could
become a distributor of such interoperable Free Software either for the gov-
ernment or for users of eGovernment services. Certainly, the development of
proprietary software that interoperates with eGovernment remains possible,
and the distributors of proprietary software are still able to distribute it to
their users. Consequently, users may use eGovernment services by choosing
between Free Software and proprietary software. Additionally, anyone
(including the government) may become an actor by undertaking develop-
ment or distribution of programs that interoperate with eGovernment and
that are Free Software.

1.3 Problem statement

Below we formulate our Problem Statement. We start by recalling that we
envisage a world where humans and computer programs cooperate. We aim
at a seamless cooperation which in particular implies that computer pro-
grams should work efficiently and properly. In order to reach this goal, we
believe that the working of programs should be controlled. For this purpose
we identified two necessary conditions: (1) access to the program’s source
codes and (2) access to the specifications of the standards used by the pro-
gram to interoperate with other programs. A person who meets these two
conditions is able to bring us closer to the world envisaged. This leads to an
important question, namely: “Who is allowed to control the working of com-
puter programs?”

(1) Two extreme approaches
In Table 1.1 we presented four combinations of software and standards: (1)
FS OS, (2) FS CS, (3) PS OS, and (4) PS CS. In each combination, the control
over the working of computer programs is assigned differently. Under the
FS OS, attempts are made to give the control to every user. Under the remain-
ing three combinations control is retained by certain individuals. The latter
three combinations differ as to the degree of control that such individuals
have. Yet, what they have in common is that under each of them the control
cannot be exercised by every user. So, for the formulation of our Problem
Statement, we will consider the three latter combinations together, which
brings us to two extremes: (1) the FS OS (henceforth called “the Free Soft-
ware approach”), and (2) the three other combinations together (henceforth
jointly addressed as the “proprietary approach”).

Towards_an_Improved_def.indd 33Towards_an_Improved_def.indd 33 23-02-2010 10:49:1423-02-2010 10:49:14

34 Chapter 1

(2) The Debate
There has been a fierce debate about which of the two approaches is better.
Various participants in the debate have presented their positions. Stallman’s
position is an example of the set of positions that oppose the proprietary
approach.23 It may be summarized in its considering the proprietary
approach as morally unacceptable. A second example of positions that
oppose the proprietary approach is the position of the advocates of “Open
Source Software” (as we explain below, Open Source Software can be con-
sidered as closely related to Free Software). In a nutshell, they consider that
the proprietary approach should not be followed because it is less efficient.24
Supporters of the proprietary approach present their positions as well.
A popular position amongst them is that most users only want to use soft-
ware which serves their purposes of the moment, and they have no need to
control their working. According to this position, the proprietary approach
in itself can bring us closer to the world where humans and computer pro-
grams cooperate seamlessly.

(3) Our Position in the Debate
We describe our position below. It takes into account the following three
issues: (1) Stallman’s rejection of the proprietary approach on moral grounds,
(2) negative evaluation of the efficiency of the proprietary approach made by
the Open Source advocates, and (3) assessment of the needs of users as made
by the supporters of the proprietary approach.

Our position is as follows. Ad (1) The proprietary approach may be mor-
ally unacceptable to many people. Such morality may lead them to abandon
the proprietary approach. If so, then that possibility should be adequately
covered by the law. In our opinion, everyone should be allowed to follow their
own moral standard as long as they do not act against the law. Ad (2) Free Soft-
ware programs are often of good quality. This means that the Free Software
approach is generally efficient. We believe that there is no evidence for the
proprietary approach to be unable to deliver good quality software for a com-
parable price. Here we remark that the economic competition, if any, should
also be covered by the law. Ad (3) Users who wish to control the working of
software do not constitute a majority. But the law should cover adequately
the goals of all users, i.e., the goals of laymen who only want to use software
“as is”, as well as the goals of the knowledgeable persons (specialists).25

23 See, e.g., R. M. Stallman, The GNU Project, at: http://www.gnu.org/gnu/thegnuproject.html.

24 See, e.g., Open Source Initiative, Open Source Case for Business, at: http://www.open-

source.org/advocacy/case_for_business.php.

25 Notably, even users who do not wish to control the working of software often prefer

to use Free Software above using proprietary software. For example, while proprietary

software still holds the majority of the market for desktop operating systems and offi ce

applications, Free Software is often chosen in the server market and as the basis for web

applications. Free Software is also quite popular amongst manufacturers of embedded

devices.

Towards_an_Improved_def.indd 34Towards_an_Improved_def.indd 34 23-02-2010 10:49:1423-02-2010 10:49:14

35Introduction

In summary, we state the following. Many Free Software programs bring
us closer to the world as envisaged. The proprietary approach is aiming to
do the same. Users may have different points of view depending on their
technical qualifications, moral attitude, etc. Our position is that everyone
should be allowed to choose an approach which they consider best for them-
selves. For this purpose it is necessary that both approaches are sufficiently
protected by an adequate regulatory framework.

(4) Point of Departure: The Free Software Approach
In the thesis, we will analyse the protection of the Free Software approach.
We find such an analysis appealing for the following two reasons.

First, we are not aware of any material threats to the proprietary
approach. Indeed, there exist various laws that enable individuals who wish
to control software exclusively to do so. The legal tools available to them
definitely succeed in preventing the users of proprietary software to exercise
the degree of control which is proposed under the Free Software approach.
So, there is little risk that the proprietary approach will be displaced by the
Free Software approach in the foreseeable future. Consequently, there is no
apparent need for a legal research directed at the preservation of the propri-
etary approach.

Second, the Free Software approach faces many more threats than the
proprietary approach. The preservation of the Free Software approach
requires material efforts. Examples of threats mentioned above are software-
related patents or eGovernments based on closed standards. Although there
is already an impressive body of literature on the Free Software approach,
such problems have not been addressed to an extent necessary to guarantee
that a choice between the two approaches will exist in the long run.

(5) The Research Goal
Our concern is that the regulatory framework for protecting the Free Soft-
ware approach needs further scrutiny, especially under the current condi-
tions, where governments (e.g., Germany, the Netherlands) specify policies
supporting it and yet often find them difficult to implement. This issue leads
to the following question: “To what extent is it possible to give every user
control over the working of computer programs?” An answer to such a ques-
tion could provide valuable information about limitations and restrictions of
the current regulatory framework of Free Software.

The information could then be used, for example, in the development of
an improved framework, which would make it easier to follow the Free Soft-
ware approach. In particular, this would facilitate the governments to sub-
stantiate their policies. It would also benefit everyone in the pursuit of a
world of seamless cooperation between computer programs and humans.
We believe that an improved framework would protect the Free Software
approach from threats which often make the proprietary approach the only
realistically possible approach. So, we find the above question accurate for
the purpose of the formulation of our Problem Statement. Moreover, we

Towards_an_Improved_def.indd 35Towards_an_Improved_def.indd 35 23-02-2010 10:49:1423-02-2010 10:49:14

36 Chapter 1

stress that the development of an improved framework is to be considered
as the Research Goal of this thesis.

(6) The Free Software Definition
For the formulation of a Problem Statement that can be dealt with in a scien-
tific way towards the Research Goal, we need to focus on a clearly defined
notion of Free Software. In the preceding sections, we already provided a
general understanding of this notion, but not a precise definition. There are
two precise definitions that deserve consideration: (1) the “Free Software
Definition” (hereinafter “FSD”), and (2) the “Open Source Definition” (here-
inafter “OSD”). In this thesis we decided to follow the FSD. Below, we per-
form a brief assessment of both definitions, and explain why FSD is better
suited for the purpose of our research. A detailed analysis of the FSD and the
OSD is presented in Chapter 2.

The FSD has been drafted by Stallman.26 It specifies the following four
freedoms of software users (we only quote the parts most relevant for our
study).

Freedom 0: “The freedom to run the program, for any purpose.”

Freedom 1: “The freedom to study how the program works, and adapt it to
your needs. (...)”

Freedom 2: “The freedom to redistribute copies so you can help your neigh-
bor.”

Freedom 3: “The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefi ts. (...)”27

If a given program is subject to all the freedoms specified above, it is Free
Software. Otherwise, the program is proprietary software. We find that the
FSD is an accurate definition for the following two reasons.

First, user freedoms as specified in the FSD mean in particular that users
are able to modify a Free Software program by removing bugs, including
more features, and designing or modifying it in such a way that it interoper-
ates with other programs. The four freedoms allow users also to develop
programs, and to distribute them, so that other users are able to use them as
well. It is hard to imagine what else could be necessary for users to control
the execution of software.

26 R.M. Stallman, Free Software Defi nition, op. cit.
27 Id.

Towards_an_Improved_def.indd 36Towards_an_Improved_def.indd 36 23-02-2010 10:49:1423-02-2010 10:49:14

37Introduction

Second, in Chapter 2 we conclude in particular that the FSD requires that
users are allowed to exercise all activities covered by copyright. Indeed, if a
user were not able to exercise all these activities, the control would still
require the copyright holder’s consent. So, any degree of control lesser than
the degree specified in the FSD would mean in fact that the control is not
given to users.

(7) The Open Source Definition
The OSD formulates certain requirements for a program to be considered
Open Source. But Open Source programs and Free Software programs do
not constitute separable classes. Both definitions contain essentially the same
or similar requirements, although they use different wording. They both
have been applied to scrutinize model software licenses with results that are
to a large extent similar (the most popular Free Software licenses are also
considered Open Source licenses).28 As a result, most (if not all) programs
that are considered Free Software are at the same time considered Open
Source.29 So, it seems that we could as well adopt the OSD as the definition
that guides our research. But the FSD is better suited for the purposes of
legal research. It specifies freedoms. “Freedom” is a legal notion, capable of
being analysed using legal methodology, which is the main methodology
used in this thesis.

(8) Consequences of following the Free Software Definition
The reader should be aware that by following the Free Software Definition we
do not necessarily adopt Stallman’s moral position as mentioned above. Nei-
ther do we explicitly reject or identify ourselves with the position of Open
Source advocates. Here we reiterate that both the Free Software approach
and the proprietary approach are able to bring us closer to a world where
humans and computer programs cooperate. Our position is that everyone
should be allowed to choose an approach which they consider best for them-
selves. Precisely speaking, the fact that we follow the Free Software Defini-
tion means that we consider as “Free Software” only computer programs
over which users can exercise control as specified by Stallman.

28 For details the reader should refer to Chapter 2.

29 It might be the case that some software licenses that do not meet the FSD can still satisfy

the OSD (allegedly, the OSD requires that a lesser degree of control is given to users).

According to Stallman, the OSD is “a little looser in some respects, and they have accep-

ted a few licenses that we consider unacceptably restrictive of the users.” (R. M. Stallman,

Why “Free Software” is better than “Open Source”, at: http://www.fsf.org/licensing/

essays/free-software-for-freedom.html). So, there is some risk that if we followed the

OSD in our research we would find a given level of protection of the Free Software

approach adequate, while actually users would not be able to exercise control over soft-

ware at that level. Although we do not fi nd arguments that this is a material risk (see

Chapter 2), it is an additional reason to follow the FSD in this thesis.

Towards_an_Improved_def.indd 37Towards_an_Improved_def.indd 37 23-02-2010 10:49:1423-02-2010 10:49:14

38 Chapter 1

(9) Two Conditions of User Freedoms
The reader is obviously aware that, as a default legal rule the control over
who may use, develop, and distribute software lies in the hands of the copy-
right holders. Ceteris paribus, the existence of the freedoms is possible, only if
the copyright holders decide to change the default arrangement. Therefore,
their affirmative action (consent) is required in order to allow users to exercise
the freedoms, in particular to develop or distribute a given piece of software.

Here, a new question arises, namely whether the consent of copyright
holders to software is sufficient for users to exercise the freedoms. Stallman
notes correctly that access to source codes (a source code is a copyrightable
expression of software) is a condition for Freedom 1 and Freedom 3.30 How-
ever, given our previous findings, a program may be developed to interoper-
ate properly with other programs and then it may be distributed without
restrictions if both (1) its source codes and (2) the specifications of standards
used by other programs with which the program has to interoperate are
accessible.31 It means that the relaxation of private control over software (in
particular over the program’s source codes) is only the first necessary condi-
tion of user freedoms. The relaxation of private control over standards (in
particular the interoperability information expressed in standard specifica-
tions) is the second necessary condition of user freedoms. So, we will analyse
the protection of user freedoms by analysing whether both these conditions
are satisfied and to what extent.

(10) Protection of User Freedoms
User freedoms are brought into existence by the copyright holders and
designers of standards who follow the Free Software approach by relaxing
their control over software and standards, respectively. The freedoms con-
tinue to exist as long as they are properly protected over time. The protection
necessary to sustain a situation wherein every user is able to control the
working of Free Software. In other words, the protection is necessary for the
Free Software approach to be possible in the long run. Whether the freedoms
are sufficiently protected depends on the rules that regulate the use, devel-
opment, and distribution of software. These rules (and the relations between
them) can be arranged into a regulatory framework. In this thesis, we call
such a framework “the regulatory framework of Free Software”, or “the
framework” in short. We reconstruct a model of the current regulatory
framework of Free Software in Chapter 3.

(11) The Focus on Software Communities and eGovernments
The model of the current regulatory framework can be used in a search for
an answer to the question: “To what extent is it possible to give every user

30 R.M. Stallman, Free Software Defi nition, op. cit.
31 By “accessible” we mean here not only available without limitations but also free from

any legal restrictions.

Towards_an_Improved_def.indd 38Towards_an_Improved_def.indd 38 23-02-2010 10:49:1423-02-2010 10:49:14

39Introduction

control over the working of computer programs?” But the extent of research
necessary to perform such a task outgrows the resources gathered for the
preparation of this thesis. At the same time, such a research would not be
focussed on issues that are materially relevant. To make our task practica-
ble, we need to formulate a Problem Statement tailored to circumstances,
in which the Free Software approach experiences restrictions and limita-
tions of material importance. From this point of view, software communi-
ties and eGovernments are of particular interest. As follows from previous
sections they affect the use, development, and distribution of Free Software
to a large extent. So, in the formulation of our Problem Statement we focus
on the relations between software communities, eGovernments, and user
freedoms.

Software communities evolve as a result of individual decisions of vari-
ous actors. By exercising their exclusive rights, using contractual freedom,
and the freedom of association, the holders enable other individuals to form
communities. Within the communities, the participants are guided and sup-
ported in their efforts to use, develop, and distribute Free Software. This is
done by organizing relations between copyright holders and other actors.
By organizing these relations, the communities affect the protection of user
freedoms. Essentially, software communities influence the Free Software
framework. The role of the communities will later be analysed in detail in
Chapter 4.

eGovernments affect the relations between all actors in the scenes of soft-
ware and standards and their audience. Holders of rights to software, hold-
ers of rights to standards, software developers, software distributors, and
users are all affected by eGovernments. They affect software communities as
well. Government procurement of software has the most important impact,
but other activities of eGovernments also influence the ability of all the actors
to control the working of programs. Consequently, eGovernments affect the
protection of user freedoms and they influence the Free Software framework.
The role of eGovernments will be analysed in detail in Chapter 5.

(12) Formulation of the Problem Statement
So, in this thesis, we undertake an analysis of the roles of software communi-
ties and eGovernments in the protection of user freedoms. This leads us to a
twofold Problem Statement (PS).

PS 1: What are the relations between user freedoms and software communi-
ties?

PS 2: What are the relations between user freedoms and eGovernments?

These problems are intriguing but difficult to answer on their own. There-
fore, we formulate three additional Research Questions in the next section.

Towards_an_Improved_def.indd 39Towards_an_Improved_def.indd 39 23-02-2010 10:49:1423-02-2010 10:49:14

40 Chapter 1

1.4 Research questions

Our Research Goal is to develop a new, improved regulatory framework that
would be capable of resolving the inefficiencies in the protection of user free-
doms identified by analysing the Problem Statement. To achieve this goal,
we formulate the following three Research Questions (RQs) that guide us
throughout the analysis.

RQ 1: In what way do software communities affect the current regulatory
framework concerning the protection of user freedoms, as articulated by
Stallman?

RQ 2: In what way do eGovernments affect the current regulatory framework
concerning the protection of user freedoms, as articulated by Stallman?

RQ 3: How to improve the regulatory framework so that it adequately protects
user freedoms, as articulated by Stallman, in the world of software com-
munities and eGovernments?

We analyse the Problem Statement using a model of the current regulatory
framework, within which software communities and eGovernments operate. We
follow Stallman’s Free Software Definition in the analysis. In Section 1.6 we
indicate in which chapter the Research Questions are addressed.

1.5 Research methodology

In order to answer the Problem Statement it is necessary (1) to reconstruct
the current regulatory framework of Free Software in such a way that it can
deal with our Research Questions. Then, it is necessary (2) to analyse how
software communities and eGovernments affect the ability of the framework
to protect the freedoms. Thereafter, we have (3) to identify the elements of
the framework that protect the freedoms inadequately, and (4) to design the
necessary amendments and propose specific modifications to the frame-
work.

The framework consists of (1) rules that regulate the use, development,
and distribution of Free Software, and (2) the relations between the rules. So,
we need to identify the rules and the relations by analysing their sources. In
this thesis, we adopt a broad concept of regulation that may be the source of
rules and relations between them. We identify the following four means of
regulation, as specified by Lawrence Lessig:32 (1) the law, (2) the architecture,
(3) the norms, and (4) the market. First, the law regulates by executing sanc-

32 Lawrence Lessig, The New Chicago School, 27 The Journal of Legal Studies 661 (June

1998).

Towards_an_Improved_def.indd 40Towards_an_Improved_def.indd 40 23-02-2010 10:49:1423-02-2010 10:49:14

41Introduction

tions for infringing rights or not performing obligations.33 Second, the archi-
tecture consists of natural limitations, as well as of restrictions created by
humans. The architecture regulates by making some actions impossible or
impracticable.34 Third, the norms regulate by using non-legal sanctions, as
they are the creation of a social culture.35 Fourth, the market regulates by the
price mechanism.36 We use these four concepts in our research methodology.
Moreover, we adopt from Lessig the observation that regulation takes place
both directly through these four means and indirectly by interactions
between the means themselves.37

In the thesis we concentrate mostly on the rules created by the first regu-
lator, the law. Thus, the main methodology used to answer the research ques-
tions is the examination of sources of law. The objects of this examination are
primary and secondary sources of law that regulate access to source codes
and to standards to the extent this access is necessary to use, develop, and
distribute software. The most relevant body of law is copyright law. How-
ever, we also refer to many other laws, because they affect the protection of
the freedoms in some other way. In the analysis of a particular body of law,
we concentrate on the black letter law (statutes and case law), and we also
refer to legal commentaries and other examples of jurisprudence. We restrict
our research to the laws of the European Union and Poland, but we often
refer to the American law for a clear comparison. The research methodology
uses logical legal reasoning to infer legal rules that form the regulatory
framework and relations between the rules.

Our research is extended beyond the legal research in order to determine
relations between legal rules and the rules that are created by the other three
regulators: the architecture, the norms, and the market. Thus, we analyse the
regulating power of law in relation to the regulating powers of: (1) the archi-
tecture of software and standards; (2) the norms that have evolved in the
development of software and standards (in particular in the hacker culture);
and (3) the markets of software and standards (in particular under the theo-
ries of transaction costs, network externalities, lock-ins etc.). In the thesis, the
research in these three other means of regulation is directed mostly at the
identification of the practical impact that legal rules of the framework may
have on the freedoms under various circumstances.

In summary, our research methodology will consist of: (1) reconstruct-
ing a model of the current regulatory framework by using logical legal rea-
soning in the analysis of primary and secondary sources of law, as well as
by analysing non-legal regulators of software and standards; (2) using the
model to identify inefficiencies of the current regulatory framework from

33 Cf. id. at 662.

34 Id. at 663.

35 Id. at 662.

36 Id. at 663.

37 Id. Figure 2 at 667, and accompanying text.

Towards_an_Improved_def.indd 41Towards_an_Improved_def.indd 41 23-02-2010 10:49:1523-02-2010 10:49:15

42 Chapter 1

the point of view of user freedoms as exercised in the world of software com-
munities and eGovernments, and (3) formulating improvements to the
framework.

1.6 Structure of the thesis

In order to answer the Problem Statement, we start by focussing on the
Research Questions. The following structure guides our research. In Chapter
2, we provide definitions and basic notions that are used throughout the anal-
ysis. In Chapter 3, we reconstruct a model of the current regulatory frame-
work by identifying the main sets of rules and relations between them. In
Chapter 4, we focus on software communities and we formulate an answer to
the Research Question 1. In Chapter 5, we focus on the eGovernments and we
formulate an answer to the Research Question 2. In Chapter 6, we use the
results of the analysis to formulate a proposal for an improved framework,
which constitutes an answer to the Research Question 3. In Chapter 7 we pro-
vide the conclusions of the thesis and speculate on the provisional impact of
our proposed framework. Moreover, we formulate directions for further
research.

Towards_an_Improved_def.indd 42Towards_an_Improved_def.indd 42 23-02-2010 10:49:1523-02-2010 10:49:15

2 Definitions and basic notions

This chapter contains definitions of the most important terms and presenta-
tions of the basic notions used throughout the thesis. All of them were
already briefly introduced in the previous chapter. We start elaborating on
“Free Software” (in Section 2.1) and on “Open Source Software” (in Section
2.2); it is followed by an explanation of the relationship between these two
notions. Thereafter, in Section 2.3 we elaborate on “open standards” and in
Section 2.4 on “software communities”. Finally, in Section 2.5 we discuss
“eGovernments”.

2.1 Free Software

Free Software is software that is available to any interested party together
with the rights to control the working of the software. In order to allow for
an effective control, the rights to Free Software encompass source codes, not
only the binaries.38

Three practical implications of granting all these rights and making
source codes available are as follows.

(1) Users may use a Free Software program.
(2) Users may actively develop it by removing its bugs and including

new features.39 They may undertake the development either in a
software community, or outside it.

(3) Users may become distributors of Free Software by sharing it with
other users. They can share non-commercially, but they can also
offer on the market both the program and any additional services
that other users might want to bargain for.

38 As we already explained, a source code is a human-readable expression of a program that

allows for its effective modifi cation. It also allows to study the program and understand

its structure. For the purpose of using a program it has to be translated into a machine-

readable object code (also referred to as a “binary”). Binaries are impracticable to study

and modify; this makes access to source codes necessary for the purpose of modifi cation.

The latter constitutes a major part of a software development process. The need for modi-

fi cations is caused by (1) the existence of errors (“bugs”), (2) the lack of necessary fea-

tures, as well as (3) the need to provide for interoperability with other programs.

39 The may also provide means for interoperability of the program with other programs,

assuming that apart from source codes they also have the necessary interoperability

information (standard specifi cations).

Towards_an_Improved_def.indd 43Towards_an_Improved_def.indd 43 23-02-2010 10:49:1523-02-2010 10:49:15

44 Chapter 2

There are the following three common misinterpretations.

(1) Free Software should not be mistaken for “non-commercial”. The
defi ning criterion of Free Software is the scope of the user’s rights,
not price.

(2) Free Software should also not be mistaken for “freeware”, which is
proprietary software given away gratis. Free Software may cost a
price and it comes with certain signifi cant rights that users of free-
ware do not obtain.

(3) Free Software should not be mistaken for “public domain” soft-
ware, which is software not covered by copyright. Free Software is
usually copyrighted, although licensed under specifi c terms. Pre-
cisely speaking, software released into the public domain together
with its source codes is an example of Free Software, but not all
Free Software is public domain software.

Stallman40 has defined a minimum scope of rights that have to be granted to
users of a program in order for it to be considered Free Software. This mini-
mum scope embraces the four freedoms that have been expressed in the for-
mal Free Software Definition (“FSD”),41 and that we already listed in Section
1.3. We repeat them here for a clear reference.

Freedom 0: “The freedom to run the program, for any purpose.”

Freedom 1: “The freedom to study how the program works, and adapt it to
your needs. (...)”

Freedom 2: “The freedom to redistribute copies so you can help your neigh-
bor.”

Freedom 3: “The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefi ts. (...)”42

In order to understand the FSD precisely we have to know what the subject
matter is, to which its requirements apply (see Subsection 2.1.1). Then, we
have to know what these requirements exactly are (see Subsection 2.1.2).
Afterwards, we have to identify the addressees of the requirements (see Sub-
section 2.1.3). Finally, we formulate conclusions on the FSD (in Subsection
2.1.4).

40 R.M. Stallman, Free Software Defi nition, op.cit.
41 Id.

42 Id.

Towards_an_Improved_def.indd 44Towards_an_Improved_def.indd 44 23-02-2010 10:49:1523-02-2010 10:49:15

45Definitions and basic notions

2.1.1 Subject matter of the Free Software Definition

The subject matter of the FSD is software. Precisely speaking, the FSD
extends to both source codes and binaries. Namely, it makes access to source
codes a necessary condition of the freedoms (Freedom 1 and Freedom 3). It
also requires that users should be free to redistribute binaries as well. Con-
versely, the FSD is silent on the specifications of protocols, interfaces, and
data formats. Thus, a program may be Free Software even if its users do not
have access to specifications of standards used by this program to interoper-
ate with other programs.43

Given the fact that both (1) access to source codes and (2) access to speci-
fication of standards are necessary for the protection of user freedoms, the
satisfaction of the requirements of the FSD by a program is only the first
(albeit necessary) step on the way towards the protection of the freedoms of
users of that program.

2.1.2 Requirements of the Free Software Definition

The requirements of the FSD can be divided into (1) positive requirements,
(2) negative requirements, and (3) optional requirements.44 Positive require-
ments are obligations to include certain items for a program to be Free Soft-
ware. Negative requirements are prohibitions to introduce certain items in
relation to a Free Software program. Optional requirements are permissions
for certain items as long as they are formulated in specific way, but nothing
is required if they are absent. Below, we analyse all three types of require-
ments of the FSD.

(1) Positive requirements
We identify the following positive requirements. The FSD states that the
freedoms should apply to every user. It also requires that the freedoms are
irrevocable “as long as you do nothing wrong”. Additionally, the FSD speci-
fies activities that should be free to undertake for users of a program, for the
program to be considered Free Software. These activities are: (1) running, (2)
studying, (3) adapting, (4) redistributing, (5) improving, and (6) releasing.45

43 A separate issue is whether it is practically possible to develop a Free Software program

without access to such specifi cations. Usually, it is either impossible, or the resulting pro-

gram cannot interoperate properly with other programs.

44 The distinction between positive, negative, and optional requirements is for the conven-

ience of the reader only. We are aware of the fact that any requirement which is here pre-

sented as positive could be expressed in a way that makes it a negative one, and vice versa.

45 In the whole FSD document close synonyms of these words are also used. For example, it

also mentions “using”, “modifying”, “publishing”, “changing”, “copying”, “selling”. In

this thesis, for the sake of clarity, we will consider only the six activities mentioned in the

list of the freedoms as covered with the FSD. These are: (1) running, (2) studying, (3)

adapting, (4) redistributing, (5) improving, and (6) releasing.

Towards_an_Improved_def.indd 45Towards_an_Improved_def.indd 45 23-02-2010 10:49:1523-02-2010 10:49:15

46 Chapter 2

Not surprisingly, according to the FSD all these six activities should be free,
not just some of them.

A question arises how these requirements translate into legal notions.
The requirement that the freedoms should apply to every user means that
every user should have rights specified in the FSD. The requirement that the
freedoms be irrevocable “as long as you do nothing wrong” means that users
should have their rights terminated only upon a breach. A breach is possible
only if there are any obligations that can be breached. We note that the FSD
does not specify exactly what these obligations are and what constitutes
their breach.

The translation of the requirements that the six activities should be free
for users requires a more elaborate analysis. According to copyright law, it is
possible to restrict (at least) the following three activities: (1) copying, (2)
distribution, and (3) modification of software.46 So we have to determine
what the relations are between the six activities that the FSD requires to be
free to undertake by users and the three activities that may be restricted
using copyright. We observe the following relations.

(1) Running software typically involves at least copying.
(2) Studying software is theoretically possible without undertaking any

activities covered by copyright law. However, effi cient studying of
software usually involves running it, which brings us back to point
(1) above and involves copying. Additionally, if source codes of a
program are not available, the program may have to be decompiled
to allow a person to study it effi ciently. Decompilation involves
copying and modifi cation.

(3) Adapting and improving software requires modifi cation, and some-
times also copying.

46 Generally, there are two approaches in copyright law worldwide. Under the fi rst approach

all imaginable activities with regard to the copyrighted work are subject to exclusive

right. Under the second approach, the exclusive rights cover only activities enumerated

in the respective law. The Software Directive includes in the exclusive copyrights of pro-

grams: reproducing, altering, distributing (to the public) including renting. The word

“include” in its art. 4 together with reference to Berne Convention in Art. 1 allows to con-

clude that additional activities can be covered by exclusive rights by the Member States,

but otherwise both the Software Directive and Berne Convention follow the second

approach. Polish Copyright Act Art. 74.3 that implements the Software Directive, does

not contain an open list, but according to some authors it should be interpreted to include

activities not expressly mentioned therein (See e.g., J. Barta, R. Markiewicz, Prawo

autorskie [Copyright] (Wolters Kluwer 2008), 133). At the same time, the Polish Copy-

right Act expressly extends the protection granted in the Software Directive by including

all kinds of lending in exclusive distribution rights (whereas the recitals of the Software

Directive expressly leave public lending outside of its scope); this can be regarded as an

implementation of the Rental Directive. Under U.S. Copyright Act software-related copy-

rights cover: reproducing, preparing of derivative works, distributing. For sake of simpli-

city, in this thesis we assume that copyright covers copying, modifying, and distributing,

which generally corresponds to the scope of copyright under all laws known to us.

Towards_an_Improved_def.indd 46Towards_an_Improved_def.indd 46 23-02-2010 10:49:1523-02-2010 10:49:15

47Definitions and basic notions

(4) Redistributing and releasing software constitutes a form of distribu-
tion. Sometimes it may be possible to release a program without
distributing it, but we fi nd it hardly possible without copying.47

We illustrate the relations between the six activities covered by the FSD and
the three activities covered by copyright in Figure 2.1.

Figure 2.1: Relations between the FSD and copyright law

In Figure 2.1 thick circles represent aggregates of activities that involve copy-
ing, modification, or distribution (all three aggregates covered by copyright).
Thin circles represent activities that involve running, studying, adapting,
redistributing, improving, and releasing (all six aggregates covered by the
FSD). Aggregates covered by copyright (copy, modify, distribute) do not have
any overlap between themselves, but the six activities covered by the FSD do
overlap with the three aggregates. Notably, under some circumstances (which
we generally find unlikely), a user could undertake the running, studying,
adapting, or improving of software without involving copying, modifying,
or distributing. Conversely, we are not aware of any type of redistribution or
release that would not involve any activities covered by copyright.

It follows that each of the six activities covered in the FSD usually
requires at least one of the activities that may be restricted using copyright. It
also follows that the exercise of all six activities covered in the FSD (i.e., the
exercise of all user freedoms) requires the exercise of all three activities cov-
ered by copyright. This means that if we restrict at least one of the activities
covered by copyright the users are not able to exercise all six activities cov-
ered by the FSD.

47 A program may be released as a web application, which is not distributed. However, in

such a case, the program has to be copied on a server.

Towards_an_Improved_def.indd 47Towards_an_Improved_def.indd 47 23-02-2010 10:49:1523-02-2010 10:49:15

48 Chapter 2

Here, we may conclude that the positive requirements of the FSD can be
translated into legal notions in the following way. A program is Free Soft-
ware if every user of the program has rights specified in the freedoms. These
rights can terminate only upon a breach of some (unclear) obligations. The
rights referred to in the FSD should allow users to exercise all six activities
mentioned therein. Using the copyright notions of (1) copying, (2) modify-
ing, and (3) distributing one can conclude that the rights required by the FSD
for users are copyrights. In other words, the FSD requires that users are free
to exercise all activities covered by copyright. Nevertheless, the FSD does
not require to release software from copyright protection, such as by trans-
ferring it to the public domain. In particular, the FSD does not forbid exercis-
ing one’s copyright in software by licensing. Indeed, the FSD has been
applied in practice by the Free Software Foundation (hereinafter the “FSF”)48
to scrutinize whether various software licenses meet the criteria for Free
Software. As a result, the FSF has held many different licenses as FSD-com-
pliant. Programs released under these licenses are Free Software.

(2) Negative requirements
The FSD generally prohibits to impose restrictions on Free Software. Particu-
lar attention is given to contract restrictions. The basic rule of the law of con-
tracts is the freedom of parties. It means that there are almost no limitations
on the restrictions that a party to a contract may impose on the other party,
provided that there is an agreement. Consequently, the FSD states that it is
impossible to list all possible contract restrictions and it reserves to the FSF
the right to scrutinize each case separately. According to the FSD, “[i]f a con-
tract-based license restricts the user in an unusual way that copyright-based
licenses cannot, and [such a way] isn’t mentioned here as legitimate, we will
have to think about it, and we will probably decide [that the license] is non-
free.” So, we have to note that the list of negative requirements in the FSD is
not exhaustive, it contains examples only.

We identify the following negative requirements explicitly indicated in
the FSD. The FSD prohibits to impose three conditions on the exercise of the
freedoms: (1) payment, (2) notification, and (3) export control. First, under
the FSD the payment for Free Software cannot be used to extend the rights of
the users who paid for Free Software as compared to the rights of users who
received it without payment. Remarkably, this does not prohibit selling Free
Software or otherwise develop or distribute it against remuneration. The
FSD explicitly states that commercial use of Free Software has to be always
allowed. Second, the FSD requires that users have to be allowed to exercise
their freedoms without having to notify anyone. Third, the FSD does not

48 The Free Software Foundation is a non-profi t organization established by Richard M.

Stallman. It promotes Free Software and it maintains the FSD. In particular, it scrutinizes

various software licenses in order to determine whether they are compliant with the FSD.

See, http://www.fsf.org.

Towards_an_Improved_def.indd 48Towards_an_Improved_def.indd 48 23-02-2010 10:49:1523-02-2010 10:49:15

49Definitions and basic notions

allow to demand that the user observes any export control regulations to be
able to exercise the freedoms.49

(3) Optional requirements
We identify four optional requirements of the FSD. First, the FSD allows to
demand that the users distribute a Free Software program in a specific way,
as long as they “don’t conflict with the central freedoms” (we would like to
refer to this requirement as “distribution rules”). Second, the FSD allows to
demand that users package modified versions of Free Software in a particu-
lar way. However, this cannot block the freedom to release modified versions
(Freedom 3) (we would like to refer to this requirement as “packaging
rules”). Third, the FSD allows to demand that if a program is made available
in a certain way, it also has to be made available in some other way (we
would like to refer to this requirement as “publishing rules”). Fourth, the
FSD allows to demand from a user who distributes a modified version to
send a copy to a previous developer or to provide identification (we would
like to refer to this requirement as “reporting rules”).50

The FSD permits to impose the above mentioned rules provided some
limits are observed. However, the FSD does not specify where exactly these
limits are. Most probably, the limits have to be interpreted from the overall
goal of the FSD and from the practice of its application. First, the whole
phrasing of the FSD suggests that its goal is to safeguard the interest of users.
This means that any ambiguities should not be used to decrease user free-
doms. Second, from the licenses approved by the FSF as FSD-compliant it
follows that in practice it is not possible to impose any material obligations
on users.51 We may conclude from the above that optional requirements are
of minor importance. User freedoms have to remain practically unaffected
by them, otherwise a program could not be called “Free Software”.

2.1.3 Addressees of the FSD

A natural question that arises here is: to whom are all the requirements of the
FSD addressed? In other words, who is required to observe that some items
are present (positive requirements), who is not allowed to restrict users (neg-

49 The FSD notes that this would not make the export control regulations inapplicable. It

would only allow users, who are outside of the jurisdictions where these regulations

apply, to exercise their freedoms.

50 A careful reader should ask how can such reporting rules be consistent with the negative

requirement to be allowed to exercise the freedoms without having to notify anyone. The

FSD does not provide a clear guidance on this issue.

51 Free Software licenses usually require to provide users with certain information (copyright

notices, license text), and pass through liability limitations and warranty disclaimers. Some

licenses contain also so-called copyleft clauses, which require not to restrict user freedoms

and provide them with source codes. For a good overview of notice requirements in vari-

ous Free Software licenses see: Heather J. Meeker, The Open Source Alternative

Understanding Risks and Leveraging Opportunities (Wiley, 2008), 83 et. seq.

Towards_an_Improved_def.indd 49Towards_an_Improved_def.indd 49 23-02-2010 10:49:1623-02-2010 10:49:16

50 Chapter 2

ative requirements), and who has to observe certain limits while demanding
some performance from users (optional requirements)?

Obviously, all these requirements are addressed to copyright holders.
However, there are many other entities that are able to restrict users in a way
contrary to all the requirements of the FSD. For example, some Free Software
distributors conclude contracts whereby users undertake to use certain
short-listed software only, or to refrain from modification or distribution.52
The distributors can alternatively attempt to restrict users by making a Free
Software program a part of a device or a service (i.e., by using the architec-
ture). Also, some patent holders could enforce their software-related patents
against users of Free Software, restricting their freedoms as a result. How-
ever, the FSF has not declared that programs subject to such third-party
restrictions are non-Free Software. The FSF makes the FSD applicable only to
licenses that regulate a relationship between users and copyright holders.
So, only copyright holders are the addressees of the requirements of the FSD.
We illustrate this in Figure 2.2.

Figure 2.2: Addressees of the FSD

In Figure 2.2 we see a black dot that represents a copyright holder to a Free
Software program (licensor). Other dots (grey and white) represent users
bound by the license granted by the licensor and, possibly, with some con-
tract restrictions that accompany the license. These relations with the licen-
sor are represented by solid arrows and only these relations are regulated by
the FSD. As we already explained in the previous chapter, some users (grey
dots) become software distributors and distribute Free Software to other
users. Users (white dots) that obtain a Free Software program from distribu-

52 See: Slashdot, Hans Reiser Speaks Freely About Free Software Development, at: http://devel-

opers.slashdot.org/article.pl?sid=03/06/18/1516239&tid=156&tid=11. (“You do all

understand that while the GPL doesn’t permit tying by license, distros have now moved

to using threats of invalidating support contracts to achieve the market leverage they

need to exclude competitors, yes? By doing this they can exclude mainstream offi cial

kernels from being used, exclude rival fi lesystems, exclude whatever might lead to less

customer lockin.”)

Towards_an_Improved_def.indd 50Towards_an_Improved_def.indd 50 23-02-2010 10:49:1623-02-2010 10:49:16

51Definitions and basic notions

tors still remain in a direct relation with the licensor.53 They are also in rela-
tion with the distributors, usually based on a contract concluded with the
distributor, based on an additional distributor’s license, or because they use
the distributor’s service or device. The relations with distributors are repre-
sented using dashed arrows. None of the user-distributor relations results in
the program becoming non-Free Software. The FSD does not regulate the
relations between distributors and users.54

Here, we may conclude that all requirements of the FSD are addressed to
copyright holders only. They are not addressed in particular to distributors
or other third parties such as patent holders.

2.1.4 Conclusion on Free Software Definition

From the above analysis we may conclude that the subject matter of the FSD
is software. Programs are “Free Software” as defined in the FSD as long as
their source codes (most preferably together with the binaries) are made
available under a license that allows not only to use the software, but also do
develop and distribute it. Any restrictions on standards used by a program
do not affect compliance with the FSD at all.

Also, we may conclude that for a software license to be FSD-compliant it
has to allow users for all three activities covered by copyright (copying,
modification, distribution). The license cannot impose any material restric-
tions, in particular contract restrictions. The FSD does not contain any
exhaustive list of forbidden restrictions, but it specifically forbids to condi-
tion the freedoms upon (1) payment, (2) notification, and (3) compliance
with export control regulations. Nevertheless, it is allowed to impose some
minor conditions specified in the optional requirements of the FSD. We iden-
tify them as: (1) distribution rules, (2) packaging rules, (3) publishing rules,
and (4) reporting rules. These conditions are of minor importance, because
the overall goal of the FSD and the practice of its application do not allow to
use them to affect user freedoms materially.

Additionally, we may conclude that the addressees of the FSD are copy-
right holders (licensors) only. This means that an FSD-compliant license
granted by the copyright holder in a program is sufficient for the program to
become Free Software. Any restrictions applied by third parties, such as dis-
tributors or patent holders, escape the scrutiny. Thus, it is possible to call a
program “Free Software” even though it would be subject to restrictions out-
side the FSD. In other words, compliance with the FSD means that the free-
doms have been granted, but it does not mean that they are protected under
all circumstances, and that they may be exercised in a particular context.

53 See FN 86.

54 Such a relation may be regulated by a Free Software license (e.g., using copyleft), but there

are licenses that do not contain such regulations (e.g., non-copyleft licenses), which are still

FSD-compliant.

Towards_an_Improved_def.indd 51Towards_an_Improved_def.indd 51 23-02-2010 10:49:1623-02-2010 10:49:16

52 Chapter 2

In this thesis we follow the FSD and treat as “Free Software” any soft-
ware that is subject to an FSD-compliant license. Subsequently, we analyse
how the freedoms in such software are protected in a particular context of
software communities and eGovernments. Therefore, we do not adopt
another possible approach, which would be to treat software as “Free Soft-
ware” only if users may exercise all their freedoms under any circumstance.

2.2 Open Source Software

Essentially, Open Source Software is available to any interested party togeth-
er with the rights to control its working. The rights encompass source codes,
not only the binaries. Thus, a question arises whether “Open Source Soft-
ware” is the same as “Free Software”. In order to answer this question and to
explain the relationship between these two terms, it is necessary at least to
analyse the formal Open Source Definition (“OSD”).55 The OSD is used by
the Open Source Initiative to award certification marks for software licenses
that fulfil ten minimum criteria for the scope of rights set thereto. These min-
imum criteria are as follows.56

(1) Free redistribution
(2) Access to source code
(3) The right to prepare and distribute derived works
(4) Protection of integrity of the author’s source code
(5) No discrimination against persons or groups
(6) No discrimination against fi elds of endeavor
(7) Distribution of license as an adhesive standard form
(8) License must not be specifi c to a product
(9) License must not restrict other software that is distributed along
(10) License must be technology-neutral.

The FSD and the OSD cannot be easily compared. Certainly, it is possible to
indicate the following relations. For example, “free redistribution” corre-
sponds with Freedom 2, the freedom to redistribute. “Access to source codes”
and “the right to prepare and distribute derived works” each correspond
with both Freedom 1 (the freedoms to study and adapt) and Freedom 3 (the
freedoms to improve and release). “No discrimination against persons or
groups”, “no discrimination against fields of endeavor”, “license must not
restrict other software that is distributed along”, and “license must be tech-
nology-neutral” all correspond to some extent with Freedom 0 (the freedom

55 Open Source Initiative, Open Source Defi nition, at: http://opensource.org/docs/defi ni-

tion.php.

56 See: the Open Source Defi nition, op.cit.. The document elaborates on all these 10 criteria.

For a good commentary on the OSD see: Andrew M. St. Laurent, Understanding

Open Source and Free Software Licensing (O’Reilly, 2004), 8 et seq.

Towards_an_Improved_def.indd 52Towards_an_Improved_def.indd 52 23-02-2010 10:49:1623-02-2010 10:49:16

53Definitions and basic notions

to run the program). The remaining conditions of the OSD do not correspond
with the FSD in such a direct way. It follows that the OSD covers all require-
ments of the FSD and probably some additional requirements.

However, in practice the OSD has been applied in the evaluation of
licenses in a similar manner as the FSD. All most popular model Free Soft-
ware licenses are certified as “Open Source”.57 Thus, it seems reasonable to
assume that there are no substantial normative differences between software
referred to as “Free” and “Open Source”.58 Additionally, since this thesis is
about the protection of user freedoms as defined in the FSD, there is no need
to undertake any further analysis of the OSD.

2.3 Open standards

The notion of “open standards” is closely related to Free Software. We have
highlighted this relation already when discussing the combinations between
software and standards in Subsection 1.1.3. The essence is that a Free Software
program may be required to interoperate with other programs. Such other
programs may use a closed standard, or an open standard. Either way, the
choice of a standard affects the capability of Free Software programs to inter-
operate with such other programs.59 Consequently, the choice of a standard

57 Compare: Free Software Foundation, Various Licenses and Comments About Them, at:

http://www.gnu.org/philosophy/license-list.html with: Open Source Initiative, The
Approved Licenses, at: http://opensource.org/licenses/.

58 See: Richard M. Stallman, Why “Free Software” is better than “Open Source”, at: http://

www.fsf.org/licensing/essays/free-software-for-freedom.html.

59 Interoperability is often defi ned as the capability of different elements to exchange infor-

mation, to understand it and reuse. There are three levels of interoperability: (1) technical

interoperability means the set of technical requirements that have to be observed in order

to allow the exchange of information between IT systems; (2) semantic interoperability

means the ability to understand the information exchanged; and (3) organizational inter-

operability, which is the ability to use and reuse the information across the systems (Euro-

pean Commission, IDABC, Linking up Europe: the Importance of Interoperability for eGovern-
ment Services, Commission Staff Working Paper, 7 (EC 2003), at: http://europa.eu.int/

idabc/servlets/Doc?id=1675). For example, in order for an application to interoperate

properly with an operating system, it has to use the interfaces of the system. With the

help of interfaces, it is also possible for one application to interoperate with another one.

Network protocols provide for the interoperability of the layers of a network. (On “lay-

ers” see: Wikipedia, OSI Model, at: http://en.wikipedia.org/wiki/OSI_model) In case of

the Internet, its interoperability is strongly dependent on the design of its standard proto-

cols according to the layer transparency principle and the end-to-end principle. (On “lay-

er transparency” see: Lawrence B. Solum, Minn Chung, The Layers Principle: Internet
Architecture and the Law, 79 Notre Dame Law Review 815, 816 (2004); on “end-to-end”

see: J.H Saltzer, D.P. Reed, D.D. Clark, End-to-End Argument in System Design, 2 ACM

Transactions in Computer Systems 277 (1984), at: http://web.mit.edu/Saltzer/www/

publications/endtoend/endtoend.pdf). As far as the data formats are concerned, two

given applications would not be capable of interoperation unless the sender’s application

provided the data in a format supported by the recipient’s application.

Towards_an_Improved_def.indd 53Towards_an_Improved_def.indd 53 23-02-2010 10:49:1623-02-2010 10:49:16

54 Chapter 2

by developers of other programs indirectly affects user freedoms in the Free
Software program. Below, we explain this indirect relation between open
standards and Free Software in more detail.

In this thesis we refer to standards of (1) interfaces, (2) protocols, and (3)
data formats.60 Interfaces may be defined as communication methods
between all elements of a computer (i.e., its hardware, operating system, and
applications). Protocols usually refer to the methods of communication
between programs (and other elements of IT systems) that interoperate over
a network, such as the Internet. Data formats refer to the representation of
the information constituting the communication itself. Thus, standards
should not be mistaken for software. Rather, they only specify how software
should work (precisely speaking, how it should interoperate). As we already
explained, in practice interoperability depends on the access to “standard
specifications”. Specifications are documents that contain the information
necessary to develop a program that is able to interoperate using the stan-
dard in question.61

For a standard to be open, its specification should not be just available,
but also contain as much quality information as possible. The quality influ-
ences the degree of interoperability of programs and the number of different
programs that may interoperate.62 Additionally, there should be only mini-
mum restrictions on the use of the information necessary to implement an
open standard, and on the use of the implementations. It is possible to imag-
ine multiple sources of such restrictions,63 but the ones most commonly
referred to in discussions about the openness of standards are patents that are

60 For a widely accepted defi nition of a “standard” in general see: ISO/IEC Guide 2:2004

Standardization and related activities – General vocabulary.

61 If the specifi cation of a standard is ambiguous or incomplete, access to the standard’s

reference implementation may also be necessary. If a standard is implemented in soft-

ware the access to its reference implementation would encompass making available its

source codes. Conversely, if there is no specifi cation available, the knowledge of source

codes or decompiled binaries of a program that implements a standard, theoretically

allows a suffi ciently skilled person to enable a program to interoperate by using this

standard. However, reconstructing interfaces, protocols, and data formats by studying

binaries or even source codes, without access to specifi cations is extremely ineffi cient and

impracticable.

62 Bruce Perens indicates that open standards must allow a wide range of implementations

that may be created by various entities (businesses, academia, public projects). See: Bruce

Perens, Open Standards Principles and Practice, at: http://perens.com/OpenStandards/

Defi nition.html.

63 For example, the practice of “embrace-and-extend” is based on offering standard imple-

mentations together with extensions that themselves are not standard-compatible. See:

Bruce Perens, Open Standards Principles and Practice, at: http://perens.com/OpenStan-

dards/Defi nition.html.

Towards_an_Improved_def.indd 54Towards_an_Improved_def.indd 54 23-02-2010 10:49:1623-02-2010 10:49:16

55Definitions and basic notions

material to the standard.64 All these elements depend in practice (1) on design-
ers of standards who prepare their specifications and (2) on holders of mate-
rial patents. The designer and the patent holder may occasionally be the
same person.

In this thesis, we would like to follow the definition of open standards
included in the European Interoperability Framework v. 1.0 (henceforth the
“EIF”).65 The EIF defines open standards as:66

(1) adopted and maintained by a not-for-profi t organization, with its
development process occurring on the basis of an open decision-
making procedure available to all interested parties;

(2) published with the specifi cation available for free or at a nominal
charge, with the right to copy, distribute, and use it;

(3) the intellectual property of the standard made irrevocably available
on a royalty-free basis; and

(4) without constraints on the re-use of the standard.

From the above we may conclude that the indirect relation between open
standards and user freedoms is as follows. The less restrictions on a stan-
dard, the more programs may use it to interoperate. In particular, an open
standard may be implemented in Free Software without any major prob-
lems. This allows to use such software in an environment consisting of other
programs based on the open standard. Thus, it allows to make such software
work better. Undoubtedly, this reinforces the freedoms, because it makes it
more easy and practical to use, adapt, distribute, and improve programs,
especially in a networked environment. Otherwise, these activities would be
either impractical, or lead to an infringement of somebody’s right (e.g.,
a material patent). Therefore, it is necessary to analyse the notion of open

64 See, e.g., Janice M. Mueller, Patent Misuse Through the Capture of Industry Standards, 17

Berkeley Technology Law Journal 623 (2002) (arguing that “patent owners should

have a mandatory obligation to disclose the existence of any patents or pending applica-

tions that are material to the standard during their participation in the standards-setting

process” (at 630)).

65 At the moment of this writing (2009), the consultations of the EIF 2.0 have fi nished. See:

http://ec.europa.eu/idabc/en/document/7728. For a good overview of other under-

standings of the notion of “open standards” see: WIPO (Standing Committee on the Law

of Patents), Standard and Patents, (18 February 2009, SCP/13/2), at: http://www.wipo.

int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf.

66 The European Interoperability Framework (EIF, at: http://europa.eu.int/idabc/serv-

lets/Doc?id=19528), is the document that “represents the highest-ranking module of a

comprehensive methodological tool kit for implementing pan-European eGovernment

services” (id. at 5). EIF defi nes open standards at page 9. See: Nicos L. Tsilas, The Threat to
Innovation, Interoperability, and Government Procurement Options From Recently Proposed
Defi nitions of “Open Standards”, Special Issue Global Flow of Information, Autumn

2005 (at: http://www.ijclp.org/10_2005/pdf/ijclp_08_10_2005.pdf).

Towards_an_Improved_def.indd 55Towards_an_Improved_def.indd 55 23-02-2010 10:49:1623-02-2010 10:49:16

56 Chapter 2

standards while discussing the protection of user freedoms. In this thesis we
will undertake such an analysis in particular in the context of eGovernments
(see Chapter 5).

2.4 Software communities

The beneficiaries of freedoms granted to Free Software may be individuals,
firms, government agencies, etc. Many such users remain passive and exer-
cise only Freedom 0, by using Free Software for a purpose of their choice.
Other freedoms are exercised by active users only. Many such active users
organize themselves in communities. In this thesis, we use the term software
community, or simply community, to describe a group of entities that collabo-
rate in the development of a Free Software project and that may also distrib-
ute the project to other users, as well as that provide guidance on its use.67

We use the word project, not program, in the description of software com-
munities because not all software communities are organized around single
Free Software programs (such as the Linux kernel community). There are
many communities of gathered around combinations of programs organized
in a functional whole (such as GNU/Linux distributions, desktop environ-
ments, office suites, etc.). Strictly speaking, we should refer to at least three
types of software communities: (1) communities of single Free Software pro-
grams, (2) communities of combinations of programs, and (3) the overall
“Free Software Community”.

Because there are many Free Software programs and the differences
between them are large, there are many Free Software communities, and the
overall “Free Software Community” is not homogeneous. In our research we
focus on communities of hierarchical and quite formalized structures. They
may be communities that maintain single programs (such as the Linux ker-
nel) or communities that maintain combinations of programs (such as of a
GNU/Linux distribution). We anticipate that such communities would have
the strongest possible impact on user freedoms. Additionally, such commu-
nities may have developed the most significant and advanced Free Software
projects. So, we do not include in the analysis less organized communities
and one-person projects, as we assume that they do not involve any major
qualitative change in the way user freedoms are exercised or protected.

67 This defi nition may not be in compliance with the strict sociological meaning of “com-

munity”. For some sociological analysis, see, e.g.: Margaret S. Elliot, Walt Scacchi, Free
Software Development: Cooperation and Confl ict in A Virtual Organizational Culture, in: S.

Koch (ed.), Free/Open Source Software Development (Idea Publishing, 2004), book

chapter at: http://www.ics.uci.edu/~wscacchi/Papers/New/Elliot-Scacchi-BookChap-

ter.pdf (referring to the concept of a community of practice, defi ned as “a group of people

who share similar goals, interests, beliefs, and value systems in a common domain of

recurring activity or work”).

Towards_an_Improved_def.indd 56Towards_an_Improved_def.indd 56 23-02-2010 10:49:1623-02-2010 10:49:16

57Definitions and basic notions

We also do not analyse the overall Free Software Community, since we do
not find that it has developed any organization sufficient for our analysis,
but in passing we mention how the overall community affects user free-
doms. It follows that there are projects and communities not referred to in
this thesis, to which our findings and conclusions may not apply.68

We discuss how software communities affect user freedoms in Chapter 4.

2.5 eGovernment

We use the following understanding of eGovernment. It is any communica-
tion directed to or originating from public administration that is carried out
with the use of information technologies, in particular with the use of com-
puter programs, usually interoperating over a network such as the Inter-
net.69 The notion of eGovernment should not be limited to internal commu-
nications of public administration only. Here, we would like to adopt a
broader understanding and even focus on communications with the indi-
viduals, firms, and other users of government services.

The types of communications that we would like to include in eGovern-
ment are:

(1) making available various public information, e.g., on the WWW,
(2) making it possible or sometimes even making it mandatory to use

information technologies in order to exercise rights or perform obli-
gations vis-à-vis the state, and

(3) realizing the notion of open society by initiating public consultations
on draft laws or on any other decisions that affect public interest.

As we already indicated in Chapter 1, the government significantly affects
all other actors in the scene of software and standards. This is mostly due
to the fact that the government generates significant demand impulses in
the software market, namely the demand for software to be used in eGov-
ernment. The government does that by exercising the dominium, i.e., activi-
ties such as procurement and performance of contracts. The government
can also interfere using the imperium, i.e., the power of the executive to issue
regulations that bind the actors or the audience in the scene of software or

68 See: Kevin Crowston, James Howison, The social structure of free and open source software
development, Firstmonday, at: http://www.fi rstmonday.org/issues/issue10_2/crow-

ston/index.html; Sandeep Krishnamurthy, Cave or Community? An Empirical Examination
of 100 Mature Open Source Projects, Firstmonday, at: http://www.fi rstmonday.org/issues/

issue7_6/krishnamurthy/index.html.

69 Compare: EC Communication, The role of eGovernment for Europe’s future, (COM(2003) 567,

not published in OJ); See also: Wikipedia, eGovernment, at: http://en.wikipedia.org/

wiki/eGovernment.

Towards_an_Improved_def.indd 57Towards_an_Improved_def.indd 57 23-02-2010 10:49:1723-02-2010 10:49:17

58 Chapter 2

standards. The dominium and the imperium are exercised by the executive
branch of the government. Additionally, the government can interfere on the
scene of software or standards using its two remaining branches: the legisla-
tive and the judiciary. In this thesis we would like to focus on the govern-
ment (the executive branch) acting within its dominium. Precisely speaking,
we will closely analyse the impact on user freedoms of the dominium when
exercised in order to introduce eGovernment. Only after we find that as a
result of using the dominium user freedoms are affected negatively, or the
dominium is unable to affect them positively, we will discuss using the impe-
rium, as well as the legislative or the judiciary, in the construction of an
improved framework.

By using the standards as a criterion, it is possible to enumerate two vari-
ants of eGovernment:

(1) eGovernment based on closed standards (henceforth called “Closed
eGovernment”);

(2) eGovernment based on open standards (henceforth called “Open
eGovernment”).

In Chapter 5 we introduce sub-variants of eGovernments and discuss how
all of them affect user freedoms.

Towards_an_Improved_def.indd 58Towards_an_Improved_def.indd 58 23-02-2010 10:49:1723-02-2010 10:49:17

3 Regulatory framework of Free Software

In this chapter we reconstruct a model of the current regulatory framework
of Free Software. The framework consists of (1) rules that regulate user free-
doms (i.e., rules for using, developing, and distributing Free Software) and
(2) relations between the rules. Below, we recall our findings so far and then
stipulate a working programme.

In Chapter 1 we identified two subscenes of a world where humans and
computer programs cooperate. These are (1) the scene of software itself and
(2) the scene of standards used by software. We concluded that there are two
necessary conditions for a person to be able to control the working of a pro-
gram. There should be: (1) access to source codes of the program, and (2)
access to specifications of the standards used by the program to interoperate
with other programs. We also concluded in Chapter 1 that the conditions of
the protection of user freedoms are the same as the conditions of the control
over the working of programs. Consequently, (1) access to source codes and
(2) access to specifications of standards are both necessary for the protection
of user freedoms. So, we should identify rules for both software (in particu-
lar source codes) and standards (in particular specifications of standards).

In Chapter 2 we stated that Free Software is software that is available to
any interested party together with certain rights. The rights allow anyone to
distribute an original Free Software program.70 Also, anyone is allowed to
develop an improvement71 of such a program, and distribute improve-
ments.72 This means that a user can obtain either (1) an original Free Soft-
ware program, or (2) an improvement of such a program. Additionally, this

70 In fact no-one usually distributes the original program per se. Rather, copies of the pro-

gram are distributed, while the original is kept by the copyright holder. Here, we use the

term “original” to indicate a verbatim copy of the original program. Sometimes, when

speaking in the context of copyrights and proprietary software, “original” is also used to

mean “authorized by the copyright holder”, not necessarily verbatim. We do not use this

meaning of “original” in this thesis, since Free Software licenses contain such an authori-

zation and it would be quite hard to indicate a “non-original” Free Software in this mea-

ning. Nevertheless, it is possible to talk about “offi cial versions” of Free Software pro-

grams (see Section 4.2).

71 Certainly, anyone is also allowed to make the program worse. For practical reasons, we

focus only on such manipulations with programs that result in improvements.

72 An improvement may be a modification of the program (a patch, an update, or an

upgrade). An improvement may also consist of the program combined together with

another program to make a new product. Here, we include improvements that are made

by combining one’s own material with the program, as well as by combining the program

with a third party program. By “combining” we intend to cover many different software

engineering techniques, such as linking, interaction through APIs, creating plug-ins, etc.

Different combinations can have different legal consequences.

Towards_an_Improved_def.indd 59Towards_an_Improved_def.indd 59 23-02-2010 10:49:1723-02-2010 10:49:17

60 Chapter 3

means that a developer or a distributor of Free Software can be either (1) its
copyright holder, or (2) a third party. There are numerous combinations
between who develops and distributes Free Software, and what kind of Free
Software is developed and distributed. These combinations form various
development and distribution chains. We illustrate example development
and distribution chains in Figure 3.1.

Figure 3.1: Example development and distribution chains

It is possible to imagine an unlimited number of additional development
and distribution chains other than the ones presented in Figure 3.1. Yet, we
need to construct a model of the framework applicable to all the chains. In
order to do so, we have to group all of them into a limited number of classes.
In Figure 3.1 we can see that certain chains are similar, at least from the point
of view of the user (i.e., at the last point of the chain). The similarity is that in
each chain (1) the user obtains either an original or an improved Free Soft-
ware program and (2) the user obtains them either from their copyright
holders or from third parties. This means that any development and distri-
bution chain can be assigned to one of four classes. There are four classes,
because there are only four combinations between who distributes and what
is distributed. We present these combinations in the following Table 3.1.

Towards_an_Improved_def.indd 60Towards_an_Improved_def.indd 60 23-02-2010 10:49:1723-02-2010 10:49:17

61Regulatory framework of free software

copyright holder third party

original

a user obtains an original Free

Software program from the

copyright holder of the original

a user obtains an original Free

Software program from a third

party

improvement

a user obtains an improvement

of a Free Software program

from the copy right holder of

the improvement

a user obtains an improvement

of a Free Software program

from a third party

Table 3.1: Four combinations between who distributes and what is distributed

Some clarifications are necessary with regard to Table 3.1. The bottom row
refers to improvements of Free Software. Given the unencumbered distribu-
tion of Free Software, there can be a case that someone distributes improve-
ments copyrighted (developed) by someone else. Actually, this is a common
situation in the Free Software scene. All these situations are represented in
the bottom-right cell of Table 3.1. We remark that this cell covers both a situ-
ation when the improvement is distributed by a third party that has no copy-
right title to the improvement at all, as well as a situation when the improve-
ment is distributed by the copyright holder of the original (who is then a
third party from the point of view of the user and the copyright holder of the
improvement).

Consequently, the bottom-left cell represents only a situation when the
improvement is distributed by its copyright holder (the copyright holder of
the improvement). As far as the top row is concerned, the top-left cell repre-
sents only a situation when the original is distributed by its copyright holder
(copyright holder of the original). The top-right cell represents both a situa-
tion when the original is distributed by a third party without any copyright
title, as well as a situation when the original is distributed by the copyright
holder of an improvement of the original (who is a third party from the point
of view of the user and the copyright holder of the original).

In each of the four combinations presented in Table 3.1 user freedoms
could be affected. So, in this chapter we reconstruct a model of the current
regulatory framework that includes rules (and relations between the rules)
that regulate user freedoms in all these four combinations. Our process is as
follows.

(1) We identify the rules for software and relations between them (see
Section 3.1).

(2) We identify the rules for standards and relations between them (see
Section 3.2).

(3) We reconstruct a model of the current framework for further analy-
sis (see Section 3.3).

(4) Finally, we present chapter conclusions (see Section 3.4).

Towards_an_Improved_def.indd 61Towards_an_Improved_def.indd 61 23-02-2010 10:49:1723-02-2010 10:49:17

62 Chapter 3

Below, whenever we include a rule or a relation in the model of the frame-
work, we assign it with a number. For the sake of clarity we separately num-
ber rules and relations. “RUx” stands for a number of a rule, where x is a
consecutive integer number. “REy” stands for a number of a relation, where
y is a consecutive integer number.

3.1 Identification of rules for software and relations between them

We start the identification of rules for software by identifying the default rule.
Then, we identify the remaining rules. The default rule can be identified by
taking a closer look at the requirements of the FSD vis-à-vis the current copy-
right law. Essentially, the FSD requires to grant users their freedoms. More
specifically, the FSD requires that all users of a program should be free to
perform six activities with source codes and binaries of the program. These
activities are: (1) running, (2) studying, (3) adapting, (4) redistributing, (5)
improving, and (6) releasing. According to current copyright law, copyright
holders have exclusive control over programs. Basically, they control the fol-
lowing three activities: (1) copying, (2) modification, and (3) distribution of
programs. The exclusive control means that persons not authorized by copy-
right holders are not allowed to perform any of these three activities.73 Nota-
bly, the six activities covered by the FSD are included in the three activities
that may be restricted using copyright.74 This means that by default copy-
right holders have exclusive control over the six activities covered in the
FSD.75 So, the freedoms do not exist as a default, and the default rule is as fol-
lows.

The default rule: Under the current copyright law, users are allowed to exercise all six

activities covered by the FSD only if copyright holders authorize them to perform all

three activities covered by copyright law. This means that copyright holders are allowed to

prevent users from exercising all six activities covered by the FSD.

In particular, no-one can become a user, developer, or a distributor of a program unless

the copyright holder of the program agrees.

73 The exclusive control has certain exceptions, such as the idea/expression dichotomy, time

bar, fair use, fi rst sale, and no prohibition against independent creations of copyrighted

works. Additional exceptions are provided for by some software-specifi c regulations,

such as the limited decompilation right. These exceptions, however, do not affect the

exclusive nature of control materially.

74 Cf. our fi ndings in Subsection 2.1.2.

75 Nowadays, copyright protection applies automatically and without any formalities from

the moment an original program is written. Also, owing to international law, such as the

Berne Convention, TRIPS, and WIPO Copyright Treaty, copyrights have been signifi cant-

ly harmonized over the world. Copyright laws are imposed by governmental regulation.

In the broadest sense, this rule is imposed and enforced by all government branches: the

legislative, the executive, and the judiciary. Such regulation is generally binding. Thus,

currently copyright holders easily obtain exclusive rights to software that are effective

erga omnes in a signifi cant number of jurisdictions all over the world.

Towards_an_Improved_def.indd 62Towards_an_Improved_def.indd 62 23-02-2010 10:49:1723-02-2010 10:49:17

63Regulatory framework of free software

A user can obtain an original Free Software program if only the copyright
holder of the original agrees to make it available as Free Software. It follows
that the default rule covers both combinations presented in the top row of Table
3.1 (i.e., combinations related to original programs). The remaining two com-
binations (bottom row) are related to improvements. Improvements are usu-
ally derivative works or collective works based on the original program.76 Under
the current copyright law, the exercise of the freedoms in such improvements
requires both (1) the consent of the copyright holder of the original, and (2) the
consent of the copyright holder of the improvement. It follows that the default
rule covers also both combinations presented in the bottom row of Table 3.1
(i.e., combinations related to improvements). In all four combinations the
respective copyright holders have to agree to the exercise of user freedoms.
Thus, the default rule regulates all four combinations presented in Table 3.1.

We include the default rule as the first rule in the model of the framework
(RU1). In the remainder of this section we identify other rules and relations
between them that we also include in the framework. We first identify the
rules and relations that follow from Free Software licenses (3.1.1). Then, we
identify the other rules for software (3.1.2). Finally, we formulate our conclu-
sions on rules for software and on relations between them (3.1.3).

3.1.1 Free Software licenses

Below, we analyse four issues related to Free Software licenses and we iden-
tify rules and relations that follow from these issues. The issues are: (1) the
grant of freedoms, (2) the right to fork, (3) copyleft, and (4) the hacker immunity.

(1) The grant of freedoms
Consent of copyright holders is necessary for users to exercise their freedoms
in all four combinations presented in Table 3.1. In case of an original Free
Software program, the copyright holder of the original has to agree. In case
of an improvement of a Free Software program, both the copyright holder of
the original and the copyright holder of the improvement have to agree. As
the reader may understand, copyright holders that follow the Free Software
approach do agree that users exercise their freedoms. The usual form used

76 Theoretically, some improvements are neither derivative nor collective works based on

the original program. In such a case they are either independent works of copyright, or

they are do not qualify as copyrightable subject matter. Some copyrighted improvements

can also constitute joint works. Here, we focus on such improvements that are copyright-

able and are derivative or collective works based on the original program. For the sake of

simplicity, we do not cover development of programs made in a direct collaboration of

various copyright holders, which would lead to a creation of joint works. We address the

joint work issue in more detail in Chapter 4.

Towards_an_Improved_def.indd 63Towards_an_Improved_def.indd 63 23-02-2010 10:49:1723-02-2010 10:49:17

64 Chapter 3

by the copyright holders is a copyright license.77 This means that software is
coined Free Software by copyright holders themselves,78 by licensing it in a
way that conforms with all the requirements of the FSD. In Subsection 2.1.4
we concluded that any FSD-compliant license allows users to exercise all
three activities covered by copyright (copying, modification, distribution).
Every such license removes copyright restrictions and does not impose any
additional material restrictions. This means that Free Software licenses con-
tain a rule that can be expressed in the following way (we call this rule “the
grant of freedoms”).

The grant of freedoms : Under a Free Software license, users (licensees) are allowed by the

copyright holder to undertake all six activities covered by the FSD. This means that the

copyright holder is not allowed to prevent users from undertaking these activities.

In particular, any person (including hackers, fi rms, and governments) or group (e.g.,
a software community) is allowed to use, develop, or distribute a Free Software program.

The relation between the grant of freedoms and the default rule is as follows. If a
copyright holder,79 who granted a Free Software license to a given original
or improved Free Software program (the licensor), attempts to prevent a
user, a developer, or a distributor (a licensee) from exercising the freedoms
by invoking the exclusive copyright, the licensee may rely on the Free Soft-
ware license as a legal defence.80 Obviously, this is possible if only the license

77 Licenses are used also by copyright holders who follow the proprietary approach. Howe-

ver, proprietary licenses are used to maintain the exclusive control of copyright holders

over their programs.

78 Such a method is usually referred to as “private ordering”. See, e.g., Yochai Benkler, An
Unhurried View of Private Ordering in Information Transactions, 53 Vand. L. Rev. 2063, (2000);

J.H. Reichman, Jonathan A. Franklin, Privately Legislated Intellectual Property Rights: Recon-
ciling Freedom of Contract with Public Good Uses of Information, 147 U. Pa. L. Rev. 875 (1999);

Amitai Aviram, A Network Effects Analysis of Private Ordering, (April 15, 2003), Berkeley

Program in Law & Economics, Working Paper Series. Paper 80, http://repositories.

cdlib.org/blewp/art8.

79 Third parties generally do not have standing as far as copyrights are concerned, i.e., they

cannot invoke the default rule unless they also hold a copyright title in the program.

80 A Free Software license does not exclude the possibility of invoking the default rule (copy-

right law) in case the licensee is in breach of the license. This issue is differently regulated

in various laws. For example, under the U.S. law licensor can rely on copyright law in

case of a license breach provided that the breached provisions are conditions not cove-

nants (see: Jacobsen v. Katzer 535 F.3d 1373 (2008) and Lawrence Rosen, Bad Facts Make
Good Law: The Jacobsen Case and Open Source, at: http://www.rosenlaw.com/BadFacts-

MakeGoodLaw.pdf). Conversely, under Polish law it is generally believed that licensor

cannot invoke exclusive copyrights against a breaching licensee, only contract-related

claims. However, for uses outside of the license, copyright claims seem admissible. (See:

the decision of the Polish Supreme Court of 20 May 1999, I CKN 1139/97, see also:

J. Barta et al., Ustawa o prawie autorskim i prawach pokrewnych. Komentarz [Act

on copyright and neighbouring rights. Commentary] (Dom Wydawniczy ABC

2001), commentary to art. 79).

Towards_an_Improved_def.indd 64Towards_an_Improved_def.indd 64 23-02-2010 10:49:1823-02-2010 10:49:18

65Regulatory framework of free software

is binding the licensor. If the license is not binding, the default rule is not
affected and copyright holders can prevent the exercise of the freedoms. Free
Software licenses attempt to bind automatically from the moment a person
undertakes an activity covered by the freedoms. Namely, the consent for the
exercise of the freedoms expressed in the licenses comes in a non-negotiable
(“take-it-or-leave-it”) form. If a person does not accept the license, the per-
son cannot exercise the freedoms, since a consent of the copyright holder is a
necessary condition of the freedoms.81 Nevertheless, there is a legal question
whether the license binds the user in all circumstances, even if it was not
expressly negotiated and agreed upon. This definitely depends on the par-
ticular circumstances and the applicable law.82 Here, we assume that most
users as well as every developer and distributor of a Free Software program

81 A license is not the only possible legal basis for the mere use of a program. Various laws

could provide alternative legal bases, such as fair use. For example, under Polish Copy-

right Act, Art. 75 (which implements the Software Directive Art. 5) a person who legally

obtained a program can use it without a license, but only to the extent necessary to per-

form its purpose (unless contractually agreed otherwise). The provision does not in par-

ticular authorize to distribute the program, and it does not allow the person to access

source codes of the program otherwise than after reverse engineering (which is further

constrained in the law). Obviously, the exercise of the freedoms on the basis of Art. 75

alone is not possible.

82 Usually, Free Software licenses are included together with source codes (it has become a

common practice to put a LICENSE or COPYING fi le in plain text together with fi les that

contain the program proper). In case of binary packages, a license may be presented as a

“click-wrap” but more often it is a part of the program’s documentation or help fi le. For

the validity of such a way to conclude a license under the U.S. law see, e.g., ProCD v. Zei-
denberg (86 F.3d 1447 (7th Cir. 1996) holding that a reference to a license outside of the box

that contained software was suffi cient to bind the user with the license, M.A. Mortenson
Co. v. Timberline Software Corp. (970 P.2d 803 (Wash. Ct. App. 1999), aff’d, 998 P.2d 305

(Wash. 2000)) holding that agreement with license terms was suffi ciently manifested by

the installation and use of software by the buyer, even if it were not individually negotia-

ted beforehand. A particularly interesting case in the Free Software context is Microstar v.
Formgen, Inc. (942 F. Supp. 1312 (S.D. Cal. 1996), aff’d in part, rev’d in part on other

grounds, 154 F.3d 1107 (9th Cir. 1998).) which concerned a level editor program of a popu-

lar computer game, Duke Nukem 3D. Neither reading nor accepting the license was the

precondition of using the program. The license was contained in LICENSE.DOC fi le on

the disk together with other program’s fi les and was only referred to in the opening

screen of the program. It was not presented on the computer screen, there was no notice

on the box, and no fi xed period to return and withdraw. The defendant argued that no

average user would access the license fi le, but the court did not fi nd this persuasive. For

more U.S. caselaw analysis see: Kevin W. Grierson, Enforceability of „Clickwrap“ or „Shrink-
wrap“ Agreements Common in Computer Software, Hardware, and Internet Transactions, 106

American Law Reports 5th 309. For case law related specifi cally to Free Software licen-

sing see: Wallace v. Free Software Foundation, at: http://www.groklaw.net/pdf/WallaceFS-

FGrantingDismiss.pdf, Harald Welte v. D. GmbH, at: http://www.jbb.de/judgment_dc_

frankfurt_gpl.pdf, or Jacobsen v. Katzer 535 F.3d 1373 (2008).

Towards_an_Improved_def.indd 65Towards_an_Improved_def.indd 65 23-02-2010 10:49:1823-02-2010 10:49:18

66 Chapter 3

(original or improved) are licensees (while the copyright holder of the pro-
gram is the licensor).83

The grant of freedoms in a Free Software license allows users to exercise
their freedoms (1) only vis-à-vis the copyright holder who granted them and
(2) only in the Free Software program subject to the grant (original or
improved). First, under the grant of freedoms alone, third parties are not
obliged to allow users to exercise their freedoms in a Free Software pro-
gram.84 So a distributor is allowed to distribute a Free Software program and
restrict user freedoms at the same time. Second, the grant of freedoms in an
original program does not by itself allow users to exercise any freedoms in
improvements of the program. Certainly, users are allowed to create
improvements on their own, but they are not allowed to exercise the free-
doms in improvements created by others. It follows that the grant of freedoms
covers all combinations presented in Table 3.1, but only to the extent that the
consent of the copyright holder is necessary to exercise the freedoms. Such
consent is indeed always a necessary, but not always a sufficient condition of
the freedoms. We already noted that in case of improvements both the copy-
right holder of the original and the copyright holder of the improvement
have to agree to the exercise of user freedoms. In the remainder of this thesis
we will discuss many situations when the consent of copyright holders is not
sufficient for user freedoms. For example, if the program (original or
improved) is obtained from a third party (a distributor), the additional con-
dition of user freedoms is that the third party does not restrict them.

We include in the model of the framework: the grant of freedoms (RU2),
and the relation between the grant of freedoms and the default rule (RE1).

(2) The right to fork
Under the grant of freedoms licensees are in particular allowed to distribute a
given original Free Software program. They are also allowed to develop an
improvement of the program and distribute the improvement. Specifically,
they are allowed to engage into such activities concurrently with other
licensees (and even concurrently with copyright holders, the licensors). Con-
current development and distribution of the same Free Software program is
called “forking”.85 From the point of view of user freedoms, forking is impor-
tant in two situations: (1) when a licensee distributes an original Free Soft-

83 Certainly, the license can be non-binding in a particular case, or under a particular appli-

cable law. Then, if there is no exception from the default rule provided for in the applicable

law, the exercise of the freedoms constitutes copyright infringement (the default rule is not

affected). Possibly, the user could use the software in a limited scope (see art. 5 and 6 of

the Software Directive or their implementation in art. 75 of the Polish Copyright Act).

84 Notably, under the FSD a program is Free Software even if it is subject to restrictions

imposed by third parties, such as distributors. Cf. our fi ndings in Subsection 2.1.3.

85 See, e.g., Wikipedia, Fork (software development), at: http://en.wikipedia.org/wiki/Fork_

(software_development).

Towards_an_Improved_def.indd 66Towards_an_Improved_def.indd 66 23-02-2010 10:49:1823-02-2010 10:49:18

67Regulatory framework of free software

ware program but restricts86 users in the exercise of their freedoms, and (2)
when the licensor or a licensee creates an improved Free Software program
and does not distribute it as Free Software.87 In the first situation any user
can serve as a substitute source of the original program without restrictions,
while in the second situation any user can create a substitute improvement
and distribute it as Free Software. This is possible, because every Free Soft-
ware licensee gives licensees the right to fork.88 We identify the following rule
in the right to fork.

The right to fork : Any user of a Free Software program is allowed to distribute the original

program or to develop an improvement of the program and distribute it (1) together with

source codes and (2) without restricting the freedoms of other users.

The right to fork is in a relation with the grant of freedoms. Actually, it is a direct
implication of the grant of freedoms. It is also in a relation with the default rule.
The relation between the right to fork and the default rule is similar to the rela-
tion between the grant of freedoms and the default rule. Namely, if the copyright
holder attempts to prevent a user from forking, the user can invoke the
license (and the right to fork contained therein) as a legal defence.

In other words, the right to fork attempts to turn the rights granted to
users in Free Software licenses into negative freedoms (liberties). Liberties
are rules that prevent other parties from interfering with certain actions of a
free individual. Under the right to fork, the licensor allows the licensees (1) to
exercise all freedoms in the program or its improvements they created them-
selves. Licensees are also (2) allowed to distribute the program without
restricting freedoms of other users as well as to grant freedoms to their
improvements to other users. However, they are also (3) allowed to appropri-
ate the program or the improvements. The licensees do not have any specific
obligation to exercise their right to fork. So, the right to fork does not oblige

86 Many Free Software licenses contain clauses whereby the user that obtains the program

from a licensee becomes an additional licensee vis-à-vis the original licensor. This means

that distributors of Free Software are not expected to grant users a separate license (subli-

cense) wherein they could restrict user freedoms, but they “pass on” the initial license to

users. Distributors are expected to grant licenses on their own only if they distribute

improvements, of which they are copyright holders (granting of such licenses is required

in copyleft clauses). H. Meekers calls this “direct licensing” (Heather J. Meeker, The

Open Source Alternative Understanding Risks and Leveraging Opportunities

(Wiley, 2008), 29-30). See also: Lucie Guibault, Ot van Daalen, Unraveling the Myth

around Open Source Licenses. An Analysis from A Dutch and European Law Per-

spective (TMC Asser Press 2006) 77. However, apart from “passing on” the original

license, distributors can conclude contracts with users on their own, as well as sublicense

the software (some Free Software licenses allow sublicensing). Such contracts can be used

to restrict user freedoms.

87 Some authors present forking as negatively affecting software development due to the

need to duplicate efforts. See: Andrew M. St. Laurent, Understanding Open Source

and Free Software Licensing (O’Reilly 2004) 171.

88 See, e.g., MeatBall, RightToFork, at: http://www.usemod.com/cgi-bin/mb.pl?RightToFork.

Towards_an_Improved_def.indd 67Towards_an_Improved_def.indd 67 23-02-2010 10:49:1823-02-2010 10:49:18

68 Chapter 3

anyone to make the programs (or their improvements) available as Free Soft-
ware. It follows that the default rule is affected if only someone decides to
exercise the right to fork.

The rule identified in the right to fork covers all four combinations pre-
sented in Table 3.1. We remark that the coverage is not direct, since it does
not allow users to access the specific original or improved programs that
were not made available as Free Software. The rule merely allows users to
become developers and distributors of substitute originals or improve-
ments.89

We include in the model of the framework: the right to fork (RU3), the
relation between the right to fork and the default rule (RE2), and the relation
between the right to fork and the grant of freedoms (RE3).

(3) Copyleft
Under the grant of freedoms and the right to fork copyright holders (and every-
one else, ceteris paribus) are not allowed to restrict user freedoms by invoking
the default rule. But third parties are not required to refrain from doing so.
They are also not obliged to ensure that users can exercise the freedoms. The
source of such an obligation is another rule – the rule of copyleft.90 Copyleft,
briefly speaking, is an obligation of Free Software licensees (1) to allow users
to exercise the freedoms with regard to an original Free Software program
and (2) to grant users the freedoms to improvements of the program. They
are required to perform in a particular way, not just refrain from certain
activities.

If a licensee distributes an original or an improved Free Software pro-
gram subject to copyleft, the licensee (the distributor) is obliged to make avail-
able the source codes of the program to such users to whom the program is
distributed. Additionally, the licensee is not allowed to impose restrictions
on the freedoms.91 The rule that we identify in copyleft is as follows.

89 One could argue that users of proprietary software have the right to fork as well. Namely,

they can independently develop and distribute substitute programs as well (this is most-

ly due to the fact that copyright law protects only expression, but not ideas embodied in

the expression – for a landmark case see, e.g., Lotus Development Corporation v. Borland
International, Inc., 516 U.S. 233 (1996)). However, they cannot do so using copyrighted

material of a proprietary program. Conversely, Free Software licenses allow users to use

such material when creating a substitute (a fork).

90 See: Lucie Guibault, Ot van Daalen, Unraveling the Myth around Open Source

Licenses. An Analysis from A Dutch and European Law Perspective (TMC Asser

Press 2006) 21, 72 et seq.

91 The distributor who is the copyright holder of an improvement of a copylefted program is

obliged to license the improvement under a Free Software license. The copyleft clause in

the Free Software license of the original usually indicates that the same model license

should be granted to improvements. I.e., the GPLv2 requires that the distributed improve-

ments are released under the GPLv2, the MPL requires that they are released under the

MPL, etc. Some Free Software licenses allow to distribute improvements under different

licenses considered “compatible”.

Towards_an_Improved_def.indd 68Towards_an_Improved_def.indd 68 23-02-2010 10:49:1823-02-2010 10:49:18

69Regulatory framework of free software

Copyleft : The distributor of a Free Software program subject to a copyleft clause (original

or improved) (1) is obliged to deliver the source codes of the program to users to whom

the program is distributed and (2) is not allowed to restrict such users in the exercise of the

freedoms in the program.

We remark that this rule applies only to such original or improved Free Soft-
ware programs that are distributed.92 Also, this rule does not apply to all
imaginable distributed improvements, since it is generally based on the
copyright holder’s right to control derivative works (modifications),93 which
is included in the default rule.94 Additionally, this rule applies to licensees
only – Free Software licensors are not obliged to follow copyleft.95 Namely,
licensors are not obliged to deliver originals or improvements of their pro-

92 Distribution is the trigger of copyleft obligations under the GPL. However, e.g., the copyleft
clause of the Affero GPL covers improvements that are both distributed and used to offer

services (such as by running them on a server, see: http://www.fsf.org/licensing/licens-

es/agpl.html). Similar trigger is included in the Open Software License and called “Exter-

nal Deployment” (http://www.opensource.org/licenses/osl-3.0.php). What constitutes

“distribution” is usually defi ned in the applicable national law (see, e.g., Heather J.

Meeker, The Open Source Alternative Understanding Risks and Leveraging

Opportunities (Wiley, 2008), 234).

93 The exact relation between derivative works and modifi cations depends on the applica-

ble law.

94 The exact scope of copyleft clauses varies depending on the license. The copyleft of GPLv2

(and GPLv3) covers all derivative works (for a thorough discussion about the exact scope

of copyleft see, e.g., Raymond T. Nimmer, Legal Issues in Open Source and Free Software Dis-
tribution, Open Source Software Spring 2006 Critical Issues in Today’s Corporate

Environment, PLI Handbook no. G-861, 7; Krzysztof Siewicz, Scope of copyleft clause
under Polish law, J. Barta (ed.), Zagadnienia Prawa Autorskiego [Copyright Law Issues],

ZNUJ PWiOWI [Jagiellonian University Intellectual Property Journal, Vol. 93 p.

235, (Zakamycze 2006), English version at: http://ksiewicz.net/fi les/siewicz_copyleft_

scope.pdf. We are not aware of any Free Software license that attempts to cover all imagi-

nable improvements, that is even the ones which are not derivative works (such as

improvements that are only inspired by the original program), although the SleepyCat

license could be considered an example of such an attempt (it covers “any accompanying

software that uses the [licensed] software” (http://www.opensource.org/licenses/

sleepycat.php). On the “10-line exception” in the copyleft clause of the LGPL see, e.g.,
Heather J. Meeker, The Open Source Alternative Understanding Risks and Lever-

aging Opportunities (Wiley, 2008), 40. On an insightful analysis of the GPLv2 copyleft
clause and its scope see id. 200 et. seq. See also: Andrew M. St. Laurent, Understanding

Open Source and Free Software Licensing (O’Reilly, 2004) (discussing various Free

Software licenses).

95 Here, we assume that every user, developer, and distributor of Free Software becomes a

licensee, except for the copyright holder (who is the licensor). If a person distributes own

improvements of a Free Software program, such a person most likely is both a licensee

(towards the copyright holder of the original) and a licensor (towards the recipients of

the improvement). Some Free Software licenses contain obligations of the licensors to

provide source code of software, but this is not a part of the copyleft as discussed here

(see: Andrew M. St. Laurent, Understanding Open Source and Free Software

Licensing (O’Reilly, 2004), 25).

Towards_an_Improved_def.indd 69Towards_an_Improved_def.indd 69 23-02-2010 10:49:1823-02-2010 10:49:18

70 Chapter 3

grams as Free Software, unless they want to, but they cannot prevent users
from forking.96

The relation between copyleft and the default rule is as follows. Copyleft as
such is based on the default rule, since without it the licensor could not control
the use, development, and distribution of a program and its improvements.
The default rule provides for a firm legal basis for imposing obligations on
licensees whenever they undertake activities covered by exclusive copy-
rights. Copyleft attempts to turn the rights granted to users in Free Software
licenses into positive freedoms. Positive freedoms are rules that oblige cer-
tain parties to allow free individuals to exercise these freedoms. Namely,
copyleft is an obligation of the licensees to allow users to exercise their free-
doms in the program or its improvements distributed by the licensees. Copyl-
eft attempts to provide an enforceable claim against a person that would like
to make a Free Software program or its improvement proprietary. Thus,
copyleft attempts to allow to enforce the obligation of the licensees.

The relation between copyleft and the grant of freedoms is similar to the
relation between the right to fork and the grant of freedoms. However, while the
right to fork is a direct implication of the grant of freedoms, copyleft is a rule
independent of the grant of freedoms. It can be included in a Free Software
license together with the grant of freedoms, but there are Free Software licenses
without copyleft (so called “academic” or “permissive” licenses, such as the
BSD license). In such licenses, the grant of freedoms and the resulting right to
fork are the only protection of the freedoms.

The relation between copyleft and the right to fork is as follows. In such
cases on which copyleft does not extend, users have to rely on the right to fork
only. The right to fork applies to every licensee of Free Software. Copyleft obli-
gation applies only to licensees of such Free Software programs that are
released under a Free Software license that contains a copyleft clause.

The rule identified in copyleft covers only three combinations in Table 3.1.
The combination in the top-left cell is not covered. Namely, the copyright
holder of the original who grants a Free Software license containing a copyleft
clause does not assume an additional obligation not to restrict user freedoms,
apart from the obligation already included in the grant of freedoms. The identi-
fied coverage by copyleft of both combinations relating to improvements (the
bottom row) is partial, since it does not cover all imaginable improvements
in all imaginable circumstances. Namely, the exact scope of copyleft depends
on license wording and the applicable law.

96 Precisely speaking, copyright holders are not allowed to prevent users from forking (i.e.,
from exercising the freedoms in the original Free Software) because they continue to be

bound by the Free Software licenses they granted themselves (the grant of freedoms). What

they could do, however, is stop making the program (and its source codes) available at

all. Additionally, if copyright holders distribute improvements of which they do not hold

copyrights, and which are subject to copyleft clause imposed by their copyright holders,

they themselves become the licensees bound by copyleft.

Towards_an_Improved_def.indd 70Towards_an_Improved_def.indd 70 23-02-2010 10:49:1923-02-2010 10:49:19

71Regulatory framework of free software

We include in the model of the framework: copyleft (RU4), the relation
between copyleft and the default rule (RE4), the relation between copyleft and
the grant of freedoms (RE5), and the relation between copyleft and the right to
fork (RE6).

(4) The hacker immunity
All programs (including proprietary software) usually have bugs, do not
have all necessary features, and are not able to interoperate properly with
other programs. Ceteris paribus, this means that there is a high probability
that any program will be defective in the light of law (non-merchantable or
not fit for a particular user’s purpose). This also means that the use of the
program could result in damages. Additionally, given the increasing ubiqui-
ty of exclusive rights in intangibles (so-called “intellectual property rights”),
the use, development, or distribution of a program can constitute an infringe-
ment of third party rights.

In all these cases the law protects the injured party and there is generally
no immunity for persons to whom the liability for the injury is attributable,
unless some special exceptions apply. According to the law, software transac-
tions are usually subject to warranty of merchantability, warranty of fitness
for particular purpose, and warranty of title by default.97 Depending on cir-
cumstances, warranty obligations can attach to a developer or a distributor of
a Free Software program.98 Liability for infringement of third party rights,
depending on the nature of the infringement could be borne by developers,
distributors, and also by users. If a user is held liable,99 the user could have a
recourse against the person who delivered the infringing software or other-
wise contributed to the infringement. So, generally developers and distribu-
tors of Free Software could be liable for the software unless there is a rule to
the contrary. The liability can also be attributed to users themselves vis-à-vis
third parties, with a possible recourse against distributors or developers.

However, there is a common rule throughout the whole software indus-
try that attempts to remove the liability from developers and distributors,
and grant them with an immunity. As a result the risk is pushed onto the
users, without leaving them with a recourse. Such an immunity has been
embodied in various warranty disclaimers and liability limitation clauses.
These clauses have been also widely accepted because many believe that it is
technically impossible to write flawless software (both technically and legal-
ly), so actors have to “immunize” themselves from liability. The rule that
follows from the warranty disclaimers and liability limitation clauses reads

97 For a general overview under the U.S. law see: Andrew M. St. Laurent, Understan-

ding Open Source and Free Software Licensing (O’Reilly, 2004), 11.

98 Free Software can be developed and distributed both by its copyright holders as well as

by third parties.

99 For example, not just the development and distribution, but a mere use of a patented

invention without a valid patent license usually constitutes patent infringement. See: Aro
Mfg. Co. v. Convertible Top Replacement Co. 377 U.S. 476, 84 S.Ct. 1526 (U.S.Mass. 1964).

Towards_an_Improved_def.indd 71Towards_an_Improved_def.indd 71 23-02-2010 10:49:1923-02-2010 10:49:19

72 Chapter 3

that users cannot claim damages. The Free Software approach has eagerly
borrowed this rule from the general regulatory framework of software.100
Thus, the broad grant of rights in Free Software licenses is usually followed
by an “as is” or other type of warranty disclaimer and liability limitation
clause. This means that according to Free Software licenses there is a rule,
which we refer to as “the hacker immunity”.

The hacker immunity: Users are not allowed to claim liability related to Free Software.

We call this rule “the hacker immunity” because it removes a strong demotiva-
tor (liability) away from many volunteer hackers who are developers of Free
Software programs. However, precisely speaking it removes liability from
all Free Software licensors. Depending on a particular case the licensor can
be a hacker, a firm, or any other entity that is the copyright holder of a given
Free Software program (original or improved) and offers it under a Free Soft-
ware license.

Two clarifications are necessary:

(1) The hacker immunity as contained in Free Software licenses does not
per se remove liability from a person that is not the licensor. This
means that such developers and distributors who are not licensors
bear liability for the program by default. Usually, however, third
party distributors accompany the distributed program with a sepa-
rate warranty disclaimer and liability limitation clause and thus
they extend the hacker immunity on themselves.101

(2) All Free Software licenses known to us contain the hacker immunity
that covers technical defects (i.e., they exclude warranty of fi tness for
purpose, warranty of merchantability). Many of the licenses extend
the immunity on legal defects as well (i.e., they waive liability for in-
fringement of third party rights, the so-called “warranty of title”).102

100 Some argue that, on the contrary, “the lack of warranty protection for licensees is a defi n-

ing characteristic of [the Free Software] licensing model” and that proprietary licensors

offer warranties and indemnifi cations (Raymond T. Nimmer, Legal Issues in Open Source
and Free Software Distribution, Open Source Software Spring 2006 Critical Issues in

Today’s Corporate Environment, PLI Handbook no. G-861, 7, 85). However, most so-

called end-user licenses of proprietary software contain as broad warranty disclaimers

and liability limitations as are usually found in Free Software licenses, but without giving

end-users access to source codes or any signifi cant rights to software.

101 Notably, licenses such as the GPLv2 require that distributors of the program accompany

it with the liability limitation clause in a prescribed form. The distributor, however, can

choose to offer additional warranty or services. If such a warranty or services are offered,

the hacker immunity continues to apply between users and the licensor, but users can ben-

efi t from warranty services of the distributor.

102 For an example of a license that does not release the licensor from all liability for legal

defects see, e.g., Eclipse Public License that contains representation that the contributor has

suffi cient copyrights to grant license (http://www.eclipse.org/org/documents/epl-v10.

php). See also clauses 3.4.a and 3.4.c of the MPL.

Towards_an_Improved_def.indd 72Towards_an_Improved_def.indd 72 23-02-2010 10:49:1923-02-2010 10:49:19

73Regulatory framework of free software

There is no direct relation between the hacker immunity and other rules in the
framework identified so far. Rather, the hacker immunity, by removing the
demotivating liability out of the way of actors in the Free Software scene
serves as a basic incentive mechanism that stimulates many actors not to
abandon Free Software development or distribution. In particular, it stimu-
lates them not to invoke the default rule against users but to grant them their
freedoms. So, there is an indirect relation between the hacker immunity and
the default rule.

The hacker immunity covers all four combinations presented in Table 3.1.
Namely, it attempts to remove liability regardless of who distributes Free
Software and what kind of Free Software is distributed. The coverage, how-
ever, is partial, since only some Free Software licenses waive all imaginable
liability (including the title warranty).

We include in the model of the framework: the hacker immunity (RU5)
and the indirect relation between this rule and the default rule (RE7).

3.1.2 Other rules for software

The default rule makes the consent of copyright holders a prerequisite of the
freedoms. Copyright holders who follow the Free Software approach use
Free Software licenses to grant users the freedoms (the grant of the freedoms).103
The licenses also contain rules that attempt to protect the freedoms of users,
i.e., the right to fork and copyleft. Additionally, the hacker immunity attempts to
release actors in the Free Software scene from liability. But the model of the
framework including all these rules and relations between them (as identi-
fied in the previous subsection) is not complete. The grant of freedoms in Free
Software licenses, and the protection of the freedoms by the right to fork and
copyleft, as well as by the hacker immunity depend on whether these rules are
enforceable and remain effective despite other rules that exist in the frame-
work. Some of the other rules may dilute but some of them may reinforce
these rules. Either way, the other rules can affect the freedoms in some or all

103 Some users exercise their freedoms in a software community, while other users exercise

these freedoms in private or otherwise outside of the communities. Some of the Free Soft-

ware users are governments or users of eGovernment services. Here, we may already

assume that the communities are in a relation to user freedoms. We may also assume that

eGovernments are also in a relation to user freedoms. However, we do not include these

relations in the model of the current framework. Otherwise, we would not be able to ans-

wer RQ1 and RQ2, which are: “In what way do software communities affect the current

regulatory framework concerning the protection of user freedoms, as articulated by Stall-

man?” and “In what way do eGovernments affect the current regulatory framework con-

cerning the protection of user freedoms, as articulated by Stallman?” We shall include in

the model of the framework only the rules (and relations between them) that regulate the

freedoms independently of them being exercised in the context of communities or

eGovernments. Then, (in Chapters 4 and 5, respectively) we will analyse how such a

model of the framework is affected by software communities and eGovernments.

Towards_an_Improved_def.indd 73Towards_an_Improved_def.indd 73 23-02-2010 10:49:1923-02-2010 10:49:19

74 Chapter 3

combinations presented in Table 3.1. We need to include these other rules in
the model of the framework.

Below, we identify the remaining rules for software and their relations
with the rules identified in Free Software licenses. In order to identify these
rules we focus on the following issues: (1) license proliferation and incom-
patibilities, (2) license revocability, (3) inter partes nature of licenses, (4) soft-
ware-related patents, (5) contracts with distributors, (6) liability rules, and
(7) non-legal regulators of software. At the end of each point we state what
rules and relations we include in the framework.

(1) License proliferation and incompatibilities
Since mid 1980s, few dozen of FSD-compliant model licenses have been pre-
pared.104 By far the most popular of them is the GNU General Public License
version 2 (“GPLv2” or “GPL”), which applies to approximately 70% of Free
Software.105 The GPLv2 and the second most popular model license (GNU
Lesser General Public License, “LGPL”) have been prepared by the FSF. The
FSF has recently (2007) finalized a public debate on the “upgrade” of the
GPLv2 and LGPL. As a result, the new version 3.0 of the GPL (“GPLv3”) and
the new version 3.0 of the LGPL (“LGPLv3”) have been adopted. Not all
licensors that have been using GPLv2 have switched to GPLv3, although a
growing number has switched already.106 Other popular model licenses
include, for example, Berkeley Software Distribution License (the “BSD
license”), and Mozilla Public License (the “MPL”). We illustrate the prolifer-
ation in Figure 3.2.

Figure 3.2: Proliferation of licenses

104 Free Software Foundation, Various Licenses and Comments About Them, at: http://www.

gnu.org/philosophy/license-list.html; Open Source Initiative, The Approved Licenses, at:

http://opensource.org/licenses/.

105 Free Software Foundation, GNU General Public License, at: http://www.gnu.org/licens-

es/gpl.html, the popularity of the GPL is based on data available from SourceForge

repository (http://sourceforge.net).

106 Many programs are released under “GPLv2 or any later version”, which seems to allow

users to choose that GPLv3 applies to them. The effectiveness of such licensing depends

on the applicable law.

Towards_an_Improved_def.indd 74Towards_an_Improved_def.indd 74 23-02-2010 10:49:1923-02-2010 10:49:19

75Regulatory framework of free software

In Figure 3.2 we present a result of using two different model licenses. Some
licensors (black dots demarcated in one circle) use one model Free Software
license, while other licensors (the other black dots demarcated in the other
circle) use another model Free Software license. Each user (grey dots) obtains
one program under the first license and one program under the second
license. As a result, the rights and obligations of each user towards each
licensor are subject to a different license (this is represented by different lines
between users and licensors). It follows that if a user obtains more than one
Free Software program (original or improved) and the obtained programs
are subject to different Free Software licenses, the freedoms of that user
should be scrutinized with regard to each program separately. This is often
the case in practice, since even simple IT systems consist of numerous pro-
grams. Thus, we should expand the four combinations presented in Table 3.1
by adding one additional table of four combinations for each program sub-
ject to a different Free Software license that a licensee uses. We illustrate this
in Figure 3.3.

Figure 3.3: Using programs under different Free Software licenses

It would be impractical to reconstruct a model of the framework with a
degree of detail that is necessary to account for all different Free Software
licenses. In such a case, we would have to reconstruct a separate framework
for each license and then a combined framework for combinations of pro-
grams under different licenses. It follows that in order to make our task prac-
ticable, we have to downsize the model to be able to deal with the issue of
proliferation on a more general level. We do the downsizing below, by iden-
tifying rules that are materially affected by the proliferation. Then, we
include in the model these rules as adjusted to account for the proliferation
to the extent it materially affects them.

As far as the grant of freedoms is concerned, since the FSD requires to allow
users to exercise all six activities enumerated thereto, all FSD-compliant
licenses allow licensees to exercise these activities. Also, a given Free Soft-

Towards_an_Improved_def.indd 75Towards_an_Improved_def.indd 75 23-02-2010 10:49:1923-02-2010 10:49:19

76 Chapter 3

ware program generally remains subject to one Free Software license, not to
many different licenses at the same time. This means that the grant of freedoms
is not affected materially, as long as users obtain single original Free Soft-
ware programs (regardless of whom).107 However, in practice distributors
usually combine multiple Free Software programs together and offer them
to users as complex software products.108 The combination can be limited to
simple collection of programs in a single distribution, but usually it involves
at least some pre-configuration of them to work together properly. It is often
the case that programs are combined using various software engineering
techniques, which goes beyond mere aggregation of them. Certainly, a dis-
tributor of any combination has to comply with all licenses of the combined
programs at the same time. This is possible if only all these licenses are com-
patible.

Licenses are compatible with each other as long as they permit to com-
bine programs released under their terms and to distribute the combina-
tion.109 Distribution of combination is possible if only all licenses of the com-
bined programs are complied with. If one license obliges the licensee to
perform in a particular way, while another license forbids the licensee to per-
form in such a way, then the licensee cannot comply with both of them at the
same time. For example, if two licenses contain copyleft clauses that require
improvements to be distributed under different Free Software licenses, such
two licenses are incompatible. Licenses are incompatible also if only one of
them contains a copyleft clause, while the other imposes on the user other
obligations, which cannot be performed together with distributing improve-
ments under the Free Software license required by the former.

But incompatibilities occur not only between some Free Software licens-
es. Naturally, the Free Software licenses are to a significant extent incompat-
ible with the proprietary software approach. Developers and distributors of
proprietary software usually cannot use Free Software in their programs and

107 Certainly, users have to scrutinize each license separately, in order to determine the exact

scope of the rights and obligations. Although we can assume that all FSD-compliant

licenses grant users all their freedoms, some of them are written better than others, and

the differences may lead to their different interpretations. See e.g., Brendan Scott, BSD –
The Dark Horse of Open Source, at: http://opensourcelaw.biz/publications/papers/

BScott_BSD_The_Dark_Horse_of_Open_Source_070112lowres.pdf (arguing that the BSD

license requires BSD code and modifi cations to BSD code to be licensed under the terms

of the BSD license, while the BSD license is commonly believed not to include a copyleft
clause). We will return to the issue of different interpretations in Chapter 4.

108 For example, modern GNU/Linux distributions include hundreds of Free Software pro-

grams. A user could attempt to obtain all these programs directly from their copyright

holders, but this is rarely the case given the time and effort necessary to fi nd and confi -

gure all of them to work together.

109 According to the FSF, compatibility with the GPL means that “you can combine code released
under the other license with code released under the GNU GPL in one larger program.” (See:

http://www.fsf.org/licensing/licenses/gpl-faq.html#WhatDoesCompatMean). On

license incompatibilities generally see: Andrew M. St. Laurent, Understanding Open

Source and Free Software Licensing (O’Reilly 2004) 159 et. seq.

Towards_an_Improved_def.indd 76Towards_an_Improved_def.indd 76 23-02-2010 10:49:1923-02-2010 10:49:19

77Regulatory framework of free software

maintain exclusive control over them at the same time. Precisely speaking,
non-copyleft (“academic” or “permissive”) licenses are rarely a burden for
proprietary actors, and many programs subject to such licenses have been
included in proprietary software. Conversely, copyleft licenses do not allow
appropriation of Free Software, unless the proprietary actor finds a way to
avoid copyleft obligations. Certainly, this may lead to less Free Software being
included in proprietary software, but it also means that it is harder to restrict
user freedoms (which is the exact purpose of the copyleft). In other words, we
do not consider that inability to appropriate some Free Software (e.g., to
include it as a part of a proprietary offering) is a limitation of user freedoms.
Actually, we consider any such successful appropriation as a restriction of
user freedoms, which should be prevented in order for the freedoms to be
sufficiently protected.110

However, from the point of view of user freedoms such an inability to
appropriate a Free Software program may constitute a problem in the fol-
lowing situation. Imagine that it is desired to use such a program in a certain
conjunction with a proprietary program. This might be a case when the user
is locked-in to a closed standard used in the proprietary program.111 It may
be possible to provide for interoperability by combining the Free Software
program with certain proprietary extension, but the particular license of the
Free Software program does not allow such a combination to be legally
developed or distributed. Actually, many developers and distributors
attempt to work around this issue using different means. The means usually
involve restricting the freedoms of users or requiring them to trade the free-
doms in exchange for the additional functionality.112 But from the point of
view of user freedoms, a proper resolution of the incompatibility with the
proprietary licensing would be to provide users with a substitute of the pro-
prietary software to which users are locked in, which would be completely
free of restrictions. This can be done, however, only if the closed standard
can be translated to an open standard, or if users are stimulated to switch to
open standards otherwise. This is not an easy task, as we show later in this
chapter.

Here, for the sake of simplicity, when discussing license incompatibili-
ties we focus on incompatibilities between Free Software licenses only. We
leave incompatibilities with the proprietary approach aside. We illustrate the
incompatibilities between Free Software licenses in Figure 3.4.

110 See below on contracts with distributors and non-legal regulators (in particular passages

about making Free Software part of a service or a device).

111 For the discussion about closed standards and lock-ins see Subsection 3.2.1.

112 The means include dual licensing, maintaining separate repositories with proprietary

extensions, avoiding using software subject to copyleft licenses, or trying to circumvent

copyleft clauses, etc.

Towards_an_Improved_def.indd 77Towards_an_Improved_def.indd 77 23-02-2010 10:49:2023-02-2010 10:49:20

78 Chapter 3

Figure 3.4: Incompatibility of licenses

Assume there are two Free Software programs, each licensed by a different
licensor. For example, they may be two libraries113 each able to expand a
third program with new functionalities. On the left of Figure 3.4, we see that
the licensors (black dots) use two compatible licenses for their programs
(libraries). They grant the licenses to a user (grey dot). The user can exercise
the freedoms in each of these programs separately. Additionally, the user is
legally allowed to combine the programs together, and to distribute the com-
bination. In such a way, the user creates a complete Free Software product
and offers it to yet another user (white dot). It is possible since both licenses
for the “input” programs are compatible and allow to redistribute them as
combined in a finished product under one license. Conversely, on the right
of Figure 3.4, we see that the licensors use two incompatible licenses for their
programs. If both licenses are Free Software licenses, the user may exercise
the freedoms in the two programs. In particular, the user is allowed to
improve the programs separately and separately distribute the improve-
ments. However, the user cannot satisfy obligations in both licenses and dis-
tribute the programs combined into one product.114

Combination may constitute a collection of multiple original Free Soft-
ware programs but it may also be an example of an improvement of these
programs.115 Depending on the exact wording of a particular license, results

113 For an explanation of “library” see: Wikipedia, Program library, http://en.wikipedia.org/

wiki/Program_library.

114 An interesting example is the the SleepyCat license (http://www.opensource.org/licens-

es/sleepycat.php, pointed out by Heather Meeker (Heather J. Meeker, The Open

Source Alternative Understanding Risks and Leveraging Opportunities (Wiley,

2008), 43.), which allows to distribute improvements under another Free Software license

(the relevant part reads: “The source code must either be included in the distribution or

be available for no more than the cost of distribution plus a nominal fee, and must be

freely redistributable under reasonable conditions”).

115 Here, we use the word “combination” to cover various copyright institutes, such as

“modifi cation”, “collection”, “derivative work”, “collective work”. Each of these institu-

tes has different legal consequences. When creating a particular contribution a user has to

determine which of these institutes applies exactly and what are the consequences under

the applicable law.

Towards_an_Improved_def.indd 78Towards_an_Improved_def.indd 78 23-02-2010 10:49:2023-02-2010 10:49:20

79Regulatory framework of free software

of incompatibilities between licenses can vary from a restriction on distribut-
ing any imaginable combination to a restriction on distributing specific com-
binations.116 In practice, the proliferation and incompatibilities have been
found to affect specific combinations only. Also, at least three types of ten-
dencies can be observed that attempt to overcome the proliferation and
incompatibilities. First, there is already a clearly visible trend in the Free
Software licensing. Namely, more popular model licenses are chosen more
often than the less popular, and rarely licenses are drafted anew.117 Second,
many licensors use dual licensing schemes, which can eliminate most if not
all issues related to the proliferation and incompatibilities.118 Third, the
drafters of some most popular model licenses have already started releasing
new versions of these licenses which contain clauses that address many
incompatibilities.119

It follows that proliferation, and the resulting incompatibilities between
Free Software licenses, will continue to affect the grant of freedoms in all com-
binations presented in Table 3.1 materially, unless something prevents the
above tendencies to succeed. Currently (2009) we are still in a transitional
phase, and it cannot be taken for granted that the proliferation and incom-
patibilities will be successfully eliminated owing to these tendencies alone.
So, for the time being we consider that the grant of freedoms is affected,
although only to the extent that (a) the combination includes Free Software
programs released under incompatible licenses, and only to the extent that

116 For example, copyleft obligations under GPLv2 do not apply in case a “mere aggregation”

of programs is distributed. So, combinations of programs under GPLv2 can be distribu-

ted with programs released under licenses incompatible with the GPLv2 as long as the

combination is a “mere aggregation” only. What constitutes a “mere aggregation” is

unclear from the legal point of view. However, the overall Free Software community has

developed some customs and trade practices that provide some guidance. See, e.g., Soft-

ware Freedom Law Center, Maintaining Permissive-Licensed Files in a GPL-Licensed Project:
Guidelines for Developers, at: http://softwarefreedom.org/resources/2007/gpl-non-gpl-

collaboration.html.

117 Recently, the OSI has been rather reluctant to approve any new licenses as “Open Source”,

even if they would meet the OSD criteria. But there have been some new model licenses

(MSPL, EUPL) approved by the OSI despite this reluctance.

118 Dual licensing means that a program is released under a number of model FSD-compli-

ant licenses. Users (in particular users that combine the program with other programs)

can choose which license they will be bound to. If such a choice is made possible by the

licensor, it can be possible to choose a license compatible with the licenses of other com-

bined programs. Arguably, after the choice there is no possibility to change it again when

a subsequent combination is made. See: Lucie Guibault, Ot van Daalen, Unraveling

the Myth around Open Source Licenses. An Analysis from A Dutch and European

Law Perspective (TMC Asser Press 2006) 129.

119 See, for example, GPLv3, EUPL. See also: CeCILL v2 (containing an express GPL compa-

tibility clause).

Towards_an_Improved_def.indd 79Towards_an_Improved_def.indd 79 23-02-2010 10:49:2023-02-2010 10:49:20

80 Chapter 3

(b) such a combination is distributed.120 Otherwise, the grant of freedoms is not
materially affected. Strictly speaking, the grant of freedoms is limited by the
following rule that we call “license proliferation and incompatibilities”.

License proliferation and incompatibilities: Users are allowed to distribute combinations

of Free Software programs as long as licenses of all combined programs are complied

with.

License proliferation and incompatibilities affect also the rules that we iden-
tified in the right to fork and copyleft. Namely, they limit the exercise of the
right to fork with regard to combinations of programs. They also limit the
exercise of copyleft. Here, one clarification is necessary. The incompatibilities
do not release the distributors from their copyleft obligation not to restrict
user freedoms. Rather, they make it legally impossible to observe such an
obligation if the distributor attempted to distribute the combination of two
or more programs that are subject to incompatible licenses. In such a case,
the distributor has to refrain from distribution and can only use the combi-
nation in private. Certainly, other users are free to make and use the combi-
nation by themselves privately as well.121

All Free Software licenses known to us contain broad liability limitation
clauses. When discussing the hacker immunity we noted that the clauses are
sometimes different to the extent some of them extend to legal defects (title
warranty), while others do not. This means that the actual liability may vary
depending on the wording of the license in question. We do not consider this
as a material difference, since the main purpose of the hacker immunity is to
waive liability for technical defects (warranty of merchantability). Certainly,
some Free Software licenses may boast of well-written waivers, while others
can be found lacking some important wording. We do not find that this is the
case with the most popular Free Software licenses per se; it depends more on
the differences between national laws, under which such clauses would be
scrutinized. So, we assume at this point that the proliferation does not affect
materially the hacker immunity.

We include in the model of the framework:

(1) license proliferation and incompatibilities (RU6);
(2) the relation between license proliferation and incompatibilities, and

the grant of freedoms (RE8);

120 Users are still allowed to combine most Free Software and use the combinations in pri-

vate without distributing them, even if the combined programs are released under

incompatible licenses. This is because incompatibilities usually occur between copyleft
clauses (or copyleft clauses and other clauses imposing distribution-related obligations),

which are usually triggered upon distribution only.

121 In the Free Software scene there exist many repositories of software that cannot be dis-

tributed together with another software, but can be legally used by end-users. See, e.g.,
http://livna.org.

Towards_an_Improved_def.indd 80Towards_an_Improved_def.indd 80 23-02-2010 10:49:2023-02-2010 10:49:20

81Regulatory framework of free software

(3) the relation between license proliferation and incompatibilities, and
the right to fork (RE9); and

(4) the relation between license proliferation and incompatibilities, and
copy left (RE10).

(2) License revocability
In Subsection 2.1.2 we found that the FSD requires irrevocability of the
license as a condition of compliance. We can assume that a license that
expressly provides for a right of the licensor to terminate it unilaterally
(without a valid reason) would not be accepted as FSD-compliant by the FSF.
So far, the FSD allows to terminate licenses only if the licensee “does some-
thing wrong”. We are not aware of any Free Software licenses that are revo-
cable as far as the license wording is concerned (i.e., they contain no termina-
tion clauses except in case of a breach). However, it may be the case that the
applicable law provides for a non-waivable right of the licensor to terminate
a license, or it requires a special wording, or form, in order to make a license
irrevocable by the licensor.122 In such a case the copyright holder could
revoke the license or otherwise terminate it unilaterally, despite the license
wording. After the license has been terminated, the copyright holder could
invoke the default rule against users and as a result prevent them from exer-
cising the freedoms. Consequently, the grant of freedoms would be annulled,
since it requires a binding Free Software license to exist.

A main question that arises reads: is such a license termination possible
in practice? The answer is positive if the licensees are not numerous and if
the licensor can easily identify all of them. In such a case, all licensees can be
delivered with termination notices in a form as required by the applicable
law. However, users usually obtain Free Software without identifying them-
selves, and attempts to identify them would require additional efforts that
may prove impracticable. Even if it were possible to identify all users who
obtained the program directly from the licensor, a significant part of Free
Software distribution is performed by third parties. Free Software licenses

122 Under Polish law (Copyright Act) a license concluded for an unspecifi ed period of time

can be terminated by either party. It is questionable whether the licensor could waive the

right to terminate. Conversely, a license granted for a specifi ed period of time cannot be

easily terminated unless parties agree otherwise. However, a license granted for a speci-

fi c period longer than 5 years, after that period automatically transforms into a license

granted for unspecifi ed period of time, as a matter of law. For an American law analysis

see: Raymond T. Nimmer, Legal Issues in Open Source and Free Software Distribution, Open

Source Software Spring 2006 Critical Issues in Today’s Corporate Environment,

PLI Handbook no. G-861, 7, 41 (arguing that irrevocability can be obtained only if a Free

Software license is concluded as a contract). See also: Heather J. Meeker, The Open

Source Alternative Understanding Risks and Leveraging Opportunities (Wiley,

2008), 228 (doubting whether Free Software licenses are “bare licenses” that can be revo-

ked under the U.S. law). For a European law perspective see: Lucie Guibault, Ot van

Daalen, Unraveling the Myth around Open Source Licenses. An Analysis from A

Dutch and European Law Perspective (TMC Asser Press 2006) 51, 86 et seq.

Towards_an_Improved_def.indd 81Towards_an_Improved_def.indd 81 23-02-2010 10:49:2023-02-2010 10:49:20

82 Chapter 3

do not require such third parties to report to whom they distribute. Also,
termination of licenses of identified distributors does not necessarily termi-
nate the licenses of downstream recipients.123 It follows that in case of a sig-
nificant user base or at least of a developed downstream distribution per-
sonal delivery of termination notices does not seem to be practicable. So, it
has to be determined whether the licensor is legally allowed to terminate the
license in another way, for example by declaring publicly that the license is
revoked (terminated). This depends on the applicable law, and we believe it
to be unlikely that every law would allow to terminate the license of all users
in such a way. Nevertheless, the licensor could still manage to identify major
users of the program (e.g., its most prominent developers and distributors)
and be able to serve them with termination notices. From the practical point
of view, termination with regard to such major users might be sufficient to
prevent most other users from exercising the freedoms. Thus, restriction of
user freedoms using license revocability is possible in practice, even if it
would not affect all users.124

We are not aware of a license to any major Free Software program hav-
ing been revoked since the beginning of the history of Free Software licens-
ing, which dates back to the 1980s. Actually, many licensors have even made
public pledges to maintain their programs as Free Software.125 But should
the licensors suddenly change their mind, the revocation of their licenses
would affect all four combinations presented in Table 3.1, since a valid Free
Software license is necessary to exercise the freedoms in each of these combi-
nations. So, we account for such a negative scenario of the revocability in the
model of the framework by adding the following meta-rule. We call it
“license revocability”.

License revocability: The grant of freedoms remains in force as long as the licensor does not

effectively revoke the license.

Revocation enables the copyright holder to invoke the default rule against users without

leaving users with a legal defense.

123 Generally, a downstream user obtains automatically the license from the original licensor

whenever the program is redistributed (see FN 86). Thus, assuming such mechanism is

effective the revocation is possible if only all licensees may be quickly identifi ed and

delivered with termination notices, before the program is passed downstream.

124 Under particular applicable laws it may be possible to invoke additional legal arguments

against termination. See, e.g., Janusz Barta, Ryszard Markiewicz, Oprogramowanie

Open Source w świetle prawa. Między własnością a wolnością [Open source soft-

ware in the light of law. Between property and freedom] (Zakamycze 2005), 113

(arguing that under Polish law a revocation of a Free Software license is a misuse of rights

(“nadużycie prawa”) or is contrary to good morals (“zasady współżycia społecznego”)).

125 See e.g., Brian Prince, Sun Asserts MySQL Will Remain Open Source, at: http://www.

eweek.com/c/a/Database/Sun-Asserts-MySQL-to-Remain-Open-Source/. Some pled-

ges refer just to the price of software. See e.g., Ubuntu, at: http://www.ubuntu.com/

products/whatisubuntu (“Ubuntu is and always will be free of charge”).

Towards_an_Improved_def.indd 82Towards_an_Improved_def.indd 82 23-02-2010 10:49:2023-02-2010 10:49:20

83Regulatory framework of free software

This rule has direct relations with the grant of freedoms and the default rule. A
revoked Free Software license renders the grant of freedoms ineffective and it
allows licensors to invoke the default rule against users.

We include in the model of the framework:

(1) license revocability (RU7),
(2) the relation between license revocability and the grant of freedoms

(RE11), and
(3) the relation between license revocability and the default rule (RE12).

(3) Inter partes nature of licenses
Free Software licenses create inter partes rights and obligations between licen-
sors and licensees. More precisely, this means that each license binds only the
particular licensor vis-à-vis the licensee to whom the license was granted. It
follows that the possibility to apply any rights and obligations from a Free
Software license to persons other than its parties is significantly limited. The
inter partes nature of licenses affects copyleft. Other rules in the framework are
not materially affected. Essentially, copyleft obliges licensees to allow users to
exercise their freedoms in Free Software programs (or their improvements)
distributed by the licensees. However, as an inter partes obligation, it obliges
the licensee only towards the licensor, not towards users (even if the obliga-
tion is to perform to the benefit of users). Generally, only a person to whom
another person is obliged (here: the licensor) can legally enforce the obliga-
tion. Consequently, users (despite being the intended beneficiaries of copyleft)
cannot enforce copyleft against licensees, unless there is a rule to the contrary.

Whether there is a rule that allows a user to enforce copyleft depends on
the applicable law. There are laws that allow third parties to enforce certain
inter partes obligations. For example, under Polish law it may be possible to
construct copyleft clauses as “contracts to the benefit of a third party.” If so,
then a third party could have the standing necessary to enforce copyleft claus-
es without the help of the licensor.126 Yet, there is a debate whether Free Soft-

126 According to art. 393.1 of the Polish Civil Code, if the contract obliges a party to perform

to the benefi t of a third party, such a third party may request performance directly from

that party (unless this is excluded in the contract). The Polish Supreme Court held on 28

November 2003 r. (IV CK 206/2002) that the third party benefi ciary should be identifi ed

in such a contract, or the contract should at least contain clauses that allow to identify the

third party. Free Software licenses are model licenses that do not identify any particular

third party as a benefi ciary. However, licenses such as the GPLv2 are quite explicit that

their copyleft clauses should benefi t every user that receives the software from a licensee.

Nevertheless, the GPLv2 at the same time provides that in case of a breach it is automati-

cally terminated (Sec. 4). A terminated license does not bind parties any longer. This

means that the licensee is no longer obliged to perform to the benefi t of a third party.

Also, art. 393.1 applies to contracts only, not to unilateral acts. It means that its applicabi-

lity depends on the construction of Free Software licenses as contracts. For a similar ana-

lysis under U.S. law see: Andrew M. St. Laurent, Understanding Open Source and

Free Software Licensing (O’Reilly 2004) 154 et. seq.

Towards_an_Improved_def.indd 83Towards_an_Improved_def.indd 83 23-02-2010 10:49:2023-02-2010 10:49:20

84 Chapter 3

ware licenses are contracts or rather unilateral acts.127 For example, Ray-
mond T. Nimmer argues that if copyleft is non-contractual in nature, a breach
of copyleft could not be remedied by specific performance, although it could
provide a basis for a copyright infringement suit.128 If there are indeed legal
limitations in demanding performance of copyleft obligations (be it by the
licensor or a third party), then users can rely on the right to fork only.129

Here, we assume that copyleft obligations can be enforced, so we retain
the copyleft rule in the framework. However, given the inter partes nature of
the license relation we have to include an additional rule in the framework
that constitutes a limitation of the copyleft rule. We call this rule “inter partes
nature of licenses”.

127 Licenses are based on copyright, and they additionally can be based on contract law. In

common law jurisdictions, a license in this context is usually defi ned as a private unilate-

ral grant of rights. Such a unilateral act is distinguishable from a contract, which is thereto

defi ned as an agreement whereby one person promises something for an exchange of a

consideration. In the U.S. such licenses that are unilateral acts are based on the federal

copyright law only, while contracts are additionally regulated by the states. Many of the

most prominent Free Software advocates, including Eben Moglen (with regard to the

GPL), have often argued that Free Software licenses are unilateral acts (Eben Moglen, The
GPL Is a License, not a Contract, at: http://lwn.net/Articles/61292/). But see: Raymond T.

Nimmer, Legal Issues in Open Source and Free Software Distribution, Open Source Soft-

ware Spring 2006 Critical Issues in Today’s Corporate Environment, PLI Handbook

no. G-861, 7, (arguing inter alia, that asking whether the GPL is a contract is nonsensical

without a specifi c context in which a particular license incorporating the GPL’s terms was

concluded (at 25)). For the analysis of the GPLv2 in abstracto see Heather J. Meeker, The

Open Source Alternative Understanding Risks and Leveraging Opportunities

(Wiley, 2008), 225 et. seq. See also: Andrew M. St. Laurent, Understanding Open Sour-

ce and Free Software Licensing (O’Reilly 2004) 148 (discussing how even the language

of most permissive Free Software licenses allows to fi nd consideration necessary to esta-

blish a contractual relation in common law jurisdictions). Even the FSF does not exclude

the possibility that software may be subject to contract law (see FSD). In civil law jurisdic-

tions it is also possible to conclude that the use of programs may be regulated unilaterally

by the copyright holder, although certain jurisdiction-specifi c reservations may apply.

For example, under Polish law a license is generally a contract (although a specifi c one,

subject to copyright law) and it is not clear whether a license could be granted unilate-

rally. See also: Lucie Guibault, Ot van Daalen, Unraveling the Myth around Open

Source Licenses. An Analysis from A Dutch and European Law Perspective (TMC

Asser Press 2006) 46, 55 et seq., 150 et seq.

128 Raymond T. Nimmer, Legal Issues in Open Source and Free Software Distribution, Open

Source Software Spring 2006 Critical Issues in Today’s Corporate Environment,

PLI Handbook no. G-861, 7, 26. The author, however, provides an extensive argumenta-

tion for the contractual nature of Free Software licenses. See also Heather J. Meeker, The

Open Source Alternative Understanding Risks and Leveraging Opportunities

(Wiley, 2008), 226-227.

129 Heather Meeker points out that if a program constitutes a joint work, all authors might be

required to stand in a case. This might effectively prevent enforcement of copyleft, espe-

cially in projects, the rights of which are shared among multiple contributors. See:

Heather J. Meeker, The Open Source Alternative Understanding Risks and

Leveraging Opportunities (Wiley, 2008), 179. See also: Lucie Guibault, Ot van

Daalen, Unraveling the Myth around Open Source Licenses. An Analysis from A

Dutch and European Law Perspective (TMC Asser Press 2006) 51, 72 et seq.

Towards_an_Improved_def.indd 84Towards_an_Improved_def.indd 84 23-02-2010 10:49:2123-02-2010 10:49:21

85Regulatory framework of free software

Inter partes nature of licenses: Unless the applicable law provides to the contrary, only

the Free Software licensors are allowed to enforce obligations of the licensees under copy-
left.

Naturally, the above rule covers only those combinations in Table 3.1, which
are covered by copyleft itself. Also, this rule is in a relationship with copyleft
only. The relationship is that the obligations under copyleft are limited inter
partes, unless there is a legal rule to the contrary in the applicable national law.

We include in the model of the framework the inter partes nature of
licenses (RU8) and the relation between this rule and copyleft (RE13).

(4) Software-related patents
Under the default rule copyright holders are the ones who can restrict all six
activities covered in the FSD. Other rules identified so far regulate the way
in which copyright holders allow users to undertake these activities. How-
ever, copyright holders are not the only ones who can restrict users in the
exercise of their freedoms. In other words, consent of copyright holders is
always necessary, but not always sufficient for user freedoms. Notwithstand-
ing copyrights, there are other exclusive rights that a third party might hold
in relation to a Free Software program. The most important ones of such
exclusive rights are patents.130 Patent rights belong exclusively to their hold-
er and they are effective erga omnes, including against the parties to a Free
Software license.131 With these rights, the patent holder can prevent others

130 Software may benefi t from patent protection if it forms a part of a product or process

constituting an invention, and such a software-related invention is not excluded from

patentability under applicable law (see generally: Kenneth Nichols, Inventing soft-

ware: the rise of “computer-related” patents (Quorum Books, Westport, 1998). More

precisely, software often constitutes an element of an invention consisting of some “func-

tional interrelation between technical components of a system, e.g., the architecture of a

processor and the particular way of processing data in such a processor.” (Yannis Sku-

likaris, Software-Related Inventions and Business-Related Inventions; A review of practice and
case law in U.S. and Europe, Patent World, February 2001, 26.) Notably, copyright pro-

tects expression (form of the work), whereas patent may be granted for the practical

application of innovative ideas effecting in a product or process (Ian J. Lloyd, Informa-

tion Technology Law, 308 (Butterworths, London, Edinburgh, Dublin, 2000, 3rd ed.)).

See also: Lucie Guibault, Ot van Daalen, Unraveling the Myth around Open Sour-

ce Licenses. An Analysis from A Dutch and European Law Perspective (TMC Asser

Press 2006) 131.

131 Certainly, if a patent holder is at the same time a party to a Free Software license it is pos-

sible to argue that the patent holder has granted an implied or explicit patent license. We

should note that only some of Free Software licenses explicitly cover other exclusive rights

of the licensor than copyright, that may attach to a computer program (examples include

the MPL, GPL, and Eclipse Public License), while others may contain only implicit patent

licenses (see: Andrew M. St. Laurent, Understanding Open Source and Free Soft-

ware Licensing (O’Reilly, 2004)). Still, many Free Software licenses are limited to copy-

rights only. Thus, even the licensor could attempt to enforce the exclusive rights that were

not covered in the license to prevent licensees from exercising their freedoms (although

this might constitute an abuse of rights, or be otherwise barred by the applicable law).

Towards_an_Improved_def.indd 85Towards_an_Improved_def.indd 85 23-02-2010 10:49:2123-02-2010 10:49:21

86 Chapter 3

from using, developing, or distributing programs that are related to the pat-
ented product or process in a way covered by patent claims.

Obtaining patent protection requires application and registration at pat-
ent offices. The application, registration, and patent attorney fees may con-
stitute an obstacle in applying for patent protection for some applicants.
Additionally, patents are granted usually only if the reviewer of the applica-
tion finds patentable subject-matter in it.132 Patentability of software-related
inventions depends on the applicable national law, and patents are granted
for a specific jurisdiction.133 This means that patents allow their holders to
restrict user freedoms in some jurisdictions only.134 It also means that patent
holders may have difficulties in enforcing their patents against Free Software
users scattered accross many jurisdictions. However, we are not aware of
any major jurisdiction that would completely forbid granting of software-
related patents in one way or another. Such patents have been widely recog-
nised in the U.S.135 In Europe, software-related patents have been granted

132 Some patent offi ces perform only a partial check, while some of them do not perform any

examination at all, which means that the validity of the patents is checked only in case

the patent is enforced and the alleged infringer defends in a court. See: WIPO (Standing

Committee on the Law of Patents), Report on the International Patent System, (3 February

2009, SCP/12/3 Rev. 2), p. 53.

133 Some vague legal guidelines for software patentability may already be found on an inter-

national level, within the framework of WTO in TRIPS Art. 27 providing for a patentabil-

ity of inventions in all fi elds of technology. Partially in the light of TRIPS Arts. 27(2) and

27(3) which do not mention software as capable of being excluded from patentability

(Daniele Schiuma, TRIPS and Exclusion of Software “as Such” from Patentability, Vol. 31,

No.1, IIC International Review of Industrial Property and Copyright Law 36, 40

(2000)). On the other hand; as Tripathi and others rightly point out, patenting things that

do not meet general patentability requirements and are not inventions is not the objective

of TRIPS, although Art. 1 allows to establish a more extensive protection than the one

provided for by the agreement (R C Tripathi et al., Patenting of Computer Software: Status
and Approach, Vol. 7 Journal of Intellectual Property Rights 128, 129 (2002), adding

that in the early 90s, when TRIPS was drafted and discussed software was mostly consid-

ered not to constitute inventions but algorithms, at best just discovered (Id. at 130)).

134 Generally in order to obtain a patent effective worldwide, the inventor would have to

apply in each national jurisdiction separately. However, there are means to obtain patent

for multiple jurisdictions as a result of single or simplifi ed application (which are a result

of international treaties such as the PCT or EPC).

135 In the U.S. for a long time, the ruling decision in the American debate on software patent-

ability has been State Street Bank & Trust v. Signature Financial Services, 149 F.3d 1368 (Fed.

Cir. 1998), cert. denied, 119 S.Ct. 851 (U.S. Jan 11, 1999). Court of Appeals for the Federal

Circuit was presented with a computerized algorithm for managing an investment fund

structure and held that it constitutes a patentable subject matter, which should be evalu-

ated under the usual test of usefulness, novelty and non-obviousness (Peter Toren, Soft-
ware and Business Methods are Patentable in the U.S. (Get over it), Patent World, September

2000, 8). See also: Christopher L. Ogden, Patentability of Algorithms After State Street Bank:
The Death of the Physicality Requirement, No. 10 Vol. 82 Journal of Patent and Trade-

mark Office Society 721, 724 et seq (2000). In a recent case, however, In re Bilski, the Fed-

eral Circuit might have started a more rigid approach towards software patentability (545

F.3d 943 (Fed. Cir. 2008) (en banc)). See, e.g., Patently O, http://www.patentlyo.com/

patent/ 2008/10/in-re-bilski.html).

Towards_an_Improved_def.indd 86Towards_an_Improved_def.indd 86 23-02-2010 10:49:2123-02-2010 10:49:21

87Regulatory framework of free software

under the EPC.136 Although the so-called Software Patents Directive propos-
al was rejected, some national patent laws in Europe have been applied in a
way to allow patentability of software-related inventions.137 Additionally, no
restrictions on patents provided in patent laws known to us could allow Free
Software users to disregard the threat of patents.138

It follows that we have to include an additional rule in the framework,
the “software-related patents” rule.

Software-related patents: Users are not allowed to exercise some or all of the six activities

covered in the FSD to the extent that and in a jurisdiction where such activities constitute

an infringement of a patent, unless they obtain consent of a patent holder.

In particular, it is not allowed to use, develop, or distribute Free Software in jurisdictions

where the use, development, or distribution (respectively) of that Free Software consti-

tutes a patent infringement.

Software patents cover all four combinations presented in Table 3.1. They
allow patent holders to restrict user freedoms regardless of whom a user
obtained Free Software, and regardless of what kind of Free Software was
obtained (original or improved). Certainly, software-related patents cover
these combinations only to the extent they apply to Free Software.139 So, each

136 The European Patent Convention of 1973 (EPC) excludes computer programs from the

understanding of inventions in Art. 52(2)(c). However, pursuant to Art. 52(3), patentability

is excluded only to the extent to which an application relates to computer program “as

such”. However, relying on the case law of Appellate Body, EPO has for a long time not

rejected software-related applications straight away. The exception of EPC Art. 52(3) has

been generally understood by EPO as excluding non-technical software-related inventions

from the understanding of “invention”. To pass the test for patentability, “technical effect”

has to go beyond mere interaction between hardware and software (Skulikaris, FN 130 at

28). In the late 90s this term was broadened in the Appellate Body decision T 1173/97 to

include “a computer program claimed by itself” if only the technical effect was present

(International Business Machines, Corp./Computer program product, Decision of Technical

Board of Appeal 3.5.1 dated 1 July 1998, T 1173/97 (OJ 10/1999, 609)). See: EPO, Guidelines
for Examination in the European Patent Offi ce (2009), at: http://www.epo.org/patents/law/

legal-texts/guidelines.html. See also: Daniel J. M. Attridge, Challenging Claims! Patenting
Computer Programs in Europe and the USA, 1 Intellectual Property Quarterly 22, 44

(2001). But see: EPO, Pending referral to the Enlarged Board of Appeal (G 3/08), at: http://

www.epo.org/topics/issues/computer-implemented-inventions/referral.html.

137 Although Polish Industrial Property Law does not allow to grant patents for computer

programs there have been many patents granted in one way or another related to prod-

ucts or processes that use computer programs (see, e.g. PL 123 820, published on 25 Sep-

tember 1984, PL 116 724, published on 31 March 1983).

138 Some Free Software licenses contain wording aimed at minimizing the threat of patents.

Their intended effect is to discourage patent litigation (See: Heather J. Meeker, The

Open Source Alternative Understanding Risks and Leveraging Opportunities

(Wiley, 2008), 42. For other types of defences against patents on the Free Software scene

see id. 89, 95-96).

139 According to some studies, the Linux kernel infringes a few dozen of patents. See, e.g.,
eWEEK, Open-Source Insurance Provider Finds Patent Risks in Linux, http://www.eweek.

com/c/a/Linux-and-Open-Source/OpenSource-Insurance-Provider-Finds-Patent-

Risks-in-Linux/.

Towards_an_Improved_def.indd 87Towards_an_Improved_def.indd 87 23-02-2010 10:49:2123-02-2010 10:49:21

88 Chapter 3

Free Software program has to be scrutinized separately under each applicable
law and patents granted in the jurisdiction in question. With these reserva-
tions, software-related patents restrict the freedoms that result out of the grant
of freedoms by making it insufficient for a user to obtain a consent (license) of
the copyright holder for the exercise of the freedoms. The consent of the pat-
ent holder is made an additional necessary condition. It means that the rule
of software-related patents is in a direct relation with the grant of freedoms.

We include in the model of the framework software-related patents
(RU9) and the relation between this rule and the grant of freedoms (RE14).

(5) Contracts with distributors
In Subsection 2.1.2 we indicated that some distributors of Free Software use
restrictive distribution and service contracts. We should remind that, for
example, users of some commercial GNU/Linux distributions are required to
undertake contractually towards distributors (1) not to use certain software
or (2) to use the software only in a particular way. Some users also undertake
to refrain from modification or distribution of Free Software. Many of such
obligations are not subject to any extreme sanctions. Usually, a user risks only
losing warranty or services related to the software. However, this can be suf-
ficient to prevent many users from exercising their freedoms. Certainly, not
all distributors affect users only negatively. Some of them, in exchange for
user freedoms, provide additional warranty for software, thus minimizing
the risk resulting for users from the hacker immunity. We notice that such con-
tracts do not affect the status of Free Software from the point of view of the
FSD; Free Software programs subject to such contracts remain Free Software.
However, by entering into such contracts, users invite new rules in the frame-
work that affect their freedoms regulated by the rules identified so far.

Given the autonomy of parties to a contract that follows from contract
law, there are practically no limits as to what the new rules could be. Here,
we provide just four examples. First, users may contractually undertake not
to exercise some or all of the six activities that constitute their freedoms. Sec-
ond, they may in particular undertake not to fork the program. Third, it is
possible to limit contractually the rules of copyleft. Namely, the distributor
delivers improvements under a Free Software license to a user (thus per-
forming copyleft obligations), but the user contractually undertakes not to
distribute them, or not to use them in some other way.140 Fourth, distributors
could either provide additional warranty, or explicitly extend the hacker
immunity that follows from the license of the distributed program on them-
selves (in such cases user freedoms are not restricted, ceteris paribus). Nota-
bly, any such new contract rule affects only users that enter into the contract.

140 According to the FSF, if the program is under the GPL, “[the licensee is] not allowed to

distribute the work on any more restrictive basis” (Free Software Foundation, GNU Gen-
eral Public License Frequently Asked Questions, http://www.gnu.org/licenses/gpl-faq.

html#DoesTheGPLAllowNDA). Such a contract would be thus a breach of the GPL.

However, it would still bind the user vis-à-vis the licensee (the distributor).

Towards_an_Improved_def.indd 88Towards_an_Improved_def.indd 88 23-02-2010 10:49:2123-02-2010 10:49:21

89Regulatory framework of free software

Other users are not affected by the contract, and they may continue to exer-
cise their freedoms (ceteris paribus).

Certainly, even though the autonomy of the parties is the basic principle
of the contract law, there are many laws that allow to interfere with a con-
cluded contract. Consumer protection and competition laws are the most
prominent examples. Users are definitely able to invoke such laws against
distributors who attempt to impose restrictive contracts on them. But we
find it unlikely that they would allow to impose on distributors an obliga-
tion to enable users to exercise their freedoms as a remedy. So, we have to
conclude that the freedoms can be restricted contractually despite such laws
and in the model of the framework we include a general rule that follows
from contracts with distributors.

Contracts with distributors: A user is allowed to exercise all six activities covered by the

FSD as long as the user does not contractually undertake not to exercise some or all of

them.

In particular, a user can undertake to use the software in a specifi c way only, or not to

become a developer or a distributor of a Free Software program.

The above rule affects only these two combinations in Table 3.1 that regulate
Free Software (original or improved) obtained from third parties – the dis-
tributors (the right column). Depending on the clauses of a particular con-
tract with a distributor, this rule affects separately the grant of freedoms, the
right to fork, copyleft, the hacker immunity, or all these rules at the same time.
The extent that these rules are affected also depends on clauses of a particu-
lar contract.

We include in the model of the framework:

(1) contracts with distributors (RU10),
(2) the potential relation between contracts with distributors and the

grant of freedoms (RE15),
(3) the potential relation between contracts with distributors and the

right to fork (RE16),
(4) the potential relation between contracts with distributors and copy-

left (RE17), and
(5) the potential relation between contracts with distributors and the

hacker immunity (RE18).

(6) Liability rules
Liability rules provide for remedies in case of non-merchantability or unfit-
ness of products for agreed or communicated purposes, other breaches of
contract, torts, or infringement of third party rights. They also regulate
whether and to what extent a person who otherwise would be liable is
allowed to waive or escape such liability. We notice that the liability rules
materially affect the hacker immunity (and it is the only rule in the framework
affected by liability rules). Namely, liability rules may limit the scope of the

Towards_an_Improved_def.indd 89Towards_an_Improved_def.indd 89 23-02-2010 10:49:2123-02-2010 10:49:21

90 Chapter 3

hacker immunity and bring back an important demotivator, the liability, into
the path of Free Software actors such as developers and distributors. In par-
ticular, liability rules affect the readiness of developers to contribute new
pieces of Free Software and the readiness of distributors to offer Free Soft-
ware to users.

Liability rules are provided for by the applicable national law. Each
national law strikes a balance between interests of all actors at a different
point. However, we do not expect that any national law could completely
prohibit warranty disclaimers or liability limitations.141 Usually, liability
rules do not allow to waive liability in some circumstances only, such as if
the damages were caused due to gross negligence or wilful behaviour, as
well as in relations with consumers. At the same time liability rules contain
many exceptions that can be used to avoid liability or transfer it to another
entity. For example, developers could hide behind the “corporate veil” of a
legal person, such as a company.142 Then, if the company distributed soft-
ware that caused a damage not covered by the hacker immunity, the company
would be liable for the damage vis-à-vis the users.

Much of the above dilemma is resolved in the Free Software scene using
contracts. Many distributors offer additional contractual warranties or ser-
vices related to Free Software in exchange for remuneration. By exercising
such warranties or purchasing such services, users are able to have many
defects in Free Software promptly removed. A prompt removal of defects
means that the users are less likely to seek damages against the actors in the
Free Software scene or to seek other legal recourse. The fact that under the
grant of freedoms everyone is allowed to offer a warranty or a service in rela-
tion to a Free Software program stimulates the operation of the market of
these warranties and services. However, if this market was prevented from
operation, users would be more likely to litigate against the actors. Liability
would become a real threat, which would demotivate the actors from devel-
oping and distributing Free Software despite the hacker immunity.

Nevertheless, liability is always a potential threat, irrespective of the
operation of the market described above. The mere fact that a third party (a
distributor) grants a warranty or stipulates to provide services related to
Free Software does not affect general liability rules between users and those
who actually cause damages. Generally, such warranties or services provide

141 See, e.g., Raymond T. Nimmer, Legal Issues in Open Source and Free Software Distribution,

Open Source Software Spring 2006 Critical Issues in Today’s Corporate Environ-

ment, PLI Handbook no. G-861, 7 (arguing that the effectiveness of warranty disclaimers

and liability limitations in Free Software licenses depends on whether they create a con-

tractual relationship, not a condition on the use of software (at 30, 33); citing UCC and

UCITA requirements for effectively waiving express and implied warranties). See also:

Lucie Guibault, Ot van Daalen, Unraveling the Myth around Open Source Licen-

ses. An Analysis from A Dutch and European Law Perspective (TMC Asser Press

2006) 78 et seq.

142 See: Wikipedia, Corporate veil, http://en.wikipedia.org/wiki/Corporate_veil.

Towards_an_Improved_def.indd 90Towards_an_Improved_def.indd 90 23-02-2010 10:49:2123-02-2010 10:49:21

91Regulatory framework of free software

only for an additional party a user could turn to in case of defects. The gen-
eral liability rules that allow to turn to the person who actually caused the
damage remain largely unaffected. This means that the hacker immunity is
subject to liability rules, that is by all rules that regulate liability in the appli-
cable law. So, we include in the framework liability rules that limit the hacker
immunity.

Liability rules: Users are not allowed to claim liability related to Free Software as long as

the applicable law does not provide to the contrary, or it provides for exceptions that

allow to avoid liability.

Precisely speaking, there are usually many rules that regulate liability. For
example, these are: rules of statutory warranties, contractual liability rules,
rules of torts, etc. In this thesis we group all of them in one class called “lia-
bility rules” and we include this class in the framework, as if it was a single
rule. This is possible, because every liability rule is generally in the same
relation with the hacker immunity. Namely, such a rule regulates (and most
possibly restricts) the hacker immunity in all four combinations presented in
Table 3.1.

We include in the model of the framework liability rules (RU11) and the
relation between this class of rules and the hacker immunity (RE19).

(7) Non-legal regulators of software
So far we focussed on the identification of legal rules. However, the free-
doms could also be subject to limitations or restrictions that follow from non-
legal regulators, i.e., (1) the architecture, (2) the norms, and (3) the market.
Usually, it is not easy to indicate one of these regulators as an isolated source
of a particular restriction or limitation. It should be definitely expected that
many restrictions and limitations are a result of various regulators acting
together. Here, it is important to account for the resulting non-legal restric-
tions and limitations in the form of rules that are included in the model of
the framework. Below, we provide four examples of such restrictions and
limitations. Then, we identify rules that follow from them.

First, some vendors make Free Software programs available as a part of
a service143 or of an embedded device.144 In such a case, it is possible for
them to control the exercise of the freedoms using the architecture of the ser-
vice or of the device. Namely, they can employ technical means that make it

143 There is a growing trend of delivering software not as a product, but as a service. See:

Wikipedia, Cloud computing, http://en.wikipedia.org/wiki/Cloud_computing. See also:

autonomo.us, Franklin Street Statement on Freedom and Network Services, http://autonomo.

us/2008/07/franklin-street-statement/.

144 There is a growing trend of embodying Free Software in various devices. See, e.g., Wiki-

pedia, Tivoization, http://en.wikipedia.org/wiki/Tivoization, see also: Wikipedia,

Android (mobile device platform), http://en.wikipedia.org/wiki/Android_(mobile_device_

platform).

Towards_an_Improved_def.indd 91Towards_an_Improved_def.indd 91 23-02-2010 10:49:2223-02-2010 10:49:22

92 Chapter 3

impossible or impracticable for users to use modified or third-party Free
Software programs together with the respective service or device. As a result,
users remain legally allowed to exercise the freedoms, but they have difficul-
ties in using the software for purposes other than contemplated by the dis-
tributor. More importantly they are not able to study, to adapt, and to
improve the software effectively. Obviously, they are unable to redistribute,
and release the software as well (since it makes not much practical sense).
Certainly, users could exercise their freedoms in an unencumbered way only
if they were able to reconstruct the whole infrastructure used to provide the
service, or if they were able to manufacture a substitute embedded device.
This makes the exercise of the freedoms unlikely.

Second, the practice shows that average users do not exercise the free-
doms, at least not to the full possible extent. Instead of, e.g., improving pro-
grams on their own, many users rely on certain developers and distributors
of Free Software (such as renowned firms or communities that develop and
distribute GNU/Linux distributions). Such users do not modify the software
if they identify bugs, require some lacking functionalities, or require a higher
degree of interoperability. Rather, they send bug reports or feature requests to
these developers and distributors. These users do not develop the program
on their own if they see that the development is not organized according to
their will. This means that many users turn into passive audience, such as the
users of proprietary software, despite they are legally allowed to be active
actors. Obviously, the fact that the users have the freedoms from the legal
point of view, does not mean that they will exercise the freedoms at all times.

Third, it has been observed in practice that copyleft does not necessarily
enable users to exercise their freedoms in the improvements of Free Software
made available as a result of this rule. Harald Welte claims that he managed
to enforce copyleft in over 100 cases.145 However, he noted that software that
was made available as a result of this enforcement was mostly useless. Welte
indicates the following reasons: (1) low quality of the source code (poor cod-
ing style, API problems, lack of portability); (2) outdated source code (writ-
ten against old versions of the original program); (3) copyleft-avoidance prac-
tices such as “binary kernel modules”. This shows that the law alone (as
expressed in a copyleft clause) is not a sufficient regulator that could direct
anyone to develop good-quality code, to write it against recent versions of
programs, or not to attempt to game the boundaries of the scope of copyleft.
We anticipate that such a regulation could be a result of norms or of the mar-
ket. However, Welte’s observations already allow us to conclude that there
are no such rules that regulate copyleft infringers effectively.

Fourth, assume a person makes an improvement, such as a patch or a
feature upgrade, to a Free Software program. Assume also that the improve-
ment is of good quality, works with the current version of the program, and

145 Harald Welte, Some more thoughts on the results of GPL enforcement, at: http://gnumonks.

org/~laforge/weblog/2006/10/30/#20061030-gpl-devices.

Towards_an_Improved_def.indd 92Towards_an_Improved_def.indd 92 23-02-2010 10:49:2223-02-2010 10:49:22

93Regulatory framework of free software

that it is provided with the whole source code. Then, the improvement has to
be properly integrated in the whole program. Only if it is properly integrat-
ed, a working new version of the program is created, and the freedoms to the
new version may be exercised by users in practice. Otherwise, the program
would not work at all, or it would work after each user invested a consider-
able technical effort. The integration is possible if only the development of
software is organized properly. The organization is necessary because the
integration requires proper skills of developers and cooperation between
them. It means that there are transaction costs involved in the integration.146
These transaction costs might prevent individual users from integrating the
code on their own.

Here, we may conclude that non-legal regulators limit or may be used to
restrict user freedoms. In the first example given above, the restriction is a
result of the architecture as constructed by vendors of services or devices
offered together with Free Software. The architecture has an impact similar
to contracts with distributors, already described in one of the above para-
graphs. So, we include in the framework, called “architectural restrictions”.

Architectural restrictions: A user can exercise all six activities covered by the FSD as long

as the user is not prevented from it by technical means.

In particular, technical means could prevent users from using, developing, or distribut-

ing a Free Software program.

Architectural restrictions cover all combinations presented in Table 3.1, since
they can be applied regardless of whom distributes Free Software and what
kind of Free Software is distributed. The restrictions are in a direct relation
with the grant of freedoms. Namely, they are used to restrict the exercise of the
freedoms granted by copyright holders to Free Software. We include in the
model of the framework the architectural restrictions (RU12) and the relation
between this rule and the grant of freedoms (RE20).

In the second example, we observe a limitation. Users exercise the free-
doms in some situations only. We assume that the exercise of the freedoms
comes at a price; it causes transaction costs. Namely, it requires technical
knowledge necessary to create a working computer program out of an origi-
nal Free Software program and improvements of the program. Also, the
resulting software requires support and maintenance services. In such a case,
users who exercised freedoms in the program on their own, would have to
support and maintain it by themselves as well. Thus, in the second example

146 Cf. Ronald Coase, The Nature of the Firm, Economica, vol. 4, no. 16, November 1937 at

386. Transaction costs, generally, are costs that individuals bear while acting on a free

market. According to Yochai Benlker a particular type of transaction costs present in the

development of Free Software are “integration costs”, i.e., costs of controlling quality of

contributions and integrating them in the whole product (Yochai Benkler, Coase’s Penguin,
or, Linux and The Nature of the Firm, 112 Yale Law Journal 369 (2002)). See also: Wikipe-

dia, Transaction costs, http://en.wikipedia.org/wiki/Transaction_costs.

Towards_an_Improved_def.indd 93Towards_an_Improved_def.indd 93 23-02-2010 10:49:2223-02-2010 10:49:22

94 Chapter 3

the limitation on the protection of user freedoms is a result of the market,
which prevents rational users (homo economicus) form undertaking activities,
of which costs outgrow benefits. This limitation affects the grant of freedoms
and can be expressed in the following way.

Limitation of the grant of freedoms by the market: A rational user will exercise the free-

doms provided that the benefi ts for the user are higher than costs.

The limitation covers all combinations presented in Table 3.1 that are at the
same time covered by the grant of freedoms. We note that this limitation does
not always affect users who do not have to follow the cost/benefit calculus,
such as the government or non-profit organizations. The limitation is in a
direct relation with the grant of freedoms. We include in the model of the
framework the limitation of the grant of freedoms by the market (RU13) and
the relation between this rule and the grant of freedoms (RE21).

In the third example we also observe a limitation. It is due to insufficient
market regulation or insufficient norms that could stimulate all users not to
infringe copyleft. This leads to a situation wherein copyleft has to be enforced
using the law. However, the law alone cannot direct copyleft infringers to
write good quality source code and provide it in a way that allows to use the
code by other users. This limitation directly affects copyleft.

Limitation of copyleft by the market and norms: A licensee will perform the copyleft
obligations provided that (1) the benefi ts for the licensee are higher than costs and (2) the

non-performance of the obligations is contrary to norms that bind the licensee.

The limitation covers all combinations presented in Table 3.1 that are at the
same time covered by copyleft. Consequently, the limitation is in a relation
with copyleft only. It consists of two regulators: (1) the market, and (2) the
norms. We note that the market limitation applies only to users who have to
follow the cost/benefit calculus, while the remaining users are only subject
to the norm that stigmatises copyleft infringement. We include in the model
of the framework the limitation of copyleft by the market and norms (RU14)
and the indirect relation between this rule and copyleft (RE22).

In the fourth example, there is another limitation. It is a result of transac-
tion costs related to the integration of source code that comes from various
sources into a finished working software product. If a user cannot bear these
transaction costs, the user has to forgo the exercise of the freedoms in a par-
ticular improvement of Free Software. There is a general rule that follows
from this example. It regulates all six activities covered by the FSD, not only
improving Free Software. We call this rule “market limitation of freedoms”.

Market limitation of freedoms: A user will exercise the six activities covered by the FSD

provided that the benefi ts for the user are higher than costs.

In particular, a user will not become a developer or a distributor of Free Software if the

development or distribution (respectively) is not viable economically.

Towards_an_Improved_def.indd 94Towards_an_Improved_def.indd 94 23-02-2010 10:49:2223-02-2010 10:49:22

95Regulatory framework of free software

Market limitation covers all combinations presented in Table 3.1, since it can
be applied regardless of whom distributes Free Software and what kind of
Free Software is distributed. The limitation is in a direct relation with the
grant of freedoms. Namely, it limits the exercise of the freedoms granted by
copyright holders to Free Software. Again, we note that the limitation applies
only to users who have to follow the cost/benefit calculus. So, if a given user
is able to undertake activities, of which costs outgrow their monetary bene-
fits, and the exercise of a particular freedom leads to such an effect in the
given circumstances, then the user will not be prevented from the exercise of
the freedom by this limitation. We include in the model of the framework the
market limitation (RU15) and the relation between this rule and the grant of
freedoms (RE23).

In summary, as a result of the analysis of non-legal regulators, we include
in the framework four rules and four relations. For the sake of clarity, we
group all this rules in one class, to which we will refer to as “non-legal regu-
lators” (RU12-15). This class of rules is in relation with the grant of freedoms
(RE20, RE21, and RE23) and it is in relation with copyleft (RE22).

3.1.3 Conclusion on rules for software and relations between them

In Subsections 3.1.1 and 3.1.2 we identified 15 rules that regulate access to
software. We also identified 23 relations between these rules. We provide a
simplified graphical representation of the rules identified so far and rela-
tions between them in the Figure 3.5.

Figure 3.5: Rules for software and relations between them

For the sake of clarity, we performed the following simplifications in Figure
3.5. First, we group together all non-legal regulators in one item (as explained
above). Second, we do not present all 23 relations, but only the relations we
find most important for the purpose of our study. Namely, we omit relations
between the grant of freedoms, the right to fork, and copyleft, as these relations

Towards_an_Improved_def.indd 95Towards_an_Improved_def.indd 95 23-02-2010 10:49:2223-02-2010 10:49:22

96 Chapter 3

do not limit or restrict user freedoms. For all other identified relations, the
reader should revert to the respective paragraphs above. The presented rela-
tions between rules are indicated using lines. Solid lines represent legal rela-
tions. Dashed lines represent relations between legal rules and the rules that
follow from non-legal regulators.

In Figure 3.5 we present the rules grouped in three levels. On the first level
there is the default rule. This is the rule which empowers copyright holders to
grant or refuse user freedoms. On the second level there are 4 rules that grant
or protect user freedoms (the grant of freedoms, the right to fork, copyleft, and the
hacker immunity). On the third level there are 10 rules that constitute limita-
tions or restrictions of user freedoms (since 4 non-legal regulators are grouped
in one class, there are only 7 boxes presented on the third level). In this thesis
we will focus on the third level, that is on the limitations and restrictions of the
freedoms. For example, we will analyse how these limitations and restrictions
are affected by software communities (in Chapter 4) and eGovernments (in
Chapter 5). Also, we will propose improvements of the framework designed
to address the limitations and restrictions (in Chapter 6).

Here, we may conclude that we identified rules that are related to the
software scene and relations between them. We may also conclude that we
include in the framework all the identified software rules and relations.

3.2 Identification of rules for standards and relations between them

It follows from our findings in Chapter 1 that there are two necessary condi-
tions of user freedoms: (1) access to software, and (2) access to standards. All
rules identified so far regulate access to software. So, we still have to identify
additional rules that regulate access to standards. Then, we have to identify
relations between them. Afterwards, we have to include these rules and rela-
tions in the model of the framework. We do all this in this section. First, we
identify rules and relations that limit or restrict access to standards and lead
to closed standards (3.2.1). Then, we identify rules and relations that regu-
late activities directed at removing the restrictions on standards and at mak-
ing open standards (3.2.2). Finally, we present conclusions on the rules for
standards and on the relations between them (3.2.3).

3.2.1 Rules that lead to closed standards

To put it in a nutshell, closed standards are protocols, interfaces, and data
formats, of which the specifications are not generally available and that are
subject to exclusive control.147 Access to, and the use of, interoperability

147 In this thesis we treat any standard that does not meet the defi nition of an open standard, as

a closed standard. The defi nition of an open standard was presented in Chapter 2, Section

2.3. This defi nition was taken from the EIF v. 1.0. Here, “available” means not only “acces-

sible without limitations”, but also “capable of being legally used without restrictions”.

Towards_an_Improved_def.indd 96Towards_an_Improved_def.indd 96 23-02-2010 10:49:2223-02-2010 10:49:22

97Regulatory framework of free software

information of such standards is restricted. Restrictions that lead to closed
standards are the result of three regulators: (1) the law, (2) the architecture,
and (3) the market.148 First, the law protects, in particular, trade secrets and
patents. If interoperability information satisfies certain criteria, it becomes a
trade secret. Alternatively, the use of the information may be protected by a
patent material to the standard. So, the law can be used to restrict access to
standards indirectly, by invoking trade secret or patent protection. Second, it
is possible to design a program that uses a standard in a way to restrict access
to the interoperability information. We refer to this as the scrambling of
interoperability information. Scrambling makes it technically impossible or
impractical to access the necessary information. Third, it is possible to make
use of switching costs in order to lock users in to a particular closed standard.
In such a way, standards are restricted as a result of the market regulation.

Generally, closed standards and Free Software exclude each other. Cer-
tainly, developers of Free Software programs sometimes attempt to design
their programs to use closed standards. However, as a rule, the development,
distribution, or use of Free Software that uses closed standards is either legal-
ly prohibited, technically impractical, or economically infeasible. This leads
to two possibilities: (1) copyright holders of would-be Free Software pro-
grams that use closed standards are stimulated not to grant users their free-
doms in such software, or (2) users are stimulated not to exercise the free-
doms. Sometimes, the stimulation results in a situation that such software is
not developed at all. Alternatively, it could be possible to grant users free-
doms to a program that uses a closed standard despite the stimulation, but
the regulators mentioned above would still prevent users from exercising
their freedoms in whole or in part. In particular, would-be developers of such
programs could not engage in the development of the programs, or would-be
distributors could not distribute them. More precisely, the designer of the
standard can either prevent them from doing so completely, or impose condi-
tions incompatible with the freedoms. So, the general rule for closed stan-
dards that we include in the framework is “closed standards” (RU16).

Closed standards: users of a program are not allowed to exercise (or cannot exercise) some

or all of the six activities covered by the FSD, as long as the program uses a closed stan-

dard.

In particular, developers are not allowed to (or cannot) freely develop Free Software that

uses such a standard, and distributors are not allowed to (or cannot) freely distribute this

software.

This general rule is in direct relation with the grant of freedoms (RE24). It is a
complex relation that can be explained in the following way. Even though

148 As far as the fourth regulator, the norms, is concerned, we proceed under an assumption

that it does not have a material impact on the regulation of standards. However, there are

certainly some norms that regulate standards, in particular the norms followed by parti-

cipants of standard setting organizations.

Towards_an_Improved_def.indd 97Towards_an_Improved_def.indd 97 23-02-2010 10:49:2323-02-2010 10:49:23

98 Chapter 3

users can invoke a Free Software license against the licensors who attempt to
restrict user freedoms, the users are still restricted in the exercise of the free-
doms as long as the program in question uses a closed standard. Alterna-
tively, because the standard is closed, no Free Software is able to use this
standard without restrictions. So, closed standards either restrict the grant of
freedoms or stimulate copyright holders not to grant the freedoms at all.

The rule of closed standards affects all four combinations presented in
Table 3.1. Namely, it allows to restrict the exercise of the freedoms regardless
of the fact from whom the program is obtained and regardless of whether
the program is original or improved Free Software. However, this is the case
only to the extent that the program uses (or rather attempts to use) closed
standards. More precisely, this is the case when users attempt to both (1)
exercise the freedoms, and (2) provide for interoperability using closed stan-
dards. In other cases, the rule does not apply.

We include in the model of the framework the closed standards (RU16)
and the relation between this rule and the grant of freedoms (RE24). Below,
we refine the rule of closed standards by elaborating on four issues that are
the result of the three regulators described above. There are two issues relat-
ed to the law: (1) trade secrets, and (2) patents material to standards. There is
one issue that is related to the architecture: (3) scrambling of interoperability
information, and there is one issue that is related to the market: (4) locking
in.

(1) Trade secrets
Interoperability information related to a closed standard can constitute a
legally protected trade secret of the designer of the standard.149 Generally,
the legal protection of the information as a trade secret is conditioned upon
making it secret and on undertaking efforts to protect the secret.150 Certainly,
in order to restrict access to a standard with the use of trade secrets, the
designer of the standard has to keep its specification private. However, the
designer can make the specification available to others without renouncing
trade secret protection; this is done using non-disclosure agreements
(“NDAs”). An NDA obliges the recipient to keep the information confiden-
tial. Notwithstanding the making available under an NDA, the standard

149 “Trade secrets” is an American legal term, but it has been recognized throughout the

world. In various continental systems the terms “confi dential information” or “know-

how” are also used. TRIPS regulates this matter in Sec. 7, Art. 39 titled “Protection of

Undisclosed Information”. In national laws that follow the civil law tradition, trade

secrets are usually protected under general provisions of civil codes, or under the laws on

unfair competition.

150 Carey R. Ramos, David S. Berlin, Three Ways to Protect Computer Software, 16 No. 1 Com-

puter Lawyer 16 (1999); Victoria A. Cundiff, Protecting Computer Software as a Trade Secret,
in: 507 Practising Law Institute, 18th Annual Institute on Computer Law 761

(1998); Alois Valerian Gross, What is Computer “Trade Secret” under State Law, 53 Ameri-

can Law Reports 4th 1046. See also: Van Lindberg, Intellectual Property and Open

Source, O’Reilly 2008, 103 et. seq.

Towards_an_Improved_def.indd 98Towards_an_Improved_def.indd 98 23-02-2010 10:49:2323-02-2010 10:49:23

99Regulatory framework of free software

remains a closed standard, because NDAs oblige parties to protect the infor-
mation from becoming generally available and used. They may also impose
other restrictions on the use of the information by the recipient.

Trade secret protection terminates (1) if the designer fails to protect it
adequately or reveals the protected information, (2) if the information
becomes generally available without a breach of an NDA, or (3) if it becomes
available in another lawful way.151 Afterwards, the information can be legal-
ly used to provide for interoperability, specifically for interoperability of a
Free Software program with other programs that use the given standard.
Conversely, as long as a standard is protected by trade secrets, it is not pos-
sible to implement the standard in a Free Software program. Obviously, the
designer of the standard could allow certain persons to exercise some degree
of freedom, but practically there is no possibility to allow a person to exer-
cise all four freedoms as defined by Stallman while maintaining trade secret
protection for a standard used in a Free Software program at the same
time.152 In particular, development or distribution of a Free Software pro-
gram that uses a standard protected as a trade secret without a breach of
trade secrets law is generally illegal, or at least impracticable. So, the general
rule of closed standards may be refined in the following way.

Trade secrets: As long as compliance with a standard requires the use of information that

constitutes a trade secret, users of programs that use the standard are not allowed to exer-

cise such activities covered by the FSD that constitute a breach of the trade secret.

In particular, developers are not allowed to develop Free Software that uses such a stan-

dard, and distributors are not allowed to distribute this software.

This rule (RU16a), as a refinement of the general rule of closed standards, is
in relation with the grant of freedoms (RE24) in the way already described
above. The coverage of this rule of the combinations presented in Table 3.1 as
compared to the general rule of closed standards is further limited to cases
when the standard is protected by trade secrets. If the trade secret protection
does not apply, user freedoms are not affected by this rule.

(2) Patents material to standards
Patents can be used to restrict access to standards much more effectively
than trade secrets. We already outlined the basic rules of patent protection
when discussing the rules for software. There, we focussed on software-

151 Applicable laws can differently regulate this issue. We may assume that in most major

jurisdictions the use of a trade secret obtained in an unfair way (e.g., “industrial espio-

nage”) would rather not be legal, while the reconstruction of the information using fair

means (e.g., reverse engineering) would not be prohibited generally.

152 David Bender, Trade Secret Implications of Open Source Licenses, Open Source Software

Spring 2006 Critical Issues in Today’s Corporate Environment, PLI Handbook no.

G-861, 129; Stephen J. Davidson, Gabriel Holloway, Protecting Trade Secrets in an Open
Source Environment, Open Source Software Spring 2006 Critical Issues in Today’s

Corporate Environment, PLI Handbook no. G-861, 143.

Towards_an_Improved_def.indd 99Towards_an_Improved_def.indd 99 23-02-2010 10:49:2323-02-2010 10:49:23

100 Chapter 3

related patents, of which the claims allow to restrict user freedoms because
they extend to (a) products including a Free Software program or (b) pro-
cesses performed by such a program. Here, we focus on patents material to
standards, which allow to restrict the freedoms because their claims extent
to products or processes designed in compliance with a standard. If a Free
Software program is included in such a product or performs such a process,
its development, distribution, or use can constitute patent infringement
(depending on the patent in question and the applicable law).

From this point of view it is necessary to add that patents grant the hold-
er the monopoly to use the patented invention (product or process), as well
as many substitute products or processes.153 In case the subject-matter of a
patent is an interface, protocol, or a data format, then (depending on the
exact scope of patent claims) the patent holder may restrict the use of Free
Software programs that interoperate using such a patented subject-matter,
even if the programs have been independently created. Obviously, the pat-
ent holder can also restrict the development and distribution of such pro-
grams.154 The fact that patents material to standards can be obtained creates
an incentive for existing or prospective patent holders to direct standardiza-
tion towards adopting closed standards covered with their patents. As a
result many parties could not avoid using the standard, while at the same
time they would have to obtain the patent holder’s authorization to do so.155
From the point of view of user freedoms this means that the exercise of the
freedoms would be subject to such an authorization, as long as the exercise
involved the use of the closed standard covered by a patent. So, the general
rule of closed standards may be refined in the following way.

Patents material to standards: As long as compliance with a standard requires the use

of a subject-matter covered by a patent, users of programs that use the standard are

not allowed to exercise such activities covered by the FSD that constitute a breach of the

patent.

In particular, developers are not allowed to develop Free Software that uses such a stan-

dard, and distributors are not allowed to distribute this software.

153 This is a result of the so-called “doctrine of equivalents” (See, e.g., Wikipedia, Doctrine of
equivalents, http://en.wikipedia.org/wiki/Doctrine_of_Equivalents. See also: Timothy

R. Holbrook, The paradoxical nature of U.S. patent scope, in: Maciej Barczewski et al.

(eds.), When Worlds Collide: Intellectual Property, High Technology and the

Law (Wolters Kluwer 2008), 65.

154 The restriction is possible even if the specifi cation of a patented interface, protocol, or

data format is publicly available. Conversely, patent claims are usually not expressed in a

way that constitutes a complete specifi cation of protocols, interfaces, or data formats

covered in whole or in part by them. Thus, patents may form an additional layer of pro-

tection on top of the protection resulting from the mere fact that the interoperability infor-

mation is kept secret. The practice of not disclosing the specifi cations or source code

implementations in patents is contrary to the basic quid pro quo rule of patent law, which

conditions the patent grant on the disclosure of the invention to the public.

155 See WIPO (Standing Committee on the Law of Patents), Standard and Patents, (18 February

2009, SCP/13/2), at: http://www.wipo.int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf.

Towards_an_Improved_def.indd 100Towards_an_Improved_def.indd 100 23-02-2010 10:49:2323-02-2010 10:49:23

101Regulatory framework of free software

This rule (RU16b), as a refinement of the general rule of closed standards, is
in relation with the grant of freedoms in a way already described above (RE24).
The coverage of this rule of the combinations presented in Table 3.1 as com-
pared to the general rule of closed standards extends only to cases when the
standard is protected by patents. If the patent protection does not apply, user
freedoms are not affected by this rule. We remark that patent holders can
authorize users to exercise the freedoms, so patents restrict the freedoms
only if the patent holders refuse to provide such an authorization (patent
license). But there is no obligation to license patents to users of Free Soft-
ware. The patent holders may also place conditions on the exercise of the
freedoms, or even prohibit the exercise of the freedoms completely (under
particular circumstances).

(3) Scrambling of interoperability information
Interoperability information necessary to use a standard is initially known to
the designer of the standard only. Sometimes, the designers of an interface,
protocol, or data format do not even embody the information in any docu-
mentation (such as a specification) but merely implement the standard
directly in a program that uses it. If, in such a case, the program is distributed
in a binary form only, then the reconstruction of interoperability information
is usually impossible or impractical. Often, even if source codes of the pro-
gram are available, the information cannot be easily reconstructed from
them. Actually, the information expressed in any other form than a complete
and accessible specification is effectively scrambled, i.e., it cannot be easily
used to implement the standard in an independently developed program.

The advantage of scrambling over trade secrets or patents is that it only
requires protecting the information physically and designing one’s products
in a specific way. It does not require in particular any specific conduct regu-
lated by law. Certainly, scrambling alone may not be used to prevent
attempts to extract the hidden interoperability information or to prevent the
design of Free Software that uses the extracted information. Still, scrambling
may be used to make it impossible, impractical, or at least burdensome to
access the interoperability information. Usually, scrambling is used together
with trade secrets or patents. In such a way, it provides for an additional
layer of restrictions on an already closed standard. So, the general rule of
closed standards may be refined in the following way.

Scrambling of interoperability information: As long as the interoperability information

for a given standard is not expressed in a complete and accessible standard specifi cation,

users of programs that use the standard cannot exercise some or all activities covered by

the FSD with regard to these programs.

In particular, developers cannot develop Free Software that uses such a standard, and

distributors cannot distribute this software.

This rule (RU16c), as a refinement of the general rule of closed standards, is
in relation with the grant of freedoms in a way already described above (RE24).

Towards_an_Improved_def.indd 101Towards_an_Improved_def.indd 101 23-02-2010 10:49:2323-02-2010 10:49:23

102 Chapter 3

The coverage of this rule of the combinations presented in Table 3.1 as com-
pared to the general rule of closed standards extends only to cases when the
standard is not expressed in a complete and accessible specification (that is
to cases when the access to interoperability information is restricted or lim-
ited using technical means). If this is not the case, user freedoms are not
affected by this rule.

(4) Locking in
Access to interoperability information for a standard is a necessary condition
for the development of a program that uses the standard. Consequently, it is a
necessary condition for the distribution of such a program to users. However,
it is not a sufficient condition that users will prefer programs that use open
standards instead of programs that use closed standards. Sometimes, the
costs of using an open-standards-based program are higher than the benefits.
An important part of such costs are switching costs. Switching costs are a type
of transaction costs related to the fact that users have to use programs that
properly interoperate with other elements of their system, as well as with pro-
grams used by other users. Thus, a user will use a program that implements
a given standard if (1) the rest of the user’s system already supports the stan-
dard or may be easily adapted to support it, and (2) if other users already use
programs that support that standard or may be easily adapted to support it.

Should the overall switching costs be high, users might be effectively
stimulated not to switch to programs that use other standards than the
already popular standard. If such a popular standard is an open standard,
user freedoms are not restricted (ceteris paribus). However, if such a popular
standard is a closed standard, switching to programs that use another stan-
dard is not viable economically. This means that users are locked in to pro-
grams that are designed to interoperate using that standard. As a result of a
lock-in users cannot afford abandoning a particular closed standard. It fol-
lows, that if a designer of a closed standard succeeds in making its own
closed standard popular, the designer can then effectively restrict user free-
doms.156 For a successful lock-in, the popularity has to be coupled with the

156 User choices of programs are to a signifi cant extent driven by network effects. As defi ned

by economics, network effects cause goods to gain value, as perceived by their users each

time the number of the users increases (See, e.g., Wikipedia, Network effects, at: http://en.

wikipedia.org/wiki/Network_effects). Network effects exist, for example, in markets of

products that allow people to communicate with themselves. Ceteris paribus, if it is possi-

ble to offer a product that makes it possible to connect to a bigger number of people, then

such product will prevail over the competition. The network effects of such a product

would be higher than that of competing products. Conversely, if two products have the

same network effects (i.e. allow to connect to the same people) then their market success

will be determined by other factors, such as the quality of communications they provide.

See: Arun Sundararajan, Network Effects, at: http://oz.stern.nyu.edu/io/network.html.

Network effects are strongly related to Metcalfe’s law. As explained in the Wikipedia,

Metcalfe’s law states that the value of a telecommunications network is proportional to

the square of the number of users of the system (Wikipedia, Metcalfe’s law, at: http://

en.wikipedia.org/wiki/Metcalfe%27s_law).

Towards_an_Improved_def.indd 102Towards_an_Improved_def.indd 102 23-02-2010 10:49:2323-02-2010 10:49:23

103Regulatory framework of free software

application of at least one of the already identified rules that lead to closed
standards. Otherwise, developers could succeed in development of Free
Software that is able to interoperate with the popular standard, and the free-
doms would not be materially restricted. So, the general rule of closed stan-
dards may be refined in the following way.

Lock-in: If the costs (in particular switching costs) of using a Free Software program that

does not support a particular closed standard are higher than benefi ts, users will not exer-

cise their freedoms in such a Free Software program.

In particular, developers will not develop such Free Software, and distributors will not
distribute it.

This rule (RU16d), as a refinement of the general rule of closed standards, is
in relation with the grant of freedoms in a way already described above (RE24).
The coverage of this rule of the combinations presented in Table 3.1 as com-
pared to the general rule of closed standards extends only to cases when the
standard is restricted using above-described market regulation. We note that
although this rule is a result of the market, it does not affects only such users
who have to follow the cost/benefit calculus. Namely, if such users do not
switch to open standards due to the fact that their costs outgrow monetary
benefits, other users who could afford the switch cannot do so if they want
to interoperate with the former users.

Here, we may conclude that the general rule of closed standards (RU16) con-
sists of four specific rules (RU16a-d), each a result of a different issue discussed
in this subsection. Each of these specific rules is in the same relation (RE24)
with the grant of freedoms as described at the beginning of this subsection.

3.2.2 Rules that lead to open standards

Access to standards may be restricted using (1) the law (i.e., trade secrets or
patent law), (2) the architecture (i.e., scrambling of interoperability informa-
tion), and (3) the market (i.e., locking in). Usually, the access is restricted
using a combination of all these three regulators. Obviously, from the point
of view of user freedoms access to standards should not be restricted and the
standards should be open. Thus, apart from (1) the rules that allow to restrict
access to standards identified above, we have to identify (2) rules that allow
to access standards and make them open. All these rules should be included
in the framework. We may identify the latter rules by analysing the activities
that are usually attempted in order to remove some or all restrictions on
standards. These activities are: (1) reverse engineering, (2) standard setting,
and (3) claiming essential facilities. Below, we elaborate on all three of them.

Towards_an_Improved_def.indd 103Towards_an_Improved_def.indd 103 23-02-2010 10:49:2323-02-2010 10:49:23

104 Chapter 3

(1) Reverse engineering
In the previous subsection we indicated that it is possible to make a standard
closed by scrambling interoperability information. Namely, the specification
of the standard is not made available to users, only the program that uses the
standard is available. In such a situation, a sufficiently skilled person may
still be able to extract the necessary interoperability information by reverse
engineering the program. To reverse engineer a program means to analyse it,
and to extract certain information.157 The extracted information can be in
particular the interoperability information, which then can serve to recon-
struct the specification of the standard embodied in the reverse-engineered
program. After the reconstruction, the specification can be used in the devel-
opment of another program that is able to interoperate using that standard.

Generally, there are two methods to reverse engineer a program: (1) anal-
yse its source codes, and (2) analyse how the program works (its input and
output data). Obviously, the first method can be used if only the source codes
are available. If they are not readily available, it may be possible to recon-
struct them during decompilation of binaries.158 The second method does
not require source codes or decompilation, it is performed by running the
reverse-engineered program on different sets of data. However, any method
of reverse engineering does not guarantee completeness of the interoperabil-
ity information extracted. Even if source codes of a program are available,
they may be not sufficient to prepare a complete and useful specification of a
standard used in the program. Also, the developer of the reverse engineered
program could release a new version of the program that uses a modified
standard. Provided that all or most of the users of the old version switch to
the new one, the information reverse-engineered from the older version of
the program becomes obsolete.

Apart from technical constraints, reverse engineering is legally limited
as well. Proprietary licenses usually attempt to prohibit reverse engineering.

157 In a more general context, “[r]everse engineering is the process of analyzing a subject

system to create representations of the system at a higher level of abstraction.” E.J.

Chikofsky, J.H. Cross II, Reverse Engineering and Design Recovery: A Taxonomy in IEEE Soft-
ware, IEEE Computer Society: 13–17 (January 1990), as quoted by the Wikipedia (Wiki-

pedia, Reverse engineering, at: http://en.wikipedia.org/wiki/Reverse_engineering).

158 Precisely speaking, apart from decompilation, a person may also perform disassembly.

The result of decompilation is a source code, while the result of disassembly is an assem-

bly code. Assembly code is a human-readable expression of a computer program in a

low-level programming language, as opposed to source code, which is an expression in a

high-level language. For the sake of simplicity, we do not distinguish between decompi-

lation and dissasembly. We may here assume that there are no differences between source

code and assembly code, which would be material from the point of view of the construc-

tion of the model of the current regulatory framework of Free Software. Both methods

may be used to reconstruct a specifi cation of the standard used by the disassembled (or

decompiled) program. (See: Wikipedia, Reverse engineering, at: http://en.wikipedia.org/

wiki/Reverse_engineering).

Towards_an_Improved_def.indd 104Towards_an_Improved_def.indd 104 23-02-2010 10:49:2323-02-2010 10:49:23

105Regulatory framework of free software

The enforceability of such restrictive provisions varies across jurisdictions.159
Also, elements extracted from a program during reverse engineering may
be still subject to copyright, trade secrets, or patent protection. Addition-
ally, reverse engineering is usually subject to strict legal regulation, and if
improperly performed it could give raise to civil or criminal liability.160 This
requires extreme diligence during the process, for example by using meth-
ods such as “clean room design”.161 As a result of such legal considerations,
it takes much efforts to reverse engineer a program in such a way that a pro-
gram developed according to the reconstructed specification could be legally
used. In case of a patented standard, it is quite probable that this would still
require authorization of the patent holder.

Here, we may conclude that reverse engineering is not a sufficient meth-
od of making a standard open from the point of view of user freedoms. It
does not affect materially any of the rules identified above that lead to closed
standards. In particular, it does not guarantee that the specification recon-
structed using the extracted interoperability information is complete, useful,
and that it can be used legally and without other restrictions. Additionally,
the use of such Free Software programs may be restricted with third party
patents, even if the reverse engineering is successful. Consequently, Free
Software programs that are designed according to such reconstructed speci-
fications may work improperly. Also, their use could lead to liability of users,
developers, or distributors. Additionally, the exercise of the freedoms in such
a program may still be subject to authorization of the holder of patents mate-
rial to the standard.

Since reverse engineering does not materially affect any of the previous-
ly identified rules that lead to closed standards, we do not find any addi-
tional rule that follows from reverse engineering that could be included in
the framework.

159 See, e.g., Pamela Samuelson, Reverse Engineering Under Siege, 10 Communications of the

ACM 15 (2002).

160 For example, according to Polish law under certain circumstances it is possible to decom-

pile a program in order to provide means for interoperability (Polish Copyright Act Art.

75, which implements Software Directive Art. 6). But the information obtained during

reverse engineering may constitute a trade secret. Under the Polish Unfair Competition

Act Art. 11.1 it is an unfair competition tort to communicate, reveal or use trade secrets of

another entrepreneur, or to acquire them from an unauthorized party if it endangers or

threatens the interests of the entrepreneur. It is not clear how this provision relates to the

Copyright Act. Additionally, the use of information extracted from a protected device

may constitute a criminal offense. According to art. 267.1 of the Polish Criminal Code it is

a crime to obtain without authorization an information not addressed to the person, by

opening a closed letter, connecting to a wire transmitting the information or by circum-

venting electronic, magnetic or other particular security mechanism. It is not clear how

this provision relates to decompilation right as well.

161 See, e.g., Wikipedia, Clean room design, at: http://en.wikipedia.org/wiki/Clean_room_

design.

Towards_an_Improved_def.indd 105Towards_an_Improved_def.indd 105 23-02-2010 10:49:2423-02-2010 10:49:24

106 Chapter 3

(2) Standard setting
Naturally, the source of the most complete interoperability information is
the designer of the protocol, interface, or data format in question. Under cer-
tain circumstances, the designer might be interested in making the specifica-
tion of the standard available. Indeed, there are numerous examples of
designers cooperating by exchanging technical specifications. They usually
do it within standard-setting organizations.162 There, they attempt to reach
consensus over the requirements for interoperability and to adopt common
standards.

The consensus over a standard usually encompasses both the technical
content of specifications and the legal conditions for their use. The conditions
that the participants in standard-setting organizations (SSOs) are expected to
agree are often codified in the internal rules (so-called “policies”).163 Ulti-
mately, the conditions are expressed in licenses granted to copyrights, trade
secrets, patents, etc., related to the standard by their respective holders. The
conditions may be generally divided into (1) royalty-free conditions (RF),
and (2) reasonable and non-discriminatory conditions (RAND). Under RF,
participants of SSOs are required to license their technology related to the
standard on a royalty-free basis, whereas under RAND they are only required
to impose reasonable and non-discriminatory license terms. The exact mean -
ing of RF and RAND varies from SSO to SSO.164 Many SSOs avoid making
the meaning precise and leave it for the parties to negotiate. As a result, what
constitutes RAND for some parties can be unacceptable for others.

Given the above and given the definition of an open standard as used in
this thesis, only a situation where there are no material conditions on the
exercise of the freedoms may lead to open standards. Many SSOs do not
guarantee that a standard may be used in a Free Software program, since
they might allow to impose restrictions incompatible with the freedoms.
Even some major organizations allow participants to impose such restric-

162 Some parties cooperate by organizing so-called “plug fests” or exchange know-how

using other means, without engaging formally with SSOs. Standards adopted in such a

way are usually not open, but they may serve as a basis for the discussion in an SSO that

could lead to making them open standards.

163 There exist various bodies that deal with standard-setting including “offi cial” organiza-

tions with government backup or participation, such as ISO, more informal consortia

such as W3C. It is also possible to treat as standard-setters organizations that manage

patents included in patent pools (e.g., MPEG LA). Here, we refer to all of them as SSOs,

since all of them involve a degree of cooperation in standard setting that affects the open-

ness of standards.

164 RF is differently understood in various SSOs. It is often allowed by SSOs for patent hol-

ders that follow RF to impose or agree on certain licensing conditions. See: WIPO (Stand-

ing Committee on the Law of Patents), Standards and Patents, (18 February 2009,

SCP/13/2), at: http://www.wipo.int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf

(Chapter IV discussing policies of various SSOs).

Towards_an_Improved_def.indd 106Towards_an_Improved_def.indd 106 23-02-2010 10:49:2423-02-2010 10:49:24

107Regulatory framework of free software

tions,165 or they do not prescribe any requirements at all.166 Additionally, any
such requirements follow from internal rules of the organization only.167 As
such they may not bind third parties (non-participants), and they may even
be hardly enforceable against the participants in a SSO.168

Here, we may conclude that standard setting is by itself not a sufficient
guarantee that the resulting standards are open and that they may be used in
Free Software. The necessary condition is that the standard setting proce-
dure is properly organized. In particular, it has to lead to the designing of
useful and complete specifications that fully conform to the definition of an
open standard. We identify the following rule that follows from open stan-
dards (RU17).

165 The most prominent example is probably the common policy of ISO/IEC/ITU (see:

http://www.iso.org/patents). Perens (2006) calls for elaborating such policies by the

adoption of obligations to publish a reference implementation for any extensions to the

standard (Bruce Perens, Open Standards Principles and Practice, at: http://perens.com/

OpenStandards/Defi nition.html, referring to Sun Industry Standards Source License as

an example). See also: Sun Industry Standards Source License, v.1.1., Sec. 3.1, at: http://

www. OpenOffi ce .org/licenses/sissl_license.html (“In the event that the Modifi cations

do not [comply with the standard], You agree to publish either (i) any deviation from the

Standards protocol resulting from implementation of Your Modifi cations and a reference

implementation of Your Modifi cations or (ii) Your Modifi cations in Source Code form,

and to make any such deviation and reference implementation or Modifi cations available

to all third parties under the same terms as this license on a royalty free basis...”).

166 As far as we are aware, Polish Standardization Committee (PKN) does not have any pol-

icy with regard to copyright or patent rights (apart from requiring the transfer of all cop-

yrights to translations of standards prepared by its members).

167 Albeit internal, they may still be subject to external review. For example in 2005 the Com-

mission closed an antitrust investigation of the ETSI policy, after they had been amended

to remove the risk of „patent ambushes” (The Register, EC acts on patent ambushes, at:

http://www.theregister.co.uk/2005/12/14/patent_ambush/).

168 See, e.g., Rambus Inc. v. Infi neon Technologies Holding North America Inc., 318 F.3d 1081

(C.A.Fed. Va. 2003) (Analyzing a policy of a standard-setting organization and holding

that it contained a duty to disclose, but that it extended only to claims in patents or appli-

cations that „reasonably might be necessary to practice the standards” (at 1100). The duty

did not cover „improvement patents, implementation patents, and patents directed to

the testing of standard- compliant devices” (at 1101). The court did not fi nd the policy to

be clear enough to constitute the basis for a fraud verdict (at 1102). The dissenting opi-

nion construes the scope of the duty to disclose to cover „patents and pending applicati-

ons that might be involved in the work of the committee” (at. 1115)). See also: Symbol
Technologies Inc. v. Proxim Inc., 2004 WL 17701290 (D.Del.) (Admitting that laches is a

defense to a patent infringement suit (at 3), but refusing it due to lack of proof that the

patent holder had knowledge of infringing activity, (4-5) as well as the lack of requisite

prejudice (5-7). The court did not fi nd satisfactory reasons to allow equitable estoppel

defense as well. The defendant claimed that the plaintiff was under an obligation to dis-

close any patents related to the standard elaborated by the organization to which both

parties were members. However, the organization’s bylaws allowed for non-disclosure

with a statement that a license will be made available under RAND terms (7-9)).

Towards_an_Improved_def.indd 107Towards_an_Improved_def.indd 107 23-02-2010 10:49:2423-02-2010 10:49:24

108 Chapter 3

Open standards: Users of a program are allowed to exercise (and can exercise) all six activ-

ities covered by the FSD with regard to the program, as long as the program uses an open

standard.

In particular, developers are allowed to (and can) develop Free Software that uses such a

standard, and distributors are allowed to (and can) distribute this software.

This rule is in relation to closed standards (RE25). Namely, open standards
and closed standards exclude each other in the sense that a particular stan-
dard can be either open or closed (although a combination of different stan-
dards could be employed in a computer program). Also, the rule of open
standards is in a direct relation with the grant of freedoms (RE26). Namely, if
the program in question uses an open standard then (ceteris paribus) copy-
right holders are not stimulated not to grant users their freedoms. Addition-
ally, third parties cannot restrict the freedoms if they are granted to a pro-
gram that uses open standards (ceteris paribus).

The rule of open standards affects all four combinations presented in
Table 3.1. Namely, it removes the limitations and restrictions that are the
result of closed standards regardless of from whom the program is obtained
and regardless of whether the program is original or improved Free Soft-
ware. However, this is the case only to the extent that the program uses (or is
developed in an attempt to use) open standards. In other cases, the rule does
not apply. This means that for an efficient regulation using that rule, it is not
sufficient that a relevant open standard exists, it is also necessary that it
becomes popular and is actually used in programs.

We include in the framework:

(1) open standards (RU17),
(2) the relation between open standards and closed standards (RE25),

and
(3) the relation between open standards and the grant of freedoms

(RE26).

(3) Essential facilities
There are situations when designers of protocols, interfaces, or data formats
fail to cooperate in the setting of an open standard.169 For example, in a
recent CFI case Microsoft v. the Commission, one of the issues was the extent of
the right of a dominant company to restrict access to protocols used in its

169 Protocols, interfaces, and data formats may be developed individually by dominant mar-

ket players, or collaboratively by multiple participants associated in a standard-setting

organization. Under some circumstances, market dominants may develop their standards

as open. These circumstances are unlikely to occur because of switching costs and net-

work effects, as well as the ineffi ciencies created by non-market entities involved in the

process. (See: Nicholas Economides, The Economics of Networks, 4 International Jour-

nal of Industrial Organization 673 (1996) at: http://www.stern.nyu.edu/net-

works/94-24.pdf; S.J. Liebowitz, Stephen E. Margolis, Network Externalities (Effects), at:

http://www.utdallas.edu/~liebowit/palgrave/network.html.) Development of open

Towards_an_Improved_def.indd 108Towards_an_Improved_def.indd 108 23-02-2010 10:49:2423-02-2010 10:49:24

109Regulatory framework of free software

software, i.e., the right not to reveal the specification and to keep the proto-
cols a closed standard. A question put before the court was whether the pro-
tocols constituted an essential facility170 for competitors. The Commission claimed
that refusing access to interoperability information (i.e., specification of the proto-
cols) constituted an abuse of Microsoft’s dominant position and therefore
the Commission demanded to make the protocols available under RAND
conditions. The CFI upheld the Commission’s decision, and the Commission
agreed on the method of compliance proposed by Microsoft.171 However, it
has been observed that the particular conditions initially offered by Micro-
soft still restricted Free Software developers in their efforts to use the specifi-
cations in question.172 Even the conditions offered at a later time seem to be
still encumbered with restrictions that do not make the standards in ques-
tion open.173

Here, we may conclude that the doctrine of essential facilities is again
not a sufficient guarantee that the standards made available after the appli-
cation of the doctrine are open and may be used in Free Software. First, the
doctrine can be applied only towards dominants that abuse their market
power. Second, license conditions imposed on such dominants might still
discriminate Free Software developers.174 Third, the effectiveness of essen-
tial facilities doctrine is further limited since competition law procedures are

 standards by individual market players is unlikely especially if there is no perfect compe-

tition in the market. See: Stephen E. Margolis, S.J. Liebowitz, Path dependence, at: http://

www.utdallas.edu/~liebowit/palgrave/palpd.html. A natural market process leading to

open standards may be observed in the Internet. See: Mark A. Lemley, Antitrust and the
Internet Standardization Problem, 28 Connecticut Law Review 1041, 1046 (“Indeed, the

Internet is currently “owned” by a decentralized combination of [various entities] ... But

the Internet can exist in this distributed condition only because each of the participants

has agreed ... to a set of protocols that allows them to read and pass through messages

sent by other participants.”). However, open standards are more likely to be developed

by standard-setting organizations that adhere to specifi c policies for this purpose (name-

ly RF policies).

170 See: Wikipedia, Essential Facilities Doctrine, at: http://en.wikipedia.org/wiki/Essential_

facilities.

171 Case T-201/04.

172 Microsoft offered conditions satisfactory to Free Software developers (namely Samba)

only later on. See, e.g., Andrew Bartlett, A year since Microsoft’s appeal failed, at: http://

people.samba.org/people/abartlet/a-year-since-microsofts-appeal-failed.html.

173 Although Microsoft made a great number of specifi cations available through its WSPP

(Microsoft Work Group Server Protocol Program) and MCPP (Microsoft Communication

Protocol Program), these standards are not maintained by an independent organization

in an open decision-making procedure.

174 For example, the Commission required Microsoft to grant access to the specifi cations

under RAND terms, which are generally not acceptable from the point of view of the FSD

which does not allow to impose payment or any other material conditions as a considera-

tion for the grant of freedoms.

Towards_an_Improved_def.indd 109Towards_an_Improved_def.indd 109 23-02-2010 10:49:2423-02-2010 10:49:24

110 Chapter 3

time consuming.175 Thus, essential facilities doctrine does not affect the rules
identified so far, that restrict access to standards. Consequently, we do not
find any rule that follows from essential facilities that should be included in
the framework.

3.2.3 Conclusion on rules for standards and relations between them

In the preceding two subsections, we identified rules that limit or allow to
restrict access to standards, as well as rules that regulate access to standards.
We also identified relations between the rules, and the relations between
them and other rules included in the framework so far. We present these
rules and the relations in Figure 3.6.

Figure 3.6: Rules for standards and relations between them

Here, we may conclude that we identified rules related to the standards
scene and relations between these rules (as well as the relations between
them and the rules related to the software scene). We include the rules and
relations in our model of the current framework.

175 Remarkably, Microsoft v. the Commission case took roughly 5 years. See also: James Tur-

ney, Defi ning the Limits of the EU Essential Facilities Doctrine on Intellectual Property Rights:
The Primacy of Securing Optimal Innovation, 2 Northwestern Journal of Technology

and Intellectual Property 179 (2005). A similar case concerning IBM in the 80s resul-

ted in the company’s undertakings accepted by the Commission in lieu of an offi cial deci-

sion. IBM pledged to disclose certain interface information for its hardware and software.

See: F.M. Scherer, Microsoft and IBM in Europe, 2090 Antitrust & Trade Regulation

Report 65, 66 (2003).

Towards_an_Improved_def.indd 110Towards_an_Improved_def.indd 110 23-02-2010 10:49:2423-02-2010 10:49:24

111Regulatory framework of free software

3.3 Reconstruction of a model of the current framework

In this section we reconstruct a model of the current framework. The model
includes all rules and relations between them identified in previous sections.
For a clear picture, we present separately the rules that regulate software
(Subsection 3.3.1) and the rules that regulate standards (Subsection 3.3.2).
Then, we present the regulatory environment in which all these rules oper-
ate (Subsection 3.3.3). Finally, we present all rules and relations between
them in Figure 3.9 (Subsection 3.3.4).

3.3.1 Rules that regulate software

The basic rule that we included in the framework is (RU1) the default rule.
Under the default rule, software is subject to exclusive copyrights which may
be licensed or subject to a contract. The rule allows for private ordering using
Free Software licenses. The following rule in the framework, based on the
default rule is (RU2) the grant of freedoms. The freedoms are granted in Free
Software licenses that allow users to undertake all six activities covered in
the FSD (to run, study, adapt, modify, improve, redistribute, and release pro-
grams). Free Software licenses are also the source of other rules that we
included in the framework. Namely, these are (RU3) the right to fork, (RU4)
copyleft, and (RU5) the hacker immunity. The right to fork and copyleft attempt to
provide the basic protection of the freedoms. They attempt to turn the free-
doms from inter partes rights into negative and positive freedoms (respec-
tively). In turn, hacker immunity attempts to provide for the basic incentive
mechanism to developers and distributors of Free Software. Namely, it
attempts to remove the most important demotivator, which is liability.

The remaining rules for software that we included in the framework are
rules that limit or restrict access to software. After a thorough analysis, we
included in the model of the framework the rules that follow from: (RU6)
license proliferation and incompatibilities, (RU7) license revocability, (RU8)
inter partes nature of licenses, (RU9) software-related patents, (RU10) contracts
with distributors, (RU11) liability rules, and (RU12-15) non-legal regulators.

3.3.2 Rules that regulate standards

We have identified two rules for standards that are important from the point
of view of the reconstruction of the model of the framework. These are
(RU16) rule of closed standards, and (RU17) rule of open standards. After
the analysis of issues related to closed standards, we identified four specific
rules of closed standards included in the general RU16: (RU16a) trade
secrets, (RU16b) patents, (RU16c) scrambling of interoperability information,
and (RU16d) lock-ins. Additionally, after the analysis of issues related to
open standards, we identified the rule of open standards (RU17).

Thus, we included in the model of the framework additional rules:
(RU16) closed standards (with refinements), and (RU17) open standards.

Towards_an_Improved_def.indd 111Towards_an_Improved_def.indd 111 23-02-2010 10:49:2523-02-2010 10:49:25

112 Chapter 3

3.3.3 Regulatory environment

The reader may attain an impression that under the model of the framework
the relations between the licensor of a given Free Software program and all
its users are the same from the legal point of view. In particular, the rights
and obligations of the parties that result from these relations appear as uni-
form. We illustrate this in Figure 3.7.

Figure 3.7: Uniformity

In Figure 3.7 solid lines represent relationships between the licensor (black
dot) and users (grey dots). We draw all lines in the same pattern, in order to
illustrate that all licensor-user relationships appear as uniform.

However, the uniformity should not be automatically assumed. Despite
the adjustment, all legal rules in the framework operate in a regulatory envi-
ronment. This environment is the result of national laws (the applicable
laws). Notwithstanding some harmonization that has happened over the
years, these laws are different across various jurisdictions. It means that there
is no single set of legal provisions in which the licenses operate. Rather, in
each particular case (e.g., to every particular user of Free Software) different
laws may be applied. The applicable law would be indicated using the rules
of private international law of the forum. Given the fact that users are scat-
tered all over the world, there are multiple fora. So, it is impossible to indicate

Figure 3.8: Regulatory environment

Towards_an_Improved_def.indd 112Towards_an_Improved_def.indd 112 23-02-2010 10:49:2523-02-2010 10:49:25

113Regulatory framework of free software

a priori one law that would apply. On the contrary, we should assume that
users who are based in different jurisdictions are subject to different laws.
The result is illustrated in Figure 3.8, with regard to relations between users
and Free Software licensors (similar figures can be presented to illustrate
relations between users and developers, distributors, patent holders, etc.).

In Figure 3.8, the black dot represents a Free Software licensor. The licensor
is based in a certain jurisdiction, demarcated by solid circle. A pair of licens-
ees (grey dots) is based in the same jurisdiction as the licensor, while three
others are based in different jurisdictions. Although all relations with licens-
ees are regulated using the same license, the final result of this regulation
may vary because of the fact that different national laws apply to licensees
based in different jurisdictions.176

It follows that there are as many regulatory environments, as there are
many jurisdictions with different laws. We have to account for the differenc-
es between jurisdictions that materially affect user freedoms in the model of
the regulatory framework.177 We do not find any material differences on the
general level. All national laws known to us authorize copyright holders to
license their rights (or subject them to a contract). The exclusive copyrights
and the freedom of contract which are the basis of the Free Software licenses
have remained unquestioned, at least in jurisdictions that follow the rule of
law. If under a particular national law Free Software licenses were invalid,
this would lead to the conclusion that Free Software is used in breach of
copyrights (certainly in case of developers and distributors, arguably also in
case of all other users of this software). Such a conclusion would be hardly
acceptable for anyone. In such a situation we expect that the law would be
applied and interpreted in a way to find that the freedoms were effectively
granted. So, we assume that national laws are the same to the extent they all
generally allow Free Software licensing, and that the licenses are binding
under all these laws.178

176 For example, under Polish Private International Law, when there is no agreement of the

parties to the contrary, it would be the law of the residence, or of the seat, of the licensee

(Janusz Barta and Ryszard Markiewicz, Oprogramowanie open source w świetle

prawa, między własnością a wolnością [Open Source in the light of law, between

property and freedom], 149 (Zakamycze 2005)). Free Software licenses usually do not

contain choice of law clauses. The MPL is an exception here, since it points to the law of

California, although in a somewhat vague way (most probably because it attempts to

take into account the so-called “mandatory rules”): “This License shall be governed by Cali-
fornia law provisions (except to the extent applicable law, if any, provides otherwise), excluding its
confl ict-of-law provisions” (See: http://www.mozilla.org/MPL/MPL-1.1.html).

177 An interesting source of information about differences in national laws is the IDABC

document titled Translation of EUPL v.1.0 into the offi cial languages of the European Union -
Report on comments received by IDABC, at: http://ec.europa.eu/idabc/servlets/

Doc?id=29987. It is the record of comments received from national experts in the course

of translating the European Union Public License into 22 EU national languages.

178 Cf. FN 82. See also: Andrew M. St. Laurent, Understanding Open Source and Free

Software Licensing (O’Reilly 2004) 153.

Towards_an_Improved_def.indd 113Towards_an_Improved_def.indd 113 23-02-2010 10:49:2523-02-2010 10:49:25

114 Chapter 3

National laws differ materially on more specific issues. For example,
some of them provide for certain requirements as to the validity of licenses
by requiring a specific wording for a license to cover all six activities speci-
fied in the FSD effectively.179 Some national laws also contain non-waivable
copyright restrictions, such as moral rights180 or non-waivable royalties.181
They additionally allow to revoke a license if it fails to meet certain criteria
or perhaps even to revoke any license at all.182 Moreover, national laws con-
tain different liability rules. Some national laws provide even for non-
waivable liability.183 In order to account for such specific differences in
national laws we have to include in the framework a general rule that limits
all legal rules in the framework. Importantly, this rule does not affect non-
legal rules (the ones which follow from regulators other than the law). We
call this rule the “regulatory environment” (RU18).

Regulatory environment : All legal rules in the framework are subject to the applicable

national law.

Since there are fourteen legal rules that we included in the framework so far,
there are fourteen relations between this rule and the legal rules (RE27-39).

3.3.4 Graphical presentation of the model of the current framework

In Figure 3.9 we present the model of the current framework reconstructed
in this chapter.

179 Under Polish copyright law a license covers only such “fi elds of endeavour” which are

specifi ed in the license. A program cannot be used by the licensee on other fi elds. Also,

the term of a license is 5 years unless the parties decide otherwise (i.e., unless the license

was expressly granted for an unlimited period of time). Additionally, if the license is

silent on the covered territory, the licensee may use the program in Poland only.

180 See e.g., Lucie Guibault, Ot van Daalen, Unraveling the Myth around Open Source

Licenses. An Analysis from A Dutch and European Law Perspective (TMC Asser

Press 2006) 122.

181 Under Polish copyright law moral rights have been signifi cantly limited with regard to

computer programs. Still, an author of a program has an non-waivable right of author-

ship and attribution. Other jurisdictions could provide for a broader (and non-waivable)

protection of moral rights, for example against certain modifi cations or uses of a pro-

gram, while under Free Software licenses such activities are not restricted. Also, under

Polish copyright law the royalties from private copying levies are non-waivable, while

under Free software licenses the licensee is not required to pay any royalties.

182 Under Polish Copyright Act, a license granted for unspecifi ed period of time can be ter-

minated by either party. Non-revocability of licenses is a condition of FSD-compliance

(see Subsection 2.1.2). This means that licenses found FSD-compliant in some jurisdic-

tions could fail compliance test in some other jurisdictions (e.g., in Poland). However, the

FSF has not undertaken such a test across jurisdictions so far. Still, the differences as to

the revocability of licenses do affect user freedoms.

183 Under Polish law, it is not possible to waive liability for damages caused wilfully. Additi-

onally, consumer protection laws prohibit waiving liability in consumer relations.

Towards_an_Improved_def.indd 114Towards_an_Improved_def.indd 114 23-02-2010 10:49:2523-02-2010 10:49:25

115Regulatory framework of free software

Figure 3.9: Graphical presentation of the model of the current framework

Figure 3.9 contains rules and relations between them as already presented in
Figure 3.5. In Figure 3.9 we additionally include rules for standards and rela-
tions between them. We note that we do not present all 39 relations between
the rules that we identified throughout the analysis; we present only the
relations that we find most relevant for the purpose of our study. We also
include the regulatory environment rule. This rule affects all legal rules in
the framework. It does not affect the non-legal regulators. For the sake of
clarity, instead of representing all 14 relations between the regulatory envi-
ronment and other rules with lines, we mark them by filling the boxes that
represent the rules affected by the regulatory environment in light grey. The
boxes of non-legal rules (and of the regulatory environment itself), which are
not affected, are white.

In Figure 3.9 we continue to present the rules grouped in three levels, as
in Figure 3.5. On the first level there is the default rule. This is the rule which
empowers copyright holders to grant user freedoms or to refuse to grant them.
On the second level there are 4 rules of software that result in the grant of user
freedoms or in the protection of the freedoms (the grant of freedoms, the right to
fork, copyleft, and the hacker immunity). These rules were already presented on
that level in Figure 3.5. In Figure 3.9 we amend the second level with one more
rule that protects user freedoms. This is the rule of open standards. On the
third level there are 10 rules that constitute limitations or restrictions of user
freedoms, as it was the case in Figure 3.5. In Figure 3.9 we amend the third
level with rules of closed standards and with the regulatory environment rule.

Towards_an_Improved_def.indd 115Towards_an_Improved_def.indd 115 23-02-2010 10:49:2523-02-2010 10:49:25

116 Chapter 3

We note that the third level currently contains the following items: (1)
license proliferation and incompatibilities, (2) license revocability, (3) the
inter partes nature of licenses, (4) software-related patents, (5) contracts with
distributors, (6) liability rules, (7) non-legal regulators (a class that includes
4 non-legal rules of software), (8) closed standards (a rule that consists of 4
rules of closed standards), and (9) the regulatory environment. We will refer
to all these nine items as “limitations and restrictions of the freedoms” (in
Chapter 6 we will refer to them jointly as the “inefficiencies of the current
framework”).

3.4 Chapter conclusions

In this chapter we reconstructed a model of the current regulatory frame-
work of Free Software. The framework consists of (1) rules that regulate the
freedoms and (2) relations between the rules. The rules included in the mod-
el regulate both (1) access to software and (2) access to standards. They regu-
late user freedoms in all four combinations presented in Table 3.1.

The framework includes the rules that grant and attempt to protect user
freedoms, as well as the rules that limit or restrict the freedoms. Many of the
limitations and restrictions are not sufficiently addressed by the rules that
we included in the model. It follows from the model that the freedoms are
not sufficiently protected under the current framework.

Thus, we shall proceed to analyse the relations between software com-
munities and eGovernments in order to identify how they affect the frame-
work in the protection of user freedoms. If after the analysis we should still
find no adequate protection, we shall design necessary improvements of the
current framework and propose an improved framework.

Towards_an_Improved_def.indd 116Towards_an_Improved_def.indd 116 23-02-2010 10:49:2523-02-2010 10:49:25

4 Communitarian protection
of user freedoms

In this chapter we focus on software communities and on how they affect the
model framework reconstructed in Chapter 3. We identify relations between
software communities and user freedoms. Below, we recall our findings so
far and then stipulate the working programme.

In Chapter 1 we found that conditions of user freedoms are the same as
the conditions of the control over the working of the programs. They are: (1)
access to source codes and (2) access to specifications of standards. Only giv-
en the access, users are able to exercise their freedoms, that is to perform all
six activities covered by the FSD: (1) to run, (2) to study, (3) to adapt, (4) to
improve, (5) to release, and (6) to redistribute programs. In Chapter 2 we
found in particular that in order to allow users to exercise all these activities,
it is necessary that copyright holders allow users to exercise all activities cov-
ered by copyright. In Chapter 3 we explained in particular that copyright
holders that follow the Free Software approach do so by granting to users
licenses that comply with the FSD – the Free Software licenses.

In Chapter 3 we established that under the licenses users are allowed not
only to use, but also to develop and distribute Free Software. The rules that
are a result of Free Software licenses (i.e., the grant of freedoms, the right to fork,
copyleft, and the hacker immunity) together with other rules that regulate the
use, development, and distribution of Free Software, and relations between
the rules form the regulatory framework. Moreover, we reconstructed a
model of the framework. In the model, we included also the rules that con-
stitute limitations and restrictions of user freedoms. Ceteris paribus, given
these limitations and restrictions users cannot exercise their freedoms in an
undisturbed manner. It follows that user freedoms are not sufficiently pro-
tected under the model.

After this summary of findings, we emphasize the course of research
activities culminating in an attempt to answer the Problem Statement 1 (PS1).
In Chapter 1 we found that software communities play an important role on
the Free Software scene. Within the communities, the participants are guided
and supported in their efforts to use, develop, and distribute Free Software.
Precisely speaking, in this thesis (see Chapter 2) we define a software com-
munity as a group of entities that collaborate in the development of a Free
Software project and that may also distribute the project to other users, as
well as that provide guidance on its use. Additionally, we stated that in our
research we focus on communities of hierarchical and quite formalized
structures because we anticipate that such communities have the strongest
possible impact on user freedoms. In Chapter 3 we formulated an assump-

Towards_an_Improved_def.indd 117Towards_an_Improved_def.indd 117 23-02-2010 10:49:2523-02-2010 10:49:25

118 Chapter 4

tion that communities enter into relations with the freedoms.184 In this chap-
ter we identify these relations. We do it in order to answer the PS1 and RQ1
of this thesis, which we repeat below.

PS 1: What are the relations between user freedoms and software communi-
ties?

We answer the Problem Statement 1 by answering the Research Question 1,
which is:

RQ 1: In what way do software communities affect the current regulatory
framework concerning the protection of user freedoms, as articulated by
Stallman?

In order to answer the RQ1, we start by elaborating on limitations and
restrictions in the exercise of the freedoms undertaken by users individually
(Section 4.1). Then, we elaborate on the exercise of the freedoms as organized
in software communities (Section 4.2). In the end, we present chapter conclu-
sions, an answer to the RQ1, and an answer to the PS1 (Section 4.3).

4.1 Limitations and restrictions of the freedoms

All programs usually have bugs, lack all necessary features, and are not per-
fectly interoperable with other programs. So, the development and distribu-
tion of programs have to be organized and repeated whenever new bugs are
found and fixed, new features are requested and added, or interoperability
is broken and provided for again. Otherwise, the programs will not work
properly. Repeated and organized development and distribution are usually
referred to as “maintenance”. Unless software is maintained it quickly dete-
riorates in one way or another. Conversely, if software is maintained, it
means that at any given point of time it is possible to fix bugs, include new
features, and provide means for interoperability effectively. Maintenance is a
means for making sure that software works properly. In other words, main-
tainers control the working of programs. Theoretically, it is possible to con-
trol the working of a program that has not been maintained for some time,
but this requires much more efforts and usually proves impracticable.

User freedoms granted in the Free Software licenses allow users to main-
tain programs on their own (generally, maintenance means that all six activi-
ties covered in the FSD are undertaken in an organized and continuous pro-
cess). On average, however, users do not have skills and resources (hardware,
development tools, data, know-how, etc.) necessary to maintain programs

184 See FN 103.

Towards_an_Improved_def.indd 118Towards_an_Improved_def.indd 118 23-02-2010 10:49:2523-02-2010 10:49:25

119Communitarian protection of user freedoms

effectively.185 Usually, only qualified engineers (e.g., hackers) or specialized
firms possess some or all such skills and resources. Average users are not
able to maintain programs effectively even if they have the rights to do so.
Such users have to have their programs maintained for them by someone
else. This does not mean, however, that average users are unable to control
the working of programs. If they are allowed to exercise all six activities cov-
ered in the FSD, they can outsource the maintenance to persons of their
choice.186 As a result, they control the working of programs through such
outsourced maintainers. It follows that as long as users are allowed to exer-
cise all six activities covered in the FSD they can control the working of pro-
grams even if they personally lack the necessary skills and resources. What
is essential here is not who has the skills and resources, but whether users
can freely outsource the maintenance of software.

Let us assume a hypothetical situation that there is no community
around a Free Software program. In such a situation, users of the program
can still attempt to exercise their freedoms granted in the Free Software
license of the program individually. By individual exercise of the freedoms we
mean either of two scenarios: (1) users become actors on the software scene
by maintaining Free Software themselves, or (2) users outsource the mainte-
nance to a person of their choice.187 In both of these scenarios users perform
some or all of the six activities covered in the FSD (or benefit from the perfor-
mance of these activities by persons to whom the maintenance is out-
sourced). However, users do not enter into any complex relations with other
users in maintaining software. In particular, users do not form a software
community.

The individual exercise of the freedoms is limited and can be further
restricted in a relatively easy way. This is due to the rules that limit or allow
to restrict the freedoms that we already identified and included in the model
of the framework reconstructed in Chapter 3. Below, we identify how these
limitations and restrictions affect the individual exercise of the freedoms
exactly, by drawing from our findings presented in Chapter 3. We address
them in the following order: (1) license proliferation and incompatibilities,

185 This holds true not only in case of individuals, but also in case of corporate users, such as

fi rms, who nevertheless have to outsource maintenance of software due to various con-

siderations.

186 To put it in another way: If users who possess all necessary skills and resources are

allowed to exercise the freedoms without limitations and restrictions, there is nothing

that legally prevents them from maintaining the programs for average users.

187 These two scenarios are to a large extent two sides of the same coin. Namely, users who

maintain software themselves usually do it for other users who outsource the maintenan-

ce. Certainly, there are users who maintain software for themselves only. Here, under the

heading of “users who maintain software themselves” we include both “users who main-

tain software for other users” and “users who maintain software for themselves only”.

Needless to say, from the point of an average user, the ability of the former users to exer-

cise the freedoms is most important.

Towards_an_Improved_def.indd 119Towards_an_Improved_def.indd 119 23-02-2010 10:49:2623-02-2010 10:49:26

120 Chapter 4

(2) license revocability, (3) inter partes nature of licenses, (4) software-related
patents, (5) contracts with distributors, (6) liability rules, (7) non-legal regu-
lators of software, (8) closed standards, and (9) regulatory environment.
After discussing all of them we present (10) conclusion on limitations and
restrictions in the individual exercise of the freedoms.

4.1.1 License proliferation and incompatibilities

The proliferation and incompatibilities of Free Software licenses materially
affect user freedoms. Certainly, there are tendencies that result in a gradual
decrease of the number of model licenses used in practice, as well as tenden-
cies that allow to overcome incompatibilities (such as dual licensing, amend-
ing licenses with compatibility clauses). However, despite these tendencies
it is still the case that any user who wants to exercise the freedoms individu-
ally in a combination of selected programs has to undertake a two-step legal
analysis. First, the user has to determine whether each license of programs
included in the combination allows to exercise all six activities covered in the
FSD. Second, the user has to determine whether the licenses allow to exer-
cise them with regard to the combination as a whole.188

In the first step of the analysis the user can benefit from the work already
performed by the FSF. Here, we should recall that the FSF scrutinizes the
compliance of various licenses with the FSD and publishes an official list of
the analysed licenses. Licenses found by the FSF as FSD-compliant are also
commonly recognized189 as allowing to exercise all six activities covered in
the FSD. It follows that any user can attempt to mitigate the effects of license
proliferation by exercising the freedoms only in the software that is available
under FSD-compliant licenses. Still, the user has to find programs under
these licenses, which is not necessarily an easy task. It involves searching
through various sources which can differ extremely both as to the type and
quality of software they offer, as well as to the way they present their licens-
ing terms. There is no single point of reference where users could browse for
FSD-compliant software, but there exist some popular public repositories.190
Using such repositories can be helpful, since they offer useful querying
interfaces. Some of them, for example, allow to query the database of hosted
software using license as a criterion, but naturally such services are not pro-

188 For an excellent description of the procedure of such an audit see Heather J. Meeker,

The Open Source Alternative Understanding Risks and Leveraging Opportuni-

ties (Wiley, 2008), 53 et. seq. as well as 71 et. seq.

189 Such common recognition may be helpful since Free Software licenses are model licenses.

The exact scope of user rights and obligations depends on how a model license is applied

between parties to a transaction. Common recognition is a custom or trade practice,

which are legally relevant in determining how the license is applied between the parties.

190 Examples include SourceForge (http://sourceforge.net), FreshMeat (http://freshmeat.

net), or (last but not least) the Free Software Directory http://directory.fsf.org/.

Towards_an_Improved_def.indd 120Towards_an_Improved_def.indd 120 23-02-2010 10:49:2623-02-2010 10:49:26

121Communitarian protection of user freedoms

vided under any legal guarantee.191 At the end of the day, the user has to
review each program and its license separately, and seek for legal advice if
necessary.192

The second step of the analysis is performed on programs under licenses
identified in the first step. Given our findings in Chapter 3, it is legally
impossible to distribute programs under incompatible licenses in some com-
binations. So, the second step comprises identification of incompatibilities
between these licenses. If the identified incompatibilities cannot be resolved
(e.g., by combining programs in a way that does not trigger incompatible
obligations), the second step comprises also the removal of respective pro-
grams from the combination.193 Notably, the second-step analysis has to be
performed only by users who want to distribute the combinations (i.e., those
who intend to maintain them for other users). Users who maintain software
only for themselves can proceed immediately after step one. This means that
the results of the second step materially affect average users, i.e., the ones
who do not maintain software themselves and outsource maintenance. With-
out the completion of the second step, provision of maintenance to such
users might constitute license infringement.194

In the second step, similarly to step one, a prima facie identification of
incompatibilities can be found at the FSF’s webpage. Namely, the FSF does
not only analyse licenses for their FSD-compliance, but also they indicate
whether a given license is GPL-compatible. This means that all users have a
point of reference, at least as far as GPL-compatibility is concerned.195 Some
additional information can be deducted by identifying what software is dis-
tributed by major Free Software distributors and the manner they distribute
it (in which combinations, etc.). Users could assume with some degree of
risk196 that these distributors comply with all licenses of the hundreds of

191 From the formal point of view, such a query is not suffi cient to determine that a particular

license was granted. This might become important if under the applicable law mere use

of Free Software is insuffi cient for concluding a valid license (for example because license

terms were not communicated to the user clearly enough).

192 Even FSD- and OSD-compliant licenses, still include obligations for the licensees, which

have to be complied with.

193 The removed programs have to be maintained separately, or at least not distributed

together with the combination.

194 Most probably, mere outsourcing of the maintenance of software would not constitute

distribution by a user, or at least not to the extent necessary to fi nd a material license

infringement. However, provision of maintenance services for such a user might involve

distribution (e.g., of improvements of software). In such a situation the distributor has to

identify applicable obligations and resolve any incompatibilities.

195 Even the FSF’s opinions are not legally binding and are not provided with any legal guar-

antee. Additionally, what matters is how the license is interpreted in a particular transac-

tion.

196 Actually, this risk can be considerably high, because distributors could proceed accord-

ing to individual arrangements with particular licensors, not on the basis of publicly

granted model licenses.

Towards_an_Improved_def.indd 121Towards_an_Improved_def.indd 121 23-02-2010 10:49:2623-02-2010 10:49:26

122 Chapter 4

Free Software programs they distribute, or at least refer to the conduct of the
distributors as an established market practice.197

Still, even if a user exercises the freedoms only in the combinations of
programs released under compatible licenses, the user has to comply with
all obligations specified in the licenses of all programs in a combination. In
order to do so, the user has to identify these obligations. A brief analysis of
the most popular Free Software licenses reveals that they usually require
providing certain information to users to whom the programs are distribut-
ed (preserving copyright notices, passing through license texts, communi-
cating warranty disclaimers and liability limitations, etc.). Also, given the
popularity of copyleft licenses, there is a high probability that at least some of
the licenses of the programs in the combination require making source codes
available,198 if the programs are distributed.199 Since there is a dozen of FSD-
compliant licenses, the complete list of exact obligations can be quite long.
However, in any given combination of Free Software programs there is a
definite number of such obligations. So, the completion of the second step of
the analysis is not impossible, but may prove impractical for some users.

Here, we may conclude that license proliferation and incompatibilities
stimulate some users not to exercise the freedoms individually. They espe-
cially stimulate some users not to maintain certain combinations of software
for other users. The more programs in a combination and the more complex
the resulting license relations are, the fewer users are willing to maintain it.
The stimulation does not materially affect users who possess skills and
resources necessary to maintain the software themselves, as well as those
who can afford completing both steps of the legal analysis. So, most average
users who want to control the working of Free Software do not have as wide
a choice of maintainers as they would have if there was no license prolifera-
tion and incompatibilities. Also, due to costs of the legal analysis, the main-
tainers are not as effective in developing and distributing software as they
could be. Certainly, at least some resources that they could direct to mainte-
nance has to be directed to legal analysis.

4.1.2 License revocability

License revocability allows to restrict user freedoms. In fact, it leads to a com-
plete removal of the freedoms. We found in particular that even a significant

197 See FN 189.

198 Depending on the scope of the respective copyleft clause and the facts of the particular case,

this obligation can apply to the program itself, to the whole combination, or to something

in-between. We are unaware of a copyleft clause that would require to make available source

codes of all imaginable combinations. Even the copyleft clause of the GPL seems to be lim-

ited to derivative works and “mere aggregations” are explicitly excluded from its scope.

199 Usually, users who do not distribute the software but only use and develop it internally

are not bound by these obligations (even Affero GPL or Open Software License are con-

cerned with making software available to third parties, not internal use).

Towards_an_Improved_def.indd 122Towards_an_Improved_def.indd 122 23-02-2010 10:49:2623-02-2010 10:49:26

123Communitarian protection of user freedoms

user base or a developed downstream distribution does not make it impossi-
ble to unilaterally terminate the license in practice, if this is allowed by the
applicable law. After the licensor unilaterally revokes a Free Software license
effectively or otherwise terminates the legal relationship with users, then the
default rule of exclusive control over software is reinstated. Also, in such a
case users cannot rely on the right to fork or copyleft to defend their freedoms,
as both of them require a binding license to exist. More importantly, they do
not have any freedoms to defend, as only the terminated license constituted
their source.

Here, we may conclude that if the license terminates, then from the legal
point of view users cannot exercise their freedoms in any way, also not indi-
vidually. From the practical point of view, the licensor would probably not
take legal steps against users who continued to use and maintain the soft-
ware for themselves only, without distributing it. More importantly, howev-
er, users could not legally maintain software for other users. All users would
be precluded from the control over the working of the programs, maybe
apart from a few.

4.1.3 Inter partes nature of licenses

Free Software licenses form inter partes relations between licensors (copy-
right holders) and licensees (users). As a consequence, unless there is a legal
rule to the contrary, third parties (i.e., entities other than the licensors) cannot
easily enforce copyleft clauses against the licensees. Specifically, if there are
no rules in the applicable law that allow third parties to benefit from an inter
partes relation effectively, the enforcement of copyleft remains in the hands of
the licensors only. We illustrate this in Figure 4.1.

Figure 4.1: Copyleft

In Figure 4.1 we present two example sets of relations under copyleft. On the
left of Figure 4.1 we see user A who creates an improvement of an original
Free Software program but does not offer it to other users under a Free Soft-
ware license. Specifically, the terms of user A contain restrictions that prevent
users from exercising their freedoms individually in the improvement. This
is represented by the dashed line as opposed to the solid lines of relations
based on the Free Software license to the original. Thus, users may not exer-

Towards_an_Improved_def.indd 123Towards_an_Improved_def.indd 123 23-02-2010 10:49:2623-02-2010 10:49:26

124 Chapter 4

cise their freedoms individually in the improvement. However, as the origi-
nal is subject to a copyleft clause, the licensor of the original may legally
enforce that the improvement is released under a Free Software license, and
all its users allowed to exercise the freedoms in it. The enforcement relation
is marked by 1. Then, depending on the exact legal structure of the particular
copyleft clause, user A grants the freedoms to the improvement to the original
licensor (relation marked by 2), or user A grants the freedoms directly to
other users (relation marked by 3). On the right of Figure 4.1 we illustrate an
even simpler use of copyleft. Therein, the original licensor does not interfere.
Other users address their claims based on copyleft directly to user A. This is
possible if only the applicable law empowers the users to enforce the inter
partes relation between user A towards the licensor. If not, then the users
have to follow the scenario presented on the left of Figure 4.1.

Obviously, the enforcement requires the enforcing person’s resources
invested in gathering evidence, communicating with the infringing party,
obtaining legal advice, and supporting the case before a court.200 As long as
the person is an average user that does not have the necessary resources, the
ability to enforce copyleft is effectively limited, even if the applicable law
allows such a person to enforce copyleft. This means that the inter partes nature
of the licenses limits users in exercising their freedoms individually. Namely,
in case a user wanted to exercise their freedoms in Free Software programs
distributed in breach of a copyleft clause, the user would have to invest con-
siderable resources in enforcing the clause, or even have to rely on the licen-
sor to enforce the copyleft (if the applicable law restricted third party stand-
ing). Until the copyleft was successfully enforced, the user could not maintain,
or outsource the maintenance of the program “appropriated” by user A.

Certainly, the user could avoid the above-mentioned limitation by exer-
cising the following sequence: (1) obtaining the program in question directly
from the licensor, (2) exercising the right to fork, and (3) creating a substitute
improvement. We illustrate this in Figure 4.2.

Figure 4.2: The right to fork

200 According to Eben Moglen most of the disputes related to Free Software licenses have

been settled out-of-court (See: Eben Moglen, Enforcing the GNU GPL, at: http://www.

gnu.org/philosophy/enforcing-gpl.html).

Towards_an_Improved_def.indd 124Towards_an_Improved_def.indd 124 23-02-2010 10:49:2623-02-2010 10:49:26

125Communitarian protection of user freedoms

In Figure 4.2 we present two example sets of relations under the right to fork.
On the left of Figure 4.2 we see the same initial situation as on the left of Fig-
ure 4.1: user A does not offer the improvement to other users under terms as
permissive as the Free Software license of the original program. If the origi-
nal is not subject to a copyleft clause, or if the enforcement of copyleft obliga-
tions is impossible or impractical, users can still resort to the right to fork.
Under the right to fork, users may attempt to develop a substitute improve-
ment individually and maintain it themselves. Alternatively, (see the right of
Figure 4.2) another user (user B) could fork the program, improve it, and
offer the improvement to other users under the terms as permissive as the
original license. Notably, under the right to fork, users may not exercise their
freedoms in the improvement developed by user A. Instead, they are only
allowed to develop (or wait until the licensor or user B develops) substitute
improvements on the basis of the original program. Definitely, developing
and maintaining a substitute improvement requires more skills and resourc-
es than maintaining an already developed improvement of user A, made
available in performance of copyleft obligations or out of free will of user A.

Here, we may conclude that the inter partes nature of licenses limits some
users in becoming maintainers of certain improvements of software for other
users. Similarly to other limiting and restricting rules described so far, it does
not materially affect users who possess skills and resources necessary to
maintain the software themselves, as well as those who can afford enforcing
copyleft (provided that the applicable law does give them standing). So, it
mostly affects average users, but other users can be also materially affected
in specific circumstances.

4.1.4 Software-related patents

It is possible to restrict user freedoms using various rights that are not or
may be not licensed by a Free Software licensor, such as patent rights. Despite
the territorial limitation of patents, we did not find any major jurisdiction
that would not allow to obtain patents in one way or another related to soft-
ware. We found that patents can be used to restrict user freedoms even by a
patent holder who is a third party completely unrelated to the parties of a
Free Software license. As a result, parties to any such license cannot easily
avoid the threat of patents, in particular by contracting this risk away
between themselves.201 If any party infringes a patent, the party may be lia-
ble towards the patent holder. More importantly, the patent holder could
prevent the exercise of the freedoms, or subject it to conditions not compati-
ble with the freedoms.

Usually, it is not easy to discover that there is a risk of patent infringe-
ment. The discovery is possible using patent searches, but the searches

201 As a matter of facts, such risk cannot be easily avoided by parties to a proprietary license

as well.

Towards_an_Improved_def.indd 125Towards_an_Improved_def.indd 125 23-02-2010 10:49:2623-02-2010 10:49:26

126 Chapter 4

involve browsing through large amounts of patent documentation. The doc-
umentation is not always easily accessible and complete.202 It is also not easy
to analyse, mostly because it does not usually disclose the actual source code
implementation of software-related inventions, or at least the exact algo-
rithm used in these inventions. This means that many patent infringements
may be accidental, while their avoidance requires considerable skills and
resources.

Here, we may conclude that software-related patents allow to restrict
some users not only in becoming maintainers of certain software for other
users (i.e., such software that is found to infringe a patent), but even in a
simple use of such software. Patents do not affect only such users who pos-
sess skills and resources necessary to avoid the risk of patent infringement or
to work around the patent (assuming that this is legally and technically pos-
sible). So, software-related patents definitely affect average users, and it is
likely that most other users are also materially affected by them.

4.1.5 Contracts with distributors

Contracts may be used to restrict user freedoms regardless of other limiting
and restricting rules. Given the autonomy of the parties to a contract, there
are practically no boundaries as to what the restrictions may be. Generally, it
is possible and has been observed in practice that users accept contracts that
prevent them from exercising their freedoms individually. From the point of
view of the individual exercise of the freedoms, it is important that such con-
tracts include contracts whereby (1) users undertake not to maintain soft-
ware themselves, (2) users undertake not to outsource maintenance other-
wise than to the other party of the contract, or (3) users undertake not to
perform both of the above. Sometimes, users do not undertake anything, but
the contract conditions the performance of warranties or services related to
Free Software on the user not performing the maintenance. This alone may
effectively prevent many users from maintenance.

Here, we may conclude that distributors can use contracts to restrict
some users in practically any exercise of the freedoms. In particular, they
could restrict users in becoming maintainers of certain software for other
users (e.g., the software as improved by the distributors). Certainly, such
contracts do not affect users who do not accept them, but naturally average
users are more likely to accept such contracts than users who possess skills
and resources necessary to maintain the software themselves. At the same
time, average users are most affected by such contracts, since as a result they
cannot outsource the maintenance otherwise than to their contractors, while
they would not maintain the software themselves anyway.

202 See: WIPO (Standing Committee on the Law of Patents), Report on the International Patent
System, (3 February 2009, SCP/12/3 Rev. 2), p. 22 et. seq.

Towards_an_Improved_def.indd 126Towards_an_Improved_def.indd 126 23-02-2010 10:49:2723-02-2010 10:49:27

127Communitarian protection of user freedoms

4.1.6 Liability rules

Liability rules existing in various national laws affect the hacker immunity.
Here, we should recall that the hacker immunity is a broad warranty disclaim-
er and liability limitation clause. The immunity attempts to cover nearly all
possible liability related to Free Software (warranties, contract or tort liabili-
ty, sometimes also third party claims, etc.). This means that the hacker immu-
nity attempts to pass to the user the risk related to software.

If the hacker immunity is fully enforceable, users are left in the same situa-
tion as users of proprietary software, as far as such a risk is concerned.
Namely, unless they are able to repair the program or remedy the infringe-
ment of third party rights themselves, or unless distributors of software offer
separate warranty or indemnification, users bear the risk of damages or lia-
bility. In such a case, the exercise of the freedoms could constitute a heavy
economic burden for users. This means that the full enforceability of the hack-
er immunity stimulates users not to maintain software themselves. Users are
stimulated to outsource maintenance to persons who can guarantee good
quality, most preferably together with some kind of indemnification against
third party rights. Consequently, the full enforceability of the hacker immunity
limits users who cannot offer that quality and indemnification in their ability
to offer maintenance services.

Conversely, if liability rules do not allow to enforce the hacker immunity in
whole or in part, developers or distributors of Free Software might be
required to pay damages or otherwise bear liability for defective Free Soft-
ware programs. In such a case, the rule of the hacker immunity would fail to
remove an important demotivator for prospective contributors to Free Soft-
ware projects, including those who would be willing to maintain software
on behalf of others. Only those who possess necessary resources would then
be willing to undertake to maintain the software.

From the legal point of view, the relation between the hacker immunity
and liability rules boils down to the question who will bear liability for defec-
tive software and reimburse damages. However, from the practical point of
view it is often the case that the damages are not the main issue, since the
operation of the user’s enterprise or the safety of data, etc. is much more
important. Then, it is crucial whether the user can rely on someone who not
only guarantees certain level of service and is liable for not meeting the level,
but also on someone who can be called upon in order to repair the defects
and bring the software back to operation. Obviously, users who possess suf-
ficient skills and resources can provide such a service themselves, if only
they have access to source codes of the software and specifications of stan-
dards used in this software. For users who have to outsource maintenance,
this is not sufficient.

It follows that the freedoms will be exercised in an unencumbered way if
it is possible for users to maintain or outsource the maintenance of Free Soft-
ware in a way that allows for a prompt removal of defects. It is less impor-
tant that as a result of the relation between the hacker immunity and liability

Towards_an_Improved_def.indd 127Towards_an_Improved_def.indd 127 23-02-2010 10:49:2723-02-2010 10:49:27

128 Chapter 4

rules the liability can or cannot be attributed to certain actors. It is more
important whether there exist actors who provide maintenance services, and
in particular offer to remove defects found in software.

4.1.7 Non-legal regulators of software

User freedoms may be restricted using non-legal regulators. In particular, it
is possible to restrict user freedoms using a special architecture, e.g., by mak-
ing software a part of a service or a device. User freedoms are also limited by
the way a market operates and norms are imposed. Market and norms affect
mostly copyleft, but we also found a material limitation on the exercise of
user freedoms in general through market regulation.

Here, we may conclude that from the point of view of the individual
exercise of the freedoms it is important that all the identified non-legal regu-
lators affect maintenance of software. The result of the architecture is similar
to the result of contracts with distributors, but instead of legally obliging
users to refrain from maintaining software on their own or from outsourcing
it to a third party, the architecture makes it simply impossible or impractical.
The market regulation can additionally limit or restrict users from maintain-
ing software. Transaction costs make it costly to become an actor in the Free
Software scene. The market also fails to stimulate users to perform their
copyleft obligations in a way that would allow users to access source code of
some programs and exercise their freedoms in practice. Finally, integration
costs can prevent users from undertaking maintenance of software, even if
this is legally and technically possible.

4.1.8 Closed standards

Trade secrets, patents material to standards, scrambling of interoperability
information as well as locking-in lead to closed standards and affect user
freedoms. Also, neither reverse engineering, nor standard setting as such,
nor the doctrine of essential facilities is sufficient for removing the identified
limitations and restrictions on standards and making them open standards.
It is additionally necessary that the standard setting procedure is properly
organized so that the resulting standards are open. It is also necessary that
such open standards become popular and are actually used in software. Oth-
erwise, the software will continue to be developed according to closed stan-
dards.

Here, we may conclude that due to closed standards, there are limita-
tions and restrictions on the maintenance of software. Users who are not able
to access standard specifications (or legally use information contained there-
in) are precluded from maintaining the software, at least as far as mainte-
nance involves providing for interoperability using a closed standard.
Depending on circumstances, they are precluded either from maintaining it
for other users only, or from maintaining it for themselves as well.

Towards_an_Improved_def.indd 128Towards_an_Improved_def.indd 128 23-02-2010 10:49:2723-02-2010 10:49:27

129Communitarian protection of user freedoms

4.1.9 Regulatory environment

The framework operates in a regulatory environment. In fact, there are as
many regulatory environments, as there are many jurisdictions (national
laws) involved in a particular case. As a result, we subjected all rules in the
framework to the applicable national law. We did not find any laws that
invalidate any of the rules included in the model of the framework as a
whole. Still, we found that due to the differences between various national
laws the rights and obligations that follow from these rules could differ
across jurisdictions. For example, we can assume that there may be jurisdic-
tions where despite copyleft clauses licensees would not be obliged to deliver
some improvements as Free Software, or where the law would not allow to
enforce this obligation as effectively as in other jurisdictions. Additionally, in
some jurisdictions, developers and distributors may not be allowed to waive
their liability for Free Software as much as in other jurisdictions.

Given that there is a number of regulatory environments, if a user
attempted to maintain software for other users, such a user would start
entering into numerous relations with other users. For example, the user
would become the licensor with regard to the improvements made to the
software. The user could also conclude contracts with other users (distribu-
tion contracts, maintenance contracts, etc.). Obviously, given the globaliza-
tion and the use of the Internet in the trade, such other users would most
probably come from many different jurisdictions. Thus, there is a high prob-
ability that a different national law could apply in each case. It follows that
the user would have to verify the impact of each national law on all rela-
tions.203 Not everyone can or is willing to cover costs of such a verification.

Hence, differences between national laws constitute a limitation on the
individual exercise of the freedoms performed by maintaining software for
other users that come from different jurisdictions. The differences only do not
affect the users who possess skills and resources necessary to (a) verify the
legality of their conduct in all jurisdictions involved, and (b) to work around
any identified legal obstacles. So, it definitely affects average users, and it is
likely that many other users are also materially affected by the differences.

4.1.10 Conclusion on limitations and restrictions of the freedoms

As follows from the above, the individual exercise of the freedoms may be
subject to severe restrictions and limitations in practice. Despite the grant of
freedoms in Free Software licenses and despite some rules that attempt to pro-
tect the freedoms, such as the right to fork and copyleft, users may not at all
times freely use Free Software by undertaking some or all activities covered

203 Certainly, some of these problems could be avoided using choice of law clauses in the

contracts with users (pointing to one jurisdiction only). However, there are some laws

(so-called mandatory rules), the applicability of which cannot be avoided.

Towards_an_Improved_def.indd 129Towards_an_Improved_def.indd 129 23-02-2010 10:49:2723-02-2010 10:49:27

130 Chapter 4

by the FSD. Thus, we may conclude that elimination of these restrictions and
limitations is a necessary condition in order to allow users to exercise their
freedoms effectively.

More precisely, in order to conclude that the software communities affect
the framework by contributing to the protection of the freedoms, we have to
establish whether the communities:

(1) decrease the number of Free Software licenses and minimize in-
compatibilities between them,

(2) effectively petrify the legal relationship between licensors and li-
censees,

(3) stimulate effective enforcement of copyleft or simply effective per-
formance of copyleft obligations,

(4) prevent infringement of software-related patents or the use of such
patents against Free Software users,

(5) prevent the use of contracts by distributors in order to restrict user
freedoms,

(6) remove liability for Free Software while at the same time reduce the
number of defects in Free Software (both technical and legal, if any),

(7) provide for proper organization of Free Software development,
(8) regulate standard-setting procedures in a way that the resulting

standards are open standards and become popular, and
(9) minimize differences between national laws.

Conversely, if we do not find all of the above we will most probably con-
clude that the communities do not affect the framework positively or that
they affect it to a detriment of user freedoms.

4.2 The freedoms in software communities

In the previous section we worked under the assumption that users attempt
to exercise their freedoms individually. Under that assumption, while main-
taining a program for themselves or even for other users, such users did not
enter into any complex relations with other users. Let us change this assump-
tion and assume that there are users who form a software community around
the program and who maintain it as a Free Software project (the project may
consist of the program alone or of a combination of many programs).204
Briefly speaking, such a community consists of various entities that collabo-
rate in the development of the project and that may also distribute the proj-
ect to other users, as well as that provide guidance on its use.

204 For the explanation of “project” and “software community” see Section 2.4. See also: Lucie

Guibault, Ot van Daalen, Unraveling the Myth around Open Source Licenses. An

Analysis from A Dutch and European Law Perspective (TMC Asser Press 2006) 25.

Towards_an_Improved_def.indd 130Towards_an_Improved_def.indd 130 23-02-2010 10:49:2723-02-2010 10:49:27

131Communitarian protection of user freedoms

In particular, in a community there are usually some (often quite numer-
ous) participants that contribute to the project in many ways. Contributions
include all kinds of improvements to programs incorporated in the proj-
ect.205 The resulting copyright structure of the project highly depends on the
specific circumstances as well as on the applicable law. Generally, a Free Soft-
ware project maintained by a community can constitute: (1) a collective
work,206 (2) a work of joint authorship (shortly, a joint work),207 or (3) a
derivative work of other programs.208 First, if a project is a collective work it
most probably means that there is a person, or a group of persons that hold
copyrights to the project as a whole.209 This copyright is separate from copy-
rights in contributions included in the whole project. Second, if the project is
a work of joint authorship the joint authors hold “shares” in copyrights to
the whole.210 Third, if a project is a derivative work, its copyright holder has

205 Here, we focus on direct contributions to the program (patches, upgrades, updates).

However, there are many community participants who do not write code but contribute

to the project in many other ways.

206 “Collective work” is the term used in the U.S. Copyright Act to denote a subset of “com-

pilations” (Sec. 101). Berne Convention uses the term “collection” (Art. 2.5). Although the

exact meaning of these or similar terms differs under various laws, for the sake of simpli-

city we use here the term “collective work” to denote all types of works copyrights of

which as a whole belong to one person while copyrights to its building blocks (if any) are

retained by respective authors.

207 See: Lucie Guibault, Ot van Daalen, Unraveling the Myth around Open Source

Licenses. An Analysis from A Dutch and European Law Perspective (TMC Asser

Press 2006) 90 et seq.

208 Other possibilities include, for example, a database or an audiovisual work (see, e.g.,
Droit & Technologies, La cour d’appel de Paris prend position concernant la qualifi cation jurid-
ique du jeu vidéo, http://www.droit-technologie.org/actuality-1103/la-cour-d-appel-de-

paris-prend-position-concernant-la-qualifi cation-ju.html, in French). Here, we do not

elaborate on these possibilities.

209 The copyright holder of the collective work is usually its producer (editor). A producer is

a person that creatively arranges or directs the arrangement of various contributions into

a collective whole. Depending on the applicable copyright law either the contributors

retain their rights to contributions (unless they assign them contractually), or the rights

are also granted to the producer as a matter of law. For example, under Polish Copyright

Act Art. 11 copyrights to a collective work belong as a matter of law to its producer (or

editor), while contributors retain rights to their respective contributions (if such contribu-

tions are separable). Similarly, a person that creates a copyrightable collection of various

items (that can include copyrighted works) becomes copyright holder of the collection.

Many communities or fi rms that maintain GNU/Linux distributions invoke collective

works regulations. See, e.g., OpenSuSE, at: http://en.opensuse.org/OpenSUSE_License,

but see Ubuntu, at: http://www.ubuntu.com/community/ubuntustory/licensing.

210 Various laws differently distinguish between a collective work and a joint work. For

example, under the U.S. Copyright Act, contributions in a joint work have to be insepara-

ble, while the Polish Copyright Act allows a joint author to exercise the rights in an inde-

pendent part of the work, thus suggesting that a joint work can constitute of separable

parts. Additionally, Polish law provides for a category of “works combined by authors

for joint distribution” (Polish Copyright Act Art. 10), which is regulated similarly to a

joint work.

Towards_an_Improved_def.indd 131Towards_an_Improved_def.indd 131 23-02-2010 10:49:2723-02-2010 10:49:27

132 Chapter 4

to follow directions of the copyright holder of the original in order to exer-
cise the freedoms in the derivative work.

Remarkably, all these three variants can intermingle in practice.211 For
example, we should not rule out a possibility that a particular Free Software
project can constitute a collective work created jointly by a group of persons.
Namely, not only numerous participants contribute by separate contribu-
tions to the project, but also there is a number of persons who organize the
contributions or select them to be included in the whole. Additionally, while
including the contributions in the whole, some participants may modify
them, and in particular create derivative works. For example, in a GNU/
Linux distribution, a packager of one program (e.g., a library) selected for
inclusion in the distribution might create a derivative work of it, cooperate
in the integration of the derivative work in another program with its devel-
oper (a program that uses the library), and finally the project maintainers
might include both programs in the whole project.

Community participants not only contribute to the community project,
but also organize themselves within the community. Depending on the size
and nature of the project, the number of contributors, its development stage,
etc., such an organization takes various forms. In small projects there is usu-
ally one person that supervises the maintenance of the whole project, while
other contributors restrict themselves to submitting contributions only. In
bigger communities the authority and responsibility for the project is distrib-
uted. The social structure of an average software community gathered
around a medium or large Free Software project usually consists of (1) a few
leaders who decide about the development of the project and (2) a number
of contributors that follow the leaders. We shall refer to the leaders as project
owners.

According to Eric S. Raymond (2000), “[t]he owner of a software project
is the person who has the exclusive right, recognized by the community at
large, to distribute modified versions.”212 More precisely, project owners
serve as a source of official versions of the project. Unofficial versions are usu-
ally understood as versions maintained individually by users outside of the

211 Actually, this seems to be a case of many GNU/Linux distributions such as Debian.

212 Eric S. Raymond, Homesteading the Noosphere, at: http://www.catb.org/~esr/writings/

cathedral-bazaar/homesteading/. Project ownership understood as a kind of exclusivity

over the maintenance of the project may seem a paradox, as above we extensively

explained that under the Free Software licenses every user is allowed to maintain Free

Software on their own. In fact, there is no paradox, as long as we read Raymond carefully

and note the distinction between (1) the legal right, which is indeed available to everyone

as provided for in the licenses, and (2) the right “recognized by the community”, which is

granted to certain individuals only. Indeed, project ownership may not be mistaken for any

kind of legal title in software, in particular the copyright to the project, although it may

accompany such a title. See also: Lucie Guibault, Ot van Daalen, Unraveling the

Myth around Open Source Licenses. An Analysis from A Dutch and European

Law Perspective (TMC Asser Press 2006) 25 et seq.

Towards_an_Improved_def.indd 132Towards_an_Improved_def.indd 132 23-02-2010 10:49:2723-02-2010 10:49:27

133Communitarian protection of user freedoms

community.213 Actually, even inside the communities it is every user’s right
to modify Free Software for their own use, and to distribute such modifica-
tions in some “closed user or development group”.214 In fact, no project
owner can legally prevent any user (including community participants) from
releasing competing versions of the project on their own. Also, project own-
ers may not legally bind other community members to produce a particular
contribution.215 Straightforwardly speaking, project owners merely accept or
reject contributions that flow to the project, and a rejection does not prevent
from including the contribution in an unofficial version.216 In order to exer-
cise this limited authority, project owners gather and manage resources nec-
essary to control the quality of the contributions (both technical and legal),
and to integrate the contributions in the official version. The project owners
assign these activities between themselves and recruit additional project
owners from the community if there is such a need.217

213 See, e.g., Alan Cox, Cathedrals, Bazaars and the Town Council, at: http://slashdot.org/fea-

tures/98/10/13/1423253.shtml. (described by the author himself as “a guide to how to

completely screw up a free software project”; since the decision to fi lter out “the masses”

did not allow to take full advantage of the bazaar model). Even in such a situation, free-

doms are not taken away from users; they can still exercise them and attempt maintain

the project individually.

214 Eric S. Raymond, Homesteading the Noosphere, at: http://www.catb.org/~esr/writings/

cathedral-bazaar/homesteading/.

215 However, a project owner might be able to legally prevent others from using the project’s

resources, e.g., a trademark. Actually, trademarks are often used in software communities

to indicate that the software originates from the offi cial version of the project, or that it

conforms to certain criteria. See, e.g., http://www.linuxmark.org/. Some Free Software

licenses, such as the Apache licenses contain prohibitions against using certain markings

or otherwise suggesting endorsement by project owners (see: Andrew M. St. Laurent,

Understanding Open Source and Free Software Licensing (O’Reilly, 2004), 17 and

23).

216 Heather Meeker calls it “a free market with a specialist’s desk” (Heather J. Meeker, The

Open Source Alternative Understanding Risks and Leveraging Opportunities

(Wiley, 2008), 25.

217 There are even projects, such as Debian, that have developed quite formal mentoring

rules. In Debian, participants from the lower levels of the hierarchy are trained and gui-

ded, and there are even recruitment and evaluation procedures in place. See, e.g., Andreas

Barth, Adam Di Carlo, Raphaël Hertzog, Christian Schwarz, Ian Jackson, Debian Devel-
oper’s Reference, at: http://debian.org/doc/packaging-manuals/developers-reference/.

or Debian, Debian New Maintainers, at: http://debian.org/devel/join/newmaint. See also

E. Gabriella Coleman, The Social Construction of Freedom in Free and Open

Source Software: Hackers, Ethics, and the Liberal Tradition, (Dissertation, Uni-

versity of Chicago, 2005), at: http://www.healthhacker.org/biella/freesoftware.html

(Describing the process of adopting a new member of the Debian developer community,

consisting of a thorough peer examination of the candidate’s technical skills, ethics and

the knowledge of legal issues). One could argue that such rules are no longer mere norms,

but they are regulated by law and subject to legal sanctions. Indeed, the law usually

allows for informal arrangements to constitute source of legal rules. However, we are not

aware of any communities that would heavily invoke the law when disputing rights and

obligations of project owners vis-à-vis community participants.

Towards_an_Improved_def.indd 133Towards_an_Improved_def.indd 133 23-02-2010 10:49:2823-02-2010 10:49:28

134 Chapter 4

There is no general rule how project owners organize themselves.218
There can be no formal organization, such as the “inner circle” in the Linux
kernel community.219 Other project owners, such as the owners of Apache,
follow quite formal documents that differentiate roles in the community.220
Many projects formalize themselves even more by using umbrella organiza-
tions such as foundations or corporations.221 Umbrella organizations are
means for an institutionalized control of project owners over the mainte-
nance of the project.222 Additionally, it is often the case that such an organi-
zation is the holder of valuable project resources, be it servers, development
tools, web pages, mailing lists, or copyrights, trademarks, etc.223 The func-
tion of any such organization, whether formally incorporated, or being an
ad-hoc committee, is to aid project owners in performing various project-
maintenance activities.

We shall now proceed to analyse how the maintenance of Free Software
projects by software communities affects the limitations and restrictions in
the individual exercise of the freedoms. We will address the limitations and
restrictions in the already introduced order: license proliferation and incom-
patibilities (Subsection 4.2.1), license revocability (Subsection 4.2.2), inter
partes nature of licenses (Subsection 4.2.3), software-related patents (Subsec-
tion 4.2.4), contracts with distributors (Subsection 4.2.5), liability rules (Sub-
section 4.2.6), non-legal regulators (Subsection 4.2.7), closed standards 4.2.8),
and regulatory environment (Subsection 4.2.9). Afterwards, we will present
our conclusion on the freedoms in software communities (Subsection
4.2.10).

4.2.1 License proliferation and incompatibilities

License proliferation and incompatibilities are differently affected in projects
that are collective works, joint works, or derivative works.

218 See, e.g, Chris Jensen and Walt Scacchi, Role Migration and Advancement Process in OSSD
Projects: A Comparative Case Study, at: http://opensource.mit.edu/papers/Jensen-Scac-

chi-ICSE-2007.pdf.

219 See: Gary Murphy, The Linux Kernel, Blueprints for World Domination, (table of contents

available at: http://kernelbook.sourceforge.net/pkbook.html).

220 See: Apache, at: http://www. Apache .org/foundation/how-it-works.html.

221 Actually, many projects have been founded by corporations (fi rms) that continue to be

their major contributions and community participants.

222 Such organizations are often legally mandated to maintain the project without revoking

user freedoms, in the organization’s by-laws, articles of association, or even in mere

“public deeds” published on the project’s web page.

223 Some projects require from contributors to vest some of their rights in the umbrella

organization. For example, contributors to OpenOffice are required to sign an assign-

ment of joint copyrights to their contributions to Sun Microsystems, Inc., which founded

the project on the basis of the StarOffice code base (OpenOffi ce, at: http://contributing.

openoffi ce.org/programming.html#sca.pdf). Similar approach is adopted in other major

projects, such as the KDE or MySQL.

Towards_an_Improved_def.indd 134Towards_an_Improved_def.indd 134 23-02-2010 10:49:2823-02-2010 10:49:28

135Communitarian protection of user freedoms

In order to include a contribution in a collective work, an authorization of
its copyright holder is necessary. We assume that all Free Software licenses
contain such an authorization.224 More importantly, it is believed that the
inclusion of programs under FSD-compliant licenses in a collective work does
not create incompatibility problems in the sense that all obligations can be fol-
lowed separately with regard to each contribution, even though they could
not be observed simultaneously with regard to a single piece of software.225
So, most issues of license proliferation and incompatibilities should not arise
in case of projects that constitute collective works, as long as only Free Soft-
ware is included in such projects.226 This, however, still implies the need of at
least a basic legal audit of software included in the project and its licenses.

In order to create a joint work, the authors have to cooperate in combin-
ing their respective contributions. The cooperation necessarily implies that
authors agree on such issues as the project’s license, not that they merely
combine together contributions already subject to a license. Otherwise, the
project would rather be a collective work or a derivative work, not a joint
work. So, generally there should be no issues related to license proliferation
and incompatibilities in projects that constitute joint works.

In order to create or use227 a derivative work, its author has to obtain

224 Some Free Software licenses express this authorization better than others. Some licenses

contain only implied authorization, included in the general consent for the use of the

program in any way. Some national laws could require a particular wording for a consent

to include the program in a collective work. There is no such specifi c requirement in the

Polish law, but according to the general rules the consent should clearly follow from the

license.

225 It is generally believed that the GPL does not require that the whole collective work is

licensed under the GPL (partially because of its “mere aggregation” clause) and that it

only requires not to restrict user freedoms in the covered work as included in the col-

lective work, not in the whole collective work. However, the inclusion in the collec-

tive work might involve creation of a derivative work of the contribution, which may

lead to incompatibility problems. See: Free Software Foundation, GNU General Public
License Frequently Asked Questions, at: http://www.fsf.org/licensing/licenses/gpl-faq.

html#GPLInProprietarySystem. See also: Andrew M. St. Laurent, Understanding

Open Source and Free Software Licensing (O’Reilly, 2004) 82 and 159.

226 Many communities attempt to maintain projects that include software released under

non-FSD compliant licenses. Usually, they keep such software in separate repositories,

not distributed together with the rest of the project. Many fi rms that develop and distri-

bute projects based on Free Software include proprietary programs in the distributions,

on the basis of separate agreements with their copyright holders. It is accepted in the

market, that such collective works do not infringe Free Software licenses of programs

included therein.

227 Various laws differently regulate this issue. Under Polish law the general rule is that the

creation of derivative works is not restricted, only the use of them outside of the Polish

equivalent of fair use requires authorization of the copyright holder of the original. Howe-

ver, under the specifi c regulation of programs in the Polish Copyright Act (in-line with

the Software Directive), any modifi cation of a program is a breach of the author’s mono-

poly if not authorized by the copyright holder. Similarly, under U.S. law, authorization is

necessary for the creation of a derivative work.

Towards_an_Improved_def.indd 135Towards_an_Improved_def.indd 135 23-02-2010 10:49:2823-02-2010 10:49:28

136 Chapter 4

authorization of the copyright holder of the original.228 But apart from the
authorization, the copyright holder of the original does not have to interfere.
Actually, further involvement of the copyright holder of the original would
most probably lead to creation of a joint work. In the Free Software scene,
derivative works can be developed, distributed, and used even without
knowledge of the copyright holder of the original. The author of the deriva-
tive work simply exercises the authorization granted in advance in a Free
Software license of the original. But the authorization may come bundled
with an obligation incompatible with obligations related to other contribu-
tions. So, the author of the project has to perform the two-step legal analysis
that we described in Section 4.1 when discussing the impact of license prolif-
eration and incompatibilities on the individual exercise of the freedoms.

It follows that negative consequences of license proliferation and incom-
patibilities on user freedoms are materially minimized in case of projects that
constitute collective works or joint works. In case of collective works, even if
contributions are licensed under many different and incompatible licenses,
their inclusion in a collective work is still possible (provided that they are all
licensed under an FSD-compatible license). In case of a joint work license
proliferation and incompatibilities issue should not arise at all. Conversely,
in case of projects that constitute derivative works of other programs, license
proliferation and incompatibilities remain an important limitation of the
freedoms. However, as we already noted Free Software projects cannot be
easily attributed to one category of works or they can meet the criteria of a
collective work, a joint work, and a derivative work at the same time. Pre-
cisely speaking, different criteria are usually met at different levels of the
project’s structure. So, many communities, especially communities that
maintain complex projects consisting of numerous programs, have to take
license proliferation and incompatibilities into account while maintaining
their projects.

Many communities do perform the legal audit necessary in order to
overcome license proliferation and incompatibilities. For that purpose, they
use the authority of project owners to accept or reject contributions to the
official version. For example, many project owners require that the contribu-
tors document that they cleared copyrights to the contributions and that they
are free to license them under a Free Software license.229 Usually a specific

228 There is a (criticised) theory under Polish law that the rights to any modifi cations of a

computer program belong as a matter of law to the copyright holder of the original. See:

Małgorzata Byrska, Prawne aspekty modyfi kowania programu komputerowego [Legal aspects of
modifying computer program], 4 Kwartalnik Prawa Prywatnego [Private Law Quar-

terly], 693, 715 (1996). For a discussion on the status of derivative works in the U.S. law

see, e.g., Mark A. Lemley, The Economics of Improvement in Intellectual Property Law, 75 Tex-

as Law Review 989, 1022 (1997).

229 The evaluation can be done by humans, but also by intelligent agents, such as the Virtual

Stallman, a computer program whose task is to identify all non-free packages in a given

GNU/Linux Debian distribution (Virtual Stallman, at: http://alioth.debian.org/proj-

ects/vrms/).

Towards_an_Improved_def.indd 136Towards_an_Improved_def.indd 136 23-02-2010 10:49:2823-02-2010 10:49:28

137Communitarian protection of user freedoms

FSD-compliant license is required for contributions (i.e., the project’s license).
Additionally, in many projects elaborate and formal policies have been estab-
lished for scrutinizing whether a particular contribution conforms with the
projects’ licensing and other legal requirements.230 In such projects, licenses
of contributions are checked against such policies and any doubts are exten-
sively discussed in attempts to resolve them. Customarily, the record of such
discussions is publicly available.231

Obviously, such a legal audit involves or even expands both steps of the
legal analysis that we found necessary in order to be able to maintain combi-
nations of Free Software programs legally, despite license proliferation and
incompatibilities.232 It allows to identify, which combinations of Free Soft-
ware programs can be maintained in spite of the proliferation and incompat-
ibilities. Properly organized communities are able to perform such an analy-
sis more effectively than many of the participants individually (and
definitely more effectively than an average user could).

In any case the legal audit as such does not lead to a decrease of the
number of licenses or to a removal of incompatibilities between them. Nev-
ertheless, if the communities gathered around significant projects implement
and follow a well designed and sufficiently strict licensing policy they may
indirectly cause such an effect. Namely, contributors who wish to have their
contributions included in such projects would be stimulated to adjust their
licenses to the policies of the communities. This may make them switch to
more popular, compatible licenses.233 As a result, the communities indirectly
support the tendencies that lead to a decrease of the number of licenses and
an increase of their compatibility, which we already identified in Chapter 3.

230 See, e.g., Debian Free Software Guidelines (http://www.debian.org/social_contract) or

Fedora Packaging Guidelines (http://fedoraproject.org/wiki/Packaging/Guidelines).

Actually, many hackers who declare themselves as non-lawyers (by typing a customary

“IANAL” abbreviation in almost every communication) often seek compliance with the

licenses and the copyright law more diligently than a qualifi ed lawyer would (see, e.g.,
The Fedora Extras license audit, at: http://lwn.net/Articles/218977/; Ubuntu Daily, Propri-
etary drivers in Feisty: not by default but easy to activate, at: http://ubuntudaily.

com/2007/03/06/proprietary-drivers-in-feisty-not-by-default-but-easy-to-activate/).

Community participants who follow such guidelines quickly identify and remove “non-

free” contributions, or at least clearly mark them for a user to be aware of FSD-incompli-

ant code. Sometimes, such contributions are moved to a separate, external repository,

such as, Livna (http://rpm.livna.org/rlowiki/FAQ).

231 See, e.g., debian-legal mailing list archives, at: http://lists.debian.org/debian-legal/.

232 Given internal project policies, we can distinguish additional level of incompatibility,

apart from license incompatibility. Namely, licenses of contributions can be found incom-

patible with project policies. Such incompatibility is often discussed e.g., within Debian.

233 At the time of this writing it is already the case that licensors rarely draft their own licens-

es. In the past, however, many licensors did not fi nd already existing model licenses satis-

factory. See, e.g., Andrew M. St. Laurent, Understanding Open Source and Free

Software Licensing (O’Reilly 2004), 85 et. seq., 174. Nowadays, one of the OSI-certifi ed

(and accepted by the FSF) model licenses is usually adopted by new projects. Communi-

ties augment this standardization trend (id. at 175).

Towards_an_Improved_def.indd 137Towards_an_Improved_def.indd 137 23-02-2010 10:49:2823-02-2010 10:49:28

138 Chapter 4

4.2.2 License revocability

License revocability is differently affected in projects that are collective
works, joint works, or derivative works.

In case of projects that constitute collective works, the applicable law
might allow the copyright holder of the whole project to revoke the license
to the whole unilaterally. As a result, although particular contributions might
remain under their respective Free Software licenses, this would still effec-
tively restrict the freedoms. It would definitely be the case if separate contri-
butions were not as usable as the whole project. So, if the community project
is a collective work, license revocability remains a potential threat to user
freedoms (to the extent a user would like to exercise the freedoms in a whole
project, not separate contributions).

In case of projects that constitute joint works license revocability depends
on how the applicable law regulates the scope of activities that each of the
joint authors can exercise without the consent of others.234 In particular,
licensing (and revoking the license) of the whole project in one way or anoth-
er might require unanimity, majority vote, or even could be possible for each
of the authors on their own.

In case of projects that constitute derivative works, the exercise of the
freedoms in the derivative work requires an authorization of the copyright
holder of the original as a necessary condition. So, if the copyright holder of
the original revokes the license that contains such an authorization, the
respective licensees are prevented from the exercise of the freedoms, even if
all authors of derivative works refrain from revoking their respective licens-
es. Usually, however, contributions that are derivative works are improve-
ments of the project. As a result of the improvements, the original version of
the project is not of much importance. It follows that the copyright holder of
the original might not have any practical interest in revoking the license.

Let us analyse a specific example of a project that constitutes a derivative
work. Assume an original project is subject to a copyleft license, and it is
improved in many iterations not only by other contributions, but also by the
copyright holder of the original. This may lead to a situation where all of

234 Under Polish law, enforcement of copyright is possible to be performed individually by a

joint author. Disposing of each author’s share in the joint copyright as well as administe-

ring a separable contribution is usually also outside of the reach of other joint authors.

Other activities usually require either unanimity, or a majority vote. If no agreement is

reached, the dispute can be referred to a court. So, it seems that under Polish law a joint

author could not unilaterally revoke the project’s license, but the removal of the contribu-

tion from the project seems possible. Under the U.S. Copyright law, the opposite seems

possible (See: Raymond T. Nimmer, Legal Issues in Open Source and Free Software Distribu-
tion, Open Source Software Spring 2006 Critical Issues in Today’s Corporate Envi-

ronment, PLI Handbook no. G-861, 7, 49 (arguing that in the case of a joint work, a joint

author is separately capable of granting licenses to the work as well as individually enfor-

ce copyright; it thus seems that the author could also individually terminate the license).

See also FN 129.

Towards_an_Improved_def.indd 138Towards_an_Improved_def.indd 138 23-02-2010 10:49:2823-02-2010 10:49:28

139Communitarian protection of user freedoms

them are bound by copyleft clauses to each other. If any of them attempted to
revoke their licenses and distributed their improvements as proprietary, it
would most probably lead to a copyleft infringement. So, provided that copy-
rights in a project constitute such a “wickerwork”, license revocability may
be effectively prevented.

Certainly, in every project, license revocability is subject to practical limi-
tations already presented in Chapter 3. However, given the importance of
project owners for the maintenance of projects, it might suffice for the licen-
sor to revoke the license of project owners in order to prevent most users
(especially average users) from exercising the freedoms successfully. It fol-
lows that license revocability is not effectively prevented by the mere fact that
there exists a community that maintains the Free Software project in question.
It strongly depends on the actual copyright structure of the project.

However, software communities are able to petrify the license relation-
ship effectively, regardless of such structure. The communities use the
authority of project owners for that purpose. Namely, by accepting a particu-
lar contribution into a project, project owners present and expose it to the
whole community. Such a contribution can still be maintained individually
by anyone, but the skills and resources gathered and administered by the
community usually outgrow the possibilities of the licensor of the contribu-
tion. So, if the license is not revoked, the licensor may continue to benefit
from the maintenance provided for by the community. It follows that revok-
ing the license does not make much sense for licensors who cannot maintain
their programs individually.

Remarkably, a licensor who does not value the maintenance performed
by the community would not take this under consideration when revoking
the license. As a result, the respective contribution has to be removed from
the project. Substituting a removed contribution usually requires substantial
skills and resources, which might not be available for individual users, espe-
cially average users. However, a properly organized software community is
able to perform such a substitution, so that the maintenance of the whole
project can still be provided for.

4.2.3 Inter partes nature of licenses

Existence of software communities does not affect the inter partes nature of
licenses as such. Actually, the fact that there are numerous contributors to a
Free Software project may make the enforcement of copyleft more troublesome
than it already is. For example, if a copyleft to a joint work was not observed
by a licensee, the applicable copyright law might require that all joint authors
stand in a case against the infringing licensee.235 Even if most of the applica-
ble laws did not regulate these issues in such a way, this would still not affect
the inter partes nature of the licenses to the benefit of user freedoms.

235 See FN 129.

Towards_an_Improved_def.indd 139Towards_an_Improved_def.indd 139 23-02-2010 10:49:2823-02-2010 10:49:28

140 Chapter 4

However, there are numerous examples of Free Software projects to
which many participants contribute back despite the fact that software
included in the project is not subject to copyleft.236 Actually, even in case of
copylefted projects, such as the Linux kernel, we would not err in claiming
that the most valuable contributions to it were not made as a result of the
legal enforcement of copyleft clauses.237 Certainly, one could argue that such
contributions are made in performance of obligations other than copyleft,
since many of them are made by employees of various firms that assign them
to work on Free Software projects. Obviously, if such employees contribute
to these projects, they perform their obligations towards employers. This,
however, does not by itself explain why these firms direct the employees to
do so. Naturally, the firms themselves are not obliged to contribute, or they
could avoid such an obligation given the inter partes nature of licenses.

There have been many attempts to identify the nature of the stimulation
that makes numerous and diverse individuals and firms contribute to Free
Software projects.238 Here, it is not necessary to identify what the stimulation
really is. It suffices to observe that there are many community participants
who find it more valuable to contribute to the project instead of keeping the
contributions private. In other words, they value the participation in com-
munities more than trying to maintain the software individually. By accept-
ing their contributions to the official version of the project, project owners
enable the community to maintain them, which stimulates the contributors
to contribute more effectively than the legal rule of copyleft.239 We would like
to refer to this stimulations as community copyleft, since it has a result similar
to the intended result of copyleft clauses.

Clearly, the community copyleft does not affect such individuals or firms
that find more value in keeping their improvements private. Such “free-rid-
ers” can be stimulated with the legal rule of copyleft only, with its inherent
limitations. However, a properly organized community can serve as a source
of improvements, which could substitute the appropriated ones. Definite-
ly, such a community is able to exercise the right to fork effectively. Also, in
the long run, the “free-riders” would experience severe maintenance prob-

236 Most prominent examples include FreeBSD, OpenBSD, and NetBSD.

237 K.R. Lakhani, B.Wolf, J. Bates, C. DiBona, The Boston Consulting Group Hacker Survey, at:

http://www.osdn.com/bcg/bcg-0.73/img1.html; Greg R. Vetter, „Infectious” Open Source
Software: Spreading Incentives or Promoting Resistance?, 36 Rutgers Law Journal 53 (2004).

238 There is a lot of literature trying to explain reasons behind contributing to Free Software

projects. See, e.g., Steven Weber, The Success of Open Source (Harvard University Press,

2004); Eric S. Raymond, The Magic Cauldron, at: http://www.catb.org/~esr/writings/

cathedral-bazaar/magic-cauldron/; Didier Demazerie, Francois Horn, Nicolas Jullien,

How free software developers work, at: http://ssrn.com/abstract=1301572 (abstract); Didier

Demazerie, Francois Horn, Marc Zune, The Functioning of a Free Software Community: Entan-
glement of Three Regulation Modes – Control, Autonomous, and Distributed, at: http://www.

sciencestudies.fi /v20n2DemaziereHornZunePDF; Francesco Rullani, Dragging developers
towards the core, at: ftp://ftp.unibocconi.it/pub/RePEc/cri/papers/WP190Rullani.pdf.

239 See: Andrew M. St. Laurent, Understanding Open Source and Free Software

Licensing (O’Reilly, 2004), 6, 83, 158, 171.

Towards_an_Improved_def.indd 140Towards_an_Improved_def.indd 140 23-02-2010 10:49:2923-02-2010 10:49:29

141Communitarian protection of user freedoms

lems.240 We assume that in such a case only a few firms would be able to
keep the pace of a properly organized community. More importantly, even
if they could, such communities would still be able to maintain the project
in spite of the “free-riders”. Additionally, the reader should be aware that in
the overall Free Software community, there are initiatives that support indi-
vidual licensors and users in enforcing copyleft obligations.241

4.2.4 Software-related patents

The existence of software communities does not invalidate software-related
patents or make them inapplicable. However, many communities manage to
stimulate some patent holders not to use their patents against user freedoms.
For example, some major firms involved in the development and distribution
of Free Software have publicly declared to refrain from enforcement of their
patents in relation to Free Software users in one way or another.242 The reason
for such pledges is similar to the already discussed reasons of not revoking
Free Software licenses or contributing to projects irrespectively of copyleft lim-
itations. Namely, some patent holders find it more valuable to have their
products properly maintained by a community than having to maintain them
on their own. Precisely speaking, they care more for a wide adoption of their
technologies than for directly benefiting from patent royalties.243

240 See: Jon Corbet, How to Participate in the Linux Kernel Community, at: http://ldn.linux-

foundation.org/book/how-participate-linux-community (“The truth of the matter is that

keeping code separate ... is a false economy. ... Incorporation into the mainline solves a

large number of distribution and support problems. ... [A]ny out-of-tree code requires

constant upkeep if it is to work with new kernels. Maintaining out-of-tree code requires

signifi cant amount of work just to keep that code working. ... So code which has been

merged into the mainline has signifi cantly lower maintenance costs.”)

241 In the U.S. such cases are handled by the Software Freedom Law Center (see: http://

softwarefreedom.org), while in the EU they are handled by the GPL-violations project in

cooperation with the FSFE (see: http://gpl-violations.org). However, these initiatives do

not have their own standing in copyleft cases. Rather, they represent some licensors (copy-

right holders) who may or may not wish to support a particular case. If a user does not

convince them to support a particular case, the user has to support the case alone.

242 See, e.g., CNN, IBM Pledges Free Access to Patents Involved in Implementing 150+ Software
Standards, at: http://money.cnn.com/news/newsfeeds/articles/marketwire/0276035.

htm. See also: IBM, at: http://www-03.ibm.com/press/us/en/pressrelease/21846.wss,

RedHat, at: http://www.redhat.com/magazine/001nov04/features/patents/, or Novell,

at: http://www.novell.com/company/policies/patent/.

243 Nevertheless, software-related patents might allow their holders to restrict user freedoms

while at the same time benefi t from the maintenance as provided by software communi-

ties. Namely, a patent holder could offer a contribution covered by a patent to a Free

Software project, under a carefully chosen Free Software license that does not contain any

patent license. If project owners accepted that contribution, the patent holder would not

enforce the patent against the community, but selectively enforce it, e.g., against competi-

tors who attempted to make commercial use of the project. Assuming that the community

were not interested in using the project commercially, this strategy could work for a lon-

ger period. See: Andrew M. St. Laurent, Understanding Open Source and Free Soft-

ware Licensing (O’Reilly, 2004), 21.

Towards_an_Improved_def.indd 141Towards_an_Improved_def.indd 141 23-02-2010 10:49:2923-02-2010 10:49:29

142 Chapter 4

Certainly, there remain numerous patent holders who wish to enforce
their patents. If there are many different copyright holders that hold differ-
ent titles to the project or its parts it might be harder for patent holders to
enforce their patents against all of them. However, given the importance of
project owners for a properly organized community, it would probably suf-
fice if the patent holders addressed their claims against project owners in
order to prevent maintenance of the project effectively. In such a case, given
enough resources involved, and a proper legal audit, communities might be
able to identify any patents material to the project. Then, if project owners
removed the patented technology from the project, or maybe worked around
the patents, they might avoid liability and the project could still be main-
tained. However, it is rarely the case that community participants have
expertise necessary in order to search and analyse patents.244 More impor-
tantly, the communities cannot usually afford following any conditions on
the exercise of the freedoms that patent holders can impose.

4.2.5 Contracts with distributors

Communities as such do not prevent Free Software distributors from impos-
ing restrictions on user freedoms in relation to programs they distribute.
However, if a program is maintained by a properly organized software com-
munity, any restrictive contracts with distributors do not make it impossible
to obtain the same (or a substitute) program together with the freedoms from
the community or from another distributor.245 Importantly, not only the pro-
gram as available from the community is free of any restrictions, but it is also
properly maintained. As a result, distributors are not able to impose too
restrictive contracts in the first place, unless at the same time they can offer
users additional benefits that the users cannot obtain from the community
(e.g., some additional services on top of the maintenance).

244 This usually requires qualifi ed patent attorneys, not hackers. Actually, performing such

a research might have negative effects on a community since awareness of a patent

might lead to fi nding of a deliberate infringement, which usually allows patent holders

to claim higher damages. This is exactly the reason why many fi rms explicitly prohi-

bit their developers to read patents. But communities might be more effective in mini-

mizing the risk of patents by identifying prior art and thus helping to invalidate patents

(see, e.g., Groklaw, RedHat is Asking for Prior Art, at: http://www.groklaw.net/article.

php?story=20090216150306923; see also: Peer-to-Patent, at: http://www.peertopatent.

org/). Also, participants in software communities or simply Free Software enthusiasts

can be quite easily motivated to participate in various public events. The most promi-

nent example was the campaign against the so-called “Software Patents Directive”. These

measures, however, are more a result of the existence of the overall “Free Software Com-

munity”, not any of the particular software communities. See also: Open Invention Net-

work, at: http://www.openinventionnetwork.com/.

245 A prominent example is CentOS, a GNU/Linux distribution based on the Red Hat’s

distribution. See: Wikipedia, CentOS, at: http://en.wikipedia.org/wiki/Centos.

Towards_an_Improved_def.indd 142Towards_an_Improved_def.indd 142 23-02-2010 10:49:2923-02-2010 10:49:29

143Communitarian protection of user freedoms

Also, even if the distributors are able to restrict some users with such
contracts, the program remains available without restrictions from the com-
munity that can attempt to substitute any additional benefits offered by the
distributor.246 Certainly, all this is possible if only the community that main-
tains the program is properly organized and possesses sufficient resources,
at least equal to the resources of the distributor that attempts to restrict user
freedoms.

4.2.6 Liability rules

The fact that there are multiple copyright holders in a Free Software project
might affect liability rules to a certain extent. Definitely, under a particular
applicable law it might result in shifting the liability for the project as a
whole from some participants to others (e.g., from copyright holders of the
contributions to the copyright holder of the whole project). Actually, one of
the purposes and benefits of organizing the communities under umbrella
organizations is that a “corporate veil” is put between copyright holders,
developers, and distributors on the one hand, and users on the other hand.
This has a more direct legal effect on liability. It supports the hacker immunity
in removing the liability demotivator from many actors.

But the umbrella organizations usually use liability limitations and war-
ranty waivers and extend the hacker immunity on themselves. So, users gener-
ally end up in the same situation as they are towards other actors under the
hacker immunity. However, the organizations can be established for the pur-
pose of delivering well-maintained programs. In such a case community
participants would draft their by-laws accordingly. They would also elect
representatives whose task would be, in particular, to perform a quality
audit of the software. Obviously, the representatives would at the same time
be project owners. As a result, the authority of project owners would be
intertwined with legally enforceable responsibilities. They could also be giv-
en certain legally enforceable rights towards some community participants.
All this could contribute towards better quality software being included in
the official versions.

It follows that a purpose of a properly organized software community
can be to deliver well-maintained programs to users. This is possible if proj-
ect owners are directed to evaluate the quality of the contributions and if
they are directed to require that contributors meet certain quality standards
in order to have their contributions included in the official versions.247 Natu-
rally, projects that are maintained under well-designed quality control rules
may still have bugs, lack features, or pose interoperability problems, as is the

246 This constitutes a collective exercise of the right to fork.

247 A simplifi ed view on such a quality audit is expressed in the “Linus’s law” formulated by

Raymond: given enough eyeballs, all bugs are shallow (Eric S. Raymond, The Cathedral and the
Bazaar, at: www.catb.org/~esr/writings/cathedral-bazaar/).

Towards_an_Improved_def.indd 143Towards_an_Improved_def.indd 143 23-02-2010 10:49:2923-02-2010 10:49:29

144 Chapter 4

case with any other software. However, a properly organized community
can be used to remedy such defects effectively. Also, if such a community
exists and it manages to deliver good quality software, then more distribu-
tors are willing to offer warranties as well as additional services to users. As
a result, the issue of liability for software is minimized, at least as far as the
technical defects are concerned. Namely, instead of attempting to claim dam-
ages, in many cases users can rely on the community, or on the market for
warranties and services, of which the existence is stimulated by the commu-
nity, for having a defect removed. Owing to a properly organized commu-
nity, users have also easier access to the market of warranties and services
for Free Software.

4.2.7 Non-legal regulators

The existence of software communities does not as such affect the non-legal
limitations and restrictions of user freedoms. Definitely, distributors are still
able to restrict the freedoms using the architecture, as much as they are
allowed to impose restrictive contracts on users. Also, communities do not
result in average users having more skills and resources on their own, so that
they can effectively exercise their freedoms individually. Additionally, in
spite of the community copyleft stimulation described above, the mere fact
that there are numerous contributors to the project does not by itself result in
an increased quality of these contributions, or of the project as a whole. This
in turn means that the maintenance of such a project might actually be hard-
er than trying to exercise the freedoms in one Free Software program indi-
vidually, since all these diverse contributions have to be properly combined
and integrated with the project. So, we find that the communities have to
deal with additional maintenance issues as compared to the individual exer-
cise of the freedoms.

However, the communities have proven capable of resolving the issues
related to non-legal regulators. First, software communities usually consti-
tute a source of Free Software programs without architectural restrictions.
Distributors can certainly impose such restrictions on their own, but as long
as the community is a substitute source of the program, user freedoms may
remain unaffected.248 This is certainly the case when a community can repli-
cate a service or device that is offered together with the program by a dis-
tributor and that constitute the crux of the architectural restriction. But only
properly organized communities that hold sufficient resources are able to do
so. Still, some services and devices cannot be replicated effectively at all. Sec-
ond, many communities are able to maintain the programs effectively,
including the maintenance for average users. As a result, even though such

248 This depends on actual circumstances. See: Andrew M. St. Laurent, Understanding

Open Source and Free Software Licensing (O’Reilly, 2004), 32 (describing the “emb-

race and extend” strategy Microsoft used towards the Kerberos protocol).

Towards_an_Improved_def.indd 144Towards_an_Improved_def.indd 144 23-02-2010 10:49:2923-02-2010 10:49:29

145Communitarian protection of user freedoms

users do not have the necessary skills and resources, they are able to “out-
source” the maintenance to the community. Third, properly organized main-
tenance involves in particular a quality audit and a procedure for integration
of contributions. These lead to properly working programs delivered in the
official versions of the project.249 So, provided the communities organize
themselves to perform such an audit and implement these procedures, they
are able to overcome transaction costs that an individual user might never be
able to cover.

4.2.8 Closed standards

There is no direct relation between the fact that many different participants
contribute to a Free Software project and the fact that the project is restricted
from using closed standards. Obviously, the bigger the community, the more
resources it has to reverse-engineer the standard, to participate in SSOs, or to
support an essential facilities case. But the existence of a community as such
does not result in such resources being used in order to avoid restrictions on
closed standards. The communities do not prevent the rules that lead to
closed standards from operation.

However, if a community is a source of a well-maintained Free Software
project that interoperates with other programs, designers of standards may
have fewer incentives to make closed standards and maintain the respective
software on their own, as compared to a situation where there is no such a
community. This is a result of the mechanism already described above, the
same that stimulates some patent holders not to enforce their patents against
the communities or to contribute their improvements to Free Software proj-
ects.

Certainly, there remain designers of standards who still find more value
in making their standards closed. Provided the community that rejects using
such a standard is big and robust enough, it may prevent the standard from
becoming popular. If so, the designer might not be able to lock users in a
closed standard. But the existence of a community does not guarantee that
such a lock-in will not take place. If the users of the project wanted to inter-
operate with users locked in to a closed standard, their freedoms could be
restricted. This means that the communities are not able to remove closed
standards from the framework.

4.2.9 Regulatory environment

Above, we often conditioned our findings on what the applicable law exact-
ly provides. Indeed, when numerous participants (from all over the world)
contribute to a Free Software project, the issues caused by conflicts of laws

249 See: Andrew M. St. Laurent, Understanding Open Source and Free Software

Licensing (O’Reilly, 2004), 7.

Towards_an_Improved_def.indd 145Towards_an_Improved_def.indd 145 23-02-2010 10:49:2923-02-2010 10:49:29

146 Chapter 4

may affect the freedoms even more than when the freedoms are exercised
individually. The number and complexity of legal relations increases, in
comparison to a situation when a user attempted to exercise the freedoms
individually. This means that the communities have to verify the impact of
project maintenance in many jurisdictions and the verification might involve
more resources than if the freedoms were exercised individually.

It remains to be estimated whether the differences between national laws
are of practical importance, such that they could materially affect the opera-
tion of the communities. Currently (2009) there are numerous communities
that gather participants from all over the world and we are not aware of any
issues related to the differences between national laws that hinder their
operation materially. This may be because community participants do not
have to invoke much legal rules during their collaboration. It seems that
much of this collaboration is regulated either by specifically tailored by-laws,
or by norms, and there is no need to resort to legal rules. Obviously, such a
situation can take place as long as all participants agree. In case of a disagree-
ment, legal rules would be invoked, and the differences between various
applicable national laws would be definitely explored. The question remains,
whether any disagreement in a community would have to be adjudicated,
given the right to fork and the fact that any dissidents can establish their own,
competing community.

4.2.10 Conclusion on the freedoms in software communities

The communities are able to address many of the limitations and restrictions
in the individual exercise of the freedoms. The authority of project owners is
instrumental for the operation of the communities as described above. By
accepting or rejecting contributions in the official versions of the project,
project owners are able to stimulate contributors to prepare the contributions
according to various criteria. Contributors are willing to meet these criteria,
in particular because of the benefits of community maintenance as compared
to the individual maintenance that they would have to perform when contri-
butions were not integrated in the official version.

However, project ownership is not a legal rule and it leads to an indirect
stimulation of community participants only. Also, project ownership is not a
magical solution. Its exercise has to be organized in order to stimulate con-
tributors in the right direction. It follows that the communities have to be
properly organized. Incorporation of umbrella organizations is an important
means to this end. But even properly organized communities are not able to
remove all the limitations and restrictions of user freedoms effectively. Rath-
er, such communities are only capable of enabling users to exercise their free-
doms by materially minimizing the limitations and restrictions. In other
words, communities (as much as individual users) can exercise their free-
doms as long as they possess sufficient skills and resources. After our analy-
sis we may conclude that properly organized communities are able to gather
and manage these skills and resources better than any individual user alone.

Towards_an_Improved_def.indd 146Towards_an_Improved_def.indd 146 23-02-2010 10:49:2923-02-2010 10:49:29

147Communitarian protection of user freedoms

4.3 Chapter conclusions

Under the framework, users cannot exercise their freedoms in an undis-
turbed manner. In particular, they are not able to maintain Free Software
individually unless they possess special skills and gather substantial resourc-
es. This is definitely the case of an average user, who usually has to rely on
others to have the software maintained effectively. Software communities
are able to provide for maintenance of Free Software despite many limita-
tions and restrictions of user freedoms. As a result of the inclusion of Free
Software programs in community projects users are able to benefit from
properly working programs. This does not mean that the maintenance of
programs in community projects does not require any skills and resources.
Software communities still have to face the same limitations and restrictions
that prevent individual users from exercising their freedoms. However,
properly organized communities are able to gather and manage the skills
and resources necessary to minimize these limitations and restrictions mate-
rially. Such communities are able to provide for effective maintenance of Free
Software programs.

This means that the threats to the freedoms identified in Chapter 3 still
exist in a world of software communities. Only some of them are minimized,
but they are not eliminated as a result of the community maintenance of Free
Software programs. More importantly, they are materially minimized only if
the communities are properly organized.

We are now ready to answer RQ1, which is: “In what way do software com-
munities affect the current regulatory framework in the protection of user freedoms,
as articulated by Stallman?” We provide the answer in nine concluding state-
ments.

(1) License proliferation and incompatibilities. Properly organized
communities are able to perform the legal audit necessary to over-
come license proliferation and incompatibilities between Free Soft-
ware licenses. Licensing policies of signifi cant community projects
may even indirectly lead (a) to a decrease of the number of the li-
censes and (b) to an increased compatibility between them, thus
supporting the already identifi ed tendencies.

(2) License revocability. Some communities create a “wickerwork” re-
lation between all participants, which can effectively prevent li-
cense revocability. More importantly, the fact that a program is
properly maintained by a community may simply make licensors
unwilling to revoke licenses because of the benefi ts of community
maintenance.

(3) Inter partes nature of licenses. Properly organized communities
are able to provide for the community copyleft stimulation. It makes
some contributors support the project regardless of the legal rule of
copyleft. This minimizes the limitation that follows from the inter
partes nature of the licenses.

Towards_an_Improved_def.indd 147Towards_an_Improved_def.indd 147 23-02-2010 10:49:3023-02-2010 10:49:30

148 Chapter 4

(4) Software-related patents. Some properly organized communities
stimulate a number of patent holders not to enforce their patents.
However, the communities are not able to prevent such an enforce-
ment completely. In summary, software-related patents remain an
important threat in the world of software communities.

(5) Contracts with distributors. Properly organized communities pre-
vent distributors to impose too restrictive contracts on users. Alter-
natively, such communities constitute a substitute source of soft-
ware available without contractual restrictions.

(6) Liability rules. By using umbrella organizations the communities
may effectively insulate the actors from liability. At the same time
the communities make project owners legally responsible for the
quality of software. More importantly, properly organized commu-
nities provide for an effective maintenance which leads in particular
to a reduction of the number of defects in programs. This minimizes
the negative effect that liability rules may have on user freedoms.

(7) Non-legal regulators. Properly organized communities perform a
quality audit or otherwise control the development of Free Software,
so that the software is maintained on an ongoing basis. Such com-
munities may also serve as a source of a given program without ar-
chitectural restrictions. As a result, communities minimize the nega-
tive effect that many non-legal regulators can have on user freedoms.

(8) Closed standards. Properly organized communities may contrib-
ute to a slowdown in adoption of closed standards. Some commu-
nities may even decrease incentives for the designers to make
closed standards. However, the communities are not able to remove
closed standards from the framework.

(9) Regulatory environment. As any other entities, communities op-
erate in a regulatory environment where many national laws have
to be taken into consideration. But there are many communities
that gather participants from all over the world and there are no
signs that any differences between national laws hinder their oper-
ation. This means that the exercise of the freedoms in the communi-
ties is regulated by customs and trade practices to a material extent.
Nevertheless, the regulatory environment remains in the frame-
work despite the communities.

Therefore, we provide the following resolution of PS1, which is “What are the
relations between user freedoms and software communities?”

Properly organized software communities materially minimize the limi-
tations and restrictions of user freedoms, which in turn allows for an effec-
tive exercise of the freedoms in practice. However, even if a properly orga-
nized community maintains a given Free Software program, there remain
many limitations and restrictions of the freedoms. Particularly, (1) software-
related patents, (2) closed standards, and (3) the regulatory environment,
remain important limitations and restrictions of the freedoms.

Towards_an_Improved_def.indd 148Towards_an_Improved_def.indd 148 23-02-2010 10:49:3023-02-2010 10:49:30

5 User freedoms in eGovernments

We start the analysis of the impact of eGovernments on user freedoms by a
telling example of Polish origin. The Polish Social Insurance Office (ZUS) is a
government agency responsible for gathering contributions towards future
pensions and towards other social insurance benefits.250 In the late 1990s
ZUS began to organize its internal IT system for processing information
related to its tasks. The law obliges certain firms to install and use software
made available by ZUS in order to submit regular reports about how they
fulfil their social insurance obligations. ZUS has made available a program
called Płatnik.251 Since the first release Płatnik has been a proprietary pro-
gram and has worked under proprietary operating systems only (Micro-
soft Windows). However, in 2001 a group of hackers led by Sergiusz
Pawłowicz started to develop a Free Software substitute for Płatnik. This
project, called Janosik,252 has neither been sponsored by ZUS, nor has it
been accepted officially as an equivalent of Płatnik.

Additionally, a major obstacle in the development of Janosik has been
the fact that the protocol used by Płatnik to transmit data from users to ZUS
was secret (i.e., a closed standard made using the scrambling of interoperabil-
ity information as discussed in Chapter 4). Without a complete specification
of that protocol, it has not been possible for Janosik to operate properly and
constitute a real substitute of Płatnik. Naturally, already in 2002 Pawłowicz
approached ZUS with a request to reveal the specification of the protocol.
The request invoked the right to access public information.253 ZUS refused
to reveal the specification and Pawłowicz appealed first to administrative
courts254 and subsequently to a common court. The common court ordered
ZUS to reveal the specification, but ZUS appealed. In April 2007 the 1st
instance decision was affirmed by the appellate court.255 After a slight delay,

250 See: ZUS, at: http://zus.pl.

251 “Płatnik” is a Polish word that stands for “payer”.

252 “Janosik” is a name of a legendary Polish (or Slovak) highlander and a robber (Wikipedia,

Juraj Janosik, at: http://en.wikipedia.org/wiki/Juraj_J%C3%A1no%C5%A1%C3%ADk).

He was believed to take from the rich and give to the poor. Naming the project “Janosik”

can probably be compared to naming a project “Robin Hood”.

253 The right is codifi ed in the Polish Constitution and in the Polish Public Information Act,

which is the Polish implementation of the Public Sector Information Directive.

254 NSA decision dated 16 September 2004 (OSK 600/04) a copy on fi le with the author. At

that time ZUS’s line of defence was that the protocol contains trade secrets. The court

found that when trade secrets are invoked, only the common court can order the publica-

tion, so the case was referred to a common court.

255 See: Piotr Waglowski, Sąd Okręgowy oddalił apelację ZUS w sprawie protokołu KSI-MAIL.
Koniec, at: http://prawo.vagla.pl/node/7222 (in Polish).

Towards_an_Improved_def.indd 149Towards_an_Improved_def.indd 149 23-02-2010 10:49:3023-02-2010 10:49:30

150 Chapter 5

in October 2007 ZUS published the specification on its web page.256 So, after
5 years from the request it is now technically possible to write an alternative
implementation of the protocol (i.e., a Free Software substitute to Płatnik).257

However, this does not mean that such a substitute can be legally used.
Pawłowicz’s request concerned the availability of the specification only. He
did not ask ZUS to authorize the use of Janosik officially. As a matter of fact,
ZUS has not authorized the use of any software other than the proprietary
Płatnik, even though it has finally made the specification available, and
even though currently there exists explicit legal regulation obliging ZUS not
to discriminate users of any software.258 So, the use of Janosik, or any other
Free Software alternative to Płatnik is still legally impossible, or at least
legally questionable.259

The situation described above is an example of an eGovernment that
restricts user freedoms. First, ZUS procured an IT system designed according
to a closed standard and able to interoperate with proprietary software only.
Second, ZUS has not authorized the use of any software other than the pro-
prietary Płatnik for the communications. Third, ZUS had refused to make
the specification available for 5 years. Fourth, to the best of our knowledge
ZUS has not offered any support to the Janosik community.260 As a result, the
exercise of the freedoms in communications with ZUS was made impossible
and any attempts to change this without ZUS’s approval are at least legally
questionable, if not straightforwardly illegal. Thus, basing on this particular
case we may provide a specific answer the Research Question 2, which was:

RQ 2: In what way do eGovernments affect the current regulatory framework
in the protection of user freedoms, as articulated by Stallman?

256 The specifi cation is available at: ZUS, at: http://www.zus.pl/bip/default.asp?id=180.

257 As a matter of fact the protocol was reverse engineered long before the case was decided.

An example implementation of the protocol made after reverse engineering Płatnik has

been made public already in 2003 at: http://www.ibiblio.org/ser/SP-versus-RP/

zus/#specyfi kacja.

258 Polish Informatization Act, Art. 59.

259 Actually, it is not clear what are the legal consequences of using software unauthorized

by ZUS in communications with this agency. Theoretically, since there are procedures for

authorization laid down in the Polish Informatization Act, one could argue that the use of

unauthorized software is not allowed. We are not aware, however, of any direct sanctions

that a user of Janosik could face. Prima facie, it also seems that the copyright holders of

Płatnik could not claim copyright infringement. However, if ZUS proves that reports

were sent without the use of the program authorized by ZUS, ZUS might be able to claim

that the obligation to submit the reports was not performed, or performed improperly.

This might lead to an indirect liability for the use of Janosik.

260 This is not to say that ZUS was not allowed to perform all these activities. We do not need

to decide the legality of ZUS’s conduct in this thesis. It suffi ces to say that the conduct

restricted user freedoms. Nevertheless, in the Płatnik case the right to access public sec-

tor information provided for in the Polish Public Information Act was breached (the spe-

cifi cation of the protocol was held by the court to constitute public sector information).

Under the Public Sector Information Directive discrimination of prospective re-users of

public information or treating them unfairly is prohibited as well.

Towards_an_Improved_def.indd 150Towards_an_Improved_def.indd 150 23-02-2010 10:49:3023-02-2010 10:49:30

151User freedoms in egovernments

In the above context we provide the following specific answer to RQ2. The
eGovernment as introduced by ZUS has led to a complete inability of the
framework to protect the freedoms of users communicating with ZUS. In
particular, users obliged to communicate with ZUS have been directed to
use certain proprietary software which means that the freedoms of these
users while using that software do not exist at all. These users could theo-
retically exercise their freedoms outside of the communications with ZUS.
However, Płatnik requires Microsoft Windows, a proprietary operating
system to operate.261 Generally, one computer can work under the control of
only one operating system at a time and one operating system allows to
operate many other applications, not just one dedicated program. So, using a
Free Software operating system would not be practical for many users who
were stimulated to use Microsoft Windows by the fact that Płatnik does
not operate on another operating system.262

Precisely speaking, the eGovernment as introduced by ZUS affected at
least four rules in the framework: (1) the grant of freedoms, (2) liability rules,
(3) non-legal regulators, and (4) closed standards.

(1) The grant of freedoms. The eGovernment as introduced by ZUS did
not stimulate copyright holders of Płatnik to grant users their free-
doms; it has remained a proprietary program. Also, the eGovern-
ment has made it legally questionable or at least impractical for
users to exercise the freedoms granted to Janosik, in communica-
tions with ZUS. This effect permeated to the operating system soft-
ware used by users.

(2) Liability rules. Since the use of Janosik has not been authorized by
ZUS, its use may lead to at least indirect liability.263

(3) Non-legal regulators. The design of Płatnik requires it to be oper-
ated on a whole proprietary operating system. This is a restriction
of the freedoms using the architecture. Additionally, it has made it
more costly for users to exercise the freedoms (i.e., to switch to a
Free Software operating system and applications). This stimulated
users not to exercise the freedoms as a result of the market regula-
tion.

261 There have been, reportedly successful, attempts to operate Płatnik on a GNU/Linux

operating system using Wine (http://winehq.org), but even in such a case Płatnik itself

remains a proprietary program based on a closed standard.

262 In order to switch between operating systems users would have to reboot their comput-

ers, use another computer, or – nowadays – invest in virtualization technologies, none of

which is (yet) a practical method. Naturally, it can be argued that most users obliged to

use Płatnik used Microsoft Windows already before. However, this does not have to

be the case of all users (at the time Płatnik was introduced, DOS was still popular as an

operating system to host various accounting software). But, even if this were the case,

such users could not abandon proprietary software completely and switch to Free Soft-

ware after they were obliged to use Płatnik.

263 See FN 259.

Towards_an_Improved_def.indd 151Towards_an_Improved_def.indd 151 23-02-2010 10:49:3023-02-2010 10:49:30

152 Chapter 5

(4) Closed standards. eGovernment as introduced by ZUS has resulted
in a lock-in to a closed standard in communications with ZUS. Re-
markably, as a result of the 5-year suit only the scrambling of in-
teroperability information was fi nally prevented, but the protocol
has not become an open standard.264 Since there is still no open
standard authorized for communications, users of Płatnik contin-
ue to be locked in to its closed standard, and to proprietary soft-
ware.265

The above answer allows us to provide a partial answer to the Problem State-
ment 2, which was:

PS 2: What are the relations between user freedoms and eGovernments?

In the above context we provide the following partial answer to the PS2. The
eGovernment as introduced by ZUS has restricted user freedoms effectively.
No rule in the model of the framework that we reconstructed in Chapter 3
has prevented the restriction. It is particularly noteworthy that even the
Janosik community has not succeeded in removing restrictions imposed by
ZUS completely. We remark that the eGovernment as introduced by ZUS is
an example of a Closed eGovernment (i.e., an eGovernment based on a
closed standard). So, the following question arise: Is the total restriction of
the freedoms a necessary effect of all eGovernments? More precisely speak-
ing, can eGovernments be introduced in a way that does not affect user free-
doms, or maybe even in a way that reinforces them? An important part of
the answer to this question can be given by answering yet another question.
Namely, can user freedoms exist and be sufficiently protected under an Open
eGovernment? All these questions are worth answering, they rephrase in
some sense RQ2, and they are included in the PS2.

Below we analyse the relation between eGovernments and user free-
doms in more detail. We start with a brief analysis of the protection of user
freedoms in a theoretical situation where there is no government interfer-
ence through eGovernment (Section 5.1). Then, we expand our analysis of
the relation between user freedoms and Closed eGovernments (Section 5.2).
Thereafter, we analyse the relation between user freedoms and Open eGov-
ernments (Section 5.3). Finally, we conclude the chapter by presenting a com-
plete answer to Research Question 2 and a general resolution of the Problem
Statement 2 (Section 5.4).

264 See Section 2.3 where we presented the defi nition of open standards for the purpose of

the thesis (the EIF v. 1.0 defi nition). One of the prerequisites for an open standard is that it

is maintained by an independent organization in an open decision-making process.

265 Given the fact that the specifi cation has been published, it is now possible to write a Free

Software substitute for Płatnik. So, the lock-in can be broken provided at least that ZUS

authorizes the use of such a substitute and will publish updates to the specifi cation, if

any.

Towards_an_Improved_def.indd 152Towards_an_Improved_def.indd 152 23-02-2010 10:49:3023-02-2010 10:49:30

153User freedoms in egovernments

5.1 User freedoms in a world without eGovernments

In a theoretical world without eGovernments no-one is required or allowed to
use information technologies to communicate with the government. In par-
ticular, the government does not use any software for communications. As
follows from Chapters 3 and 4, even though Free Software could exist in such
a situation, users might be limited or restricted in the exercise of the freedoms.
This is definitely the case if they attempted to exercise the freedoms individu-
ally. Some or even all limitations and restrictions in the exercise of the free-
doms with regard to some Free Software programs or combinations of them
could be overcome if properly organized communities maintained projects
that included these programs. Nevertheless, even the best software communi-
ties are unable to overcome all limitations and restrictions fully.

In Chapter 4 we found in particular that software-related patents, closed
standards, and the regulatory environment are the three limitations and
restrictions which are the least affected by the communities. Here, we focus
on closed standards. Certainly, in a world without any government interfer-
ence some communities are able to stimulate designers of standards to make
open standards. Provided that these standards become popular, user free-
doms may be unaffected. But communities are not omnipotent and there
remain many designers who find more value in making their standards
closed than in having implementations of the standards maintained by a
community. Then, whenever a user wanted to interoperate with a closed-
standards-based program, user freedoms would be restricted. Unrestricted
access to interoperable software is possible if only the programs in question
used open standards.

The adoption of open standards comes with an effort. In Chapter 3 we
found that open standards can be obtained using reverse engineering, stan-
dard setting, or the essential facilities doctrine. However, after a closer analy-
sis, we concluded that only the standard setting is an efficient mechanism for
the adoption of open standards, provided additionally that the procedure of
SSOs is properly organized, the resulting open standards are actually imple-
mented in software, and the software becomes popular among users. Wheth-
er all these necessary conditions are satisfied depends on various circum-
stances.266

Here, we may conclude that in a world without eGovernments user free-
doms are sufficiently protected if only all limitations and restrictions of the
freedoms are successfully minimized or even eliminated. This requires in
particular the design, implementation, and popularity of open standards, all
of which depend on various circumstances. So, one cannot take it for granted
that the freedoms are sufficiently protected in every world without eGovern-
ments.

266 See: WIPO (Standing Committee on the Law of Patents), Standard and Patents, (18 February

2009, SCP/13/2), at: http://www.wipo.int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf.

Towards_an_Improved_def.indd 153Towards_an_Improved_def.indd 153 23-02-2010 10:49:3023-02-2010 10:49:30

154 Chapter 5

5.2 User freedoms in Closed eGovernments

The introduction of a Closed eGovernment means that at least some tech-
nologies267 used in eGovernment are based on closed standards. This might
be a result of a deliberate choice of closed standards by the government, or
an indirect effect of the government procuring software without specifying
that it should be designed according to open standards. Obviously, the users
of eGovernment services are required to use interoperable software. In eco-
nomic terms this means that by selecting (either deliberately or inadvertent-
ly) a particular standard, the government increases the network effects of soft-
ware designed according to that standard.268

There is no apparent reason why designers of closed standards should
wish to allow for unrestricted development, distribution, and use of Free
Software interoperable with their standards. Actually, we may assume that
the mere existence of a closed standard implies that its designer does not
want to allow users to exercise the freedoms in software using this standard,
but rather wishes to capitalize through restrictions on the use of such soft-
ware.269 Otherwise, the designer would make that standard an open stan-
dard from the very beginning. Remarkably, the choice of a closed standard
by the government and the resulting network effects significantly help the
designer to make users use software subject to restrictions, at least when
they would engage in government communications.270 Straightforwardly

267 The term “technologies used in eGovernment” is used here to encompass the software of

the public administration as well as of the users of government services.

268 See Subsection 3.2.1, and in particular the discussion about lock-ins and the literature

referenced thereto.

269 A rational business strategy would be to capitalize on the government choice of the

designer’s closed standard as a way for an effective insulation against all competition

(both Free Software and proprietary software), or at least for controlling the competition

(e.g., by licensing the designer’s patents material to the standard to the highest bidder).

Other strategies come to mind as well, but they all involve restrictions on the develop-

ment, distribution, or use of interoperable software. So, they all restrict user freedoms.

270 This may constitute a breach of law by the government. For example, it has been held a vio-

lation of the EC Treaty obligations by a member state to grant to an undertaking the power

to lay down standards and to check that these standards are met, when the undertaking

is itself competing with the companies required to implement the standards (C-18/88,

RTT v. GB-Inno-BM SA, 11.01.1988, 1991 E.C.R. I-05941). A likewise violation was found

in requiring or favoring by a member state the adoption of agreements, decisions or con-

certed practices or reinforce their effects (66/86, „Ahmed Saeed Case”, 11.04.1989, 1989 E.C.R.

00803; See also C-35/96, Commission v. Italy, 18.06.1998, 1998 E.C.R. I-03851; C-198/01, „CIF
Case”, 9.9.2003, 2003 OJ C 264 P. 9). Similarly, member states violate their EC Treaty obli-

gations when they impose a fi xed price on certain products, namely the price which has

been freely chosen by one manufacturer or importer (13/77, SA G.B.-Inno-B.M. v. ATAB,

16.11.1977, 1977 E.C.R. 02115). Also, under the Electronic Markets Competition Directive

Art. 2.2, member states have an obligation to ensure that any undertaking is entitled to

provide electronic communications services or to establish, extend or provide electronic

communications network. Additionally, the provisions of the Standards Directive concer-

ning technical regulations have to be complied with when compliance with a standard is

required by the government. The directive allows to use technical regulations in the cre-

ation of barriers to trade only to the extent necessary in order to realize public interest.

Towards_an_Improved_def.indd 154Towards_an_Improved_def.indd 154 23-02-2010 10:49:3123-02-2010 10:49:31

155User freedoms in egovernments

speaking, it practically guarantees that users will have to accept the restric-
tions then.271 Having to accept restrictions on the development, distribution,
or use of software is in conflict with user freedoms.

It follows that it is highly likely that after the introduction of a Closed
eGovernment the developers of Free Software will not be able to reach suffi-
cient interoperability, or that the distribution or use of such programs will be
legally questionable. As a result, Free Software will not match the network
effects of proprietary software, and users will be stimulated not to exercise
their freedoms, despite any benefits resulting from the freedoms. Only par-
ticular proprietary software will properly and legally interoperate using a
given closed standard (i.e., only such software that was developed with an
authorization of the designer of the standard), and users will be stimulated
to turn into a passive audience, which consumes such proprietary software.

We distinguish three types of a Closed eGovernment. First, there is a
Closed eGovernment where the use of closed standards in government com-
munications has a spill-over effect on software used by users for other pur-
poses (henceforth “Closed eGovernment (A)”). Second, there is a Closed
eGovernment that results in closed standards being used in government
communications only, and other software is not affected (henceforth “Closed
eGovernment (B)”). Third, there is a Closed eGovernment that attempts to
enable users of government services to interoperate with government soft-
ware using open standards despite the fact that the government software is
based on closed standards (henceforth “Semi-Closed eGovernment”).

Below, we analyse how each of these three types of a Closed eGovern-
ment affect the framework in the protection of user freedoms. We start with
the Closed eGovernment (A) (Subsection 5.2.1). Then, we analyse the Closed
eGovernment (B) (Subsection 5.2.2). Thereafter, we analyse the Semi-Closed
eGovernment (Subsection 5.2.3). Finally, we summarize and briefly evaluate
user freedoms in Closed eGovernments (Subsection 5.2.4).

5.2.1 Closed eGovernment (A)

The fact that users have to use closed-standards-based software in govern-
ment communications does not as such prevent them from developing, dis-
tributing, and using Free Software for other purposes. However, it may make
many users unable to exercise their freedoms effectively, even though Free
Software remained available for use outside of government communica-
tions. This finding is supported by the Płatnik case, described at the begin-
ning of this chapter. In that case certain users were directed to use a whole
proprietary operating system (Płatnik required Microsoft Windows).

271 A choice of a closed standard by the government is generally suffi cient to conclude that

there is such a guarantee. However, the government could aid the designer even more by

mandating the use of a particular closed-standards-based program, as was the case with

Płatnik.

Towards_an_Improved_def.indd 155Towards_an_Improved_def.indd 155 23-02-2010 10:49:3123-02-2010 10:49:31

156 Chapter 5

Theoretically, they could use, and even develop and distribute another operat-
ing system, such as a GNU/Linux when not communicating with the govern-
ment. But since using two operating systems is impractical, for many users the
costs of exercising the freedoms outweighed the benefits. As a result, the gov-
ernmental stimulation had a spill-over effect. Namely, not only the govern-
ment’s choice of closed standards prevented the exercise of the freedoms in
government communications, but it also affected them while users attempt to
exercise them in communications with non-government parties.

Here, we may conclude that the Closed eGovernment (A) affects the grant
of freedoms, liability rules, non-legal regulators, and closed standards in a way
already described above, when discussing the Płatnik case. Given the spill-
over effect, the freedoms are affected both when users communicate with the
government and when they use other software, for other purposes. The extent
of the spill-over effect may vary depending on actual circumstances.

5.2.2 Closed eGovernment (B)

The spill-over effect that leads to a Closed eGovernment (A) is likely to hap-
pen in many situations when the government chooses a closed standard for
communications. The support given to the designer of such a standard by
the government is often too big to avoid the spill-over, both because of the
demand generated by the government itself and also because of the addi-
tional demand of users resulting from the network effects caused by the gov-
ernment. Actually, the introduction of a Closed eGovernment (B), which
does not involve such a spill-over is possible only if at least the following
extraordinary conditions are met together. First, if software used for govern-
ment communications is highly customized, so it cannot be used for other
purposes. Second, if the use of the software does not involve the use of other
closed-standards-based software, such as a particular operating system.272
Third, if only a very limited number of users is directed to use the software.
Only in such situations the stimulation which is an effect of a Closed eGov-
ernment would fail to prevent users from using Free Software outside of
government communications.

Assuming that a Closed eGovernment (B) is introduced in practice, users
are not prevented from exercising the freedoms outside of government com-
munications, but they are also exposed to the already identified limitations
and restrictions of the freedoms. In such a case, properly organized software
communities might be able to minimize some or all of these limitations and
restrictions, with regard to software used outside of government communi-
cations.273 However, it is unlikely that the communities manage to enable

272 Given the increasingly popular shift from delivering software as a product to delivering

software services, this condition may have to be rephrased in the nearest future in order

to account for the “software as a service” model. See FN 143.

273 See Chapter 4.

Towards_an_Improved_def.indd 156Towards_an_Improved_def.indd 156 23-02-2010 10:49:3123-02-2010 10:49:31

157User freedoms in egovernments

users to exercise their freedoms when communicating with the government.
For example, Free Software developers gathered in a community such as the
Janosik community might succeed in reverse engineering the closed stan-
dard in question and implement it in a Free Software program. But the use of
such a program will still be subject to restrictions related to closed standards
(e.g., patents material to the standard274), or its use might constitute a breach
of the user’s obligation towards the government (e.g., if the government did
not authorize such a Free Software program275).

Here, we may conclude that it is not likely that the Closed eGovernment
(B) can be introduced in practice. Using closed standards in eGovernment
will most probably result in the spill-over effect that leads to a Closed Gov-
ernment (A). However, assuming that the Closed eGovernment (B) is intro-
duced, it affects the same rules as the Closed eGovernment (A) (i.e., the grant
of freedoms, liability rules, non-legal regulators, and closed standards), but
only to the extent the users engage in government communications. Outside
of these communications users experience the normal exposure to the limita-
tions and restrictions included in the framework.

5.2.3 Semi-Closed eGovernment

A Semi-Closed eGovernment attempts to enable users to use open-stan-
dards-based software despite the fact that some or all government software
is based on closed standards. For example, the back-office software of such
an eGovernment could use closed standards but a translation of the commu-
nications to an open standard would be provided at the front-office, or at
any other point where the interconnection with users takes place.276 Whether
such a translation facility would work seamlessly in practice is questionable,
since translation between standards usually results in information loss or
other problems. But depending on the actual technical and legal circum-
stances of the closed standard subject to translation, such a facility might
allow to develop, distribute, and use Free Software capable to interoperate
with the Semi-Closed eGovernment sufficiently. Nevertheless, it should not
be expected that such an eGovernment would have the same effect on user
freedoms as an Open eGovernment (see Section 5.3 below).

Provided that the translation facility works properly, such an eGovern-
ment would not result in a strong lock-in to closed standards or the spill-
over effect discussed above. Not only the users, but also the government

274 To the best of our knowledge there are no patents involved in the Płatnik case. Given the

publication of the specifi cation made by ZUS as a result of the court order, the trade secret

protection should also not apply to the published specifi cation. However, the designer of

the protocol retains the control over the standard as a result of the lock in preserved by

the government.

275 See FN 259.

276 Another option would be to use an open standard in parallel to any closed standard and

to gradually phase out the use of the latter.

Towards_an_Improved_def.indd 157Towards_an_Improved_def.indd 157 23-02-2010 10:49:3123-02-2010 10:49:31

158 Chapter 5

might be able to operate the translation facility to switch between closed-
standards-based technologies and software based on open standards. Even-
tually, they may even be able to replace the former with the latter. Depend-
ing on actual circumstances, a Semi-Closed eGovernment might minimize
the effect of other rules that lead to closed standards as well. For example, if
the closed standard in question is restricted using trade secrets or patents,
in order to introduce the Semi-Closed eGovernment the government might
negotiate a sufficiently broad license that would allow users for unencum-
bered interoperation with eGovernment using the translation facility. The
negotiations would involve indemnity for users of government services
against a breach of trade secrets or patents. Additionally, the development
of the translation facility by the government (i.e., the contracting for such
development) would most probably minimize the effectiveness of the
scrambling of interoperability information related to the closed standard in
question.

However, the actual impact on the rules that lead to closed standards
largely depends on the government’s awareness, negotiating power, and
the final agreement concluded with the designer of the closed standard.277
This means that the introduction of a Semi-Closed eGovernment is unlikely
unless it is performed diligently. Nevertheless, such an eGovernment might
be the only choice (albeit for a transitional period) if the government wishes
to transform an already existing Closed eGovernment into an Open eGov-
ernment (we will discuss such a transformation in Chapter 6). In any case we
remark that even a properly introduced Semi-Closed eGovernment would
not change the closed standard subject to translation into an open one. So, at
least some limitations or restrictions of user freedoms will remain in such an
eGovernment.

Here, we may conclude that the Semi-Closed eGovernment, if properly
introduced, may minimize the restrictions on user freedoms that result from
closed standards. It may also avoid affecting the grant of freedoms, liability
rules, and non-legal regulators to a detriment of user freedoms as other
Closed eGovernments do. However, it depends to a large extent on the con-
ditions for the use of the closed standard to provide the translation facility
that the government obtains for itself and for the users. Most probably, in
order to negotiate proper conditions and maintain the translation facility,

277 Here, we assume that the government does not use its imperium or the legislative and judi-

ciary branches in order to dispose the designer of the closed standard of the control over

the standard. For example, the government might attempt to grant a compulsory license on

such a patent. First, we fi nd such activities not necessarily effective (e.g., under Polish

Industrial Property Act a compulsory license can be granted in extraordinary circumstanc-

es, which do not include most situations related to eGovernment). Second, when present-

ing the notion of eGovernment in Section 2.5 we decided to focus on how the government

uses its dominum, that is how it performs procurement and other contracts-related means.

We will discuss how the government may engage imperium and the legislative or the judici-

ary in Chapter 6, while discussing the necessary improvements to the framework.

Towards_an_Improved_def.indd 158Towards_an_Improved_def.indd 158 23-02-2010 10:49:3123-02-2010 10:49:31

159User freedoms in egovernments

the government would have to employ significant resources. Even if the
government succeeds in introducing a Semi-Closed eGovernment, given the
fact that the closed standard subject to translation would still have remained
under the control of its designer, the Semi-Closed eGovernment would
require an ongoing supervision. Otherwise, user freedoms would still be
affected in the long run as it is the case in other Closed eGovernments.

5.2.4 Evaluation of user freedoms in Closed eGovernments

Generally, Closed eGovernments affect the framework in the way already
described when discussing the Płatnik case. In particular, Closed eGovern-
ments clearly reinforce rules that lead to closed standards, by locking users in
to the closed standards used in government software. Because of the spill-
over effect, Closed eGovernments (A) affect the freedoms with regard to
other software as well, even if it is not used in government communications.
The impact of Closed eGovernments (B) is limited to government communi-
cations only, but whether such an eGovernment can actually be introduced
in practice is rather unlikely.

Certainly, Closed eGovernments as such do not make it impossible to
introduce open standards, since they do not prevent reverse engineering,
open standard setting, or the application of the essential facilities doctrine.
However, even if open standards are designed, Closed eGovernments pre-
vent them from becoming popular and this effect usually permeates to gov-
ernment communications as well as to other communications. So, Closed
eGovernments definitely minimize efficiency of rules that lead to open stan-
dards, in particular the capability of an open standard to become more pop-
ular than the closed standard chosen by the government. By doing so, they
prevent users from exercising their freedoms.

Users of software affected by a Closed eGovernment cannot exercise
their freedoms without limitations or restrictions. Such limitations and
restrictions cannot be effectively overcome by any software community,
unless the government steps in, for example by introducing a Semi-Closed
eGovernment. If this is properly performed, the Semi-Closed eGovernment
allows users to interoperate with government software using open standards
even though the government software uses closed standards. This allows to
develop, distribute, and use Free Software. However, a Semi-Closed eGov-
ernment cannot remove all limitations and restrictions on user freedoms.
Moreover, its introduction and sustainability requires due diligence. So,
whether it would positively affect user freedoms in the long run is not guar-
anteed. Nevertheless, a Semi-Closed eGovernment should be taken into con-
sideration when discussing a transformation from a Closed eGovernment to
an Open eGovernment.

Below, we identify how each of the affected rules is affected by Closed
eGovernments in more detail.

Towards_an_Improved_def.indd 159Towards_an_Improved_def.indd 159 23-02-2010 10:49:3123-02-2010 10:49:31

160 Chapter 5

(1) The grant of freedoms. By choosing (deliberately or inadvertently)
a closed standard for eGovernment, the government tips the de-
signer of the closed standard. This results in making the develop-
ment, distribution, or use of Free Software impractical or legally
questionable. As a result, the government either directly stimulates
users to use proprietary software, or indirectly stimulates copyright
holders not to grant users the freedoms. In either case the govern-
ment stimulates users not to exercise their freedoms.

(2) Liability rules. Given the restrictions involved in the use of closed
standards, the development, distribution, or use of Free Software that
attempt to interoperate with such a standard may lead to liability.

(3) Non-legal regulators. Using a closed standard for eGovernment
usually makes it technically impracticable to exercise the freedoms
or simply increases the costs of the freedoms. It is a mix of architec-
ture and market regulation. The regulation directly affects software
used for government communications, but given the probable spill-
over effect, it usually affects other software as well.

(4) Closed standards. Using a closed standard for eGovernment helps
the designer of such a standard to establish and maintain a lock-in
on the government and users. This stimulation may effectively pre-
vent making the standard (or other standards) open even if all other
rules that lead to open standards were formally unaffected.

5.3 User freedoms in Open eGovernments

The introduction of an Open eGovernment means that all technologies278
used in government communications use open standards.279 As is the case
with any eGovernment, users have to use software interoperable with eGov-
ernment software. Certainly, the choice of an open standard by the govern-
ment increases the network effects of software which uses that standard. But
interoperability with open standards can be provided by anyone – by Free
Software developers and by proprietary software developers. So, no specific
software is preferred as a result. In particular, users are not prevented from
using Free Software in government communications as well as outside of the

278 See FN 267.

279 For different views on Open eGovernments see: Open Forum Europe, How Open Can
Europe Get, at: http://www.openforumeurope.org/index.php?option=com_

docman&task=doc_download&gid=89&Itemid=102, but see: Initiative for Software

Choice, New EU Public Procurement Directives – Maintaining Neutrality in Software Procure-
ment, September 2004, at: http://www.softwarechoice.org/download_fi les/ISC_Legal-

Note.pdf. See also: Business Software Alliance, BSA Statement on Technology Standards,

February 2005, at: http://www.etsi.org/sos_interoperability/Background_papers/

BSA_Statement_on_Technology_Standards.pdf.

Towards_an_Improved_def.indd 160Towards_an_Improved_def.indd 160 23-02-2010 10:49:3123-02-2010 10:49:31

161User freedoms in egovernments

communications.280 The choice of open standards as such does not allow
anyone to make users accept restrictions on software that may be easily
imposed when the government chooses a closed standard.

We distinguish three types of Open eGovernments. First, there is an
Open eGovernment that is introduced by using an already existing open
standard in government communications (henceforth “Open eGovernment
(A)”). Second, there is an Open eGovernment, the introduction of which is
possible only after an open standard relevant for government communica-
tions is designed (henceforth “Open eGovernment (B)”). Third, there is an
Open eGovernment where the government is actively involved in the devel-
opment, distribution, or use of Free Software, and not just uses software
designed according to open standards (henceforth “Supra-Open eGovern-
ment”).

Below, we analyse how each of these three Open eGovernments affect
the framework in the protection of user freedoms. We start with the Open
eGovernment (A) (Subsection 5.3.1). Then we analyse the Open eGovern-
ment (B) (Subsection 5.3.2). Thereafter we analyse the Supra-Open eGovern-
ment (Subsection 5.3.3). Finally, we summarize and briefly evaluate user
freedoms in Open eGovernments (Subsection 5.3.4).

5.3.1 Open eGovernment (A)

The introduction of an Open eGovernment (A) comprises the use of an exist-
ing open standard in government communications. The government may
provide for the use in two ways: (1) by using the architecture and the market
regulation, or (2) by using the law. Using the architecture and the market
means simply procuring software designed according to an open stan-

280 Here, we assume that the government does not mandate the use of any particular open-

standards-based software, but only requires that the communications complies with

open standards. However, it may be possible that although the government chooses an

open standard, only communications using a certain program is accepted. For example,

the Polish Informatization Act provides for software certifi cation procedure which could

be used to control which programs are used in government communications in much the

same way as project owners control the offi cial versions of Free Software projects. But

such a certifi cation by itself does not restrict user freedoms unless a Free Software pro-

gram that meets a set of objective criteria is refused a certifi cate.

Towards_an_Improved_def.indd 161Towards_an_Improved_def.indd 161 23-02-2010 10:49:3123-02-2010 10:49:31

162 Chapter 5

dard.281 In such a way, the government contributes towards making the open
standard a de facto standard. Using the law means that the government man-
dates the use of an open standard in government communications, and not
only procures systems designed accordingly.282 In such a way, the govern-
ment contributes towards making the chosen open standard a de iure stan-
dard.283 Remarkably, the government can make open standards de facto stan-
dards using dominium. Conversely, making them de iure standards requires
that the government uses imperium (by explicitly obliging certain parties to
use open-standards-based software) or even that the legislative branch is
involved (in order to provide for a compliance obligation in the law).

Below, we explain how the introduction of an Open eGovernment (A)
affects the rules in the framework. For the sake of simplicity, we assign the
rules to the following six classes: (1) rules directly related to Free Software
licenses, (2) third-party restrictions, (3) liability rules, (4) non-legal regula-
tors, (5) closed standards and open standards, and (6) regulatory environ-
ment. After explaining and discussing each of these classes, we present (7)
our evaluation of the Open eGovernment (A).

281 Government procurement is usually regulated. Under the Public Procurement Directive,

which is based on the principles of equal treatment, non-discrimination, proportionality,

and transparency, the procurement of technologies based on open standards is not gene-

rally prohibited, while procurement of closed-standard-based technologies is questiona-

ble. The use of technical specifi cations (defi ned in Annex VI to encompass standards as

understood in this thesis) in public procurement has to allow „to submit tenders which

refl ect the diversity of technical solutions” (Recital 29). This relates not only to their impact

on the competition, but also on the users and other governmental bodies. The directive

obliges to take into account the design for all users whenever possible when formulating

specifi cations (Id.). It also requires that the means and technology chosen should be com-

patible with the technologies used in other member states (Recital 35). Given our defi niti-

on of open standards they defi nitely make possible diversity in technical solutions, allow

for design for all users, and provide for wide compatibility (through interoperability).

Thus, the choice of open standard-compatible technologies in procurement does not

infringe these provisions. See also: NOiV (OSSOS), The acquisition of (open-source) software,
A guide for ICT buyers in the public and semi-public sectors, at: http://ososs.nl/fi les/acquisi-

tion_of_open-source_software_-_text.pdf. Suitability of public procurement for the

encouragement of „wider acceptance of open systems interconnection information and

data exchange standards through reference to them in purchasing” has been recognized in

the EU since at least 1986. See: Decision 87/95 of 22.12.1986 on standardization in the fi eld

of information technology and telecommunications (OJ L 36, 7.2.1987, P.31).

282 At the time of this writing (2009) the amendment of the Polish Informatization Act is

being processed by the Polish Parliament. The current version of the Act does not expli-

citly mandate the use of open standards, and the executive order to the Act specifi es vari-

ous standards that can be used in eGovernment, including both open standards and clo-

sed standards. Many governments all over the world adopt various instruments, policies,

and even laws that mandate the use of open standards or otherwise promote their use.

283 The above understanding of de facto and de iure standards is not the only one. For exam-

ple, WIPO understands a de facto standard as a standard adopted as a result of the mar-

ket, while a de iure standard as a standard adopted by a SSO See: WIPO (Standing Com-

mittee on the Law of Patents), Standard and Patents, (18 February 2009, SCP/13/2), at:

http://www.wipo.int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf.

Towards_an_Improved_def.indd 162Towards_an_Improved_def.indd 162 23-02-2010 10:49:3223-02-2010 10:49:32

163User freedoms in egovernments

(1) Rules directly related to Free Software licenses
Here, we explain how the introduction of an Open eGovernment (A) affects
the following rules, which are directly related to the licenses: (a) the grant of
freedoms, (b) the right to fork, (c) copyleft, (d) the hacker immunity, (e) license
proliferation and incompatibilities, (f) license revocability, and (g) inter partes
nature of the licenses.

The software that is used in an Open eGovernment (A) can be Free Soft-
ware. But because of the mere fact that open standards are used in govern-
ment communications de facto or de iure, users (and the government itself)
are not directed to use Free Software, they are only not prevented from using
it. As a result users are not prevented from exercising the freedoms, and
copyright holders are not prevented from granting the freedoms. But the
choice of open standards as such does not stimulate the copyright holders to
grant the freedoms to users, or the users to exercise the freedoms.

So, an Open eGovernment (A) does not affect the grant of freedoms, as well
as other rules directly related to Free Software licenses (i.e., the right to fork,
copyleft, and the hacker immunity). It is neutral towards these rules. Conse-
quently, it does not affect limitations and restrictions of the freedoms that are
closely related to the licenses, that is license proliferation and incompatibili-
ties, license revocability, and inter partes nature of the licenses.

(2) Third-party restrictions
Here, we explain how the introduction of an Open eGovernment (A) affects
the following rules, which constitute third-party restrictions: (a) software-
related patents and (b) contracts with distributors.

The introduction of an Open eGovernment (A) merely means that the
government chooses an existing open standard for government communica-
tions. Such a choice, especially if it is made by exercising the dominium only,
that is by procuring open-standards-based software, does not affect such
limitations and restrictions as software-related patents or contracts with dis-
tributors.

The government’s choice of open standards does not by itself remove the
threat of patents related to software. A program that uses a certain patent-
free standard may still be found to infringe on patents not material to the
standard, but related to the software itself. This, however, depends on the
patentability of software- and standards-related inventions in the particular
jurisdiction involved.

Also, by choosing an open standard for government communications
the government does not materially affect distributors who offer Free Soft-
ware under contracts that restrict user freedoms. Indeed, no-one is prevent-
ed from delivering Free Software for government communications under the
terms of their choice (as long as they satisfy public procurement rules or the
demand of private users of such software).

So, an Open eGovernment (A) is neutral towards software-related pat-
ents and towards contracts with distributors.

Towards_an_Improved_def.indd 163Towards_an_Improved_def.indd 163 23-02-2010 10:49:3223-02-2010 10:49:32

164 Chapter 5

(3) Liability rules
Here, we explain how the introduction of an Open eGovernment (A) affects
liability rules.

By definition, open standards can be used without risking liability for an
infringement of rights related to the standards. So, by choosing open stan-
dards for eGovernment, the government makes it possible for anyone to
interoperate with government software without risking standards-related
liability.

Definitely, an Open eGovernment (A) does not induce users to use closed
standards that may be subject to liability. But the liability rules remain in the
framework and the development, distribution, and the use of Free Software
is still subject to them, for reasons unrelated to standards. So, concluding
that an Open eGovernment (A) leads to a relation between such an eGovern-
ment and liability rules would be an exaggeration. The Open eGovernment
(A) is neutral towards liability rules.

(4) Non-legal regulators
Here, we explain how the introduction of an Open eGovernment (A) affects
non-legal regulators.

The choice of open standards as such does not prevent anyone from
restricting user freedoms with the architecture, the market, or the norms. It
only affects such restrictions if they are made in relation to closed standards
(e.g., the scrambling of interoperability information or the lock-in).

So, an Open eGovernment (A) does not affect most of the existing non-
legal limitations and restrictions.

(5) Closed standards and open standards
Here, we explain how the introduction of an Open eGovernment (A) affects
(a) closed standards and (b) open standards.

If the government uses an open standard, some parties may find less
value in designing their standards as closed, especially if the open standard
chosen by the government can also serve other purposes than government
communications. This may stimulate designers of standards, in particular
SSOs, to make open standards rather than closed standards, e.g., by scruti-
nizing patents material to standards more diligently in order to satisfy gov-
ernment demand for open standards.

Also, the government’s choice of a multi-purpose open standard may
make users less willing to use software designed according to other stan-
dards. But the developers of such software (1) are not at all prevented to
adjust it to the open standard used by the government, and they (2) can con-
tinue to design the software according to a closed standard (provided that
they obtain an authorization of the designer of the standard and license to
any third party rights).

Open standards allow users to choose among many different programs
(both Free Software and proprietary software), because any software devel-

Towards_an_Improved_def.indd 164Towards_an_Improved_def.indd 164 23-02-2010 10:49:3223-02-2010 10:49:32

165User freedoms in egovernments

oper is able to implement them, and standards-related restrictions cannot be
imposed on the software distribution and use. So, an Open eGovernment
(A) does not have a spill-over effect similar to a Closed eGovernment (A), it
does not favour any particular vendor more than others and it does not lock
anyone in to any particular software.

So, an Open eGovernment (A) promotes open standards as compared to
closed standards, but it does not remove the closed standards from the
framework.

(6) Regulatory environment
Here, we explain how the introduction of an Open eGovernment (A) affects
the regulatory environment.

Restrictions and limitations of user freedoms that result from the regula-
tory environment exist because of differences between national laws. By
choosing an open standard for government communications the govern-
ment cannot affect these differences in any way. Actually, each government
has to evaluate a particular standard and software which uses that standard
in the light of the applicable law (which does not even have to be its own
national law). Some limitations and restrictions that exist under a particular
law may not exist under another law, which means that if one government
chooses a certain standard then other governments cannot blindly follow
without performing at least a rudimentary legal audit.

So, an Open eGovernment (A) does not affect the regulatory environ-
ment.

(7) Evaluation of Open eGovernment (A)
Our evaluation is that the Open eGovernment (A) is neutral towards most of
the rules in the framework. It materially affects only (1) closed standards and
(2) open standards. But it is an indirect relationship, since such an eGovern-
ment does not remove closed standards from the framework. It merely con-
tributes towards the popularity of chosen open standards, which may lead
to a decrease in popularity of certain closed standards.

5.3.2 Open eGovernment (B)

In order to introduce an Open eGovernment in a situation where there is no
open standard that can be used for government communications, the gov-
ernment has to stimulate the design of such a standard in the first place. One
option could be that the government (1) designs the necessary protocol,
interface, or a data format (or procures its design), (2) makes sure that there
are no restrictions, such as patents material to the standard, and (3) publishes
the complete specification with no additional restrictions. But this would not
automatically result in the standard becoming an open standard, unless the
government had it developed and then maintained in an open decision-

Towards_an_Improved_def.indd 165Towards_an_Improved_def.indd 165 23-02-2010 10:49:3223-02-2010 10:49:32

166 Chapter 5

making procedure. So, the government would also have to open the whole
procedure to all interested parties.284

We do not find the above procedure impossible. We are in particular not
aware of any laws that would forbid the government to engage in the mak-
ing of open standards in such a way, by using its dominium only, without
having to involve the imperium or other government branches. But the pur-
pose of the government as such is not to design or maintain standards.
Indeed, SSOs are specifically established for that purpose. So, it seems more
reasonable for the government to stimulate the SSOs in the design of the nec-
essary open standard. In particular, the government should diligently par-
ticipate in SSOs so that they adopt standards of good technical quality. Also,
the government should make sure that the SSOs identify and remove (or
work around) all restrictions such as patents, as well as that they make com-
plete and comprehensive specifications available without restrictions.285
This requires extreme diligence, since the fact that a given standard is pre-
pared for the use in eGovernment may increase incentives of other partici-
pants to corrupt the procedure so that it leads to making an actually closed
standard.286 Certainly, the government should carefully select in which SSOs
to participate in the first place, because not all of them are open to all inter-
ested parties and follow appropriate policies, while an open decision-mak-
ing procedure and such policies are necessary for making open standards.

After the necessary open standard is designed in one way or another, the
situation changes into a situation where the government can proceed to
introduce an Open eGovernment (A), described in the preceding subsec-
tion.

284 Alternatively, the government could stimulate a removal of restrictions on an existing

closed standard, a publication of its specifi cations, and submitting it for review and main-

tenance to an SSO. The government could use the essential facilities doctrine to directly

oblige the designers not to place restrictions on standards that limit their openness. But

the doctrine has its limitations, already discussed in Subsection 3.2.2.

285 Government involvement in SSOs is legally possible. For example, the European Com-

mission declares such intervention to the extent necessary to maintain standard-setting

organizations as open, transparent, and accountable (Evangelos Vardakas, The role of gov-
ernment in standards setting: a European View, 5, in: Vademecum on European Standardi-

zation, Part II, Chapter 1, at: http://europa.eu.int/comm/enterprise/standards_poli-

cy/vademecum/doc/standards_setting_governance_ev.pdf). Also, open standards are

actually in-line with basic principles of standardization. The Standards Directive formu-

lates the principle of openness in recital 24, which refers to the organization of standard

development procedure, as well as the principles of coherence, transparency, consensus,

and independence of special interests.

286 This does not have to involve any corruption in the sense of bribery. It suffi ces for a parti-

cipant or a third party to secretly apply for a patent material to a given protocol, interface,

or data format before it is adopted as a standard and wait until it is adopted. See: Wikipe-

dia, Patent ambush, at: http://en.wikipedia.org/wiki/Patent_ambush. See also: WIPO

(Standing Committee on the Law of Patents), Standard and Patents, (18 February 2009,

SCP/13/2), at: http://www.wipo.int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf.

Towards_an_Improved_def.indd 166Towards_an_Improved_def.indd 166 23-02-2010 10:49:3223-02-2010 10:49:32

167User freedoms in egovernments

Here, we may conclude that the Open eGovernment (B) affects user free-
doms in the way already described when discussing the Open eGovernment
(A). Additionally, such an eGovernment affects closed standards and open
standards in a more direct way. Namely, by stimulating the design of open
standards the government may affect designers of other standards to partici-
pate in the open standard setting procedure instead of attempting to design
closed standards on their own. Actually, this may as much induce them to
corrupt such a procedure and prevent making the standard open, e.g., by
applying for a related patent. The exact outcome, however, much depends
(1) on whether and how diligently the government participates in the design
of the standard as well as (2) on whether the standard may also be used out-
side the government communications. Otherwise, such a stimulation may
have only a limited effect on other designers.

5.3.3 Supra-Open eGovernment

Government stimulation in an Open eGovernment could go beyond the
stimulation already discussed. Assume that apart from using an open stan-
dard in government communications, the government stimulates the devel-
opment, distribution, or use of Free Software in a more direct manner.287
There are many possibilities for the government to become involved by
using dominium, without engaging the imperium or other government
branches (the legislative and the judiciary).

For example, the government might simply procure Free Software.288
Precisely speaking, the government would either download and use existing
Free Software programs, or contract with a distributor for their delivery, pos-
sibly together with some additional services.289 The government could also
purchase copyrights to proprietary software and release it as Free Soft-
ware.290 Alternatively, the government could procure improvements to an
already existing Free Software program and contribute them to the commu-

287 There are many governments that use Free Software already. See: Lucie Guibault, Ot

van Daalen, Unraveling the Myth around Open Source Licenses. An Analysis

from A Dutch and European Law Perspective (TMC Asser Press 2006) 39.

288 Procurement of Free Software is possible under the Public Procurement Directive. See FN

281. See also: NOiV (OSSOS), The acquisition of (open-source) software, A guide for ICT buyers
in the public and semi-public sectors, at: http://ososs.nl/fi les/acquisition_of_open-source_

software_-_text.pdf. Nevertheless, contracting authorities should defi nitely not rely on

the reference to certain labels (See: C 359/93, Commission v. the Netherlands, 24.1.1995, ECR

1995, I, 168).

289 Public tendering would most probably not be necessary if the government uses software

available publicly and free of charge. See: NOiV (OSSOS), The acquisition of (open-source)
software, A guide for ICT buyers in the public and semi-public sectors, at: http://ososs.nl/

fi les/acquisition_of_open-source_software_-_text.pdf.

290 The European Union has even designed a whole new model license to be used for releas-

ing government software. See: IDABC, European Public License, at: http://europa.eu.int/

idabc/en/document/2623/5585#eupl.

Towards_an_Improved_def.indd 167Towards_an_Improved_def.indd 167 23-02-2010 10:49:3223-02-2010 10:49:32

168 Chapter 5

nity.291 The government could also participate in the community in some
other way or even become a project owner of projects related to eGovern-
ment themselves.292

Given that there are many possibilities for the introduction of a Supra-
Open eGovernment in practice, it is hard to determine how it would affect
the framework exactly. Below, we discuss some example impacts of a Supra-
Open eGovernment on the rules as grouped in the following six classes: (1)
rules directly related to Free Software licenses, (2) third-party restrictions, (3)
liability rules, (4) non-legal regulators, (5) closed standards and open stan-
dards, and (6) regulatory environment. After explaining and discussing each
of these classes, we present (7) conclusion on the Supra-Open eGovern-
ment.

(1) Rules directly related to Free Software licenses
Here, we discuss an example impact of the introduction of a Supra-Open
eGovernment on the following rules, which are directly related to Free Soft-
ware licenses: (a) the grant of freedoms, (b) the right to fork, (c) copyleft, and (d)
the hacker immunity, (e) license proliferation and incompatibilities, (f) license
revocability, and (g) inter partes nature of the licenses.

The exact impact of a Supra-Open eGovernment on these rules depends
on how the government approaches Free Software exactly. Straightforward
use of Free Software in eGovernment should not be expected to affect them
materially, although the government’s demand may stimulate some copy-
right holders to grant users their freedoms more eagerly. However, if the
government actively engages in the development and distribution of Free
Software this might have a more direct impact on these rules with regard to
the Free Software projects that would be used in eGovernment. Most proba-
bly, it will not prevent the operation of the rules that grant or protect user
freedoms. Nevertheless, the answer to the question whether it will actually
result in any additional protection of user freedoms depends to a large extent
on the specific circumstances. Given that there is no single effect that should
be expected in every situation, we will return to this issue in Chapter 6,

291 For example, the Polish Ministry of Internal Affairs and Administration has procured a

program for editing legal acts and made it available for use by government agencies in

order to help them fulfi l obligations to prepare electronic versions of various legislation

(see: Wojciech Wiewiórowski, Komunikat dotyczący Edytora Aktów Prawnych [Communica-
tion on the Editor of Legal Acts], at: http://bip.mswia.gov.pl/portal/bip/21/17881/, in

Polish). The program is called EDAP and based on many Free Software components,

such as the FCKeditor (http://www.fckeditor.net). EDAP, however, has not been released

as Free Software and at the time of this writing it is not clear whether the Ministry would

like to animate an EDAP community to maintain it.

292 See: Rishab Aiyer Ghosh, Ruediger Glott, Gregorio Robles, Patrice-Emmanuel

Schmitz, Guideline for Public Administrations on Partnering with Free Soft-

ware Developers (European Commission, Enterprise DG, IDA/GPOSS, 2004), at:

http://europa.eu.int/idabc/servlets/Doc?id=19295.

Towards_an_Improved_def.indd 168Towards_an_Improved_def.indd 168 23-02-2010 10:49:3223-02-2010 10:49:32

169User freedoms in egovernments

where we propose more specific steps that should be undertaken by govern-
ments.

In any case, a Supra-Open eGovernment is capable of indirectly affecting
license proliferation and incompatibilities. At the very minimum, when pro-
curing Free Software or contributing to Free Software projects, the govern-
ment may perform a legal audit of licenses and publish the results of such an
audit, thus minimizing the costs of the audit for all users of such software.
The government may also stimulate a reduction of the number of licenses
and the use of more compatible licenses by contributing to selected Free Soft-
ware projects. In such a case, the government would support the already
identified tendencies that lead to the same effect, and which are supported
by many communities as well. However, the government may also cause an
increase of the number of licenses, with the European Public License being
probably the most important example of such a contribution.293 How the
incompatibilities are affected in such a case depends again on the govern-
ment’s awareness in drafting new licenses.

A Supra Open eGovernment is capable of indirectly affecting license
revocability. While procuring rights to software and releasing them under
Free Software licenses, the government may guarantee that such licenses
will not be revoked (or even straightforwardly donate the software to the
public domain294). If this is not the case, mere involvement of the govern-
ment in Free Software projects can serve as an important guarantee that the
project will be continued, and stimulate other contributors not to revoke
their licenses. But such an effect is not deemed to occur in every Supra-Open
eGovernment. Certainly, mere involvement of the government in the devel-
opment, distribution, or use of Free Software will not make Free Software
licenses legally irrevocable.

When such a political choice is made the government may contribute to
Free Software projects even if there is no such obligation (i.e., a project is not
under a copyleft license). This may serve as a stimulus for other contributors
to contribute their improvements instead of keeping them private, but it may
also cause a free-rider effect by making everyone waiting for the government
to contribute, instead of attempting to improve the project themselves. So,
government involvement in Free Software projects may have a similar effect

293 See FN 290. Notably, the EUPL includes “compatibility clause” which is intended to mini-

mize the negative consequences of a new model license. Under this clause, the EUPL is

expressly compatible with, e.g., GPLv2, but there is no mention about compatibility with

GPLv3. So, EUPL and GPLv3 remain incompatible and this will negatively affect user

freedoms in case someone attempts to combine software under these licenses.

294 Whether a copyright holder may grant copyrights to the public domain is differently

regulated under various laws. Under Polish law its seems not possible for private copy-

right holders to dedicate their works to public domain, since copyrights attach automati-

cally for a specifi ed period of time. However, Polish Copyright Act does not extend, inter
alia, to “government documents”. Arguably, by procuring copyrights to certain software

and declaring it a government document, the government might be able to dedicate it to

the public domain.

Towards_an_Improved_def.indd 169Towards_an_Improved_def.indd 169 23-02-2010 10:49:3223-02-2010 10:49:32

170 Chapter 5

as the community copyleft, but such an effect is not deemed to happen in all
Supra-Open eGovernments. Certainly, as such, it will not change the inter
partes nature of the licenses.

(2) Third-party restrictions
Here, we discuss an example impact of the introduction of a Supra-Open
eGovernment on (a) software related patents and (b) contracts with distribu-
tors.

The government may contribute to Free Software projects programs or
improvements thereof that work around identified patents. Moreover, the
fact that a certain Free Software project is used in eGovernment may stimu-
late patent holders not to enforce their patents, since this alone may lead to
an increase of their market in one way or another. But such an effect is not
guaranteed, and some patent holders may even find their patents easier to
enforce against the government than against individuals or firms. So, there
is no direct relation between Supra-Open eGovernments and patents. They
remain a threat to user freedoms.

Similarly, a Supra-Open eGovernment does not as such prevent distribu-
tors from offering restrictive contracts for the delivery of Free Software or for
any related services. In fact, by accepting such a contract the government
may even increase the distributor’s market power and the ability to impose
similar contracts on users. Conversely, when the government starts to offer
Free Software programs to users of government services, and regulates the
terms of such distribution in a liberal way, this may stimulate other distribu-
tors not to use any more restrictive terms. So, whether Supra-Open eGovern-
ments affect contracts with distributors depends on the particular circum-
stances.

(3) Liability rules
Here, we discuss an example impact of the introduction of a Supra-Open
eGovernment on liability rules.

Government involvement in Free Software projects by itself does not
affect liability rules. Indeed, the government may regulate the liability for
software it procures by requiring additional guarantees, etc. Conversely,
when the government contributes to a Free Software project it may lead to
shifting liability from other participants in the project to the government, or
in the sharing of such a liability. However, in any case the government can-
not change liability rules that follow from the applicable law, by the mere
use, development, or distribution of Free Software.

So, Supra-Open eGovernments do not affect liability rules materially.

(4) Non-legal regulators
Here, we discuss an example impact of the introduction of a Supra-Open
eGovernment on non-legal regulators.

The government may require that Free Software projects to be used in
eGovernment are free of any or of most of non-legal restrictions. This could

Towards_an_Improved_def.indd 170Towards_an_Improved_def.indd 170 23-02-2010 10:49:3323-02-2010 10:49:33

171User freedoms in egovernments

allow users to exercise their freedoms even if other distributors were able to
impose non-legal restrictions. Also, the government may cover much of the
integration costs necessary for a proper maintenance of a Free Software proj-
ect, if there is no community that handles the maintenance. As a result, users
(especially average users) could benefit from properly working programs
even though they themselves lacked the skills and resources necessary to
maintain them on their own.

In such a way the government may even substitute or at least signifi-
cantly aid software communities in the maintenance of Free Software. But
whether it affects the freedoms positively or otherwise depends on many
circumstances. Obviously, the government is unable to copy all features of
software communities, and government involvement may actually lead to a
destruction of an existing community. Naturally, the purpose of the govern-
ment is not to maintain software, while the communities are established spe-
cifically for this purpose.

So, whether and how Supra-Open eGovernments affect non-legal regu-
lators depends on how the eGovernment is introduced exactly.

(5) Closed standards and open standards
Here, we mention an example impact of the introduction of a Supra-Open
eGovernment on (a) closed standards and (b) open standards.

A Supra-Open eGovernment would incorporate activities related to
standards that are undertaken in other types of Open eGovernments. So, it
would promote open standards as compared to closed standards, but it
would not remove the closed standards from the framework.

(6) Regulatory environment
Here, we mention an example impact of the introduction of a Supra-Open
eGovernment on the regulatory environment.

A Supra-Open eGovernment would not affect the regulatory environ-
ment for the same reasons as already presented with regard to other eGov-
ernments. It would also face the same limitations and restrictions that are the
result of the differences between national laws.

(7) Conclusion on Supra-Open eGovernment
Here, we may conclude that a Supra-Open eGovernment is capable of affect-
ing many rules in the framework. How the rules are going to be affected
depends much on how this eGovernment is introduced exactly. We note that
the government can contribute to the protection of user freedoms using
dominium, without resorting to imperium, or other government branches,
such as the legislative or the judiciary. However, there are limitations and
restrictions of user freedoms that every Supra-Open eGovernment is unable
to address using the dominium only. These are: license revocability, inter partes
nature of the licenses, software-related patents, liability rules, closed stan-
dards, and the regulatory environment.

Towards_an_Improved_def.indd 171Towards_an_Improved_def.indd 171 23-02-2010 10:49:3323-02-2010 10:49:33

172 Chapter 5

5.3.4 Evaluation of user freedoms in Open eGovernments

All Open eGovernments prevent the operation of at least some rules that
limit or restrict user freedoms, while at the same time they reinforce some
rules that protect the freedoms. In particular, by stimulating the design,
implementation, and the increase of the popularity of open standards Open
eGovernments reinforce rules that lead to open standards and prevent the
operation of at least some of the rules that lead to closed standards. If the
government does not limit itself to requiring the use of open standards in
government communications, but actively engages in the development, dis-
tribution, or use of Free Software, it can introduce a Supra-Open eGovern-
ment and affect the framework to an even greater extent.

5.4 Chapter conclusions

In a world without eGovernments user freedoms are subject to the identified
limitations and restrictions. Some of them can be overcome by software com-
munities. But whether the freedoms are protected, and in particular whether
open standards are designed, implemented, and become popular depends
on many circumstances. The government affects these circumstances by
introducing an eGovernment.

Generally, Closed eGovernments affect many rules in the framework to a
certain detriment of user freedoms. Conversely, Open eGovernments are
neutral towards most of the rules, but they affect some of them to a benefit of
user freedoms. In order to identify the relations between eGovernments and
user freedoms more precisely we distinguished three types of Closed eGov-
ernments: (1) Closed eGovernment (A), (2) Closed eGovernment (B), and (3)
Semi-Closed eGovernment. Similarly, we distinguished three types of Open
eGovernments: (1) Open eGovernment (A), (2) Open eGovernment (B), and
(3) Supra-Open eGovernment.

Each of these six types of eGovernments is in a different relation with
user freedoms. Each of them differently affects various rules in the regulato-
ry framework. The differences can be minor (as for example between a
Closed eGovernment (A) and Closed eGovernment (B)), but they may also
be vast (as for example between a Closed eGovernment (A) and the Supra-
Open eGovernment). Nevertheless, we found that neither of the eGovern-
ments (even including the Open eGovernments) affects all limitations and
restrictions to user freedoms. Many limitations and restrictions remain out
of reach even for the Supra-Open eGovernment. Also, whether some of the
limitations and restrictions are affected depends on how such an eGovern-
ment is introduced exactly. Here, we note that in this chapter we focussed on
the government acting through the dominium. However, in passing we often
noted that some of the limitations or restrictions could be addressed only
using the imperium, or by employing other government branches, such as the
legislative or the judiciary.

Towards_an_Improved_def.indd 172Towards_an_Improved_def.indd 172 23-02-2010 10:49:3323-02-2010 10:49:33

173User freedoms in egovernments

So, we are now ready to answer RQ2, which is: “In what way do eGovern-
ments affect the current regulatory framework in the protection of user freedoms, as
articulated by Stallman?” We present the answer in four concluding statements.

(1) Closed eGovernments. Closed eGovernments affect the frame-
work negatively from the point of view of user freedoms. Precisely
speaking, they affect the grant of freedoms, liability rules, non-legal
regulators, and closed standards. Given the likelihood of the spill-
over effect, these rules are affected with regard to software used in
government communications, as well as to other software.

(2) Semi-Closed eGovernments. If the government proceeds diligent-
ly, it may succeed in the introduction of a Semi-Closed eGovern-
ment. Such an eGovernment enables users to exercise user free-
doms despite the fact that closed standards are used in government
technologies. But given its limitations it should be taken under con-
sideration only as a transitional eGovernment from a Closed eGov-
ernment to an Open eGovernment.

(3) Open eGovernments. Open eGovernments are capable of avoiding
the negative effects on the framework that are a result of Closed
eGovernment. Still, they do not affect most of the rules, they are
merely neutral towards them. Open eGovernments only promote
open standards as compared to closed standards, and they do not
remove closed standards from the framework.

(4) Supra-Open eGovernments. The government is capable of affect-
ing the framework to a greater extent by introducing a Supra-Open
eGovernment. However, the exact outcome of such an eGovern-
ment depends much on how it is introduced precisely. Also, even
Supra-Open eGovernments are not able to overcome such limita-
tions and restrictions as license revocability, inter partes nature of
the licenses, software-related patents, liability rules, closed stan-
dards, and the regulatory environment. Affecting these limitations
and restrictions is possible if only apart from the dominium, the gov-
ernment additionally employs the imperium or other branches (the
legislative and the judiciary).

The above four statements enable us to present the following answer to PS2,
which is: “What are the relations between user freedoms and eGovernments?” Our
answer consists of three statements.

(1) Closed eGovernments are capable of restricting user freedoms ef-
fectively, despite the protection provided for in the framework, and
despite the positive effect on the freedoms that properly organized
communities may have.

(2) Semi-Closed eGovernments enable users to exercise their freedoms
despite the fact that closed standards are used by the government.

Towards_an_Improved_def.indd 173Towards_an_Improved_def.indd 173 23-02-2010 10:49:3323-02-2010 10:49:33

174 Chapter 5

 But their introduction requires much diligence. Still, such eGovern-
ments do not remove the limitations and restrictions that users are
exposed to in the world without eGovernments.

(3) Open eGovernments are capable of avoiding the additional restric-
tion of user freedoms that is a result of Closed eGovernments. But
they are mostly neutral towards the framework, although they ma-
terially affect closed standards. Only Supra-Open eGovernments
are able to minimize all existing limitations and restrictions materi-
ally. Similarly to Semi- Closed eGovernments, the introduction of
Supra-Open eGovernments also requires much diligence. Howev-
er, any Open eGovernment is still unable to remove all existing
limitations and restrictions of user freedoms, unless the imperium
or the legislative and the judiciary becomes involved.

Towards_an_Improved_def.indd 174Towards_an_Improved_def.indd 174 23-02-2010 10:49:3323-02-2010 10:49:33

6 Proposal of an improved
regulatory framework

In this chapter we propose an improved regulatory framework of Free Soft-
ware. In the construction of the proposal, we use our findings on how the
current regulatory framework protects the freedoms in the world of software
communities and eGovernments. Below, we recall these findings and then
we stipulate the working programme.

We found that (1) access to source codes and (2) access to specifications
of standards are necessary conditions of user freedoms. So, we reconstructed
a model of the framework, which includes (a) rules for both software and
standards, and (b) relations between the rules. In particular, the model
includes the rules that follow from Free Software licenses, in which copy-
right holders of software grant users their freedoms. The licenses provide
also for the basic protection of the freedoms. Additionally, the model includes
rules that lead to open standards, since only open standards enable users to
exercise their freedoms and provide means for interoperability at the same
time. Yet, the model includes also many rules which limit or restrict user
freedoms either with regard to software, or with regard to standards. These
limitations and restrictions are not sufficiently addressed by the rules that
follow from Free Software licenses, or by the rules that lead to open stan-
dards. So, on the basis of the model, we found that the freedoms are not suf-
ficiently protected under the current framework.

Then, we analysed the operation of the model in a world of software
communities. We started the analysis by observing that given the limitations
and restrictions existing in the model, users are unable to exercise their free-
doms individually in an undisturbed manner. More specifically, users are
not able to maintain Free Software individually unless they possess the nec-
essary skills and resources. However, we found that software communities
are able to provide for effective maintenance of Free Software programs in
projects. After the analysis of the communities we found that for an effective
maintenance it is essential that the communities are properly organized. Yet,
even such communities do not remove the limitations and restrictions from
the framework. They are only able to gather and manage skills and resources
necessary to minimize many of them materially. We found in particular that
such rules as software-related patents, closed standards, and the regulatory
environment continue to affect user freedoms negatively, despite the fact
that there exist properly organized software communities. Most of other lim-
itations and restrictions are only indirectly affected by the communities.

Thereafter, we analysed the operation of the model of the framework in
a world of eGovernments. We performed a detailed analysis of Closed and

Towards_an_Improved_def.indd 175Towards_an_Improved_def.indd 175 23-02-2010 10:49:3323-02-2010 10:49:33

176 Chapter 6

Open eGovernments. We found that eGovernments are capable of materially
affecting the circumstances that lead to the design and popularity of open
standards. Generally, Closed eGovernments prevent the operation of open
standards. They do so by contributing to a lock-in to a closed standard. Con-
versely, Open eGovernments promote open standards as compared to closed
standards, but they are mostly neutral towards other limitations and restric-
tions of user freedoms. Even Supra-Open eGovernments are not able to over-
come all limitations and restrictions to user freedoms. In particular, such
rules as license revocability, inter partes nature of the licenses, software-relat-
ed patents, liability rules, closed standards, and the regulatory environment
are not affected by them materially.

Our analysis leads us to the conclusion that the current framework does
not provide adequate protection of the freedoms in the world of software
communities and eGovernments. So, in this chapter we proceed to answer

RQ 3: How to improve the regulatory framework so that it adequately protects
user freedoms, as articulated by Stallman, in the world of software com-
munities and eGovernments?

In order to answer RQ3 we start by elaborating on the inefficiencies of the
current framework and by discussing various possible improvements (Sec-
tion 6.1). Then, we design the most appropriate improvements in some detail
(Section 6.2). Thereafter, we use the designed improvements to construct a
proposal of an improved framework (Section 6.3). Finally, we present a sum-
mary of the chapter and an answer to RQ3 (Section 6.4).

6.1 Inefficiencies of the current framework and possible improvements

The proposal of an improved regulatory framework of Free Software should
address all limitations and restrictions of the freedoms existing in the current
framework. Where the current framework, as operating in the world of soft-
ware communities and eGovernments, promises that it can affect a limita-
tion or a restriction sufficiently without any improvements, the improved
framework should not intervene. If this is not the case, adequate improve-
ments should be proposed. Otherwise, the framework will continue to pro-
tect the freedoms inadequately, and users will not be able to exercise their
freedoms without limitations or restrictions.

In the world of software communities and eGovernments possible
improvements can come either from the communities, or from the govern-
ment. The government can act using only its dominium, but it may also
employ the imperium, as well as the other two government branches (the leg-
islative or the judiciary). So, we distinguish four kinds of possible solutions
that can be taken under consideration in the construction of an improved
framework: (1) do not propose any improvements, (2) propose improve-
ments that can be undertaken within the communities, (3) propose improve-

Towards_an_Improved_def.indd 176Towards_an_Improved_def.indd 176 23-02-2010 10:49:3323-02-2010 10:49:33

177Proposal of an improved regulatory framework

ments that can be undertaken by the government using its dominium only,
and (4) propose improvements that can be undertaken by the government
using the imperium, the legislative, or the judiciary.

Below, we identify the possible improvements towards each of the iden-
tified limitations and restrictions of the freedoms (jointly: inefficiencies). We
address all nine of them in the already introduced order. In each subsection
we first synthesize the inefficiencies by using our findings from Chapters 3,
4, and 5. Then, we discuss possible improvements to address each of the
inefficiencies. We focus on issues specifically related to the purpose of this
chapter, so the reader should return to previous chapters for more detail.
Thereafter, we present our evaluation of the inefficiencies of the current
framework.

6.1.1 License proliferation and incompatibilities

(1) Inefficiencies resulting from license proliferation and incompatibilities
License proliferation and incompatibilities make it necessary for a person
who maintains a combination of Free Software programs to perform a legal
audit of licenses of all these programs. This is the case even though there are
visible tendencies resulting in a decrease of the number of licenses, and in an
increase of their compatibility. Only by performing such an audit it is possi-
ble to identify all applicable obligations, and all remaining incompatibilities
between them. The identified obligations have to be complied with. Pro-
grams subject to incompatible obligations have to be removed, or their use in
the combination has to be adjusted in order not to trigger the incompatibili-
ties. Following such a procedure is not impossible, but it can be performed
only by users who hold the necessary skills and resources. This leads to a
decrease of the number of users who become actors on the Free Software
scene, e.g., by maintaining Free Software programs. It also diverts at least
some of the resources of the active maintainers from the maintenance to the
legal audit. In any case, it leads to a decrease of available combinations of
Free Software programs.

The evolution of software communities can be perceived as a natural
result of many users attempting to cover transaction costs, such as the costs
of the proliferation and incompatibilities described above. The communi-
ties maintain Free Software programs as projects. However, project mainte-
nance as such does not remove the proliferation and incompatibilities from
the framework. Many, if not all, communities still have to deal with the issue.
Properly organized communities use licensing policies and the authority of
project owners for that purpose. By accepting (to the official version of the
project) only the contributions that comply with the project’s licensing pol-
icies, project owners are able to create a combination of Free Software pro-
grams that can be maintained together with all applicable obligations com-
plied with at the same time. Obviously, contributions under incompatible
licenses are not accepted, which means that the communities avoid rather
than solve the issue. Only the communities gathered around significant proj-

Towards_an_Improved_def.indd 177Towards_an_Improved_def.indd 177 23-02-2010 10:49:3323-02-2010 10:49:33

178 Chapter 6

ects can indirectly stimulate copyright holders to switch to more popular
licenses, or amend them to provide for more compatibility. Clearly, such com-
munities support the already identified tendencies that lead to the same effect.

Most types of eGovernments do not affect license proliferation and
incompatibilities at all. They can be affected by Supra-Open eGovernments
only, but how they are affected depends much on how such an eGovernment
is introduced. On the one hand, the government may significantly help users
from a given jurisdiction in the performance of the legal audit. It may also
stimulate a decrease of the number of the licenses and an increase of their
compatibility, in much the same way as the prominent communities do. On
the other hand, the government may cause the opposite, e.g., if the authori-
ties design new Free Software licenses on their own, without coordinating
this activity with already existing community efforts. Also, the actual out-
come of a Supra-Open eGovernment on license proliferation and incompat-
ibilities depends on whether the government acts only within its dominium,
or if it also employs the imperium, as well as other branches (the legislative
and the judiciary).

(2) Possible improvements to address license proliferation and incompatibilities
As noted earlier, we are currently (2009) in a transitional phase. Free Soft-
ware licenses have proliferated and as a result many incompatibilities
between them have started to restrict user freedoms. But there are tenden-
cies that lead to a decrease of the number of licenses and to an increase of
their compatibility. Given these tendencies, we do not find it necessary to
propose any extreme improvements of the framework directed at license
proliferation and incompatibilities. However, it is crucial that the tendencies
are not stopped or reversed. So, we should propose improvements that sup-
port the communities in the performance of the legal audit. Namely, the
improvements should guarantee that the communities adopt proper licens-
ing policies, and that the policies are followed. The measures could also
allow the most prominent communities to stimulate licensors more effec-
tively and to continue to make them switch to more popular and compatible
licenses.

From our analysis of license proliferation and incompatibilities we do
not derive any guidelines as to which type of eGovernment should be intro-
duced. However, it is still necessary to propose improvements in the frame-
work that would prevent government interference in the identified tenden-
cies. In particular, the government should not hinder the community efforts
that lead to a decrease of the number of licenses and to an increase of their
compatibility. Additionally, if Supra-Open eGovernments are introduced,
the improvements should direct the governments to perform a diligent legal
audit of the licenses and to publish results of such an audit, or otherwise
serve to the benefit of the users. Governments should also be required to
coordinate their involvement in the development, distribution, and use of
Free Software (if any) with the communities. Such a coordination is neces-
sary in particular to avoid drafting of more incompatible licenses. It would

Towards_an_Improved_def.indd 178Towards_an_Improved_def.indd 178 23-02-2010 10:49:3423-02-2010 10:49:34

179Proposal of an improved regulatory framework

also allow for a more effective stimulation of copyright holders to switch to
more popular and compatible licenses.

Additional improvements in the framework should be taken under con-
sideration in two situations. First, in case the improvements discussed above
should fail to resolve the issue of proliferation and incompatibilities. Second,
when the transitional phase reaches its end and it will be possible to indicate
but a few model Free Software licenses widely used. In both these situations
the legislative branch could attempt to include in the law default terms relat-
ed to Free Software, or a few sets of such default rules for licensors to choose
from. This could be performed in a manner similar to regulating popular
contracts in civil codes. In the meantime, the transitional phase of switching
between licenses and amending them could be supported by courts. By
reviewing the licenses and ruling about the exact scope of rights and obliga-
tions of the parties, courts can provide guidelines for Free Software licensors
how to amend their licenses, as well as which model licenses are better writ-
ten than the others. Should a particular license be found invalid in whole or
in part, Free Software licensors would promptly amend them or switch to
other, better drafted ones.

6.1.2 License revocability

(1) Inefficiencies resulting from license revocability
License revocability allows the licensor to reclaim exclusive control with
regard to a Free Software program. The control follows from the default rule.
After the control is reclaimed, the copyright holder can prevent users from
the exercise of their freedoms. License revocability depends on many cir-
cumstances, such as the size of the user base, the organization of the distri-
bution of the program, or the applicable law. If these circumstances fail to
make it impracticable to revoke the license, the revocation is subject to the
discretion of one person only – the licensor. Certainly, it might not be possi-
ble to use license revocability in order to prevent all users from using Free
Software in private. However, in practice, it would probably suffice that the
license is revoked from some major developers and distributors of the pro-
gram to prevent most users from exercising the freedoms effectively. In par-
ticular, it is important that license revocability can prevent effective mainte-
nance of Free Software programs.

Evolution of software communities does not affect license revocability as
such. If no additional measures are undertaken, it can be only affected in
community projects that consist of multiple iterations of derivative works of
an original subject to a copyleft license. However, properly organized com-
munities are able to offer licensors benefits that stimulate them not to revoke
licenses, even in projects of other types. Namely, they provide for effective
maintenance of many contributions under the authority of project owners.
In case of licensors that do not find these benefits attractive and choose to
revoke their licenses, such communities are still able to stimulate contribu-
tions of substitutes by other licensors. Similarly to the effect of the communi-

Towards_an_Improved_def.indd 179Towards_an_Improved_def.indd 179 23-02-2010 10:49:3423-02-2010 10:49:34

180 Chapter 6

ties on the license proliferation and incompatibilities, the communities
avoid, rather than solve, the issue of license revocability.

As far as eGovernments are concerned, license revocability can be affect-
ed by Supra-Open eGovernments only. But this is an indirect relation, and it
is not effective towards Free Software programs outside of the reach of the
government. Namely, by getting involved in the development, distribution,
or use of selected programs, the government may stimulate respective copy-
right holders not to revoke their licenses. If the government holds relevant
copyrights, it may straightforwardly guarantee that the license will not be
revoked, or even contribute them to the public domain (if this is possible in
the jurisdiction in question). However, the government will not change revo-
cable licenses granted by other licensors into irrevocable, unless apart from
the dominium it also employs the imperium, as well as other government
branches (the legislative and the judiciary).

(2) Possible improvements to address license revocability
We are not aware of any license to major Free Software programs having
been revoked. Actually, we found that many licensors make pledges to main-
tain their programs as Free Software in the future. So, we do not find it nec-
essary to propose any improvements that would legally petrify license rela-
tions or any other extreme measures. Apart from the above, it has to be borne
in mind that licenses are granted by copyright holders, and given the basic
principles of the copyright law, they should be free to decide whether to
allow the use of their works or not. So, it is not advisable to prevent license
revocation for such licensors who are determined to remove their contribu-
tions from Free Software and who can do so without infringing rights of
other copyright holders. But at the same time it is advisable to allow licen-
sors to make their licenses irrevocable if they find such a need. If under the
applicable law a license cannot be made irrevocable by the licensor, such a
possibility should be provided for.

Also, we find the stimulation of properly organized communities neces-
sary for the licensors not to revoke their licenses. Precisely speaking, the bet-
ter a community maintains a program, the less incentives for licensors to
control it exclusively. Additionally, the better a community is organized, the
easier it can substitute a particular contribution. So, we should propose
improvements that prevent stopping or reversing the stimulation of licen-
sors provided for by properly organized communities. Such improvements
should guarantee proper organization of the communities.

From our analysis of license revocability we do not derive any guide-
lines as to which type of eGovernment should be introduced. However, it is
still necessary to propose improvements in the framework that would pre-
vent government interference with the community stimulation of licensors.
In case of Supra-Open eGovernments we should propose guidelines for gov-
ernments to support the communities in their stimulation. The guidelines
should in particular include the rules for making available software devel-
oped or procured by the government.

Towards_an_Improved_def.indd 180Towards_an_Improved_def.indd 180 23-02-2010 10:49:3423-02-2010 10:49:34

181Proposal of an improved regulatory framework

6.1.3 Inter partes nature of licenses

(1) Inefficiencies resulting from the inter partes nature of licenses
The fact that Free Software licenses create inter partes relations limits the
enforceability of any rights and obligations from a Free Software license by
persons other than the parties to the license. In particular, users cannot
directly enforce copyleft obligations against infringing licensees unless the
applicable law gives them standing. In any case, copyleft enforcement
requires resources of an interested (and eligible) party. This is not impossible,
but it leads to a decrease of the number of licensors and users who would
claim their freedoms against infringing licensees and succeed. As a result,
appropriated Free Software programs cannot be maintained by users, who
turn into passive audience, as users of proprietary software do. Determined
users can definitely exercise the right to fork in such a situation (they can
develop a substitute program and release it without restrictions) but this
requires skills and resources as well.

Software communities are able to circumvent the inter partes nature of
the licenses by using the community copyleft mechanism. Namely, by provid-
ing for effective maintenance of projects consisting of numerous contribu-
tions under the authority of project owners, properly organized communi-
ties stimulate many parties to release their programs as Free Software
regardless of whether the project’s license contains a copyleft clause. The com-
munity copyleft is obviously not effective towards such parties who do not
find community maintenance attractive. However, properly organized com-
munities may then serve as a source of the substitutes to appropriated
improvements. In any case the legal enforcement of copyleft clauses remains
an option, and the overall Free Software community has developed initia-
tives that support licensors in enforcing it. Certainly, these initiatives are not
able to enforce every copyleft infringement and they do not substitute licen-
sors as the main eligible party. Ultimately, if licensors do not support a case,
interested users have to support it on their own.

The inter partes nature can be indirectly affected by the government, if a
Supra-Open eGovernment is introduced. However, the exact result depends
much on specific circumstances. Government involvement in the develop-
ment, distribution, or use of Free Software projects may stimulate some par-
ties to contribute to them too. Nevertheless, it may also cause a free-rider
effect, by stimulating many parties to refrain from contributing, if the gov-
ernment takes most or all of the software maintenance burden. In any case,
any eGovernment is unable to change the inter partes nature of the licenses
granted by other licensors as such, unless the government employs the impe-
rium, or the legislative and judiciary branches.

(2) Possible improvements to address the inter partes nature of licenses
We find it necessary to propose improvements in the current framework that
will make it possible for licensors and users to enforce copyleft directly
against infringing licensees more easily and effectively. Certainly, these

Towards_an_Improved_def.indd 181Towards_an_Improved_def.indd 181 23-02-2010 10:49:3423-02-2010 10:49:34

182 Chapter 6

improvements should make such enforceability legally possible without
major limitations, if this is not the case under the applicable law. Addition-
ally, if it is unclear whether under applicable law specific performance (i.e.,
the performance of copyleft obligations) can be ordered in case of copyleft
infringement, the improved framework should explicitly provide for such a
remedy. A question arises, whether it is necessary to change the inter partes
nature of the licenses further. For example, whether the enforcement of copyl-
eft should be left for private parties (licensors and users), or should copyleft
infringements be prosecuted by the state, as it is usually the case with copy-
right infringements, which can lead to both civil and criminal liability. State
prosecution could be advisable if the licensors and users were unable to
counter infringements effectively, even with the help of the initiatives such
as the Software Freedom Law Center or the GPL-violations. Definitely, such
an extended enforceability should not lead to pushing the freedoms on such
users who do not want them at all. But it is advisable to propose improve-
ments that would help users in a situation where licensors do not have the
necessary resources to enforce copyleft, as well as in a situation where users
are unable to obtain the licensor’s support of the case.

From our analysis of the inter partes nature of the licenses we do not
derive any guidelines as to which type of eGovernment should be intro-
duced. We only find it necessary to prevent governments from interfering, to
the extent that such an interference would stimulate actors not to contribute
to Free Software projects.

6.1.4 Software-related patents

(1) Inefficiencies resulting from software-related patents
A patent may be used to restrict the exercise of some or all of the freedoms,
to the extent it covers the use, development, or distribution of a Free Soft-
ware program. It is not easy to identify a patent infringement a priori, mostly
because patent information is not readily available in the form that would
allow for such an identification. So, no-one can guarantee that a patent is not
infringed in the course of the development, distribution, or use of any pro-
gram, including Free Software. The risk of patent infringement cannot be
easily avoided, not even by users who hold substantial skills and resources.
Patent-related risk can effectively drive many of the users away from exer-
cising their freedoms. Straightforwardly speaking, it increases the costs of
exercising of the freedoms by a factor which is hard to quantify. But these are
not only monetary costs of eventual patent royalties or damages. Exercise of
the freedoms in Free Software covered by a patent is subject to an authoriza-
tion of the patent holder. The patent holder can refuse such an authorization
or require that certain conditions are met in order to obtain an authorization.
Both the refusal and the conditions are in conflict with user freedoms.

Properly organized software communities can stimulate some patent
holders not to restrict user freedoms. Some of the holders make even explicit
public pledges not to enforce some or all their patents. They see more value

Towards_an_Improved_def.indd 182Towards_an_Improved_def.indd 182 23-02-2010 10:49:3423-02-2010 10:49:34

183Proposal of an improved regulatory framework

in the fact that projects covered with their patents are properly maintained
than in the royalties that could have been collected from users. Still, other
patent holders prefer to enforce (or threaten to enforce) their patents, even if
the patents cover projects maintained by the communities. The fact that
some software communities consist of a large number of participants may
make it harder to enforce patents towards members of these communities.
But the mere fact that a community is big, is not an adequate protection of
user freedoms. It might suffice for the patent holder to enforce a patent
towards most important users, such as the project owners, in order to stop
the project effectively. However, the communities may be able to gather and
manage skills and resources necessary to work around identified patents. As
a result, they could stimulate the use, development, and distribution of the
project in a way that does not infringe any related patents (i.e., to work
around the patents). But they would not be able to use the patented technol-
ogy, unless they managed to invalidate the patents. Also, they could not
avoid liability for eventual past infringements. So, software communities are
largely unable to avoid the patent issue, even if they would be able to devel-
op workarounds.

eGovernments do not remove the threat of software-related patents.
Even in case of Open eGovernments, software can still be found to infringe a
software-related patent, if such a patent was validly granted in a given juris-
diction. Naturally, governments could participate in Free Software projects
and support the communities in working around patents. Perhaps the gov-
ernment participation would lead to better workarounds being developed,
but this requires a diligently introduced Supra-Open eGovernment. Still,
even if such an eGovernment is introduced, it would not allow users to use
the patented technology. Also, it would not remove liability for eventual pat-
ent infringements from users. In order to do so, the government would have
to use the imperium, or the legislative and judiciary branches.

(2) Possible improvements to address software-related patents
We find it necessary to propose improvements in the framework that would
prevent software-related patents from being granted. This encompasses
observing the exceptions from the patentable subject matter, which do not
allow to patent computer programs. But there are jurisdictions that do not
include such exceptions in their patent law, and we should not expect that all
patent laws can be amended to include these exceptions. Also, the excep-
tions existing in other jurisdictions have often been interpreted not to pro-
hibit software-related patents. So, although we do not abandon to seek
improvements that would prevent such patents from being granted, we also
find it necessary to propose improvements that would prevent the use of the
patents in order to restrict user freedoms, if they are granted.

We envisage a threefold approach for an effective prevention. First, it
should be made easier to identify a patent infringement. Second, avoidance
of liability for an infringement should be possible at a low cost, while the
legitimate interest of the holder of an infringed patent should be observed.

Towards_an_Improved_def.indd 183Towards_an_Improved_def.indd 183 23-02-2010 10:49:3423-02-2010 10:49:34

184 Chapter 6

In any case, the exercise of the freedoms cannot be subject to any authoriza-
tion or condition. Third, the identified community initiatives related to pat-
ents should be supported in the improved framework.

As far as eGovernments are concerned, the analysis of software-related
patents does not lead us to any specific guidelines as to which type of eGov-
ernment should be introduced. Certainly, the government should avoid the
use of technologies patented by persons who use patents to restrict user free-
doms. We remark that in the thesis we distinguish between software-related
patents and patents material to standards. While the former are not affected
by eGovernments materially, the latter are. Namely, patents material to stan-
dards are affected by Open eGovernments to a benefit of user freedoms.
However, there is a risk that such eGovernments could create additional
incentives for patent holders to corrupt the standard setting procedure so
that it leads to closed standards. We will search for the necessary improve-
ments related to patents material to standards when discussing improve-
ments that would affect closed standards.

6.1.5 Contracts with distributors

(1) Inefficiencies resulting from contracts with distributors
Contracts are a flexible tool for restricting the freedoms of particular users.
Actually, they can be used both to restrict the freedoms as well as to provide
for an additional protection of the freedoms. There are practically no limits
on how contracts can be used, given the autonomy of the parties principle.
In particular, contracts allow to prevent users from maintaining software
and to tie them to maintenance services of the contracting distributor. How-
ever, contracts affect only such users who accept them, while other users
remain free to exercise their freedoms (ceteris paribus). Also, many laws
already allow to interfere in contracts in order to protect the weaker party or
the competition, such as the consumer protection laws and competition
laws.

Software communities do not prevent distributors from offering restric-
tive contracts to users. But properly organized communities can serve as a
substitute source of programs without any such restrictions. They are able to
compete with many distributors effectively. At the same time they make it
possible for other distributors to use programs maintained by the communi-
ties in constructing competitive offerings. As a result, the communities indi-
rectly affect the ability of distributors to offer restrictive contracts, because
with any such contract a distributor has to offer additional benefits that the
communities or other distributors cannot provide at lower price. So, the
communities can protect the freedoms against the threat of restrictive con-
tracts with distributors if only the communities are not prevented from
becoming competitive sources of Free Software.

eGovernments as such do not make it impossible to offer restrictive con-
tracts to users. This holds true for every type of eGovernments. Even in Open
eGovernments software can be subject to restrictions imposed by distribu-

Towards_an_Improved_def.indd 184Towards_an_Improved_def.indd 184 23-02-2010 10:49:3423-02-2010 10:49:34

185Proposal of an improved regulatory framework

tors. Such restrictions can be minimized by the government only in Supra-
Open eGovernments, which are capable of stimulating distributors if intro-
duced diligently. A diligent government is aware of the importance of the
freedoms and of the threat of contractual restrictions. Such a government
would not accept restrictive contracts related to Free Software procured for
eGovernment. But if the government proceeds less diligently and accepts
such contracts, it could actually help distributors that restrict user freedoms
in gaining market power. The distributors would then use that power by
imposing the restrictions on other users. In such a case, an effective protec-
tion of user freedoms would require that the government uses the imperium,
or the legislative and the judiciary branches to regulate the distributors.

(2) Possible improvements to address contracts with distributors
By definition, contracts are concluded between independent parties. It fol-
lows that the most natural way of avoiding restrictive contracts is not to
accept them. In cases when acceptance cannot be avoided or when negotia-
tion is not possible, competition and consumer protection laws are of partic-
ular importance. If a contract related to Free Software constitutes a breach of
such laws users should not be prevented from invoking such laws to defend
their freedoms. This can be performed under the current framework, so we
do not find it necessary to propose any improvements particularly related to
the use of competition and consumer protection laws to protect user free-
doms. The question whether to provide for any additional measures could
be subject to deliberation in case a significant number of users should find
their freedoms restricted using contracts, despite the existing laws. For the
time being, since we see no such evidence, we should design improvements
that would support the communities in sustaining their competitive advan-
tage. Namely, the communities should be supported in their stimulation of
distributors, which causes the distributors to offer users material benefits.
The improved framework should promote a competition in the Free Soft-
ware market. For this reason it is advisable to provide for clear guidelines for
governments as to how eGovernments should be introduced in order not to
help distributors in imposing restrictive contracts on users.

6.1.6 Liability rules

(1) Inefficiencies resulting from liability rules
The hacker immunity attempts to remove all liability from the actors in the
Free Software scene. But whether such a waiver is possible, and to what
extent it is possible, is always subject to the liability rules of the applicable
law. We did not find that the liability rules of any major jurisdiction prohibit
such a waiver completely. We rather found that neither shifting all liability
towards users, nor forcing it back to the copyright holders, developers, or
distributors, is beneficial for user freedoms. The main issue is not who would
bear the liability, but whether a user can have any defects in Free Software
removed promptly and effectively. If users have access to additional warran-

Towards_an_Improved_def.indd 185Towards_an_Improved_def.indd 185 23-02-2010 10:49:3423-02-2010 10:49:34

186 Chapter 6

ties and services related to Free Software, the question of liability and dam-
ages is less important. We found that there is a market for such warranties
and services, and that liability rules should not materially affect user free-
doms if that market continues to operate effectively.

Communities play an important role in the market for additional war-
ranties and services related to Free Software. In particular, properly orga-
nized communities provide for a swift removal of many defects identified
when the software is already operated by users. As a result, they stimulate
distributors to offer additional warranties and services in the first place, and
more importantly, they stimulate that the distributors increase quality of
their offerings to keep the pace of the communities. Additionally, by using
umbrella organizations the communities are able to insulate important actors
from liability, while at the same time they provide for legally enforceable
responsibility of project owners concerning the quality of software included
in the official versions. Also, by maintaining programs properly, the commu-
nities make it possible for many parties to offer warranties and services on
top of these programs. In such a way, the communities contribute towards a
competitive market that can stimulate production of better quality products.
So, properly organized communities are able to address the issue of liability
rules.

The impact of eGovernments on liability rules depends on which type of
an eGovernment is introduced. The government may increase the risk of
liability for Free Software by using a closed standard, that is by introducing a
Closed eGovernment. The use of Free Software that attempted to interoper-
ate using such a standard could be subject to direct or indirect liability, either
towards the government, or towards third parties. Conversely, Open eGov-
ernments are largely neutral towards liability rules. Using an open standard
in government communications makes it possible for Free Software to inter-
operate without risking additional standards-related liability, but liability
under other grounds is not affected. Even while introducing Supra-Open
eGovernment the government does not affect liability rules directly, although
it may stimulate an increase in the quality of software in much the same way
as communities do. Nevertheless, if the government proceeds without due
care, it may negatively affect the market for warranties and services related
to Free Software, even in a Supra-Open eGovernment.

(2) Possible improvements to address liability rules
We find it necessary to propose improvements in the framework that would
not allow to prevent the operation of the market for warranties and services
related to Free Software. In particular, the improvements should contribute
towards a proper organization of software communities so that they contin-
ue to be able to remove any defects in the software promptly. These improve-
ments can include government stimulation performed through diligent pro-
curement of Free Software together with the warranties and services. Given
the fact that Closed eGovernments affect liability rules to a detriment of user
freedoms, we find it necessary to include in the improved framework rules

Towards_an_Improved_def.indd 186Towards_an_Improved_def.indd 186 23-02-2010 10:49:3523-02-2010 10:49:35

187Proposal of an improved regulatory framework

that prevent the introduction of Closed eGovernments. In case such an eGov-
ernment is already operating, we should propose improvements that allow
for a swift transformation from a Closed eGovernment to an Open eGovern-
ment.

6.1.7 Non-legal regulators of software

(1) Inefficiencies resulting from non-legal regulators of software
Non-legal regulators limit the freedoms and they can be used to restrict the
freedoms in many ways. Here, we recall the most important examples dis-
cussed in this thesis. For instance, the freedoms can be restricted using the
architecture. This happens when a Free Software program is used to provide
a service or when it is embedded in a device. Additionally, the market causes
integration costs (a type of transaction costs) that burden the maintenance of
Free Software projects. Generally, both the architecture and the market limit
the effectiveness of some of the rules in the framework, such as copyleft. In
particular, they create barriers that prevent many users to exercise the free-
doms individually.

As we already noted, software communities evolve as a result of the
attempts of individual users to remove various non-legal restrictions of user
freedoms that prevent the individual exercise of the freedoms. In particular,
the communities attempt to cover or avoid transaction costs, as well as they
attempt to constitute a substitute source of Free Software without restric-
tions. We found that the communities do not remove the non-legal regula-
tors from the framework. But properly organized communities are able to
provide for maintenance of Free Software despite these regulators. For that
purpose it is crucial that the communities are organized properly. However,
many communities are unable to avoid restrictions, even if they are properly
organized. This is in particular the case if the restriction of the freedoms is a
result of linking Free Software with services or embedding it in a device.

The impact of eGovernments on non-legal regulators depends on which
type of an eGovernment is introduced. A Closed eGovernment usually
makes it technically impracticable to exercise the freedoms or simply increas-
es the costs of the freedoms. It is a mix of architecture and market regulation,
which often permeates to other software, not just the software used for gov-
ernment communications (the spill-over effect). Conversely, Open eGovern-
ments are to a large extent neutral towards non-legal regulators. This means
that they do not prevent non-legal limitations and restrictions from opera-
tion. However, a diligent government may introduce a Supra-Open eGov-
ernment in such a way that limits the negative impact of the non-legal regu-
lators on user freedoms. In order to do this, the government has to pay due
care to how the eGovernment is introduced exactly.

(2) Possible improvements to address non-legal regulators of software
Due to the existence of non-legal regulators, we find it necessary to propose
improvements in the framework directed both (1) at software communities

Towards_an_Improved_def.indd 187Towards_an_Improved_def.indd 187 23-02-2010 10:49:3523-02-2010 10:49:35

188 Chapter 6

and (2) at eGovernments. The improvements should support the communi-
ties in their efforts to deliver Free Software without restrictions. In particular,
the communities should be able to substitute services or devices that are
used to restrict user freedoms. This means that the improvements should
support the communities in organizing themselves in order to maintain Free
Software programs. Given the fact that Closed eGovernments restrict user
freedoms by affecting non-legal regulators, we find that it is necessary to
include in the improved framework rules that prevent the introduction of
such eGovernments. If a Closed eGovernment is already operating, we
should propose improvements that allow for a swift transformation from a
Closed eGovernment to an Open eGovernment.

6.1.8 Closed standards

(1) Inefficiencies resulting from closed standards
Closed standards restrict user freedoms as far as users attempt to exercise
the freedoms and provide means for interoperability at the same time.
Closed standards depend on a combination of (1) trade secrets, (2) patents,
(3) scrambling of interoperability information, and (4) lock-ins. Developers
of Free Software may sometimes succeed in implementing a closed standard
in a Free Software program, but the use of such a program is either impracti-
cal or legally questionable (if not straightforwardly illegal). The impact of
closed standards on user freedoms might be overcome using reverse engi-
neering, if the interoperability information is scrambled or protected using
trade secret. But reverse engineering is usually not a practical method, and it
may even not be sufficient to reverse-engineer a standard if it is covered by a
patent. The fact that patents are legal monopolies creates incentives for pat-
ent holders to direct a standard setting into adopting closed standards cov-
ered with their patents. Afterwards, they are able to control whether and
how users exercise their freedoms when using the standard. As a non-exclu-
sive alternative to patents, designers of standards can use switching costs in
order to lock users in to a closed standard and prevent their migration to
open standards. Sometimes, it might be possible to open a closed standard
using the essential facilities doctrine, but the doctrine has material limita-
tions.

Closed standards lead in particular to restrictions on maintenance of
software. They make it illegal or impractical for individual users to maintain
Free Software, as far as interoperability is concerned. Communities experi-
ence the burden of closed standards as well, but they are also able to mini-
mize it to some extent. Software communities affect closed standards indi-
rectly. Some of them may stimulate designers of standards to make their
standards open, instead of seeking ways to capitalize on restrictions. Big and
robust communities may even prevent wider adoption of closed standards
and contribute to the popularity of open standards. However, it seems more
likely that the communities have neutral effect on closed standards. Most
communities can at best succeed in enabling users to use open standards in

Towards_an_Improved_def.indd 188Towards_an_Improved_def.indd 188 23-02-2010 10:49:3523-02-2010 10:49:35

189Proposal of an improved regulatory framework

their projects, but cannot prevent the use of closed standards in other soft-
ware.

eGovernments are capable of affecting closed standards both to a benefit
of user freedoms, as well as to a detriment of user freedoms. If a Closed
eGovernment is introduced, the government helps the designer of the given
closed standard to establish and maintain a lock-in both on the government
and on the users of government services. Given the likely spill-over effect of
the Closed eGovernment on other software, this stimulation can prevent
open standards from being designed or becoming popular. However, the
government might attempt to use a closed standard and not restrict user
freedoms at the same time. This can be done through a Semi-Closed eGov-
ernment, which is based on a facility that provides translation from the
closed standard to an open standard at the point where interconnection with
users takes place. Nevertheless, Semi-Closed eGovernments do not remove
all restrictions related to closed standards, and they are not easy to introduce
in practice.

Open eGovernments make the restrictions related to closed standards
not applicable to users of government services. Such eGovernments do not
remove the closed standards from the framework, but under certain circum-
stances they may prevent such standards from becoming popular. The gov-
ernment may even participate in SSOs and stimulate them not to design
closed standards. This, however, requires diligence, since such a participa-
tion might create additional incentives to corrupt the procedure and direct it
to the design of closed standards. Even Supra-Open eGovernments do not
remove closed standards from the framework.

For an adequate protection of user freedoms closed standards have to be
substituted with open standards. Open standards allow to exercise the free-
doms and provide means for interoperability at the same time. Only prop-
erly organized standard setting performed by SSOs can lead to open stan-
dards (as summarized above, reverse engineering and the essential facilities
doctrine are not sufficiently effective). In order to design an open standard,
SSOs have to (1) follow an open decision-making procedure, (2) scrutinize
standards in search of any related restrictions, and (3) eliminate the restric-
tions. It follows that the SSOs should follow properly drafted policies. But
even most diligent SSOs are usually unable to enforce their policies against
third parties, not to mention problems in enforcing the policies against the
participants of an SSO. Unless the SSOs succeed in designing open standards
and unless such standards become popular, user freedoms are restricted.

(2) Possible improvements to address closed standards
The current framework contains rules that result in the design of open stan-
dards and that increase their popularity. But given the opposite rules that
lead to closed standards, we find it necessary to propose improvements that
would promote open standards better. Since we found that an open standard
setting is the most promising mechanism for the design of open standards
the improvements should be mostly directed at SSOs. SSOs that design open

Towards_an_Improved_def.indd 189Towards_an_Improved_def.indd 189 23-02-2010 10:49:3523-02-2010 10:49:35

190 Chapter 6

standards should be promoted. The improvements should guarantee that
SSOs adopt proper internal regulations (policies) and such regulations
should be observed by the participants. This implies exploring measures
that make the regulations more effective. In particular, third parties should
be prevented from making a closed standard out of a standard designed by
an SSO under the proper regulations. Given the fact that the regulations of
SSOs usually do not bind third parties, additional improvements should be
provided for, which are able to affect third parties.

However, it is not easy to propose improvements capable of reaching the
above goals directly, that would be practicable at the same time. First, many
entrepreneurs participate in the SSOs precisely because of the expected roy-
alties from patents material to standards. It would probably not suffice to
remove such an incentive in order to make SSOs design only open standards.
So, any proposed improvements should provide for an alternative incentive,
which would still be compatible with open standards. Second, SSOs cannot
afford regulating the conduct of the participants too far because this could
lead to a cartel, or trigger competition regulations in another way. So, any
improvements should not increase this risk, while at the same time effec-
tively bind the participants. These are often mutually exclusive goals. Third,
non-participants could be affected if only extreme measures were imple-
mented. Such extreme measures would encompass (1) amending patent
laws with exceptions from the patentable-subject matter in relation to stan-
dards, (2) extending of the essential facilities doctrine, and (3) prohibiting
using trade secrets or scrambling of interoperability information. We are not
convinced that even these extreme measures would reach the goal of pro-
moting open standards, not to mention that many of them would require
reformulation of whole legal systems.

Although we do not abandon direct measures completely, we find it
advisable to explore indirect measures as well. We find that there are many
improvements that could be provided for by the government during the
introduction of an Open eGovernment, which would not trigger the dilem-
mas related to direct measures. Namely, when discussing Open eGovern-
ments in Chapter 5 we noted that if the government uses an open standard it
may stimulate designers of standards, in particular SSOs, to make open stan-
dards rather than closed standards. In other words, government demand can
create incentives that could substitute the incentive related to enforcing pat-
ents material to standards. This can increase the popularity of open stan-
dards especially if the open standard chosen by the government can be used
in other types of communications as well. At the same time, given the fact
that open standards can be implemented by everyone, such a stimulation
should not affect anyone negatively. It follows that we should propose
improvements in the framework that lead to introduction of Open eGovern-
ments. If there is a Closed eGovernment already present, the improvements
should lead to a swift transformation into an Open eGovernment.

Given the already existing rules that lead to open standards, which are
promoted by software communities, our improvements should not prevent

Towards_an_Improved_def.indd 190Towards_an_Improved_def.indd 190 23-02-2010 10:49:3523-02-2010 10:49:35

191Proposal of an improved regulatory framework

the communities from operation. If possible, the government should prop-
erly introduce a Supra-Open eGovernment, in which it would cooperate
with the communities in promoting open standards. This means that we
should propose regulation of eGovernments that provides for the introduc-
tion of such eGovernments. Obviously, the improvements should explicitly
prevent the introduction of Closed eGovernments, since such eGovernments
directly contribute to lock-ins to closed standards.

6.1.9 Regulatory environment

(1) Inefficiencies resulting from the regulatory environment
Every jurisdiction follows its own law. As a result, user freedoms may vary
throughout jurisdictions. More precisely, we can expect different impact on
user freedoms of the identified limitations and restrictions under different
national laws. As noted earlier, we are not aware of any law that would make
Free Software licensing impossible at all, but the laws can result in a differ-
ent scope of the rights and obligations of various actors and the audience in
the software scene. This does not make the exercise of the freedoms impos-
sible, but it increases their costs. In particular, it results in a decrease of the
number of prospective maintainers of Free Software that would like to
undertake maintenance involving interstate issues. In other words, differ-
ences between national laws serve as resistors of the worldwide flow of Free
Software.295

Software communities operate in such a situation. They often include
participants from all over the world. Such a multinational membership may
even lead to an increase of the complexity of the legal issues as compared to
a situation when users attempt to exercise the freedoms individually. Indeed,
the communities as such do not affect the differences between national laws
and have to take them into account as any other actor in the software scene
operating worldwide. But at the same time the communities have developed
customs and trade practices that are often followed by many actors regard-
less of what the applicable national law has to say.

eGovernments are usually introduced nationwide, not worldwide. So,
the governments rarely have to take into account more than one national
law. This, however, may be the case if a particular piece of software is subject
to another law pursuant to a choice of law clause. But the major impact of
the regulatory environment on eGovernments usually means only that a
particular government has to adjust its eGovernment strategy to its own
national law. It means that an eGovernment scheme designed for a particu-
lar jurisdiction might not work properly in another jurisdiction.

295 See: Eben Moglen, Anarchism Triumphant: Free Software and the Death of Copyright, at:

http://emoglen.law.columbia.edu/my_pubs/anarchism.html (proposing “Moglen’s

Metaphorical Corollary to Faraday’s Law”: “Wrap the Internet around every brain on the

planet and spin the planet. Software fl ows in the wires. It’s an emergent property of

human minds to create.”)

Towards_an_Improved_def.indd 191Towards_an_Improved_def.indd 191 23-02-2010 10:49:3523-02-2010 10:49:35

192 Chapter 6

(2) Possible improvements to address the regulatory environment
We find it necessary to propose improvements that would remove the nega-
tive impact that the differences between national laws have on the freedoms.
This requires a harmonization of the regulatory environment. If under a par-
ticular national law there is a provision that restricts user freedoms, the
improved framework should result in such a provision being removed or
amended. In this thesis it is not possible to identify all such provisions in
every national law that could apply. In the course of our analysis we identi-
fied some examples, and we will return to them when selecting improve-
ments in the next section. We also found that exercise of the freedoms is not
materially affected by the differences between national laws in properly
organized software communities. As already noted, it seems that much of
collaboration within communities is regulated either by internal regulations
(by-laws) or by customs and trade practices, and there is no need to resort to
external legal rules. Even in case of a disagreement between participants
there is rarely a need to adjudicate, given the right to fork and the fact that dis-
sidents from a community can establish their own, competing community.
The differences between these laws will become important if communities
fail to regulate their participants using by-laws, customs, and trade practices
only.

It follows that apart from proposing improvements that would remove
the most extreme restrictions of the freedoms from particular national laws,
we should explore improvements that would support the communities in
maintaining their projects without resorting to adjudication under national
laws too often. At the same time, when a Free-Software-related dispute is
brought to court eventually, the court should be required to take into
account the custom and trade practices of the communities, so that different
national laws could be applied in a harmonized manner in relation to user
freedoms.

6.1.10 Evaluation of the inefficiencies of the current framework

Under the current framework, user freedoms are not adequately protected
for four reasons. First, there are limitations and restrictions present in the
framework itself. Second, these limitations and restrictions are not removed
from the framework by software communities, although properly organized
communities are able to avoid or at least minimize many of them. Third,
some of the limitations and restrictions are reinforced by Closed eGovern-
ments. Fourth, Open eGovernments are not capable of removing all limita-
tions and restrictions, unless the governments employ not only the domini-
um, but also the imperium or the legislative and the judiciary branches.

The following limitations and restrictions are the least affected: (1) soft-
ware-related patents, (2) closed standards, and (3) the regulatory environ-
ment. However, the proposal of the improved framework should contain
improvements related to all identified inefficiencies. So, we proceed to
design appropriate improvements to remedy all identified inefficiencies.

Towards_an_Improved_def.indd 192Towards_an_Improved_def.indd 192 23-02-2010 10:49:3523-02-2010 10:49:35

193Proposal of an improved regulatory framework

6.2 Appropriate improvements in the framework

In this section we design in detail appropriate improvements that address
the inefficiencies discussed in the previous section. We group the improve-
ments into the following six classes: (1) proper organization of communities,
(2) regulation of eGovernments, (3) Free Software legislation, (4) restriction
of software-related patents, (5) promotion of open standards, and (6) inter-
nationalization of the framework.

6.2.1 Proper organization of communities

Proper organization of communities is necessary for the adequate protection
of the freedoms. It is in particular necessary to overcome such inefficiencies
of the current framework as license proliferation and incompatibilities,
license revocability, inter partes nature of licenses, contracts with distributors,
liability rules, as well as the non-legal regulators. Proper organization of
communities encompasses adoption of licensing policies that should be
strictly followed when performing the legal audit of all programs included
in community projects. Given the fact that many prominent communities
have already elaborated such policies and published them, we propose that
other communities study these policies and build upon them. As a result,
each community should adopt their own tailored policies. The policies
would regulate requirements for any contributions accepted to the project,
both in terms of acceptable licenses, as well as in terms of the procedure for
clearing copyrights required from participants in the community.296

All communities operate in a changing legal environment. So, the com-
munities should elaborate a method for amending their policies if there is
such a need. Also, the policies should allow the legal audit to be performed
in a continuous manner, not as a one-time activity. In case the policies are
amended, appropriate procedures should be in place to verify decisions
undertaken on the basis of the previous policies. A good quality policy
would allow the community at any given moment of time to identify to
whom the copyrights to a particular contribution belong, and to confirm
whether the community is in compliance with all applicable obligations. In
particular, the policy should allow the community to avoid any incompati-
bilities between licenses.

Communities should also make sure that the policies are followed in
practice. Namely, only contributions that meet the specified criteria should
be accepted by project owners to the official version. To this end, project
owners should follow best community practices such as documenting the
legal audit, communicating their decisions to the public, providing reason-
ing and review of decisions. It should be considered whether to make these

296 See: Software Freedom Law Center, A Legal Issues Primer for Open Source and Free Software
Projects, at: http://www.softwarefreedom.org/resources/2008/foss-primer.html.

Towards_an_Improved_def.indd 193Towards_an_Improved_def.indd 193 23-02-2010 10:49:3523-02-2010 10:49:35

194 Chapter 6

the legal obligations of project owners, for the performance of which they
could be responsible and accountable.297 Definitely, these obligations should
be mirrored with certain legal rights of project owners against community
participants, if the prestige of being allowed to contribute to the official ver-
sion is not sufficient to stimulate the participants to follow the lead of project
owners. Regulation of rights and obligations of project owners can be pro-
vided for by incorporation of umbrella organizations, with sufficiently elab-
orate by-laws. The by-laws should in particular regulate the election of proj-
ect owners,298 their term of office, control over them, and their rights and
obligations.299

297 Customs and trade practices already existing in the communities should be taken under

consideration. If a community is capable of properly organizing itself without resorting

to legal rules, legal regulation might not be necessary at all. See: Karl Fogel, Producing
Open Source Software. How to Run a Successful Free Software Project, at: http://producin-

goss.com/. See also: Lucie Guibault, Ot van Daalen, Unraveling the Myth around

Open Source Licenses. An Analysis from A Dutch and European Law Perspective

(TMC Asser Press 2006) 27.

298 By-laws of umbrella organizations should codify already existing methods of acquiring

project ownership. Raymond (2000) enumerates three of them: (1) founding a project, (2)

“passing the baton”, and (3) claiming ownership of a project (Eric S. Raymond, Home-
steading the Noosphere, at: http://www.catb.org/~esr/writings/cathedral-bazaar/home-

steading/). First, founding a project may be done by writing a program from scratch by

one hacker or one fi rm alone. The most prominent example is probably the Linux kernel.

Sometimes, the program is prepared by a group of individuals or fi rms who should then

be jointly considered as project founders. For example, the Apache WWW Server, alt-

hough the basis for that project was the httpd server prepared initially by an academia

and released as public domain later on. Actually, there are even cases when Free Software

projects were founded by fi rms that previously developed them as proprietary software.

For example, Netscape (released as Mozilla), OpenOffice. Second, “passing the baton”

means transferring of project ownership to an individual or a group appointed by a pre-

vious owner. Third, according to Raymond, claiming ownership occurs in situations

when the previous owners abandon the project without transferring the ownership to

anyone. This may be a result of the owners losing interest in exercising their “right recog-

nized by the community” and abandoning the project. Examples of the second and third

method can be often found within Debian, where various packages often change their

maintainers. See also: Andrew M. St. Laurent, Understanding Open Source and Free

Software Licensing (O’Reilly 2004) 174.

299 According to Raymond (2000), the social status of a particular community participant

depends on the value of contributions (See: Eric S. Raymond, Homesteading the Noosphere,

at: http://www.catb.org/~esr/writings/cathedral-bazaar/homesteading/). It is often

the case that the most valuable contributors have the most to say about the development.

By-laws should regulate such a meritocracy, not substitute it. Also, various authors, such

as Levy (1985), suggest that there exists a hacker ethic, consisting of norms such as “all

information should be free”. (Steven Levy, Hackers: Heroes of the Computer Revolu-

tion, (New York, Dell, 1985). See also: Eric S. Raymond, A Brief History of Hackerdom, at:

http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-history/index.html; Eric

S. Raymond, How to Become a Hacker, at: http://www.catb.org/~esr/writings/faqs/

hacker-howto.html). See FN 217; some communities use ethics as a criterion of granting

recognition to project owners. Communities should adopt by-laws of their umbrella

organizations in line with the ethics of community participants.

Towards_an_Improved_def.indd 194Towards_an_Improved_def.indd 194 23-02-2010 10:49:3523-02-2010 10:49:35

195Proposal of an improved regulatory framework

Apart from taking care of license proliferation and incompatibilities,
communities should include in their policies regulations that stimulate licen-
sors not to revoke their licenses. For example, communities could require
from some or all contributors to provide additional pledges not to revoke the
licenses. Also, copyright assignments to umbrella organizations could be
used more often to concentrate copyrights to the project in one entity.300 It is
crucial, however, that such an organization is at the same time legally bound
to continue making the project available for the community as Free Software.
Otherwise, such a concentration might pose a threat to user freedoms. So,
the by-laws of umbrella organizations should explicitly regulate the exercise
of copyrights to the project held by the organization and the rules for trans-
ferring them from community participants to the organization. For example,
the by-laws could bind the organization not to revoke the license or other-
wise guarantee that the organization will not misuse the copyrights.

A good licensing policy and institutionalization, such as by incorporating
an umbrella organization with sufficiently elaborate by-laws, are necessary
conditions of a properly organized software community. But they are not suf-
ficient, and the remaining necessary conditions are non-legal. Namely, appro-
priate management structure, communication channels, infrastructure for the
project, etc., should be adopted. Each community should adopt these mea-
sures on the basis of their specific needs, while taking into account the teach-
ings of management studies (in particular project management) and the tech-
nology currently available.301 Actually, these non-legal arrangements may
prove more efficient in resolving many inefficiencies of the current frame-
work than any legal arrangements. In particular, a community can be prop-
erly organized without a formal incorporation of an umbrella organization.

But discussing the non-legal issues further is beyond the scope of this
thesis. In this thesis we focus on legal issues, and we analyse non-legal issues
only to the extent that it allows us to identify the practical impact that legal
rules may have on the freedoms under various circumstances. We should
only remind that while designing a community’s structure, participants
should make it an efficient source of properly working Free Software pro-
grams. The organization of the community should stimulate the community
copyleft mechanism. It should also promote competitiveness in the Free Soft-
ware market by effectively covering integration costs, by stimulating dis-

300 See: Bruce Byfi eld, FSFE’s Fiduciary License Agreement is no panacea, at: http://www.linux.

com/feature/60129. See the Fiduciary License Agreement itself at: http://www.fsfeu-

rope.org/projects/ftf/FLA.en.pdf.

301 See e.g., Oliver E. Williamson, Why Law, Economics, and Organization?, at: http://papers.

ssrn.com/paper.taf?abstract_id=255624; Oliver E. Williamson, The Economics of Govern-
ance, at: http://www.aeaweb.org/annual_mtg_papers/2005/0107_1645_0101.pdf; Oliv-

er E. Williamson, The Theory of the Firm as Governance Structure: From Choice to Contract, 3

Journal of Economic Perspectives 171 (Summer 2002). See also: Giampaolo Garzarelli,

Open Source Software and the Economics of Organization, at: http://ideas.repec.org/p/

wpa/wuwpio/0304003.html.

Towards_an_Improved_def.indd 195Towards_an_Improved_def.indd 195 23-02-2010 10:49:3623-02-2010 10:49:36

196 Chapter 6

tributors not to impose restrictive contract on users, by allowing the warran-
ties and services market to operate, as well as by minimizing the likelihood
of restricting the freedoms using the architecture.

Here, we may conclude that we end up with the proposal of three
improvements that lead to proper organization of software communities.

(1) The communities should continue to elaborate good licensing poli-
cies.

(2) The communities should continue to follow the policies, for exam-
ple by incorporating umbrella organizations that regulate the exer-
cise of project ownership accordingly.

(3) The communities should organize themselves according to the
teachings of management studies.

These improvements should be provided for within all communities. We
remark that many communities have already introduced these improve-
ments. As far as such communities are concerned we propose that they keep
up the good work, while other communities follow their example.

6.2.2 Regulation of eGovernments

For the adequate protection of user freedoms, the introduction of eGovern-
ments should be regulated. Most importantly, governments should be pro-
hibited from introducing Closed eGovernments. To that end, an explicit obli-
gation of governments not to use closed standards should be provided for in
the law.302 If a Closed eGovernment is already operating, governments
should be mandated to transform it to an Open eGovernment as soon as
possible. It should be made possible to perform this transformation by intro-
ducing a Semi-Closed eGovernment. Namely, whenever a closed standard is
already used in government communications, or if it is allowed as a narrow
exception, governments should be obliged to provide for a translation facil-
ity. This boils down to using an open standard substitute with any closed
standard used in eGovernment. Only in such a way, the governments could
minimize the spill-over effects resulting from Closed eGovernments.

Apart from the above described specific legal obligations, more general,
though still legally binding, guidelines for introducing Supra-Open eGov-
ernments should be provided for. Generally, such an extreme Open eGov-
ernment does not have to be mandated,303 but if the government decides to

302 It could be coupled with narrow exceptions, subject to obligations such as the “comply or

explain and commit” obligation. For an explanation of this obligation see: EZ, at: http://

www.ez.nl/Onderwerpen/Betrouwbare_telecom/Open_Standaarden_en_Open_Source_

Software/Ontwerptekst_instructie_Comply_or_explain_commit (in Dutch).

303 It is advisable to mandate the introduction of Supra-Open eGovernments only if it is

proven that the limitations and restrictions of user freedoms cannot be effectively

removed using the other improvements that we propose in this chapter.

Towards_an_Improved_def.indd 196Towards_an_Improved_def.indd 196 23-02-2010 10:49:3623-02-2010 10:49:36

197Proposal of an improved regulatory framework

introduce it, it should be performed diligently. Otherwise, it could affect user
freedoms negatively. Most importantly, if governments acquire rights to soft-
ware, they should be required to make sure the rights allow for its unencum-
bered development, distribution, and use. Regulation of eGovernments
should also cover the performance of the legal audit of licenses by the gov-
ernment. Here, the guidelines can build upon already existing community
policies. The government may even collaborate in their drafting with com-
munities active in a given jurisdiction. Government audit of licenses should
be transparent, and its results should be made available publicly. Addition-
ally, the guidelines should regulate Free Software licensing performed by the
government itself. In particular, the government should be obliged to coor-
dinate any license drafting with already existing community efforts, in order
to prevent further proliferation and incompatibilities of licenses. The guide-
lines should also oblige the government to procure Free Software under a
more popular and compatible license if there are two equivalent programs
available.

Moreover, guidelines for eGovernments should cover government par-
ticipation in Free Software development, if the government engages in such
a participation. In order to promote proper organization of communities, the
government should adhere to such communities that are found to be most
properly organized already, or to such communities that promise to organize
themselves properly, in particular by showing commitment to follow good
licensing policies. So, the government should elaborate criteria for assess-
ment of existing Free Software projects, perform a survey of them, and iden-
tify projects maintained by properly organized communities. The criteria
should include both legal issues, as well as issues related to project manage-
ment and the quality of software. Thereafter, the government should exam-
ine how it is possible to participate in the identified communities. The gov-
ernments could also support the community copyleft mechanism. For that
purpose, the guidelines should lay down procedures for governments to be
followed when contributing to community projects.

Furthermore, governments should be obliged to scrutinize contracts
with distributors who deliver software to the government. The governments
should not be allowed to accept restrictions of user freedoms included in
such contracts, if they are not coupled with prevalent benefits. In any case,
governments should not accept restrictions which have a spill-over effect on
other users. The government should require in particular that the software
delivered is free of any architectural restrictions on user freedoms. For an
effective removal of the restrictions the government should be allowed to
collaborate with the communities in the development and distribution of
Free Software. The collaboration may encompass the creation of substitutes
to services or devices that restrict the freedoms. Additionally, governments
should stimulate the market for warranties and additional services related to
Free Software by requiring that Free Software delivered to the government is
accompanied with such benefits.

Towards_an_Improved_def.indd 197Towards_an_Improved_def.indd 197 23-02-2010 10:49:3623-02-2010 10:49:36

198 Chapter 6

Here, we may conclude that we end up with the proposal of two improve-
ments that lead to the introduction of Open eGovernments.

(1) Governments should be legally prohibited from introducing Closed
eGovernments. A swift transformation from existing Closed eGov-
ernments to Open eGovernments should be provided for.

(2) If the government decides to introduce a Supra-Open eGovern-
ment, guidelines should be provided in order to perform this dili-
gently, so that user freedoms are not affected negatively.

The first improvement can be performed by the legislative (both in the terms
of providing or clarifying the obligation to use open standards in the appli-
cable law, as well as in the terms of legislating effective measures for the
performance and enforcement of such an obligation). The second improve-
ment requires that the government diligently exercises the dominium and the
imperium powers, although it is also possible that such guidelines are pro-
vided for in the legislative.

6.2.3 Free Software legislation

Many inefficiencies of the current framework, such as license proliferation
and incompatibilities, license revocability, and the inter partes nature of
licenses can be addressed by the legislative. Precisely speaking, we propose
to amend the law if the other improvements that we propose in this chapter
fail to remove these limitations and restrictions. Then, the copyright law,
contract law, or corporate law could provide for various default terms relat-
ed to Free Software. For example, if a copyright holder published a program
under certain circumstances, users would be allowed to exercise their free-
doms as a matter of law. Terms of use provided for in the legislation should
be compliant with the FSD and mirror one or some of the most popular mod-
el licenses. This could contribute to a decrease of the number of licenses and
to an increase of their compatibility. The consequences of the applicability of
such a law could be made irrevocable, or the law could allow the copyright
holder to claim back the default copyright protection only under specific
narrow exceptions. This would affect license revocability.

Also, the freedoms could be turned into erga omnes rights as a result of
the legislation, which would affect its current inter partes nature. How to do
it exactly depends on the current status of the applicable law. In any case,
adequate protection of user freedoms requires enhancement of the enforce-
ability of copyleft clauses. Generally, if the applicable law does not provide
adequate standing for licensors and users in copyleft enforcement cases, it
should be amended to provide for such a standing explicitly. The law should
not require that all licensors stand in order to enforce copyleft, and it should
be allowed for a user to pursue such a case without having to rely on licen-
sors. Users, being the intended beneficiaries of copyleft, should be allowed to
invoke the same legal claims as licensors (copyright holders). Additionally,

Towards_an_Improved_def.indd 198Towards_an_Improved_def.indd 198 23-02-2010 10:49:3623-02-2010 10:49:36

199Proposal of an improved regulatory framework

if the applicable law does not contain such a provision, remedies for copyleft
infringement should explicitly include specific performance, that is the per-
formance of copyleft obligations.

Moreover, if in a particular jurisdiction private enforcement of copyleft by
licensors or users would constitute too much of a burden, other measures
should be explored. For example, it should be made clear that copyleft
infringement can be treated as a breach of copyright, which in many jurisdic-
tions leads to criminal liability.304 This would allow for a more effective copy-
left enforcement. However, in order to maintain balance and not impose free-
doms on users who do not want them at all, copyleft should not be enforced
ex officio, but only upon a motion of an interested party (a licensor or a user).
In other words, either a licensor or a user should be required to initiate any
copyleft enforcement procedures. The law should also not interfere, if the par-
ties reach a settlement compatible with user freedoms.

Here, we may conclude that we end up with the proposal of two
improvements that address inefficiencies such as license proliferation and
incompatibilities, license revocability, and the inter partes nature of the
licenses.

(1) The law should be amended with provisions related specifi cally to
Free Software (such as the ones discussed in this subsection).

(2) Such a law should be enforced by the government using its imperium,
as well as the judiciary branch.

We propose to implement both these improvements only if the other
improvements proposed in this thesis fail to remove the respective ineffi-
ciencies of the current framework.

6.2.4 Restriction of software-related patents

Adequate protection of user freedoms requires that software-related patents
cannot be used to restrict them. There are patent laws that exclude computer
programs from the patentable subject matter in one way or another. The EPC
and Polish law are important examples. Also, many stakeholders, not only
Free Software advocates, often propose that such provisions are provided
for or expanded to make it clear that software-related patents cannot be
granted. So, these provisions, where they exist, should be strictly followed.
All drafters of amendments to patent law should seriously consider limiting

304 See, e.g., Polish Copyright Act Art. 116, which criminalizes unauthorized distribution of

verbatim or modifi ed copies of copyrighted works. A qualifi ed type of this crime is pros-

ecuted ex offi cio, while generally its prosecution requires a motion of the copyright holder

(or a collecting society). Distribution of a Free Software program in breach of its license

(such as in breach of copyleft clause) constitutes unauthorized distribution within the

meaning of this provision (especially given the automatic termination in case of a breach

provided for in many Free Software licenses).

Towards_an_Improved_def.indd 199Towards_an_Improved_def.indd 199 23-02-2010 10:49:3623-02-2010 10:49:36

200 Chapter 6

the patentable subject matter by finding a proper balance between the inter-
ests of all stakeholders, including the developers, distributors, and users of
Free Software.

Apart from observing or providing for the provisions such as above, the
quality of patents should be improved. It should be made more easy to
oppose a patent application and to invalidate already granted patents on the
grounds that the patentability criteria are not met.305 Also, patent offices
should be equipped with sufficient resources to be able to scrutinize incom-
ing applications diligently. Patent laws that allow to grant patents without
performing any scrutiny of claimed inventions, or which allow that only a
minimal scrutiny is performed, should not stand. Obviously, many patent
offices will not be able to perform a thorough scrutiny of all applications,
which are being filed in an increasing number. So, the offices should be
encouraged to collaborate with each other to exchange patent information
and expertise. The collaboration should be expanded to allow involvement
of experts from other patent offices (or maybe even from the general public)
in the review of applications and in submitting prior art. In particular, patent
offices should closely observe community efforts related to patents and sup-
port them where possible.306 As a result of gathering and combining patent-
related information from various sources, examiners would be able to scruti-
nize applications more diligently.

We indicate that patent holders themselves are most fit for identifying
that their patents are infringed. So, it is advisable to introduce a legal obliga-
tion for patent holders to notify their patents to alleged infringers, if they
want to be allowed to enforce these patents. In other words, enforceability of
a patent should be conditioned upon such a notification. For this purpose, a
special repository of software should be established.307 Projects submitted to
such a repository would benefit from the following safe harbour regulation.
Within a certain period after a project (or its improvement) is submitted,
every patent holder would be required to notify any infringement alleged in
relation to the project.308 After notification, the project would be given an
additional grace period for developing a workaround or to remove the pat-
ented technology completely. If the infringement is not notified, or if the
workaround is not objected by the patent holder, there should be a statute of
limitations on the enforceability of the patents in question against every

305 WIPO (Standing Committee on the Law of Patents), Report on the International Patent Sys-
tem, (3 February 2009, SCP/12/3 Rev. 2), p. 56-57.

306 WIPO (Standing Committee on the Law of Patents), Report on the International Patent Sys-
tem, (3 February 2009, SCP/12/3 Rev. 2), p. 54.

307 This repository does not have to be restricted to Free Software only.

308 Holders of newly granted patents could be given longer time in order to scrutinize all

projects present in the repository to date. At the same time applicants for new patents

should be obliged to perform an analysis of the repository before submitting an applica-

tion and indicating how their claimed invention differs from the programs found in the

repository in order to allow for more effective review of the applications. Such a reposi-

tory would constitute an important source of prior art.

Towards_an_Improved_def.indd 200Towards_an_Improved_def.indd 200 23-02-2010 10:49:3623-02-2010 10:49:36

201Proposal of an improved regulatory framework

developer, distributor, or user of the project.309 Namely, the patent holder (1)
would not be allowed to obtain an injunction against them, or (2) would not
be allowed to claim any royalties or damages, or (3) both.310

Within such a safe harbour, conciliation or arbitration procedures should
be performed in case the proposed workaround is not found satisfactory for
patent holders, or if someone questions the applicability of the notified pat-
ent towards a particular project. In case the parties find it helpful, negotia-
tions should be supported by a mediation in order to allow them to agree on
a patent license which would be satisfactory from the point of view of user
freedoms. Thereafter, the licensed patent should be included in a patent pool
available for any interested party who would like to use it in relation to Free
Software. For that purpose, model patent licenses should be elaborated.311 It
should be discussed whether such licenses could provide for patent royal-
ties. Indeed, it may be the case that not all royalties are incompatible with
user freedoms. For example, a capped sum depending on revenues might
allow to exercise user freedoms without major problems.312

Here, the question arises, how to provide for such a safe harbour in prac-
tice? In order to be effective, the safe harbour should be based on a firm legal
basis. In order to affect patents worldwide, the legislatives of all jurisdictions
should act together. Definitely, such a worldwide patent law reform will not
be an easy task.313 But it may suffice for some major jurisdictions to perform

309 This proposal is similar to the already existing “notice and take-down” regulations, exist-

ing under the DMCA Sec. 512, the E-Commerce Directive, and in the Directive’s national

implementations. Instead of a statute of limitations, a license of right could be provided

for.

310 Similar limitation of rights of patent holders has been endorsed by the IBM in their con-

tribution towards the discussion about the European Community Patent. It was devel-

oped after one of the proposals made by EPO and called “Soft IP” (See: IBM, The European
Community Patent revisited Discussion paper from IBM, at: http://www.epip.eu/confer-

ences/epip02/lectures/European%20Interoperabily%20Patent%201.1.pdf).

311 See the GPLv3 and its patent clause.

312 See: David Worthington, TomTom can license FAT without violating GPL, at: http://www.

sdtimes.com/blog/1364; see also: David Worthington, Experts: Microsoft’s FAT licensing
terms might violate GPL, at: http://www.sdtimes.com/link/33327.

313 The discretion of national legislatives to limit patents are subject to such provisions as the

Paris Convention Art. 5A or TRIPS Arts. 30 and 31. The Paris Convention Art. 5A would

apply if the safe harbour is found to be an abuse-prevention measure. Then, in order to

comply with that provision, the safe harbour should result in compulsory licenses rather

than other measures (Art. 5A.3). A compulsory licensing system effective towards all

users of Free Software might prove problematic to implement. However, the safe harbour

may be provided for as an exception subject to TRIPS Art. 30 or 31 (i.e., not as an abuse-

prevention measure). A statute of limitations on the enforcement of patents towards a

specifi c repository of software does not seem to fall outside Art. 30. Also, in order to

escape from the strict requirements of Art. 31, the safe harbour should focus on measures

stimulating unencumbered negotiation of patent licenses, as well as facilitating worka-

rounds of patents. Only if the above fails, the use of patents should be subject to authori-

zations granted in conformity with Art. 31, possibly with the use of competition law insti-

tutes.

Towards_an_Improved_def.indd 201Towards_an_Improved_def.indd 201 23-02-2010 10:49:3623-02-2010 10:49:36

202 Chapter 6

it, in order for the rest to follow. For example, the current (2009) discussion
about the European Community Patent can provide a good forum for pre-
senting the concept of the safe harbour. Namely, the safe harbour can be
implemented at the pan-European level without affecting national patent
systems. The Community Patent system could give patent holders a choice
whether to pursue the Community-wide patent subject to the safe harbour,
or to apply for national patents that would not be subject to such a regula-
tion for the time being.314

In the meantime, before the law is amended, the necessary prerequisites
for the safe harbour can be created by the communities using private order-
ing. For that purpose, the communities should cooperate in the setting of the
repository described above (or in the transformation of the already existing
Free Software repositories accordingly). They should also draw the attention
of patent offices to it, in particular to make the repository an official source of
prior art. Additionally, the communities should attempt to gather a critical
mass of patent holders that contribute their patents to users of software.315

Here, we may conclude that we end up with the proposal of three
improvements of software-related patents.

(1) Patent laws should be reformed to limit the scope of patentability
of software or to provide that already existing exclusions of soft-
ware from the patentable subject matter are strictly followed.

(2) Regardless of the reform, patent quality should be improved.
(3) A safe harbour should be established by appropriate legislation in

order not to allow enforcement of patents against user freedoms.

These improvements can be implemented by the legislative, but involvement
of the government using its imperium and dominium powers would most
probably be necessary as well. The communities should become involved
too.

6.2.5 Promotion of open standards

Adequate protection of user freedoms requires that open standards are pro-
moted. This implies improvements directed at SSOs. Most importantly, SSOs

314 It has been proposed to implement the IBM’s proposal in much the same way. (See: IBM,

The European Community Patent revisited Discussion paper from IBM, at: http://www.epip.

eu/conferences/epip02/lectures/European%20Interoperabily%20Patent%201.1.pdf)

315 Patent holders who gather so-called “defensive patent portfolios” should be interested in

creating defensive patent pools together with other such patent holders. At the same

time, patent holders who use their patents offensively might be interested in the existence

of a repository where a big number of potential targets of their claims could be easily

located. But even if it would make it easier for them to pursue alleged infringements, the

information about prior art and the support of all participants in the repository might

also make it easier for alleged infringers to defend themselves effectively.

Towards_an_Improved_def.indd 202Towards_an_Improved_def.indd 202 23-02-2010 10:49:3723-02-2010 10:49:37

203Proposal of an improved regulatory framework

should make sure that the standard setting procedure is open to all interest-
ed parties. They should also amend their internal regulations to provide for
an explicit obligation of participants not to restrict standards. This prohibi-
tion should refer to trade secrets, scrambling of interoperability information,
and lock-ins, but most importantly it should cover patents. For that purpose,
SSOs should diligently define what patents they consider to be material to
standards. Participants should be obliged to notify any such patents (and
pending applications). SSOs should also require that the participants offer
patent licenses compatible with the freedoms. If an SSO fails to develop an
open standard despite the above improvements, this fact should be commu-
nicated to the public in order to make everyone aware that the standard is
closed.

SSOs that strictly adhere to the above recommendations might not be
attractive for all market players. Also, SSOs cannot easily bind third parties,
who do not agree to follow the internal rules of SSOs. For these reasons, a
safe harbour for standards should be provided for by the legislative, in a
similar manner as discussed above in relation to software-related patents.
Namely, patent holders should be obliged to review standards of selected
SSOs (or a repository of standards could be organized). They should be
required to notify any patents they find material to standards being designed
within certain deadline. Without such a notification or after the deadline
passes, enforcement of these patents should not be allowed. The safe har-
bour should also stimulate licensing of patents under terms compatible with
the freedoms, and creation of patent pools available for any party interested
in the exercise of the freedoms. It is additionally advisable to propose certifi-
cation of the licenses, in a similar manner to certification (scrutiny) of soft-
ware licenses performed by the OSI or the FSF. At the same time, exceptions
from the rights of patent holders should be provided for if a patent is
infringed in order to provide for interoperability.316

The above improvements should be carefully implemented in order not
to remove incentives that stimulate many stakeholders to participate in a
standard setting. As we already observed, future patent royalties are an
incentive for some stakeholders. Although royalties might not be in conflict
with freedoms, the conditions imposed by patent holders are. So, while pro-
viding for these improvements a substitute monetary incentive should be
provided for and the patent royalties incentive should be removed. This can
be performed by governments when introducing eGovernments. Most
importantly, governments should be obliged to use multi-purpose open
standards whenever possible. This would stimulate a wider use of open-
standards-based software without causing a risk of a lock-in to any particu-
lar vendor. It would contribute to a creation of a market for products of many
vendors. Government demand, and the spill-over effect it has on the overall

316 Such exceptions can be similar to the decompilation right already present in the Software

Directive or other software copyright regulations.

Towards_an_Improved_def.indd 203Towards_an_Improved_def.indd 203 23-02-2010 10:49:3723-02-2010 10:49:37

204 Chapter 6

market demand, would promise vendors a return on investment, a monetary
incentive. But it is crucial that after a given standard is chosen for eGovern-
ment, the law should limit the enforceability of patents towards anyone that
uses the standard. Otherwise, patent holders would benefit both from gov-
ernment demand and from patents, which would have a destructive effect
on user freedoms.

But the government can promote open standards in many other ways
too. Governments can increase their awareness to standard setting, as well
as their participation in it. They may require SSOs to follow procedures that
lead to open standards. Government involvement does not have to be limit-
ed to standards used in government communications. Also, the legislative
can extend the applicability of internal rules of SSOs to non-participating
parties. Additionally, the government should stimulate more cooperation
between patent offices and SSOs. They should be required to exchange infor-
mation, which could help patent offices to identify prior art, while at the
same time it could help the SSOs to avoid designing standards encumbered
with patents.

Here, we may conclude that we end up with the proposal of three
improvements of the standard setting.

(1) Subject to the above reservations, SSOs should be reformed to guar-
antee that they design open standards only.

(2) A safe harbour for standards should be established, in a manner
similar to the safe harbour for software discussed in the previous
subsection.

(3) The government should stimulate the design and popularity of
open standards in particular by selecting multi-purpose open stan-
dards for eGovernments and by limiting enforceability of patents
with regard to standards used in eGovernment.

The first improvement can be provided for by the communities. The com-
munities should increase their participation in SSOs and initiate the neces-
sary reform. The first improvement can be introduced by governments
simultaneously, since governments often participate in SSOs. Additionally,
the governments could stimulate SSOs by using their imperium, as well as
the legislative. The other two improvements can be performed by the legis-
lative, as well as by a diligent exercise of the imperium and dominium powers
of the government.

6.2.6 Internationalization of the framework

For an adequate protection of user freedoms, any differences between
national laws should not be allowed to restrict them. So, the legislatives of
each jurisdiction should scrutinize their laws and undertake harmonization
efforts. This can encompass including Free Software issues in the agendas of
such supra-national organizations as the EU, WIPO, and WTO. But legisla-

Towards_an_Improved_def.indd 204Towards_an_Improved_def.indd 204 23-02-2010 10:49:3723-02-2010 10:49:37

205Proposal of an improved regulatory framework

tive procedures at the national and international level are time consuming.
In the meantime, the communities could provide for the necessary tempo-
rary improvements. Amending licenses to make them more independent of
particular jurisdictions (such as the GPLv3 as compared to GPLv2) should
be promoted. Also, if a particular jurisdiction is found to protect the free-
doms better than others, the licensors should be stimulated to use choice-of-
law and choice-of-forum clauses which point to such a jurisdiction. Never-
theless, license drafting and forum shopping cannot guarantee that the
applicability of a particular national law is avoided. Many laws contain man-
datory rules and many courts can find their jurisdiction despite a choice-of-
forum clause (or if such a clause is invalidated).

So, it is advisable to explore additional measures that could deal with
applicable laws that still contain restrictions of user freedoms. This can be
made by treating the regulatory framework of Free Software as lex mercato-
ria.317 Lex mercatoria is usually understood as a system of rules and relations
between the rules that is independent of any specific national law. It is
believed to be applicable in a uniform way across jurisdictions. Such a sys-
tem is in particular capable of circumventing restrictions that follow from an
applicable law. If a court is allowed to apply lex mercatoria, it either does not
have to follow its national law strictly, or it may interpret the national law by
accounting for a specific rule from the lex mercatoria.318 Indeed, nowadays
the concept of lex mercatoria has been often used in the international trade,
especially in disputes where none of the parties could accept the applicabili-
ty of any particular national legal system.319

Free Software licensing and project ownership as exercised within the
communities have created a set of customs and trade practices that can be
treated as lex mercatoria. But mere existence of such a lex mercatoria does not
make national laws inapplicable. The courts would not apply any such rules
instead of national legal rules, unless there is an explicit regulation that
allows or requires them to do so. We are aware of such laws that allow courts
to refer to equity, or allow them to account for custom, trade practices, etc. If
a particular applicable law does not contain such provisions, it should be
amended accordingly. In any case, courts should be given clear guidelines

317 Wikipedia, Law Merchant, at: http://en.wikipedia.org/wiki/Lex_mercatoria#The_medi-

eval_Law_Merchant. For an interesting critique of the existence of lex mercatoria in the

medieval times see: Stephen Edward Sachs, From St. Ives to Cyberspace: The Modern Distor-
tion of the Medieval ‘Law Merchant’ 21 American University International Law Review

685 (2006), also available at: http://ssrn.com/id=830265. For various other defi nitions of

lex mercatoria see, e.g., Bernadetta Fuchs, Lex mercatoria w międzynarodowym obrocie

handlowym [Lex mercatoria in international trade], 17 et.seq. (Zakamycze, 2000)

(in Polish).

318 See: Przemysław P. Polański, Customary Law of the Internet (TMC Asser Press 2007)

111 et seq., 347 et. seq.

319 For a far analogy in criminal court decisions see, e.g., F. O. Raimondo, General Princi-

ples of Law in the Decisions of International Criminal Court and Tribunals

(2007, Ph.d. thesis at University of Amsterdam).

Towards_an_Improved_def.indd 205Towards_an_Improved_def.indd 205 23-02-2010 10:49:3723-02-2010 10:49:37

206 Chapter 6

that when deciding cases related to Free Software, due account of the lex mer-
catoria should be performed. Lex mercatoria can be more easily applied before
arbitral tribunals. So, the communities should consider exploring arbitration
of Free-Software-related disputes. However, there are limitations of this
direction, since arbitration is possible if only parties agree, and usually it is
required that arbitration clauses and agreements are executed in writing.320

Here, we may conclude that we end up with the proposal of three
improvements of the regulatory environment.

(1) Free Software issues should be included into agendas of interna-
tional organizations that are able to stimulate harmonization of na-
tional laws.

(2) Before the international harmonization is performed, Free Software
licenses should be amended to become more independent of par-
ticular jurisdictions in order to stimulate their uniform application.

(3) Courts should be allowed and required to look into customs and
trade practices developed in the Free Software scene when decid-
ing on disputes related to user freedoms. Treating the regulatory
framework as lex mercatoria could be one way of reaching this goal.

All these improvements require a cooperation between the government
(acting through all its branches) and the communities.

6.3 Construction of a proposal of an improved framework

In this section we use the sixteen improvements proposed in the previous
section for the construction of an improved regulatory framework of Free
Software. Above, we grouped the improvements in the following six classes:
(1) proper organization of the communities (three proposed improvements),
(2) regulation of eGovernments (two proposed improvements), (3) Free Soft-
ware legislation (two proposed improvements), (4) restriction of software-
related patents (three proposed improvements), (5) promotion of open stan-
dards (three proposed improvements), and (6) internationalization of the
framework (three proposed improvements).

Each of the classes includes two or three specific improvements, all of
which have been explained in the previous section. Together, the proposed
improvements address all limitations and restrictions of the freedoms (the
inefficiencies of the current framework) discussed throughout the thesis.
Strictly speaking, the implementation of the proposed improvements can
affect the inefficiencies so that the impact of the inefficiencies on the rules
that protect the freedoms is minimized, or the inefficiencies are removed

320 New York Convention Art. II.

Towards_an_Improved_def.indd 206Towards_an_Improved_def.indd 206 23-02-2010 10:49:3723-02-2010 10:49:37

207Proposal of an improved regulatory framework

completely. We speculate on the provisional impact of our proposed frame-
work in Section 7.3.

In Figure 6.1 we present the complete proposal of our improved regula-
tory framework. This framework includes all rules included in the model,
and all relations between the rules (see Figure 3.9). It also includes all
improvements that we proposed in this chapter.

1

11

Figure 6.1: Our improved framework as proposed in Chapter 6

For the sake of clarity, in Figure 6.1 we present only the relations between the
improvements and the inefficiencies. We do not present all relations between
the rules existing in the current framework that we already identified in
Chapter 3.

6.4 Chapter summary

The model of the current framework that we reconstructed in this thesis (see
Chapter 3) includes the default rule and many other rules. The other rules can
be divided into two kinds. Rules of the first kind grant users their freedoms
and attempt to protect the freedoms. They are based on the default rule, which
gives exclusive control over programs to their copyright holders. These are:
(1) the grant of freedoms, (2) the right to fork, (3) copyleft, and (4) the hacker immu-
nity. Rules of the second kind limit or restrict the freedoms. They cause the
inefficiencies of the current framework. These are: (1) license proliferation

Towards_an_Improved_def.indd 207Towards_an_Improved_def.indd 207 23-02-2010 10:49:3723-02-2010 10:49:37

208 Chapter 6

and incompatibilities, (2) license revocability, (3) inter partes nature of the
licenses, (4) software-related patents, (5) contracts with distributors, (6) lia-
bility rules, (7) non-legal regulators, (8) closed standards, and (9) the regula-
tory environment.

The current framework operates in the world of software communities
and eGovernments. Both the communities and eGovernments affect the
framework. The communities are able to overcome or minimize many of
the inefficiencies, but only if they are properly organized. However, even
properly organized communities are unable to overcome all inefficiencies,
while many of them are only avoided, not eliminated by the communi-
ties. Then, eGovernments can affect the framework in both directions and
sometimes they are neutral towards the framework. This depends on how
eGovernments are introduced precisely. Our analysis of the operation of the
framework in the world of software communities and eGovernments has
(re)established the conclusion that under the current framework user free-
doms are not sufficiently protected.

In this chapter, we discussed various improvements of the framework
and we proposed an improved framework. The improved framework con-
sists of improvements that we selected as most appropriate. We grouped the
improvements under the following classes: (1) proper organization of the
communities, (2) regulation of eGovernments, (3) Free Software legislation,
(4) restriction of software-related patents, (5) promotion of open standards,
and (6) internationalization of the framework. The model of the current
framework, amended with all the improvements constitutes our proposal of
an improved framework.

So, we provide the following answer the RQ3, which was “How to
improve the regulatory framework so that it adequately protects user freedoms, as
articulated by Stallman, in the world of software communities and eGovern-
ments?”

In order to improve the regulatory framework so that it adequately pro-
tects user freedoms in the world of software communities and eGovern-
ments, the framework should be amended with all improvements proposed
in this chapter in the manner discussed in detail hereto. We briefly reference
all improvements below.

(1) Proper organization of communities. The communities should
continue to elaborate good licensing policies. The communities
should also continue to follow the policies, for example by incorpo-
rating umbrella organizations that regulate the exercise of project
ownership accordingly. Additionally, the communities should or-
ganize themselves according to the teachings of management stud-
ies.

(2) Regulation of eGovernments. The law should prohibit govern-
ments to introduce Closed eGovernments. A swift transformation
from existing Closed eGovernments to Open eGovernments should
be provided for. If the government decides to introduce a Supra-

Towards_an_Improved_def.indd 208Towards_an_Improved_def.indd 208 23-02-2010 10:49:3723-02-2010 10:49:37

209Proposal of an improved regulatory framework

Open eGovernment, guidelines should be provided in order to per-
form this diligently, so that user freedoms are not affected nega-
tively.

(3) Free Software legislation. If the other improvements proposed in
this thesis should fail to protect the freedoms adequately, the law
should be amended with provisions related particularly to Free
Software (i.e., default terms of use that mirror popular Free Soft-
ware licenses, possibly irrevocable, and copyleft obligations effec-
tive erga omnes).

(4) Restriction of software-related patents. Patent laws should be re-
formed to limit the scope of patentability of software or to provide
that already existing exclusions from the patentable subject matter
are strictly followed. Also, patent quality should be improved. Ad-
ditionally, a safe harbour should be established by appropriate leg-
islation and community efforts in order not to allow enforcement of
patents against user freedoms.

(5) Promotion of open standards. SSOs should be reformed to guaran-
tee that they design open standards only. Also, a safe harbour for
standards should be established, in a manner similar to the safe
harbour that would restrict software-related patents. Additionally,
the government should stimulate the design and popularity of
open standards in particular by selecting multi-purpose open stan-
dards for eGovernments and by limiting enforceability of patents
with regard to standards used in eGovernment.

(6) Internationalization of the framework. Free Software issues
should be included into agendas of international organizations that
are able to stimulate harmonization of national laws. Before the
harmonization is performed, licenses should continue to be amend-
ed to become more independent of particular jurisdictions, in order
to stimulate their uniform application. Also, courts should be al-
lowed and required to look into customs and trade practices devel-
oped in the Free Software scene when deciding disputes related to
user freedoms. Treating the regulatory framework as lex mercatoria
could be one way of reaching this goal.

Towards_an_Improved_def.indd 209Towards_an_Improved_def.indd 209 23-02-2010 10:49:3723-02-2010 10:49:37

Towards_an_Improved_def.indd 210Towards_an_Improved_def.indd 210 23-02-2010 10:49:3723-02-2010 10:49:37

7 Conclusions and further research

In this chapter we complete our research by answering the Research Ques-
tions (in Section 7.1) and the Problem Statements (in Section 7.2). In Section
7.3 we speculate on the provisional impact of our proposed framework. We
also identify issues for further research (in Section 7.4).

7.1 Answers to research questions

In this thesis we formulated three Research Questions. In the course of our
analysis, we answered all RQs. The answers were presented in Chapters 4, 5,
and 6, respectively. The answers were formulated at the end of each chapter
as a summary of more detailed findings presented throughout the analysis.
In the thesis we also presented many intermediate conclusions that should
be read together with the answers and findings. Below, we highlight the
essence of the answers in the summary form. For details, we refer the reader
to the extended answers given at the end of corresponding chapters.

RQ 1: In what way do software communities affect the current regulatory
framework concerning the protection of user freedoms, as articulated by
Stallman?

Software communities affect the current regulatory framework concerning
the protection of user freedoms in the following nine ways.

(1) License proliferation and incompatibilities. Properly organized
communities are able to perform the legal audit necessary to over-
come license proliferation and incompatibilities between Free Soft-
ware licenses.

(2) License revocability. The fact that a program is properly main-
tained by a community may simply make licensors unwilling to
revoke licenses because of the benefi ts of community maintenance.

(3) Inter partes nature of licenses. Properly organized communities
are able to provide for the community copyleft stimulation. This min-
imizes the limitation that follows from the inter partes nature of the
licenses.

(4) Software-related patents. Some properly organized communities
stimulate some patent holders not to enforce their patents. Howev-
er, software-related patents remain an important threat in the world
of software communities.

Towards_an_Improved_def.indd 211Towards_an_Improved_def.indd 211 23-02-2010 10:49:3823-02-2010 10:49:38

212 Chapter 7

(5) Contracts with distributors. Properly organized communities pre-
vent distributors to impose too restrictive contracts on users. Alter-
natively, such communities constitute a substitute source of soft-
ware available without contractual restrictions.

(6) Liability rules. Properly organized communities provide for an ef-
fective maintenance which leads in particular to a reduction of the
number of defects in programs. This minimizes the negative effect
that liability rules may have on user freedoms.

(7) Non-legal regulators. Properly organized communities perform
quality audit or otherwise control the development of Free Soft-
ware so that the software is maintained on an ongoing basis.

(8) Closed standards. Properly organized communities may contrib-
ute to a slowdown in adoption of closed standards. Some commu-
nities may even decrease incentives for the designers to make
closed standards.

(9) Regulatory environment. As any other entities, communities op-
erate in a regulatory environment where many national laws have
to be taken into consideration. But the exercise of the freedoms in
the communities is regulated by customs and trade practices to a
material extent.

RQ 2: In what way do eGovernments affect the current regulatory framework
concerning the protection of user freedoms, as articulated by Stallman?

eGovernments affect the current regulatory framework concerning the pro-
tection of user freedoms in the following four ways.

(1) Closed eGovernments. Closed eGovernments affect the frame-
work negatively from the point of view of user freedoms. Precisely
speaking, they affect the grant of freedoms, liability rules, non-legal
regulators, and closed standards. Given the likelihood of the spill-
over effect, these rules are affected with regard to software used in
government communications, as well as to other software.

(2) Semi-Closed eGovernments. If the government proceeds diligent-
ly, it may succeed in the introduction of a Semi-Closed eGovern-
ment. Such an eGovernment enables users to exercise user free-
doms despite the fact that closed standards are used in government
technologies. But given its limitations it should be taken under con-
sideration only as a transitional eGovernment from a Closed eGov-
ernment to an Open eGovernment.

(3) Open eGovernments. Open eGovernments are capable of avoiding
the negative effects on the framework that are a result of Closed
eGovernment. Still, they do not affect most of the rules, they are
merely neutral towards them. Open eGovernments only promote
open standards as compared to closed standards, and they do not
remove closed standards from the framework.

Towards_an_Improved_def.indd 212Towards_an_Improved_def.indd 212 23-02-2010 10:49:3823-02-2010 10:49:38

213Conclusions and further research

(4) Supra-Open eGovernments. The government is capable of affect-
ing the framework to a greater extent by introducing a Supra-Open
eGovernment. However, the exact outcome of such an eGovern-
ment depends much on how it is introduced precisely. Also, even
Supra-Open eGovernments are not able to overcome such limita-
tions and restrictions as license revocability, inter partes nature of
the licenses, software-related patents, liability rules, closed stan-
dards, and the regulatory environment. Affecting these limitations
and restrictions is possible if only apart from the dominium, the gov-
ernment additionally employs the imperium or other branches (the
legislative and the judiciary).

RQ 3: How to improve the regulatory framework so that it adequately protects
user freedoms, as articulated by Stallman, in the world of software com-
munities and eGovernments?

The current regulatory framework should be improved by implementing
sixteen improvements belonging to the following six classes of improve-
ments, so that the resulting new framework adequately protects user free-
doms in the world of software communities and eGovernments.

(1) Proper organization of communities. The communities should
continue to elaborate good licensing policies. The communities
should also continue to follow the policies, for example, by incor-
porating umbrella organizations that regulate the exercise of proj-
ect ownership accordingly.

(2) Regulation of eGovernments. The law should prohibit govern-
ments to introduce Closed eGovernments. A swift transformation
from existing Closed eGovernments to Open eGovernments should
be provided for.

(3) Free Software legislation. If the other improvements proposed in
this thesis should fail to protect the freedoms adequately, the law
should be amended with provisions related particularly to Free
Software (i.e., default terms of use that mirror popular Free Soft-
ware licenses, possibly irrevocable, and copyleft obligations effec-
tive erga omnes).

(4) Restriction of software-related patents. Patent laws should be re-
formed to limit the scope of patentability of software. A safe har-
bour should be established in order not to allow enforcement of
patents against user freedoms.

(5) Promotion of open standards. SSOs should be reformed to guaran-
tee that they design open standards only. Also, a safe harbour for
standards should be established, in a manner similar to the safe
harbour that would restrict software-related patents.

(6) Internationalization of the framework. Free Software issues
should be included into agendas of international organizations that

Towards_an_Improved_def.indd 213Towards_an_Improved_def.indd 213 23-02-2010 10:49:3823-02-2010 10:49:38

214 Chapter 7

are able to stimulate harmonization of national laws. Before the
harmonization is performed, licenses should continue to be amend-
ed to become more independent of particular jurisdictions, in order
to stimulate their uniform application. Also, courts should be al-
lowed and required to look into customs and trade practices devel-
oped in the Free Software scene when deciding disputes related to
user freedoms. Treating the regulatory framework as lex mercatoria
could be one way of reaching this goal.

7.2 Answers to the problem statement

In this thesis we formulated a twofold Problem Statement. In order to answer
the Problem Statement we formulated a Research Goal and three Research
Questions. The Research Goal is to develop a new, improved regulatory
framework that would be capable of resolving the inefficiencies in the pro-
tection of user freedoms identified by analysing the Problem Statement. In
the previous section we presented answers to the three Research Questions
that led us to the proposal of an improved regulatory framework. By formu-
lating the proposal of an improved framework presented in Chapter 6, we
reached the Research Goal of the thesis. We also answered the Problem State-
ment, and we presented each part of the twofold answer in Chapters 4 and 5
respectively. We reproduce these answers below in brief.

PS 1: What are the relations between user freedoms and software communi-
ties?

Software communities enter into relations with all nine inefficiencies (i.e.,
limitations and restrictions) that we included in the model of the current
framework. Properly organized software communities materially minimize
the inefficiencies, in a manner described in more detail in Chapter 4. As a
result, such communities help users to exercise the freedoms in practice.
However, there are three inefficiencies that remain an important threat of
user freedoms, despite the communities. These are: (1) software-related pat-
ents, (2) closed standards, and (3) the regulatory environment.

PS 2: What are the relations between user freedoms and eGovernments?

There are three main relations between user freedoms and eGovernments.

(1) Closed eGovernments are capable of restricting user freedoms ef-
fectively, despite the protection provided for in the framework, and
despite the positive effect on the freedoms that properly organized
communities may have.

(2) Semi-Closed eGovernments enable users to exercise their freedoms
despite the fact that closed standards are used by the government.

Towards_an_Improved_def.indd 214Towards_an_Improved_def.indd 214 23-02-2010 10:49:3823-02-2010 10:49:38

215Conclusions and further research

But their introduction requires much diligence. Still, such eGovern-
ments do not remove the limitations and restrictions to which users
are exposed in a world without eGovernments.

(3) Open eGovernments are capable of avoiding the additional restric-
tion of user freedoms that is a result of Closed eGovernments. But
they are mostly neutral towards the framework, although they ma-
terially affect closed standards. Only Supra-Open eGovernments
are able to minimize all existing limitations and restrictions mate-
rially. Similarly to Semi-Closed eGovernments, the introduction of
Supra-Open eGovernments also requires much diligence. How-
ever, any Open eGovernment is still unable to remove all existing
limitations and restrictions of user freedoms, unless the imperium or
the legislative and the judiciary becomes involved.

7.3 Provisional impact of our proposed framework

Our proposed framework consists of all rules and relations existing in the
current framework, and of the sixteen improvements that we proposed to
implement. The implementation of the improvements can lead to two conse-
quences. First, as a result of the implementation new rules are created that
substitute the rules that caused the inefficiencies. This means that the latter
rules are completely removed. Second, the implementation leads to an intro-
duction of new rules that will exist in a framework together with the rules
that lead to the inefficiencies. This means that the rules that lead to the inef-
ficiencies will not be removed completely, but they will be in a relation with
the rules introduced as a result of the improvements. Naturally, for an ade-
quate protection of user freedoms such a relation should lead to a minimiza-
tion of the inefficiencies to the largest possible extent.

Whether the implementation of our proposed improvements leads to the
consequences of the first or of the second kind depends on how the imple-
mentation is performed. The final effect of the improvements requires fur-
ther research, most probably empirical research. Here, we are only able to
speculate about the provisional impact of our proposed framework. Below,
we analyse (1) what rules could be created if the improvements are to be
implemented, and (2) how these new rules would impact the rules existing
in the current framework. Then, we present (3) our speculative conclusions
on the provisional impact of our proposed framework.

7.3.1 Rules created if the improvements are implemented

In Chapter 6 we proposed sixteen improvements in the current framework
and we grouped them in the following six classes: (1) proper organization of
communities, (2) regulation of eGovernments, (3) Free Software legislation,
(4) restriction of software-related patents, (5) promotion of open standards,
and (6) internationalization of the framework. Below, we attempt to identify

Towards_an_Improved_def.indd 215Towards_an_Improved_def.indd 215 23-02-2010 10:49:3823-02-2010 10:49:38

216 Chapter 7

the rules that could be created if each of the improvements is to be imple-
mented.

The proper organization of communities class consists of the following three
improvements: (1) elaboration of licensing policies, (2) following the poli-
cies, and (3) organization according to the teachings of management studies.
All these improvements can be undertaken by the communities, without
engaging the government. Communities are able to regulate their partici-
pants, not third parties. They may do so using the law, but they may also
regulate using such non-legal regulators as the norms. If the above improve-
ments are introduced using the law, the communities will include licensing
policies and organization in their by-laws, such as the by-laws of umbrella
organizations. So, we may expect that the following legal rule could be cre-
ated as a result of the implementation of all three improvements included in
the proper organization of communities.

Licensing policies. Project owners are not allowed to accept (to the offi cial version of the

project) contributions that do not comply with the project’s licensing policy.

We remark that the above rule has already been introduced in communities
that have elaborated licensing policies and organized themselves accord-
ingly. We also remark that there may be other rules (legal rules or norms)
that could result out of proper organization of communities. Given the fact
that these rules depend on particular communities, it is not possible to iden-
tify them here. Determination of these rules calls for further research on com-
munities and their organization.

The regulation of eGovernments class consists of the following two
improvements: (1) a legal prohibition to introduce Closed eGovernments,
and (2) an obligation to diligently introduce a Supra-Open eGovernment.
The first improvement can be performed by the legislative. The second
improvement requires that the government diligently exercises the dominium
and the imperium powers, although it is also possible that such guidelines
are provided for in the legislative. Both these improvements boil down to
imposing certain legal obligations on governments (public administrations).
So, we may expect that the following two legal rules could be created as a
result of the implementation of the improvements included in the regulation
of eGovernments.

Prohibition of Closed eGovernments. The government is not allowed to use closed stan-

dards and is obliged to use open standards.

Guidelines for Supra-Open eGovernments. If a decision to introduce a Supra-Open

eGovernment is made, it should not cause or support ineffi ciencies in the protection of

user freedoms.

The Free Software legislation class consists of the following two improvements:
(1) amending the law with provisions related specifically to Free Software,

Towards_an_Improved_def.indd 216Towards_an_Improved_def.indd 216 23-02-2010 10:49:3823-02-2010 10:49:38

217Conclusions and further research

and (2) enforcing such a law. We remark that we proposed to implement these
improvements if other improvements proposed in this thesis should fail to
provide for an adequate protection of user freedoms. In such a case, Free Soft-
ware legislation is able to address many inefficiencies of the current frame-
work in many different ways. So, it may result in many different new rules in
the framework. Let us provide an example. Namely, if it is found that the
inter partes nature of licenses has to be regulated in the law in order to allow
for better enforceability of copyleft, a following legal rule could be created.

Extended copyleft enforceability. Every user is allowed to enforce obligations of the

licensees under copyleft.

The restriction of software-related patents class consists of the following three
improvements: (1) a reform of patent laws, (2) an improvement of patent
quality, and (3) a safe harbour for user freedoms. The rules that will follow
from the first two improvements will differ depending on the actual patent
law that is improved as well as on the balance reached between the interests
of all stakeholders. As a result, many different new rules may appear in the
framework, each limited to affect a given jurisdiction, so that all of them
together provide for an adequate protection against software-related patents
worldwide. Drafting of all such rules requires further research. Here, we can
perform a provisional identification of a legal rule that may result out of the
third improvement, that is of a safe harbour against software-related patents.
It could be the following legal rule.

Safe harbour against software-related patents. Users are allowed to exercise all six activ-

ities covered in the FSD despite such activities constitute an infringement of a patent,

under condition that the patent holder failed to meet patent enforceability criteria speci-

fi ed by the safe harbour provisions applicable to the program in question.

The promotion of open standards class consists of the following three improve-
ments: (1) reform of the SSOs, (2) a safe harbour for standards, and (3) gov-
ernment stimulation of open standards. The rules that will follow from the
first improvement are highly dependent on the particular SSO that is going
to be reformed. So, many different new rules may appear in the framework
as a result of reforming many different SSOs. The second improvement can
be expected to result in a legal rule similar to the above described rule that
will result from the safe harbour against software-related patents. Namely,
we may expect that the following rule could be created.

Safe harbour against patents material to standards. If compliance with a standard

requires the use of a subject-matter covered by a patent, users of programs that use the

standard are allowed to exercise activities covered by the FSD, under condition that the

patent holder failed to meet patent enforceability criteria specifi ed by the safe harbour

provisions applicable to the standard in question.

In particular, developers are allowed to develop Free Software that uses such a standard,

and distributors are allowed to distribute this software.

Towards_an_Improved_def.indd 217Towards_an_Improved_def.indd 217 23-02-2010 10:49:3823-02-2010 10:49:38

218 Chapter 7

The third improvement included in the promotion of open standards class can
be expected to result in a legal rule that would be a refinement of the above
rule named “prohibition of Closed eGovernments”. Namely, the following
rule could be created.

Prohibition of Closed eGovernments (refi nement). The government is not allowed to use

closed standards and is obliged to use multi-purpose open standards.

Alternatively, the following rule could be created as a result of the third
improvement included in the promotion of open standards class.

Limited enforceability of patents material to standards. If compliance with a standard

requires the use of a subject-matter covered by a patent, users of programs that use the

standard are allowed to exercise activities covered by the FSD with regard to these pro-

grams if the standard has been offered and accepted for the use in an eGovernment.

In particular, developers are allowed to develop Free Software that uses such a standard,

and distributors are allowed to distribute this software.

The internationalization of the framework class consists of the following three
improvements: (1) inclusion of Free Software issues into agendas of interna-
tional organizations, (2) amendment of Free Software licenses, and (3)
requiring courts to take customs and trade practices of the communities into
consideration when deciding on disputes related to user freedoms. There is
no specific rule that can be construed as a result of the first two improve-
ments. Rather, these improvements are a means for implementing other
improvements proposed in this thesis. For example, an international orga-
nization can prepare a model Free Software legislation or it may serve as a
forum for discussing the exact rules for a safe harbour against software-
related patents. As far as the third improvement is concerned, courts serve
as means for implementing (applying) existing legal rules. Also, a legal rule
requiring courts to look into customs and trade practices of software com-
munities will also be highly dependant on the court procedure of the par-
ticular jurisdiction that will implement the improvement. It requires more
research to identify how such rules will be drafted in particular jurisdic-
tions. Here, we cannot provide any description of the rules that could fol-
low from the improvements included in the internationalization of the
framework class.

Here, we may conclude that we expect at least eight rules to be created
as a result of our sixteen proposed improvements. One of these eight rules
(prohibition of Closed eGovernments (refinement)) is a refinement of anoth-
er of them (prohibition of Closed eGovernments). The former includes the
latter, so we will further discuss only the former, which gives seven new
rules altogether. It should be expected that the final number of rules will be
higher than seven, since here we are only analysing the provisional impact
of our improved framework. The exact number and the formulation of all
these additional new rules is subject to many circumstances that are beyond
the scope of this thesis. Further research, in particular empirical research, is
necessary in order to do so.

Towards_an_Improved_def.indd 218Towards_an_Improved_def.indd 218 23-02-2010 10:49:3823-02-2010 10:49:38

219Conclusions and further research

7.3.2 Impact of the new rules on the existing rules

Below, we analyse how the new rules that we identified in the previous sub-
section may impact the rules existing in the current framework. We will anal-
yse the impact of the following seven new rules: (1) licensing policies, (2)
prohibition of Closed eGovernments (refinement), (3) guidelines for Supra-
Open eGovernments, (4) extended copyleft enforceability, (5) safe harbour
against software-related patents, (6) safe harbour against patents material to
standards, and (7) limited enforceability of patents material to standards.

The licensing policies rule is a result of the improvements belonging to the
proper organization of communities class. So, it will have an impact on the fol-
lowing six inefficiencies of the current framework: (1) license proliferation
and incompatibilities, (2) license revocability, (3) inter partes nature of the
licenses, (4) contracts with distributors, (5) liability rules, and (6) non-legal
regulators. The licensing policies cannot regulate actors outside of the com-
munities and they should not be expected to have too strong an impact on
community members either. So, it is unlikely that the licensing policies will
completely remove any of the above inefficiencies from the framework. But
although these inefficiencies will remain in the framework, we can expect
that their negative impact on the freedoms would be minimized due to prop-
erly organized communities, as this is the case in such communities that
already operate. Members of properly organized communities will be the
direct beneficiaries. It should be also expected that as projects that are devel-
oped and distributed by properly organized communities become popular,
the above mentioned inefficiencies will stop to affect many other users mate-
rially as well.

The prohibition of Closed eGovernments (refinement) rule is a result of one of
the improvements included in the regulation of eGovernments class, refined
according to one of the improvements included in the promotion of open stan-
dards class. So, it will have a direct impact on the inefficiency that is a result
of closed standards. But this impact is generally limited to software used in
government communications only. Given the spill-over effect of eGovern-
ments on software used outside of government communications, especially
if the government chooses multi-purpose open standards, it may be also
expected that this rule will affect users of such other software as well. So,
closed standards will not be removed from the framework completely, but
the prohibition of Closed eGovernments may materially minimize the nega-
tive impact that closed standards have on the freedoms.

The guidelines for Supra-Open eGovernments rule is a result of one of the
improvements included in the regulation of eGovernments class. So, it is capa-
ble of affecting many different inefficiencies of the framework. The guide-
lines should in particular regulate how the government becomes involved in
the development and distribution of Free Software. It means that the soft-
ware resulting from such an involvement can be free of many inefficiencies
that result from circumstances controlled by the government. Whether these
inefficiencies will remain in the framework depends on the exact content of

Towards_an_Improved_def.indd 219Towards_an_Improved_def.indd 219 23-02-2010 10:49:3823-02-2010 10:49:38

220 Chapter 7

the guidelines. Since this requires further empirical research, we are unable
to determine the exact impact of the guidelines in this thesis. However, we
may provide an example. Assume that the guidelines will prohibit govern-
ments to accept restrictive contracts on Free Software procured for eGovern-
ments. In such a case the inefficiency that is a result of distributor contracts
could be removed from the point of view users of such software, while it
may still apply to software used outside government communications.

The extended copyleft enforceability is an example rule that could be cre-
ated as a result of the implementation of improvements included in the Free
Software legislation class. This rule addresses a specific inefficiency of the cur-
rent framework, namely the inter partes nature of the framework. As a result
of this rule, the inter partes nature would no longer constitute a burden for
enforcing copyleft obligations. This means that we could remove the inter
partes nature from the framework if the extended copyleft enforceability is
implemented.

The safe harbour against software-related patents is a rule directed specifi-
cally at software-related patents. It does not remove these patents from the
framework, but it limits their enforceability to the extent such an enforceabil-
ity would constitute a threat to user freedoms. We remark that a complete
removal of software-related patents – in such a way that they do not affect
Free Software users at all – may be a result of other improvements included
in the restriction of software-related patents class.

The safe harbour against patents material to standards is a rule similar to the
safe harbour described above. It is a result of one of the improvements
included in the promotion of open standards class. This rule does not remove
the respective patents from the framework and it does not make it impossi-
ble to make a closed standard using patents. However, it prevents patent
holders from enforcing such patents against users of Free Software.

The limited enforceability of patents material to standards works in a similar
way. This rule also results from an implementation of the improvements
included in the promotion of open standards class. It prevents patent holders
from enforcing their patents in relation to programs that use standards cov-
ered with their patents provided that these standards have been offered and
accepted in an eGovernment. This rule expresses a view that the government
cannot support monopolies more than necessary. Thus, under this rule pat-
ent holders could not benefit from both the patent monopoly and the market
power resulting from government demand (and the user demand induced
by the government). Offering a technology to an eGovernment would
require that patent rights are not enforceable towards the developers, dis-
tributors, and users of Free Software that makes use of that technology.

7.3.3 Conclusions on the provisional impact of our proposed framework

Here, we may conclude that the provisional impact of our proposed frame-
work will be that at least seven new rules are created. Other new rules may
follow depending on how the improvements are implemented exactly. The

Towards_an_Improved_def.indd 220Towards_an_Improved_def.indd 220 23-02-2010 10:49:3923-02-2010 10:49:39

221Conclusions and further research

new rules will enter into relations with the rules currently active in the
framework. Six out of seven new rules that we identified above will limit the
negative effect of the respective inefficiencies in such a way that the free-
doms will be adequately protected. Only one of the seven new rules (extend-
ed copyleft enforceability) can be expected to remove its corresponding inef-
ficiency from the framework (the inter partes nature of the licenses).

7.4 Further research

The proposal of an improved regulatory framework presented in this thesis
includes improvements grouped in the following six sets: (1) proper organi-
zation of the communities, (2) regulation of eGovernments, (3) Free Soft-
ware legislation, (4) restriction of software-related patents, (5) promotion of
open standards, and (6) internationalization of the framework. In the above
section we identified the provisional impact of our proposed framework,
which consists of the creation of seven new rules, and of a removal of one
inefficiency. Additional new rules may be created as well depending how
the improvements are implemented exactly. So, the formulation of specific
legal or non-legal regulators that would constitute the implementation of all
improvements proposed in this thesis requires that the research is contin-
ued. In particular, there is a need for more empirical research that will pro-
vide more findings about circumstances for which the improvements are to
be implemented. We indicate the following example areas for further
research.

(1) Free Software licenses and their impact under different jurisdic-
tions. The exact scope of obligations that follow from different li-
censes should be determined (such as the scope of copyleft clauses)
so that the communities are able to account for the obligations (and
the resulting incompatibilities) in all jurisdictions properly. This
would also allow for a formulation of specifi c recommendations for
amending licenses to become more jurisdiction-independent and
effective.

(2) Organization of the communities. The ability of various commu-
nities to provide for proper maintenance of Free Software should
be analysed and compared. A set of model organization structures
should be identifi ed. The best ways of adopting these structures in
communities should be determined. In particular, it should be de-
termined whether the organization of the communities should be
regulated using the law, or whether the norms are suffi cient.

(3) Government role in the framework. The ability of governments to
become involved in the development, distribution, and use of Free
Software should be studied in order to elaborate an adequate model
of participation. At the same time governments should perform a
survey of existing eGovernments in order to identify all closed

Towards_an_Improved_def.indd 221Towards_an_Improved_def.indd 221 23-02-2010 10:49:3923-02-2010 10:49:39

222 Chapter 7

standards currently used and possibilities of providing for transla-
tion facilities so that all existing Closed eGovernments are trans-
formed into Open eGovernments.

(4) Particular national laws. Particular national laws should be stud-
ied in order to identify all specifi c limitations and restrictions in-
cluded therein. In other words, the research performed in this thesis
should be repeated with regard to each national law separately.
This would allow to propose specifi c Free Software legislation for
each of the national laws.

(5) Patent reform. A thorough scrutiny of all existing patent laws and
the practice of their application should be performed. Proposals for
their reform should be elaborated. New ways of scrutinizing patent
applications should be explored in order to increase the effective-
ness of patent offi ces and to increase patent quality.

(6) Standard setting. Particular SSOs and procedures that they follow
should be analysed and compared. All circumstances that prevent
SSOs from adopting open standards should be identifi ed and ap-
propriate reforms of particular SSOs should be designed. Govern-
ment awareness and involvement in standard setting should be in-
creased.

(7) Lex mercatoria. Customs and trade practices of software communi-
ties should be analysed and particular rules that follow from them
identifi ed. Appropriate means for taking these rules into account
when deciding disputes should be designed.

Towards_an_Improved_def.indd 222Towards_an_Improved_def.indd 222 23-02-2010 10:49:3923-02-2010 10:49:39

 References

Alioth, Virtual Stallman, at: http://alioth.debian.org/projects/vrms/.

Apache, How the ASF works, at: http://www.Apache.org/foundation/how-it-works.html.

Attridge, Daniel J. M., Challenging Claims! Patenting Computer Programs in Europe and the USA, 1

Intellectual Property Quarterly 22 (2001).

autonomo.us, Franklin Street Statement on Freedom and Network Services, http://autonomo.

us/2008/07/franklin-street-statement/.

Aviram, Amitai, A Network Effects Analysis of Private Ordering, (April 15, 2003), Berkeley Pro-

gram in Law & Economics, Working Paper Series. Paper 80, http://repositories.cdlib.

org/blewp/art8.

Barta, Janusz et al., Ustawa o prawie autorskim i prawach pokrewnych. Komentarz [Act

on copyright and neighbouring rights. Commentary] (Dom Wydawniczy ABC 2001).

Barta, Janusz; Markiewicz, Ryszard, Oprogramowanie Open Source w świetle prawa.

Między własnością a wolnością [Open source software in the light of law. Between

property and freedom] (Zakamycze 2005).

Barta, Janusz; Markiewicz, Ryszard, Prawo autorskie [Copyright] (Wolters Kluwer 2008).

Barth, Andreas; Di Carlo, Adam; Hertzog, Raphaël; Schwarz, Christian; Jackson, Ian, Debian
Developer’s Reference, at: http://debian.org/doc/packaging-manuals/developers-refer-

ence/.

Bartlett, Andrew, A year since Microsoft’s appeal failed, at: http://people.samba.org/people/

abartlet/a-year-since-microsofts-appeal-failed.html.

Bender, David, Trade Secret Implications of Open Source Licenses, Open Source Software Spring

2006 Critical Issues in Today’s Corporate Environment, PLI Handbook no. G-861,

129.

Benkler, Yochai, An Unhurried View of Private Ordering in Information Transactions, 53 Vand. L.

Rev. 2063, (2000).

Benkler, Yochai, Coase’s Penguin, or, Linux and The Nature of the Firm, 112 Yale Law Journal 369

(2002).

Business Software Alliance, BSA Statement on Technology Standards, February 2005, at: http://

www.etsi.org/sos_interoperability/Background_papers/BSA_Statement_on_Technolo-

gy_Standards.pdf.

Byfi eld, Bruce, FSFE’s Fiduciary License Agreement is no panacea, at: http://www.linux.com/fea-

ture/60129.

Byrska, Małgorzata, Prawne aspekty modyfi kowania programu komputerowego [Legal aspects of modi-
fying a computer program], 4 Kwartalnik Prawa Prywatnego [Private Law Quarterly]

693 (1996).

Chikofsky, E.J.; Cross II, J.H., Reverse Engineering and Design Recovery: A Taxonomy in IEEE Soft-
ware, IEEE Computer Society: 13–17 (January 1990).

CNN, IBM Pledges Free Access to Patents Involved in Implementing 150+ Software Standards, at:

http://money.cnn.com/news/newsfeeds/articles/marketwire/0276035.htm.

Coase, Ronald, The Nature of the Firm, Economica, vol. 4, no. 16, November 1937

Coleman, Gabriella E., The Social Construction of Freedom in Free and Open Source

Software: Hackers, Ethics, and the Liberal Tradition (Dissertation, University of

Chicago, 2005), at: http://www.healthhacker.org/biella/freesoftware.html.

Corbet, Jon, How to Participate in the Linux Kernel Community, at: http://ldn.linuxfoundation.

org/book/how-participate-linux-community.

Cox, Alan, Cathedrals, Bazaars and the Town Council, at: http://slashdot.org/features/

98/10/13/1423253.shtml.

Towards_an_Improved_def.indd 223Towards_an_Improved_def.indd 223 23-02-2010 10:49:3923-02-2010 10:49:39

224 References

Crowston, Kevin; Howison, James, The social structure of free and open source software development,
Firstmonday, at: http://www.fi rstmonday.org/issues/issue10_2/crowston/index.html.

Cundiff, Victoria A., Protecting Computer Software as a Trade Secret, in: 507 Practising Law Insti-

tute, 18th Annual Institute on Computer Law 761 (1998).

Davidson, Stephen J.; Holloway, Gabriel, Protecting Trade Secrets in an Open Source Environment,
Open Source Software Spring 2006 Critical Issues in Today’s Corporate Environ-

ment, PLI Handbook no. G-861, 143.

Debian Free Software Guidelines, at: http://www.debian.org/social_contract.

debian-legal mailing list archives, at: http://lists.debian.org/debian-legal/.

Debian, Debian New Maintainers, at: http://debian.org/devel/join/newmaint.

DeKoenigsberg, Greg, The Red Hat Patent Promise: Encouraging Innovation, at: http://www.red-

hat.com/magazine/001nov04/features/patents/.

Demazerie, Didier; Horn, Francois; Jullien, Nicolas, How free software developers work, at: http://

ssrn.com/abstract=1301572 (abstract).

Demazerie, Didier; Horn, Francois; Zune, Marc, The Functioning of a Free Software Community:
Entanglement of Three Regulation Modes – Control, Autonomous, and Distributed, at: http://

www.sciencestudies.fi /v20n2DemaziereHornZunePDF.

EC Communication, The role of eGovernment for Europe’s future (COM(2003) 567, not published in

OJ).

Economides, Nicholas, The Economics of Networks, 4 International Journal of Industrial

Organization 673 (1996) at: http://www.stern.nyu.edu/networks/94-24.pdf.

Elliot, Margaret S.; Scacchi, Walt, Free Software Development: Cooperation and Confl ict in A Virtual
Organizational Culture, in: Koch S. (ed.), Free/Open Source Software Development

(Idea Publishing, 2004), book chapter at: http://www.ics.uci.edu/~wscacchi/Papers/

New/Elliot-Scacchi-BookChapter.pdf.

EPO, Guidelines for Examination in the European Patent Offi ce (2009), at: http://www.epo.org/

patents/law/legal-texts/guidelines.html.

EPO, Pending referral to the Enlarged Board of Appeal (G 3/08), at: http://www.epo.org/topics/

issues/computer-implemented-inventions/referral.html.

eWEEK, Open-Source Insurance Provider Finds Patent Risks in Linux, at: http://www.eweek.com/

c/a/Linux-and-Open-Source/OpenSource-Insurance-Provider-Finds-Patent-Risks-in-

Linux/.

FCKeditor, at: http://www.fckeditor.net.

Fedora Packaging Guidelines, at: http://fedoraproject.org/wiki/Packaging/Guidelines.

Fogel, Karl, Producing Open Source Software. How to Run a Successful Free Software Project, at:

http://producingoss.com/.

Free Software Directory, at: http://directory.fsf.org/.

Free Software Foundation, GNU General Public License Frequently Asked Questions, at: http://

www.fsf.org/licensing/licenses/gpl-faq.html.

Free Software Foundation, Various Licenses and Comments About Them, at: http://www.gnu.org/

philosophy/license-list.html.

FreshMeat, at: http://freshmeat.net.

Fuchs, Bernadetta, Lex mercatoria w międzynarodowym obrocie handlowym [Lex merca-

toria in international trade] (Zakamycze, 2000).

Garzarelli, Giampaolo, Open Source Software and the Economics of Organization, at: http://ideas.

repec.org/p/wpa/wuwpio/0304003.html.

Ghosh, Rishab Aiyer; Glott, Ruediger; Robles, Gregorio; Schmitz, Patrice-Emmanuel,

Guideline for Public Administrations on Partnering with Free Software Develop-

ers (European Commission, Enterprise DG, IDA/GPOSS, 2004), at: http://europa.eu.int/

idabc/servlets/Doc?id=19295.

GPL-violations, at: http://gpl-violations.org.

Grierson, Kevin W., Enforceability of „Clickwrap“ or „Shrinkwrap“ Agreements Common in Compu-
ter Software, Hardware, and Internet Transactions, 106 American Law Reports 5th 309.

Groklaw, RedHat is Asking for Prior Art, at: http://www.groklaw.net/article.php?story=

20090216150306923.

Towards_an_Improved_def.indd 224Towards_an_Improved_def.indd 224 23-02-2010 10:49:3923-02-2010 10:49:39

225References

Gross, Alois Valerian, What is Computer “Trade Secret” under State Law, 53 American Law

Reports 4th 1046.

Guibault, Lucie; van Daalen, Ot, Unraveling the Myth around Open Source Licenses.

An Analysis from A Dutch and European Law Perspective (TMC Asser Press 2006).

Holbrook, Timothy R., The paradoxical nature of U.S. patent scope, in: Maciej Barczewski et. al.

(eds.), When Worlds Collide: Intellectual Property, High Technology and the Law

(Wolters Kluwer 2008), 65.

IBM, IBM Pledges Free Access to Patents Involved in Implementing 150+ Software Standards, at:

http://www-03.ibm.com/press/us/en/pressrelease/21846.wss.

IBM, The European Community Patent revisited. Discussion paper from IBM, at: http://www.epip.

eu/conferences/epip02/lectures/European%20Interoperabily%20Patent%201.1.pdf.

IDABC, Linking up Europe: the Importance of Interoperability for eGovernment Services, Commission
Staff Working Paper (EC 2003), at: http://europa.eu.int/idabc/servlets/Doc?id=1675.

IDABC, Translation of EUPL v.1.0 into the offi cial languages of the European Union – Report on com-
ments received by IDABC, at: http://ec.europa.eu/idabc/servlets/Doc?id=29987.

Initiative for Software Choice, New EU Public Procurement Directives – Maintaining Neutrality in
Software Procurement, September 2004, at: http://www.softwarechoice.org/download_

fi les/ISC_LegalNote.pdf.

ISO/IEC Guide 2:2004 Standardization and related activities – General vocabulary.

ISO/IEC/ITU, Common patent policy, at: http://www.iso.org/patents.

Jensen, Chris; Scacchi, Walt, Role Migration and Advancement Process in OSSD Projects: A Compara-
tive Case Study, at: http://opensource.mit.edu/papers/Jensen-Scacchi-ICSE-2007.pdf.

Krishnamurthy, Sandeep, Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects, Firstmonday, at: http://www.fi rstmonday.org/issues/issue7_6/krishna-

murthy/index.html.

Lakhani, K.R.; Wolf, B.; Bates J.; DiBona, C., The Boston Consulting Group Hacker Survey, at:

http://www.osdn.com/bcg/bcg-0.73/img1.html.

Laurent, Andrew M. St., Understanding Open Source and Free Software Licensing

(O’Reilly, 2004).

Lemley, Mark A., Antitrust and the Internet Standardization Problem, 28 Connecticut Law Review

1041.

Lemley, Mark A., The Economics of Improvement in Intellectual Property Law, 75 Texas Law Review

989 (1997).

Lessig, Lawrence, The New Chicago School, 27 The Journal of Legal Studies 661 (June 1998).

Levy, Steven, Hackers: Heroes of the Computer Revolution, (New York, Dell, 1985).

Liebowitz, S.J.; Margolis, Stephen E., Network Externalities (Effects), at: http://www.utdallas.

edu/~liebowit/palgrave/network.html.

Lindberg, Van, Intellectual Property and Open Source, (O’Reilly 2008).

Linux Foundation, Linux Foundation Publishes Study on Linux Development, http://linux-founda-

tion.org/weblogs/press/2008/03/31/linux-foundation-publishes-study-on-linux-devel-

opment-statistics-who-writes-linux-and-who-supports-it/.

Livna, at: http://livna.org.

Lloyd, Ian J., Information Technology Law, 308 (Butterworths, 2000, 3rd ed.).

Margolis, Stephen E.; Liebowitz, S.J., Path dependence, at: http://www.utdallas.edu/~liebowit/

palgrave/palpd.html.

MeatBall, RightToFork, at: http://www.usemod.com/cgi-bin/mb.pl?RightToFork.

Meeker, Heather J., The Open Source Alternative Understanding Risks and Leveraging

Opportunities (Wiley, 2008).

Ministerie van Economische Zaken, Ontwerptekst instructie Comply or explain & commit, at:

http://www.ez.nl/Onderwerpen/Betrouwbare_telecom/Open_Standaarden_en_Open_

Source_Software/Ontwerptekst_instructie_Comply_or_explain_commit.

Moglen, Eben, Anarchism Triumphant: Free Software and the Death of Copyright, at: http://emo-

glen.law.columbia.edu/my_pubs/anarchism.html.

Moglen, Eben, Enforcing the GNU GPL, at: http://www.gnu.org/philosophy/enforcing-gpl.

html.

Towards_an_Improved_def.indd 225Towards_an_Improved_def.indd 225 23-02-2010 10:49:3923-02-2010 10:49:39

226 References

Moglen, Eben, The GPL Is a License, not a Contract, at: http://lwn.net/Articles/61292/.

Mueller, Janice M., Patent Misuse Through the Capture of Industry Standards, 17 Berkeley Tech-

nology Law Journal 623 (2002).

Murphy, Gary, The Linux Kernel, Blueprints for World Domination, at: http://kernelbook.source-

forge.net/pkbook.html.

Nichols, Kenneth, Inventing software: the rise of “computer-related” patents (Quo-

rum Books, 1998).

Nimmer, Raymond T., Legal Issues in Open Source and Free Software Distribution, Open Source

Software Spring 2006 Critical Issues in Today’s Corporate Environment, PLI Hand-

book no. G-861, 7.

NOiV (OSSOS), The acquisition of (open-source) software, A guide for ICT buyers in the public and semi-
public sectors, at: http://ososs.nl/fi les/acquisition_of_open-source_software_-_text.pdf.

Novell, Patent Policy, at: http://www.novell.com/company/policies/patent/.

Ogden, Christopher L., Patentability of Algorithms After State Street Bank: The Death of the Physical-
ity Requirement, No. 10 Vol. 82 Journal of Patent and Trademark Office Society 721,

724 et seq (2000).

Open Forum Europe, How Open Can Europe Get, at: http://www.openforumeurope.org/index.

php?option=com_docman&task=doc_download&gid=89&Itemid=102.

Open Invention Network, at: http://www.openinventionnetwork.com/.

Open Source Initiative, Open Source Defi nition, at: http://opensource.org/docs/defi nition.php.

Open Source Initiative, The Approved Licenses, at: http://opensource.org/licenses/.

OpenOffi ce, Sun Contributorship Agreement, at: http://contributing.openoffi ce.org/program-

ming.html#sca.pdf.

OpenSuSE, OpenSuSE License, at: http://en.opensuse.org/OpenSUSE_License.

Patently O, In re Bilski, at: http://www.patentlyo.com/patent/2008/10/in-re-bilski.html.

Peer-to-Patent, at: http://www.peertopatent.org/.

Perens, Bruce, Open Standards Principles and Practice, at: http://perens.com/OpenStandards/

Defi nition.html.

Polański, Przemysław P., Customary Law of the Internet (TMC Asser Press 2007).

Prince, Brian, Sun Asserts MySQL Will Remain Open Source, at: http://www.eweek.com/c/a/

Database/Sun-Asserts-MySQL-to-Remain-Open-Source/.

Raimondo, F. O., General Principles of Law in the Decisions of International Criminal

Court and Tribunals (2007, Ph.d. thesis at University of Amsterdam)

Ramos, Carey R.; Berlin, David S., Three Ways to Protect Computer Software, 16 No. 1 Computer

Lawyer 16 (1999)

Raymond, Eric S., A Brief History of Hackerdom, at: http://www.catb.org/~esr/writings/cathe-

dral-bazaar/hacker-history/index.html.

Raymond, Eric S., Homesteading the Noosphere, at: http://www.catb.org/~esr/writings/cathe-

dral-bazaar/homesteading/.

Raymond, Eric S., How to Become a Hacker, at: http://www.catb.org/~esr/writings/faqs/hack-

er-howto.html).

Raymond, Eric S., The Cathedral and the Bazaar, at: www.catb.org/~esr/writings/cathedral-

bazaar/.

Raymond, Eric S., The Magic Cauldron, at: http://www.catb.org/~esr/writings/cathedral-

bazaar/magic-cauldron/.

Reichman, J.H.; Franklin, Jonathan A., Privately Legislated Intellectual Property Rights: Reconciling
Freedom of Contract with Public Good Uses of Information, 147 U. Pa. L. Rev. 875 (1999).

RFC1392, at: http://rfc.net/rfc1392.html.

Rosen, Lawrence, Bad Facts Make Good Law: The Jacobsen Case and Open Source, at: http://www.

rosenlaw.com/BadFactsMakeGoodLaw.pdf.

Rullani, Francesco, Dragging developers towards the core, at: ftp://ftp.unibocconi.it/pub/RePEc/

cri/papers/WP190Rullani.pdf.

Sachs, Stephen Edward, From St. Ives to Cyberspace: The Modern Distortion of the Medieval ‘Law
Merchant’ 21 American University International Law Review 685 (2006), also available

at: http://ssrn.com/id=830265.

Towards_an_Improved_def.indd 226Towards_an_Improved_def.indd 226 23-02-2010 10:49:3923-02-2010 10:49:39

227References

Saltzer, J.H; Reed, D.P.; Clark, D.D., End-to-End Argument in System Design, 2 ACM Transac-

tions in Computer Systems 277 (1984), at: http://web.mit.edu/Saltzer/www/publica-

tions/endtoend/endtoend.pdf).

Samuelson, Pamela, Reverse Engineering Under Siege, 10 Communications of the ACM 15

(2002).

Scherer, F.M., Microsoft and IBM in Europe, 2090 Antitrust & Trade Regulation Report 65, 66

(2003).

Schiuma, Daniele, TRIPS and Exclusion of Software “as Such” from Patentability, Vol. 31, No.1, IIC

International Review of Industrial Property and Copyright Law 36 (2000).

Scott, Brendan, BSD – The Dark Horse of Open Source, at: http://opensourcelaw.biz/publica-

tions/papers/BScott_BSD_The_Dark_Horse_of_Open_Source_070112lowres.pdf.

Siewicz, Krzysztof Scope of copyleft clause under Polish law, in: Barta J. (ed.), Zagadnienia Prawa

Autorskiego [Copyright Law Issues], ZNUJ PWiOWI [Jagiellonian University Intellectual

Property Journal], Vol. 93 p. 235, (Zakamycze 2006), English version at: http://ksiewicz.

net/fi les/siewicz_copyleft_scope.pdf.

Skulikaris, Yannis, Software-Related Inventions and Business-Related Inventions; A review of practice
and case law in U.S. and Europe, Patent World, February 2001, 26.

Slashdot, Hans Reiser Speaks Freely About Free Software Development, at: http://developers.slash-

dot.org/article.pl?sid=03/06/18/1516239&tid=156&tid=11.

Software Freedom Law Center, A Legal Issues Primer for Open Source and Free Software Projects, at:

http://www.softwarefreedom.org/resources/2008/foss-primer.html.

Software Freedom Law Center, at: http://softwarefreedom.org.

Software Freedom Law Center, Maintaining Permissive-Licensed Files in a GPL-Licensed Project:
Guidelines for Developers, at: http://softwarefreedom.org/resources/2007/gpl-non-gpl-

collaboration.html.

Solum, Lawrence B.; Chung, Minn, The Layers Principle: Internet Architecture and the Law, 79

Notre Dame Law Review 815 (2004).

SourceForge, at: http://sourceforge.net.

Stallman, Richard M., Free Software Defi nition, at: http://www.gnu.org/philosophy/free-sw.

html.

Stallman, Richard M., Why “Free Software” is better than “Open Source”, at: http://www.fsf.org/

licensing/essays/free-software-for-freedom.html.

Sundararajan, Arun, Network Effects, at: http://oz.stern.nyu.edu/io/network.html.

The Fedora Extras license audit, at: http://lwn.net/Articles/218977/.

The Register, EC acts on patent ambushes, at: http://www.theregister.co.uk/2005/12/14/pat-

ent_ambush/.

Toren, Peter, Software and Business Methods are Patentable in the U.S. (Get over it), Patent World,

September 2000, 8).

Tripathi, R C et al., Patenting of Computer Software: Status and Approach, Vol. 7 Journal of Intel-

lectual Property Rights 128 (2002).

Tsilas, Nicos L., The Threat to Innovation, Interoperability, and Government Procurement Options
From Recently Proposed Defi nitions of “Open Standards”, Special Issue Global Flow of

Information, Autumn 2005 (at: http://www.ijclp.org/10_2005/pdf/ijclp_08_10_2005.

pdf).

Turney, James, Defi ning the Limits of the EU Essential Facilities Doctrine on Intellectual Property
Rights: The Primacy of Securing Optimal Innovation, 2 Northwestern Journal of Technol-

ogy and Intellectual Property 179 (2005).

Ubuntu Daily, Proprietary drivers in Feisty: not by default but easy to activate, at: http://ubuntudai-

ly.com/2007/03/06/proprietary-drivers-in-feisty-not-by-default-but-easy-to-activate/.

Ubuntu, Licensing, at: http://www.ubuntu.com/community/ubuntustory/licensing.

Ubuntu, What is Ubuntu?, at: http://www.ubuntu.com/products/whatisubuntu.

Vardakas, Evangelos, The role of government in standards setting: a European View, 5, in: Vademe-

cum on European Standardization, Part II, Chapter 1, at: http://europa.eu.int/comm/

enterprise/standards_policy/vademecum/doc/standards_setting_governance_ev.pdf).

Towards_an_Improved_def.indd 227Towards_an_Improved_def.indd 227 23-02-2010 10:49:4023-02-2010 10:49:40

228 References

Vetter, Greg R., „Infectious” Open Source Software: Spreading Incentives or Promoting Resistance?, 36

Rutgers Law Journal 53 (2004).

Waglowski, Piotr, Sąd Okręgowy oddalił apelację ZUS w sprawie protokołu KSI-MAIL. Koniec, [Cir-
cuit court rejected the appeal of ZUS in the KSI-MAIL case. The end.], at: http://prawo.vagla.

pl/node/7222.

Weber, Steven, The Success of Open Source (Harvard University Press, 2004).

Welte, Harald, Some more thoughts on the results of GPL enforcement, at: http://gnumonks.

org/~laforge/weblog/2006/10/30/#20061030-gpl-devices.

Wiewiórowski, Wojciech, Komunikat dotyczący Edytora Aktów Prawnych, at: http://bip.mswia.

gov.pl/portal/bip/21/17881/.

Wikipedia, Android (mobile device platform), at: http://en.wikipedia.org/wiki/Android_(mobile_

device_platform).

Wikipedia, BDI software agent, at: http://en.wikipedia.org/wiki/BDI_software_agent.

Wikipedia, CentOS, at: http://en.wikipedia.org/wiki/Centos.

Wikipedia, Clean room design, at: http://en.wikipedia.org/wiki/Clean_room_design.

Wikipedia, Cloud computing, at:http://en.wikipedia.org/wiki/Cloud_computing.

Wikipedia, Corporate veil, at:http://en.wikipedia.org/wiki/Corporate_veil.

Wikipedia, Decompilation, at: http://en.wikipedia.org/wiki/Decompilation.

Wikipedia, Doctrine of equivalents, at:http://en.wikipedia.org/wiki/Doctrine_of_Equivalents.

Wikipedia, eGovernment, at: http://en.wikipedia.org/wiki/eGovernment.

Wikipedia, Essential Facilities Doctrine, at: http://en.wikipedia.org/wiki/Essential_facilities.

Wikipedia, Fork (software development), at: http://en.wikipedia.org/wiki/Fork_(software_devel-

opment).

Wikipedia, Juraj Janosik, at: http://en.wikipedia.org/wiki/Juraj_J%C3%A1no%C5%A1%C3%ADk.

Wikipedia, Law Merchant, at: http://en.wikipedia.org/wiki/Lex_mercatoria#The_medieval_

Law_Merchant.

Wikipedia, Metcalfe’s law, at: http://en.wikipedia.org/wiki/Metcalfe%27s_law.

Wikipedia, Network effects, at: http://en.wikipedia.org/wiki/Network_effects.

Wikipedia, OSI Model, at: http://en.wikipedia.org/wiki/OSI_model.

Wikipedia, Patent ambush, at: http://en.wikipedia.org/wiki/Patent_ambush.

Wikipedia, Program library, at:http://en.wikipedia.org/wiki/Program_library.

Wikipedia, Programming language, at: http://en.wikipedia.org/wiki/Programming_language.

Wikipedia, Reverse engineering, at: http://en.wikipedia.org/wiki/Reverse_engineering.

Wikipedia, Self-modifying code, at: http://en.wikipedia.org/wiki/Self-modifying_code.

Wikipedia, Tivoization, at:http://en.wikipedia.org/wiki/Tivoization.

Wikipedia, Transaction costs, at:http://en.wikipedia.org/wiki/Transaction_costs.

Williamson, Oliver E., The Economics of Governance, at: http://www.aeaweb.org/annual_mtg_

papers/2005/0107_1645_0101.pdf.

Williamson, Oliver E., The Theory of the Firm as Governance Structure: From Choice to Contract, 3

Journal of Economic Perspectives 171 (Summer 2002).

Williamson, Oliver E., Why Law, Economics, and Organization?, at: http://papers.ssrn.com/

paper.taf?abstract_id=255624.

Wine, at: http://winehq.org.

WIPO (Standing Committee on the Law of Patents), Report on the International Patent System,

(3 February 2009, SCP/12/3 Rev. 2), at: http://www.wipo.int/edocs/mdocs/scp/en/

scp_12/scp_12_3.pdf.

WIPO (Standing Committee on the Law of Patents), Standard and Patents, (18 February 2009,

SCP/13/2), at: http://www.wipo.int/edocs/mdocs/scp/en/scp_13/scp_13_2.pdf.

Worthington, David, Experts: Microsoft’s FAT licensing terms might violate GPL, at: http://www.

sdtimes.com/link/33327.

Worthington, David, TomTom can license FAT without violating GPL, at: http://www.sdtimes.

com/blog/1364.

ZUS, at: http://zus.pl.

ZUS, Wymagania dla oprogramowania interfejsowego, [Requirements for interface software], at: http://

www.zus.pl/bip/default.asp?id=180.

Towards_an_Improved_def.indd 228Towards_an_Improved_def.indd 228 23-02-2010 10:49:4023-02-2010 10:49:40

 Summary

This thesis concerns the protection of users of computer programs known as
Free Software. It is based on the premise that a worldwide regulatory frame-
work should be adopted to protect the users. In this thesis, a model of the
current framework is reconstructed and its operation analysed in the world
of software communities and eGovernments. The thesis also proposes an
improved framework, intended to protect the freedoms of users more ade-
quately than in the current framework.

In Chapter 1 I provide an introduction to the analysis of the current
framework, by presenting the scene of play together with the actors and the
audience of that scene. This leads to one of the most important findings, viz.
the control of the working of the programs (and essentially the protection of
the user freedoms) require(s) that two conditions are met. The conditions
are: (1) access to source codes of the programs, as well as (2) access to the
specifications of standards used by the programs to interoperate with other
programs. Then, by looking at the software communities and eGovernments
in relation to user freedoms as defined by Stallman, I formulate a Research
Goal and the Problem Statement. Thereafter, I formulate three Research
Questions to be answered by analysing the current regulatory framework
and by proposing an improved framework. Finally, I present the research
methodology to be used in the analysis.

In Chapter 2 I provide definitions and basic notions that are used
throughout the analysis. These are (1) Free Software, (2) Open Source Soft-
ware, (3) open standards, (4) software communities, and (5) eGovernments.
In particular, I explain what are the subject matter, the requirements, and the
addressees of the Free Software Definition. It leads to the finding that Free
Software refers to computer programs available together with the rights to
use, develop, and distribute them. In other words, the Free Software Defini-
tion requires that users are allowed to exercise all activities covered by copy-
right.

In Chapter 3 I reconstruct a model of the current regulatory framework
of Free Software. I include in the framework rules that regulate (1) the access
to software and standards, and (2) the relations between the rules. As a
result, the model reconstructed in Chapter 3 consists of rules that enable
users to exercise their freedoms, as well as the rules that limit or restrict users
in exercising them (the latter jointly referred to as the “inefficiencies”). The
inefficiencies are: (1) license proliferation and incompatibility, (2) license
revocability, (3) inter partes nature of licenses, (4) software-related patents, (5)
contracts with distributors, (6) liability rules, (7) non-legal regulators of soft-
ware, (8) closed standards, and (9) regulatory environment. I complete Chap-
ter 3 by a conclusion that many of the inefficiencies are not sufficiently

Towards_an_Improved_def.indd 229Towards_an_Improved_def.indd 229 23-02-2010 10:49:4023-02-2010 10:49:40

230 Summary

addressed by the model. It follows that the freedoms are not sufficiently pro-
tected under the current framework.

In Chapter 4 I analyse how software communities affect the protection of
user freedoms under the current framework. This is done by identifying
relations between the communities and the model of the framework. The
analysis of software communities leads to a conclusion that properly orga-
nized communities are able to gather and manage resources necessary
to minimize many limitations and restrictions of the current framework
materially. However, the inefficiencies as such remain. The inefficiencies that
are the least affected by the communities are: (1) software-related patents,
(2) closed standards, and (3) the regulatory environment.

In Chapter 5 I analyse how eGovernments affect the protection of user
freedoms under the current framework. I perform this analysis separately
for Closed eGovernments (i.e., eGovernments based on closed standards)
and for Open eGovernments (i.e., eGovernments based on open standards).
It leads to a conclusion that the limitations and restrictions of the current
framework continue to exist in the world of eGovernments. However, eGov-
ernments are able to affect how the inefficiencies of the current framework
impact user freedoms. They may do so in both ways. Generally, Closed
eGovernments lead to further restriction of user freedoms, despite the pro-
tection inherent in the current framework, and despite any positive effect
that the communities might have on the freedoms. Conversely, Open eGov-
ernments are mostly neutral towards the limitations and restrictions,
although they affect some of them to a benefit of the freedoms.

In Chapter 6 I propose an improved regulatory framework of Free Soft-
ware. The proposal originates from the findings and conclusions presented
in previous chapters. It is started by a recapitulation of all identified ineffi-
ciencies of the current framework and a discussion about possible improve-
ments of each of them. Then, a selection of the most appropriate improve-
ments is performed. The improvements are grouped under the following
headings: (1) proper organization of communities, (2) guidelines for eGov-
ernments, (3) Free Software legislation, (4) restriction of software-related
patents, (5) promotion of open standards, and (6) internationalization of the
framework. I then add the improvements to the model of the current frame-
work, and present the relations between the improvements and other rules
in the model. As a result, I construct the proposal of an improved regulatory
framework.

In Chapter 7 I finalize the research. I recall the answers to the three
Research Questions, as well as the answers to the Problem Statement (each
of them is given after a relevant part of the analysis in previous chapters).
The chapter ends with an identification of issues for further research.

Towards_an_Improved_def.indd 230Towards_an_Improved_def.indd 230 23-02-2010 10:49:4023-02-2010 10:49:40

 Samenvatting –

Op weg naar een betere rechtsbescherming
van Free Software

Dit proefschrift gaat over de bescherming van gebruikers van de zogeheten
“vrije software” (Free Software). Het gaat uit van de premisse dat er, om die
gebruikers te beschermen, een wereldomvattend regulerend kader zou moe-
ten worden aangenomen. In dit proefschrift wordt een model van het bestaan-
de kader gereconstrueerd en de werking daarvan geanalyseerd in de omge-
ving van “software communities” en “eGovernments”. Er wordt daarnaast
een verbeterd kader voorgesteld, dat tot doel heeft de vrijheden van de gebrui-
kers een meer adequate bescherming te bieden dan het bestaande kader doet.

In Hoofdstuk 1 geef ik een inleiding op de analyse van het huidige kader aan
de hand van een schets van het speelveld, van de actoren en van de toe-
schouwers van dat speelveld. Dit leidt tot een van de belangrijkste constate-
ringen, namelijk de controle over de werking van de programmatuur (en in
essentie de bescherming van de vrijheden voor de gebruiker) vereist (ver-
eisen) dat wordt voldaan aan twee voorwaarden. Deze voorwaarden zijn:
– toegang tot de broncode van de programmatuur; en
– toegang tot de specificaties van de standaarden die de programmatuur

gebruikt vanwege de interoperabiliteit met andere programmatuur.
Na aandacht te hebben besteed aan de “software communities” en “eGovern-
ments” in relatie tot de vrijheden voor de gebruiker zoals gedefinieerd door
Stallman, worden het onderzoeksdoel en de probleemstelling geformuleerd.
Hierna formuleer ik drie onderzoeksvragen die ik wil beantwoorden door
het analyseren van het bestaande regulerende kader en door een verbeterd
kader voor te stellen. Ten slotte geef ik aan met behulp van welke onder-
zoeksmethodologie ik mijn analyse uitvoer.

In Hoofdstuk 2 behandel ik definities en begrippen zoals ik die ik in mijn
analyse gebruik. Dit zijn:
– vrije software (Free Software);
– Open Source Software;
– Open standaarden;
– Software communities; en
– eGovernments.
Ik leg in het bijzonder uit wat de essentie is van de vrije software definitie
(Free Software Definition), en om welke vereisten en geadresseerden het
hierbij gaat. Dit leidt tot de conclusie dat vrije software (Free Software) com-
puterprogrammatuur betreft die beschikbaar is tezamen met het recht om
deze te gebruiken, te ontwikkelen en te verspreiden. Met andere woorden,
de vrije software definitie (Free Software Definition) vereist dat gebruikers
alle auteursrechtelijk relevante handelingen mogen verrichten.

Towards_an_Improved_def.indd 231Towards_an_Improved_def.indd 231 23-02-2010 10:49:4023-02-2010 10:49:40

232 Samenvatting – Op weg naar een betere rechtsbescherming van Free Software

In Hoofdstuk 3 reconstrueer ik een model van het huidige regulerende kader
voor vrije software (Free Software). Ik behandel in het kader tevens de regels
over:
– de toegang tot software en standaarden; en
– de relaties tussen de regels.
Het resultaat van deze reconstructie is een model dat bestaat zowel uit regels
die gebruikers in staat stellen om hun vrijheden uit te oefenen, als uit regels
die gebruikers uitsluiten of beperken in de uitoefening van de vrijheden (de
laatste regels worden gezamenlijk aangeduid als de “ondoelmatigheden”).
De ondoelmatigheden zijn:
– proliferatie van de licentie en incompatibiliteit;
– herroepbaarheid van de licentie;
– het inter partes karakter van de licenties;
– softwaregerelateerde octrooien;
– contracten met distributeurs;
– aansprakelijkheidsbepalingen;
– niet-juridische regelgeving van software;
– gesloten standaarden; en
– regelgevende omgevingen.
Ik sluit Hoofdstuk 3 af met een conclusie dat veel van de ondoelmatigheden
niet voldoende worden bestreken door het model. Hieruit volgt dat de vri-
jheden met het bestaande kader niet voldoende worden beschermd.

In Hoofdstuk 4 analyseer ik hoe de software communities onder het bestaan-
de kader de bescherming van de vrijheden van de gebruiker beïnvloeden.
Zij doen dit door het stellen van relaties tussen de communities en het model
van het kader. De analyse van software communities leidt tot een conclusie
dat goed georganiseerde communities in staat zijn om bronnen te vergaren
en te organiseren, die noodzakelijk zijn om veel uitsluitingen en beperkin-
gen van het bestaande kader aanzienlijk te minimaliseren. Echter, de ondoel-
matigheden als zodanig blijven bestaan. De ondoelmatigheden die het minst
worden geraakt door de communities zijn:
– softwaregerelateerde octrooien;
– gesloten standaarden; en
– regelgevende omgevingen.

In Hoofdstuk 5 analyseer ik hoe eGovenments met het bestaande kader de
bescherming van de vrijheden van de gebruiker beïnvloeden. Ik voer de ana-
lyse uit voor zowel de “Gesloten eGovernments” (d.w.z. eGovernments
gebaseerd op gesloten standaarden) als voor “Open eGovernments” (d.w.z.
eGovernments gebaseerd op open standaarden). Dit leidt tot de conclusie
dat de uitsluitingen en beperkingen van het bestaande kader in de wereld
van de eGovernments blijven bestaan. Echter, eGovernments zijn in staat om
invloed uit te oefenen op de wijze waarop het bestaande kader inwerkt op
de vrijheden van de gebruiker. Beide kunnen dat bewerkstelligen. Over het
algemeen leiden Gesloten eGovernments tot een verdere beperking van de

Towards_an_Improved_def.indd 232Towards_an_Improved_def.indd 232 23-02-2010 10:49:4023-02-2010 10:49:40

233Samenvatting – Op weg naar een betere rechtsbescherming van Free Software

vrijheden van de gebruiker, ondanks de bescherming die eigen is aan het
bestaande kader, en ondanks positieve effecten die communities zouden
kunnen hebben op de vrijheden. Daarentegen staan Open eGovernments
doorgaans neutraal tegenover de uitsluitingen en beperkingen, ofschoon zij
sommige daarvan beïnvloeden ten faveure van de vrijheden.

In Hoofdstuk 6 stel ik een verbeterd regulerend kader voor vrije software
(Free Software) voor. Dit voorstel volgt uit de bevindingen en conclusies
zoals weergegeven in de voorafgaande hoofdstukken. Het begint met het
recapituleren van alle gestelde ondoelmatigheden van het bestaande kader
en een discussie over mogelijke verbeteringen van elk daarvan. Vervolgens
wordt een selectie gemaakt van de meest aangewezen verbeteringen. Deze
worden gegroepeerd onder de volgende noemers:
– goede organisatie van communities;
– richtlijnen voor eGovernments;
– vrije software (Free Software) regelgeving;
– beperking van softwaregerelateerde octooien;
– promotie van open standaarden; en
– internationalisering van het kader.
Ik voeg daarna de verbeteringen toe aan het model van het bestaande kader
en geef de relaties aan tussen de verbeteringen en de overige regels van het
model. Het resultaat dat ik dan ontwerp is mijn voorstel voor een verbeterd
regulerend kader.

In Hoofdstuk 7 sluit ik het onderzoek af met zowel de antwoorden op de
drie onderzoeksvragen als de antwoorden op de probleemstelling (waarvan
bij elk gegeven antwoord wordt ingegaan op betreffend relevant deel van de
analyse zoals deze in de voorafgaande hoofdstukken is behandeld). Het
hoofdstuk eindigt met het aangeven van punten die verder onderzoek recht-
vaardigen.

Towards_an_Improved_def.indd 233Towards_an_Improved_def.indd 233 23-02-2010 10:49:4023-02-2010 10:49:40

 Curriculum vitae

Krzysztof Siewicz was born in Warsaw, Poland, in 1979. He graduated from
the Tadeusz Czacki high school in Warsaw, in 1998. From 1998 to 2003 he
studied law at the Faculty of Law and Administration of the University of
Warsaw. He completed his studies with a summa cum laude master of law
diploma. Immediately after graduation he left Poland to attend a one-year
course in the international business law at the Central European University
in Budapest, Hungary. He finished the course with honours and obtained an
LLM diploma in 2004.

In 2005 he joined the law firm Grynhoff Woźny & Partners, a renowned
partnership of Polish lawyers specializing in telecommunications, media,
and transportation law (currently, Grynhoff Woźny Maliński, associated
with Bird&Bird). At the same time he started working on this doctoral thesis,
after being admitted as a doctoral candidate by the Leiden University,
eLaw@Leiden. His 6-month sabbatical in Leiden during the 2005/2006 aca-
demic year was funded by the Netherlands organization for international
cooperation in higher education (Nuffic), as a part of the Huygens Scholar-
ship Programme. The remaining part of his doctoral research was self-fund-
ed.

Krzysztof is also the legal lead of Creative Commons Poland, and runs a
weblog about legal issues of Free Software at http://ksiewicz.net (in Polish,
including English versions of some articles).

Towards_an_Improved_def.indd 234Towards_an_Improved_def.indd 234 23-02-2010 10:49:4123-02-2010 10:49:41

235SIKS Dissertation Series

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI321) DEGAS – An Active, Temporal Database of Autonomous
Objects

2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information
3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations within

the Language/Action Perspective
4 Dennis Breuker (UM) Memory versus Search in Games
5 Eduard W. Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated Modelling of Quality
Change of Agricultural Products

2 Rob Potharst (EUR) Classifi cation using Decision Trees and Neural Nets
3 Don Beal (UM) The Nature of Minimax Search
4 Jacques Penders (UM) The Practical Art of Moving Physical Objects
5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven

Specifi cation of Network Information Systems
6 Niek J.E. Wijngaards (VU) Re-Design of Compositional Systems
7 David Spelt (UT) Verifi cation Support for Object Database Design
8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent

Mechanism for Discrete Reallocation

2000

1 Frank Niessink (VU) Perspectives on Improving Software Maintenance
2 Koen Holtman (TU/e) Prototyping of CMS Storage Management
3 Carolien M.T. Metselaar (UvA) Sociaal-organisatorische Gevolgen van Kennistechnologie; een

Procesbenadering en Actorperspectief
4 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User Interface

Design
5 Ruud van der Pol (UM) Knowledge-Based Query Formulation in Information Retrieval
6 Rogier van Eijk (UU) Programming Languages for Agent Communication
7 Niels Peek (UU) Decision-Theoretic Planning of Clinical Patient Management
8 Veerle Coupé (EUR) Sensitivity Analysis of Decision-Theoretic Networks
9 Florian Waas (CWI) Principles of Probabilistic Query Optimization
10 Niels Nes (CWI) Image Database Management System Design Considerations, Algorithms and

Architecture
11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks
2 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models
3 Maarten van Someren (UvA) Learning as Problem Solving

321 Abbreviations: SIKS – Dutch Research School for Information and Knowledge Systems;

CWI – Centrum voor Wiskunde en Informatica, Amsterdam; EUR – Erasmus Universi-

teit, Rotterdam; KUB – Katholieke Universiteit Brabant, Tilburg; KUN – Katholieke Uni-

versiteit Nijmegen; OU – Open Universiteit; RUL – Rijksuniversiteit Leiden; RUN – Rad-

boud Universiteit Nijmegen; TUD – Technische Universiteit Delft; TU/e – Technische

Universiteit Eindhoven; UL – Universiteit Leiden; UM – Universiteit Maastricht; UT –

Universiteit Twente, Enschede; UU – Universiteit Utrecht; UvA – Universiteit van

Amsterdam; UvT – Universiteit van Tilburg; VU – Vrije Universiteit, Amsterdam.

Towards_an_Improved_def.indd 235Towards_an_Improved_def.indd 235 23-02-2010 10:49:4123-02-2010 10:49:41

236 SIKS Dissertation Series

4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-Based
Boundary Sets

5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style
6 Martijn van Welie (VU) Task-Based User Interface Design
7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization
8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems Dynamics
9 Pieter Jan ‘t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models,

Views of Packages as Classes
10 Maarten Sierhuis (UvA) Modeling and Simulating Work Practice BRAHMS: a Multiagent

Modeling and Simulation Language for Work Practice Analysis and Design
11 Tom M. van Engers (VU) Knowledge Management: The Role of Mental Models in Business

Systems Design

2002

1 Nico Lassing (VU) Architecture-Level Modifi ability Analysis
2 Roelof van Zwol (UT) Modelling and Searching Web-based Document Collections
3 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval
4 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in Data

Mining
5 Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments Inhabited by

Privacy-Concerned Agents
6 Laurens Mommers (UL) Applied Legal Epistemology; Building a Knowledge-based Ontology of

the Legal Domain
7 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive Applica-

tions
8 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative E-Commerce

Ideas
9 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Applications with Objecti-

fi ed Legacy Systems
10 Brian Sheppard (UM) Towards Perfect Play of Scrabble
11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and Organisa-

tional Applications
12 Albrecht Schmidt (UvA) Processing XML in Database Systems
13 Hongjing Wu (TU/e) A Reference Architecture for Adaptive Hypermedia Applications
14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and

Verifying Multi-Agent Systems
15 Rik Eshuis (UT) Semantics and Verifi cation of UML Activity Diagrams for Workfl ow Modelling
16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applications
17 Stefan Manegold (UvA) Understanding, Modeling, and Improving Main-Memory Database

Performance

2003

1 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured
Environments

2 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems
3 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Reality Expo-

sure Therapy
4 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology
5 Jos Lehmann (UvA) Causation in Artifi cial Intelligence and Law -- A Modelling Approach
6 Boris van Schooten (UT) Development and Specifi cation of Virtual Environments
7 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks
8 Yong-Ping Ran (UM) Repair-Based Scheduling
9 Rens Kortmann (UM) The Resolution of Visually Guided Behaviour
10 Andreas Lincke (UT) Electronic Business Negotiation: Some Experimental Studies on the Inter-

action between Medium, Innovation Context and Cult

Towards_an_Improved_def.indd 236Towards_an_Improved_def.indd 236 23-02-2010 10:49:4123-02-2010 10:49:41

237SIKS Dissertation Series

11 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using Bayes-
ian Networks

12 Roeland Ordelman (UT) Dutch Speech Recognition in Multimedia Information Retrieval
13 Jeroen Donkers (UM) Nosce Hostem -- Searching with Opponent Models
14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across ICT-

Supported Organisations
15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
16 Menzo Windhouwer (CWI) Feature Grammar Systems – Incremental Maintenance of Indexes

to Digital Media Warehouse
17 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic Timing
18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded in
Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
3 Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation in Symbolic Problem

Solving
4 Chris van Aart (UvA) Organizational Principles for Multi-Agent Architectures
5 Viara Popova (EUR) Knowledge Discovery and Monotonicity
6 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques
7 Elise Boltjes (UM) VoorbeeldIG Onderwijs; Voorbeeldgestuurd Onderwijs, een Opstap naar

Abstract Denken, vooral voor Meisjes
8 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale Poli-

tiële Gegevensuitwisseling en Digitale Expertise
9 Martin Caminada (VU) For the Sake of the Argument; Explorations into Argument-based Rea-

soning
10 Suzanne Kabel (UvA) Knowledge-rich Indexing of Learning-objects
11 Michel Klein (VU) Change Management for Distributed Ontologies
12 The Duy Bui (UT) Creating Emotions and Facial Expressions for Embodied Agents
13 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play
14 Paul Harrenstein (UU) Logic in Confl ict. Logical Explorations in Strategic Equilibrium
15 Arno Knobbe (UU) Multi-Relational Data Mining
16 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning
17 Mark Winands (UM) Informed Search in Complex Games
18 Vania Bessa Machado (UvA) Supporting the Construction of Qualitative Knowledge Models
19 Thijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval
20 Madelon Evers Nyenrode Learning from Design: facilitating multidisciplinary designteams

2005

1 Floor Verdenius (UvA) Methodological Aspects of Designing Induction-Based Applications
2 Erik van der Werf (UM) AI techniques for the game of Go
3 Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language
4 Nirvana Meratnia (UT) Towards Database Support for Moving Object data
5 Gabriel Infante-Lopez (UvA) Two-Level Probabilistic Grammars for Natural Language Parsing
6 Pieter Spronck (UM) Adaptive Game AI
7 Flavius Frasincar (TU/e) Hypermedia Presentation Generation for Semantic Web Information

Systems
8 Richard Vdovjak (TU/e) A Model-driven Approach for Building Distributed Ontology-based

Web Applications
9 Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages
10 Anders Bouwer (UvA) Explaining Behaviour: Using Qualitative Simulation in Interactive

Learning Environments
11 Elth Ogston (VU) Agent Based Matchmaking and Clustering – A Decentralized Approach to

Search

Towards_an_Improved_def.indd 237Towards_an_Improved_def.indd 237 23-02-2010 10:49:4123-02-2010 10:49:41

238 SIKS Dissertation Series

12 Csaba Boer (EUR) Distributed Simulation in Industry
13 Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
14 Borys Omelayenko (VU) Web-Service confi guration on the Semantic Web; Exploring how

semantics meets pragmatics
15 Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
16 Joris Graaumans (UU) Usability of XML Query Languages
17 Boris Shishkov (TUD) Software Specifi cation Based on Re-usable Business Components
18 Danielle Sent (UU) Test-selection strategies for probabilistic networks
19 Michel van Dartel (UM) Situated Representation
20 Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives
21 Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by Exploiting

Application Semantics

2006

1 Samuil Angelov (TU/e) Foundations of B2B Electronic Contracting
2 Cristina Chisalita (VU) Contextual issues in the design and use of information technology in

organizations
3 Noor Christoph (UvA) The role of metacognitive skills in learning to solve problems
4 Marta Sabou (VU) Building Web Service Ontologies
5 Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines
6 Ziv Baida (VU) Software-aided Service Bundling – Intelligent Methods & Tools for Graphical

Service Modeling
7 Marko Smiljanic (UT) XML schema matching -- balancing effi ciency and effectiveness by means

of clustering
8 Eelco Herder (UT) Forward, Back and Home Again – Analyzing User Behavior on the Web
9 Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion
10 Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
11 Joeri van Ruth (UT) Flattening Queries over Nested Data Types
12 Bert Bongers (VU) Interactivation – Towards an e-cology of people, our technological environ-

ment, and the arts
13 Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Exchanging Agents
14 Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign – towards a Theory of

Requirements Change
15 Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
16 Carsten Riggelsen (UU) Approximation Methods for Effi cient Learning of Bayesian Networks
17 Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device
18 Valentin Zhizhkun (UvA) Graph transformation for Natural Language Processing
19 Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach
20 Marina Velikova (UvT) Monotone models for prediction in data mining
21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
23 Ion Juvina (UU) Development of Cognitive Model for Navigating on the Web
24 Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC
26 Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for Structured Informa-

tion Retrieval
27 Stefano Bocconi (CWI) Vox Populi: generating video documentaries from semantically anno-

tated media repositories
28 Borkur Sigurbjornsson (UvA) Focused Information Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-Oriented Architectures}
2 Wouter Teepe (RUG) Reconciling Information Exchange and Confidentiality: A Formal

Approach
3 Peter Mika (VU) Social Networks and the Semantic Web

Towards_an_Improved_def.indd 238Towards_an_Improved_def.indd 238 23-02-2010 10:49:4123-02-2010 10:49:41

239SIKS Dissertation Series

4 Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-agent Systems: a
dialogue-based approach

5 Bart Schermer (UL) Software Agents, Surveillance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics for Blogs
7 Natasa Jovanovic’ (UT) To Whom It May Concern – Addressee Identifi cation in Face-to-Face

Meetings
8 Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent Organizations
9 David Mobach (VU) Agent-Based Mediated Service Negotiation
10 Huib Aldewereld (UU) Autonomy vs. Conformity: an Institutional Perspective on Norms and

Protocols
11 Natalia Stash (TU/e) Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive

Hypermedia System
12 Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision Support: A Rational

Approach to Dynamic Decision-Making under Uncertainty
13 Rutger Rienks (UT) Meetings in Smart Environments; Implications of Progressing Technology
14 Niek Bergboer (UM) Context-Based Image Analysis
15 Joyca Lacroix (UM) NIM: a Situated Computational Memory Model
16 Davide Grossi (UU) Designing Invisible Handcuffs. Formal investigations in Institutions and

Organizations for Multi-agent Systems
17 Theodore Charitos (UU) Reasoning with Dynamic Networks in Practice
18 Bart Orriens (UvT) On the development and management of adaptive business collaborations
19 David Levy (UM) Intimate relationships with artifi cial partners
20 Slinger Jansen (UU) Customer Confi guration Updating in a Software Supply Network
21 Karianne Vermaas (UU) Fast diffusion and broadening use: A research on residential adoption

and usage of broadband internet in the Netherlands between 2001 and 2005
22 Zlatko Zlatev (UT) Goal-oriented design of value and process models from patterns
23 Peter Barna (TU/e) Specifi cation of Application Logic in Web Information Systems
24 Georgina Ramìrez Camps (CWI) Structural Features in XML Retrieval
25 Joost Schalken (VU) Empirical Investigations in Software Process Improvement

2008

1 Katalin Boer-Sorbàn (EUR) Agent-Based Simulation of Financial Markets: A modular, continu-
ous-time approach

2 Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and Analysis of Orga-
nizations

3 Vera Hollink (UvA) Optimizing hierarchical menus: a usage-based approach
4 Ander de Keijzer (UT) Management of Uncertain Data – towards unattended integration
5 Bela Mutschler (UT) Modeling and simulating causal dependencies on process-aware informa-

tion systems from a cost perspective
6 Arjen Hommersom (RUN) On the Application of Formal Methods to Clinical Guidelines, an

Artifi cial Intelligence Perspective
7 Peter van Rosmalen (OU) Supporting the tutor in the design and support of adaptive e-learning
8 Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate Inference
9 Christof van Nimwegen (UU) The paradox of the guided user: assistance can be counter-effective
10 Wauter Bosma (UT) Discourse oriented Summarization
11 Vera Kartseva (VU) Designing Controls for Network Organizations: a Value-Based Approach
12 Jozsef Farkas (RUN) A Semiotically oriented Cognitive Model of Knowlegde Representation
13 Caterina Carraciolo (UvA) Topic Driven Access to Scientifi c Handbooks
14 Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with Less Effort
15 Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge Representation and Algo-

rithms for the Markov Decision Process Framework in First-Order Domains
16 Henriette van Vugt (VU) Embodied Agents from a User’s Perspective
17 Martin Op’t Land (TUD) Applying Architecture and Ontology to the Splitting and Allying of

Enterprises

Towards_an_Improved_def.indd 239Towards_an_Improved_def.indd 239 23-02-2010 10:49:4123-02-2010 10:49:41

240 SIKS Dissertation Series

18 Guido de Croon (UM) Adaptive Active Vision
19 Henning Rode (UT) From document to entity retrieval: improving precision and performance of

focused text search
20 Rex Arendsen (UvA) Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie

van elektronisch berichtenverkeer met een overheid op de administratieve lasten van bedrijven
21 Krisztian Balog (UvA) People search in the enterprise
22 Henk Koning (UU) Communication of IT-architecture
23 Stefan Visscher (UU) Bayesian network models for the management of ventilator-associated

pneumonia
24 Zharko Aleksovski (VU) Using background knowledge in ontology matching
25 Geert Jonker (UU) Effi cient and Equitable exchange in air traffi c management plan repair using

spender-signed currency
26 Marijn Huijbregts (UT) Segmentation, diarization and speech transcription: surprise data

unraveled
27 Hubert Vogten (OU) Design and implementation strategies for IMS learning design
28 Ildiko Flesh (RUN) On the use of independence relations in Bayesian networks
29 Dennis Reidsma (UT) Annotations and subjective machines- Of annotators, embodied agents,

users, and other humans
30 Wouter van Atteveldt (VU) Semantic network analysis: techniques for extracting, representing

and querying media content
31 Loes Braun (UM) Pro-active medical information retrieval
32 Trung B. Hui (UT) Toward affective dialogue management using partially observable markov

decision processes
33 Frank Terpstra (UvA) Scientifi c workfl ow design; theoretical and practical issues
34 Jeroen de Knijf (UU) Studies in Frequent Tree Mining
35 Benjamin Torben-Nielsen (UvT) Dendritic morphology: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models
2 Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques
3 Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT
4 Josephine Nabukenya (RUN) Improving the Quality of Organisational Policy Making using

Collaboration Engineering
5 Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge Intensive Tasks – Based

on Knowledge, Cognition, and Quality
6 Muhammad Subianto (UU) Understanding Classifi cation
7 Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition of Human Motion
8 Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in Dynamic Environments
9 Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-oriented Systems
10 Jan Wielemaker (UvA) Logic programming for knowledge-intensive interactive applications
11 Alexander Boer (UvA) Legal Theory, Sources of Law & the Semantic Web
12 Peter Massuthe TU/e, Humboldt-Universtät zu Berlin Operating Guidelines for Services
13 Steven de Jong (UM) Fairness in Multi-Agent Systems
14 Maksym Korotkiy (VU) From ontology-enabled services to service-enabled ontologies (making

ontologies work in e-science with ONTO-SOA)
15 Rinke Hoekstra (UvA) Ontology Representation – Design Patterns and Ontologies that Make

Sense
16 Fritz Reul (UvT) New Architectures in Computer Chess
17 Laurens van der Maaten (UvT) Feature Extraction from Visual Data
18 Fabian Groffen (CWI) Armada, An Evolving Database System
19 Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and Collaboration in Agent-

Mediated Electronic Markets
20 Bob van der Vecht (UU) Adjustable Autonomy: Controling Infl uences on Decision Making
21 Stijn Vanderlooy (UM) Ranking and Reliable Classifi cation
22 Pavel Serdyukov (UT) Search For Expertise: Going beyond direct evidence

Towards_an_Improved_def.indd 240Towards_an_Improved_def.indd 240 23-02-2010 10:49:4123-02-2010 10:49:41

241SIKS Dissertation Series

23 Peter Hofgesang (VU) Modelling Web Usage in a Changing Environment
24 Annerieke Heuvelink (VU) Cognitive Models for Training Simulations
25 Alex van Ballegooij (CWI) ‘RAM: Array Database Management through Relational Mapping’
26 Fernando Koch (UU) An Agent-Based Model for the Development of Intelligent Mobile Services
27 Christian Glahn (OU) Contextual Support of social Engagement and Refl ection on the Web
28 Sander Evers (UT) Sensor Data Management with Probabilistic Models
29 Stanislav Pokraev (UT) Model-Driven Semantic Integration of Service-Oriented Applications
30 Marcin Zukowski (CWI) Balancing vectorized query execution with bandwidth-optimized storage
31 Sofi ya Katrenko (UvA) A Closer Look at Learning Relations from Text
32 Rik Farenhorst and Remco de Boer (VU) Architectural Knowledge Management: Supporting

Architects and Auditors
33 Khiet Truong (UT) How Does Real Affect Affect Affect Recognition In Speech?
34 Inge van de Weerd (UU) Advancing in Software Product Management: An Incremental Meth-

od Engineering Approach
35 Wouter Koelewijn (UL) Privacy en Politiegegevens; Over geautomatiseerde normatieve infor-

matie-uitwisseling
36 Marco Kalz (OUN) Placement Support for Learners in Learning Networks
37 Hendrik Drachsler (OUN) Navigation Support for Learners in Informal Learning Networks
38 Riina Vuorikari (OU) Tags and self-organisation: a metadata ecology for learning resources in a

multilingual context
39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin) Service Substitution -- A Behav-

ioral Approach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Language Learning: Investigations into the Geometry
of Language

41 Igor Berezhnyy (UvT) Digital Analysis of Paintings

42 Toine Bogers (UvT) Recommender Systems for Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding Multi-step Attacks in Computer Networks
using Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing Business-IT Alignment in Networked Organizations

45 Jilles Vreeken (UU) Making Pattern Mining Useful
46 Loredana Afanasiev (UvA) Querying XML: Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Matter

2 Ingo Wassink (UT) Work fl ows in Life Science
3 Joost Geurts (CWI) A Document Engineering Model and Processing Framework for Multimedia

documents
4 Olga Kulyk (UT) Do You Know What I Know? Situational Awareness of Co-located Teams in

Multi display Environments
5 Claudia Hauff (UT) Predicting the Effectiveness of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of Video Game AI
7 Wim Fikkert (UT) A Gesture interaction at a Distance
8 Krzysztof Siewicz (UL) Towards an Improved Regulatory Framework of Free Software. Protect-

ing user freedoms in a world of software communities and eGovernments
9 Hugo Kielman (UL) A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging
10 Rebecca Ong (UL) Mobile Communication and Protection of Children

11 Adriaan Ter Mors (TUD) The world according to MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking software for crime analysis
13 Gianluigi Folino (RUN) High Performance Data Mining using Bio-inspired techniques

14 Sander van Splunter (VU) Automated Web Service Reconfi guration
15 Lianne Bodenstaff (UT) Managing Dependency Relations in Inter-Organizational Models
16 Sicco Verwer (TUD) Effi cient Identifi cation of Timed Automata, theory and practice
17 Spyros Kotoulas (VU) Scalable Discovery of Networked Resources: Algorithms, Infrastructure,

Applications

Towards_an_Improved_def.indd 241Towards_an_Improved_def.indd 241 23-02-2010 10:49:4223-02-2010 10:49:42

242 Meijers Ph.D. list

Meijers Ph.D. list

In de boekenreeks van de Graduate School of Legal Studies van de Faculteit der Rechtsgeleerd-

heid, Universiteit Leiden, zijn in 2009 en 2010 verschenen:

MI-156 N.M. Dane, Overheidsaansprakelijkheid voor schade bij legitiem strafvorderlijk handelen, (diss.

Leiden), Tilburg: Celsus juridische uitgeverij 2009, ISBN 978 90 8863 034 7

MI-157 G.J.M. Verburg, Vaststelling van smartengeld, (diss. Leiden) Deventer: Kluwer 2009

MI-158 J. Huang, Aviation Safety and ICAO, (diss. Leiden) 2009 ISBN-13 978 90 4113 115 7

MI-159 J.L.M. Gribnau, A.O. Lubbers & H. Vording (red.), Terugkoppeling in het belastingrecht,
Amersfoort: Sdu Uitgevers 2008, ISBN 978 90 6476 326 7

MI-160 J.L.M. Gribnau, Soevereiniteit en legitimiteit: grenzen aan (fiscale) regelgeving, (oratie Lei-

den), Sdu Uitgevers 2009, ISBN 978 90 6476 325 0

MI-161 S.J. Schaafsma, Intellectuele eigendom in het conflictenrecht. De verborgen conflictregel in het
beginsel van nationale behandeling (diss. Leiden), Deventer: Kluwer 2009, ISBN 978 90 13

06593 0

MI-162 P. van Schijndel, Identiteitsdiefstal, Leiden: Jongbloed 2009

MI-163 W.B. van Bockel, The ne bis in idem principle in EU law, (diss. Leiden), Amsterdam:

Ipskamp 2009, ISBN 978 90 90 24382 5

MI-164 J. Cartwright, The English Law of Contract: Time for Review?, (oratie Leiden), Leiden

2009.

MI-165 W.I. Koelewijn, Privacy en politiegegevens. Over geautomatiseerde normatieve informatie-
uitwisseling, (diss. Leiden), Leiden: Leiden University Press 2009, ISBN 9 789087 280703

MI-166 S.R.M.C. Guèvremont, Vers un traitement équitable des étrangers extracommunautaires en
séjour régulier. Examen des directives sur le regroupement familial et sur les résidents de lon-
gue durée, (diss. Leiden), Zutphen: Wöhrmann Printing Service 2009, ISBN 978 90 8570

419 5

MI-167 A.G. Castermans, I.S.J. Houben, K.J.O. Jansen, P. Memelink & J.H. Nieuwenhuis (red.),

Het zwijgen van de Hoge Raad, Deventer: Kluwer 2009, ISBN 978 90 13 07029 3

MI-168 P.M. Schuyt, Verantwoorde straftoemeting, (diss. Nijmegen), Deventer: Kluwer 2009, ISBN

978 90 1307 156 6

MI-169 P.P.J. van der Meij, De driehoeksverhouding in het strafrechtelijk vooronderzoek, (diss. Lei-

den), Deventer: Kluwer 2010, ISBN 978 90 1407 158 0

MI-170 M.V. Polak (red.), Inbedding van Europese procesrechtelijke normen in de Nederlandse rechts-
orde, Nijmegen: Ars Aequi Libri 2010, ISBN 978 90 6916 714 5

MI-171 E. Koops, Vormen van subsidiariteit. Een historisch-comparistische studie naar het subsidia-
riteitsbeginsel bij pand, hypotheek en borgtocht, (diss. Leiden), Den Haag: Boom Juridische

uitgevers 2010, ISBN 978 90 8974-259-9

MI-172 H.H. Kielman, Politiële gegevensverwerking. Naar een effectieve waarborging, (diss. Leiden

2010). ISBN 978 90 8570 503 1

MI-173 K. Siewicz, Towards an Improved regulatory Framework of Free Software. Protecting user free-
doms in a world of software communities and eGovernments, (diss. Leiden 2010).

MI-174 Laurens Mommers, Hans Franken, Jaap van den Herik, Franke van der Klaauw, Gerrit-

Jan Zwenne (red.) Het binnenste buiten. (Liber amicorum prof. mr. A.H.J. Schmidt Lei-

den). Leiden: eLaw@leiden 2010.

Zie voor de volledige lijst van publicaties: www.law.leidenuniv.nl/onderzoek

Towards_an_Improved_def.indd 242Towards_an_Improved_def.indd 242 23-02-2010 10:49:4223-02-2010 10:49:42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Instellingen met automatisch \(JPEG\) compressie om kleinere bestanden te creeeren.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

