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Abstract

Aims: Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the
genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is
incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant
inherited form of premature atherosclerosis.

Methods and Results: Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total
of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval
on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C.G; p.Ser307Cys) was identified. The
variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a
proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial
specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe2/2

mice (r2 = 0.69; p,0.0001).

Conclusion: A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of
KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis.
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Introduction

In both cardiovascular disease (CVD) and stroke, atherosclerosis

is the underlying pathology. Genetic factors explain a proportion

of the observed inter-individual variability in atherosclerosis

progression, which is exemplified by the observed 30–60%

heritability in twin studies [1], and the finding that a positive

family history for premature atherosclerosis is an independent risk

factor [2]. Both common and rare genetic variants contribute to

the heritability [3]. A recent meta-analysis of Genome Wide

Association Studies (GWAS) of nearly 64,000 cases with CVD has
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identified 46 common single nucleotide polymorphisms (SNPs) of

small effect size, which account for about 10.6% of the estimated

heritability [4]. The remaining heritability is assumed to be

explained by a combination of common variants with effect sizes

so small that they remained undetected in the recent GWAS meta-

analysis, by rare variants with an intermediate effect, and by

pedigree-specific mutations with a large effect. The latter have

been identified in several pedigrees with Mendelian forms of

atherosclerosis [5–11]. A well-known example of such a mono-

genic dominant disorder, that underlies atherosclerosis, is Familial

Hypercholesterolemia (FH), caused by loss of function (LOF)

causing mutations in the genes encoding for the Low-density

lipoprotein receptor (LDLR) or Apolipoprotein B (APOB), or gain

of function (GOF) mutations in Proprotein convertase subtilisin/

kexin type 9 (PCSK9). Carriers of mutations in these genes are

characterized by high plasma levels of LDL-cholesterol (LDL-c)

and early onset atherosclerosis [12].

The molecular basis of premature atherosclerosis in the absence

of high LDL-c levels is largely unknown, but recently rare and

putative causal variants in Myocyte enhancer factor–2 (MEF2A)

and Low-density lipoprotein receptor-related protein 6 (LRP6)

have been identified in pedigrees with Mendelian forms of

atherosclerosis where FH as a causal factor was ruled out

[5,10,11]. The predictive power of a family based approach has

recently been documented by Erdmann and co-workers [13], who

identified 2 novel private mutations in Guanylate Cyclase 1 soluble

alpha 3 (GUCY1A3) and Chaperone Containing TCP1 subunit 7

(CCT7), in a pedigree with a mendelian form of CVD. The

identification of such mutations in novel genes provides new and

pivotal information about the pathobiology of premature athero-

sclerosis, and may ultimately lead to new pharmacological

interventions to address the burden of atherosclerosis.

The aim of the current study was to identify the molecular

defect in a large non-FH pedigree with an autosomal dominant

form of atherosclerosis. We identified a non-synonymous (ns)

mutation in the Keratocan (KERA) gene, which encodes the

extracellular proteoglycan KERA. Additional genetic, histological

and animal studies were performed to further establish the role of

this variant in atherosclerosis.

Methods

Recruitment of the Pedigree with Early Onset
Atherosclerosis
A male subject who suffered from an acute myocardial

infarction (AMI) at the age of 49 years was referred to the

outpatient clinic of the Academic Medical Center (AMC) in

Amsterdam (Figure 1B; index case III:8). An autosomal dominant

form of inheritance of early onset atherosclerosis in the pedigree

was identified. Premature atherosclerosis was defined as a

documented atherosclerotic event, either CVD or stroke, before

the age of 55 (male) and 65 (female). Blood was obtained after an

overnight fast. Plasma was isolated by centrifugation at 3000 rpm,

for 20 minutes at 4uC and was stored at 280uC for further

analyses. Plasma cholesterol, LDL-c, high-density lipoprotein

cholesterol (HDL-c) and triglycerides (TG) were analysed using

commercially available assays (Randox, Antrim, United Kingdom

and Wako, Neuss, Germany) on a Cobas-Mira autoanalyzer

(Roche, Basel, Switzerland). Hypertension was defined as a systolic

blood pressure .140 mmHg and/or diastolic blood pressure .

90 mmHg or the use of anti-hypertensive lowering drugs. Diabetes

mellitus was defined as fasting plasma glucose $7.0 mmol/l or use

of anti-diabetic medication. The study complies with the

Declaration of Helsinki and the Institutional Review Board of

the AMC (Medische Ethische Toetsings Commissie, METC) of

the University of Amsterdam approved the study. All participants

provided written informed consent.

Genetic Studies (Figure 2)
Genomic DNA was extracted from whole blood on an

AutopureLS apparatus according to the manufacturer’s protocol

(Gentra Systems, Minneapolis, MN, USA). Human CytoSNP-12

Figure 1. Schematic overview of the gene discovery strategy.
doi:10.1371/journal.pone.0098289.g001
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BeadChip kits were used for genome wide single nucleotide

polymorphism (SNP) genotyping (Illumina, San Diego, CA, USA)

in 12 relatives (Figure 1B; 9 affected and 3 unaffected). A

Nimblegen (Madison, WI, USA) custom sequence capture array

comprising 395K probes was designed to enrich for the genomic

region that was identified by linkage analysis and used to sequence

the DNA region with an Illumina GAII platform. Confirmation of

the identified mutations and analysis of co-segregation of the

variant in the pedigree was by Sanger sequencing as previously

described [14]. The following primer pairs were used: KERA: exon

1 forward 59-AAG ATT ACC AGC CAA TAC AAT GC-39,

reverse 59-TGA TGG GAG ACC CTC ATC TG-39 exon 2

forward: 59-GCC ACT AAG CCC TCC ATA GG-39; reverse (2)

59-AGC AAT GGG GAA TAT GAC TTG-39. After establishing

the segregation in the core pedigree, the family was further

expanded (Figure S1 in File S1).

Validation Cohorts
The KERA variant was genotyped in:

1. Premature Atherosclerosis (PAS) Cohort: this cohort comprises

935 patients with early symptomatic atherosclerosis before the

age of 51 years. Atherosclerosis is defined as myocardial

infarction, coronary revascularization, or evidence of at least

70% stenosis in a major epicardial artery. [15] Patients were

recruited at the cardiology and vascular outpatient clinic of the

AMC. [16] To identify possible further cases with mutation or

rare variants in the coding fraction of KERA the DNA samples

of 296 randomly chosen PAS cases were sequenced.

2. Sanquin Blood Bank common Controls: DNA samples from

1,440 healthy volunteers were recruited from a large cohort of

healthy blood donors, who were free of clinical CVD, at one of

the collection clinics of the Sanquin Blood Bank covering the

northwest section of the Netherlands, which geographically

overlaps the PAS case cohort [16].

3. Cambridge BioResource Collection: DNA samples of 8,946

healthy volunteers were enrolled by NHS Blood and

Transplant Unit in a resource for genotype-phenotype

association studies [17]. In addition, genotyping results from

16,515 samples were retrieved from the UK10K (http://www.

uk10k.org) and the NHLBI Exome Sequencing (ESP) projects

[18].

Human Plaque Quantification
Specimens of cornea (n= 2), tonsil (n = 2), mammary artery

(n = 2), atherosclerotic- and non-diseased arteries (n = 9) were

collected from patients at autopsy. The tissues from autopsy

material for histological verification of protein expression were

obtained from the Department of Pathology (Prof Dr AC van der

Wal) within the AMC, Amsterdam. They were anonymously

provided to us according to the GPC guidelines. No METC

conformation was required. For details of the staining procedures

see Supplemental Methods in File S1.

Molecular Dynamics Computer Simulations
Molecular dynamics (MD) computer stimulations were per-

formed to assess the effect of the p.Ser307Cys mutation on the

structure of the KERA protein (see Supplemental Methods in File

S1).

Animal Experiments
The animal protocol was approved by the Ethics Committee for

animal Experiments of the Leiden University (Leiden, The

Figure 2. The identification of a gain of function mutation in
KERA. A, A significant LOD-score of 3.31 was obtained on chromosome
12 after parametric linkage analysis by Allegro software using
genotypes from 12 family members. B, Haplotype analyses of the
linkage interval showing two recombination events in III-3 and III-8; top
to bottom SNP order: rs11104542, rs7974491, rs10506959, rs1688545,
rs1347846, rs704106, rs1948839, rs704144, rs790455, rs7980716,
rs10777477, rs1493848, rs12308959, rs3847810, rs12426730. The linkage
interval is defined by rs1688545 and rs1493848 and harbours 21 genes
(Tables S2 and S3) Additional sequencing of the region led to the
identification of the KERA p.Ser307Cys variant. This was the only rare
non-synonymous variant. All affected relatives in this pedigree are
heterozygous carriers of the KERA mutation. In the pedigree we show
the type of event and the age at which the event occurred for each
relative. III-8 is the index case. AMI = acute myocardial infarction;
TIA = transient ischemic attack; PTCA = percutaneous transluminal
coronary angioplasty; CVA = cerebrovascular accident; AP = angina
pectoris; ACS = acute coronary syndrome; CABG = coronary artery
bypass graft; C, DNA Sanger sequencing chromatogram showing the
heterozygote c.920C.G; p.Ser307Cys KERA mutation.
doi:10.1371/journal.pone.0098289.g002
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Netherlands) and carried out in compliance with the Dutch

government guidelines. The animals were bred in house in the

Gorleaus Laboratories of the Leiden/Amsterdam Center for Drug

Research Leiden, the Netherlands. All surgery was performed

under sodium pentobarbital anesthesia, and all efforts were made

to minimize suffering. Male Apoe2/2 mice, aged 10–12 weeks,

were fed a Western type diet containing 0.25% cholesterol and

15% cacao butter (Special Diet Services, Sussex, UK) starting two

weeks prior to collar placement surgery. Mice (n = 3–4 per group)

were anaesthetized at t = 0 or 2, 4, 6, 8 and 10 weeks after collar

placement and in-situ perfusion-fixation was performed, after

which carotid arteries were sectioned and lesions were analyzed.

[19] Morphometric analysis using Leica Qwin image analysis

software (Leica Microsystems, Rijswijk, The Netherlands) was

performed on hematoxylin and eosin stained 5 mm sections of the

carotid arteries at the site of maximal stenosis as previously

described. [19] Cryosections were stained for KERA protein using

a rabbit anti KERA polyclonal antibody (clone H-50, Sc-66941)

(Supplemental Methods in File S1).

Statistical Analysis
Results are expressed as mean 6 standard deviation unless

otherwise stated. Two-sided P values of ,0.05 were considered

statistically significant. All statistical analysis were performed with

SPSS version 18.0. Multipoint parametric linkage analysis

assuming a fully penetrant autosomal dominant model, based on

the clinical segregation of the disease phenotype in the pedigree

and minor allele frequency (MAF) of ,0.001 was conducted using

Allegro software [20]. The identified variants were compared with

the dbSNP (build 129) database and available data from the 1000

Genomes pilot project [21]. Only those variants that were not

present in the database were selected for further testing.

Results

Identification of the Mutation in KERA
The index case III.8 (Figure 1B) suffered from an AMI at the

age of 49 years, and apart from obesity, no other atherosclerosis

risk factors were identified (Tables 1 and 2). Ten relatives did

suffer from premature atherosclerosis, of whom 2 died prior to the

conduct of this study. In addition to the nine living affected cases,

we identified three unaffected relatives, who were above the

predefined age for PAS and had not suffered from an atheroscle-

rotic event. (Figure 1B, Tables 1 and 2). Genotyping was

performed in these 12 individuals and multi-point linkage analysis

resulted in a parametric LOD-score of 3.31 in a region located on

chromosome 12q21.33-q22 (Figure 1A). The interval of 4.4 Mb

was located between SNPs rs1688545 and rs1493848 (Figure 1B)

and harboured 21 annotated genes (Table S1 in File S1 and Table

S2 in File S1). Sequencing of the interval in the index case III.8

revealed 1 non-synonymous variant, which was absent from the

1000 Genomes project. This novel variant in exon 3

(NM_007035.3: c.920C.G; p.Ser307Cys, Figure 1C) was iden-

tified in a single KERA haplotype, which showed complete co-

segregation with premature atherosclerosis in the core pedigree.

Further expansion of the pedigree led to the identification of 10

additional KERA mutation carriers of whom 1 brother, aged 73

years, had no signs of atherosclerotic disease. Two female carriers

of the mutation are still under the PAS age (Figure S1in File S1

and Table S3 in File S1). The KERA p.Ser307Cys variant was

absent from 27,901 other DNA samples, including samples from

935 cases from the PAS cohort (Table S4 in File S1) and 1,636

cases of premature MI collection of the NHLBI Exome

Sequencing project. The coding sequence and intron-exon

boundaries of KERA were additionally sequenced in 296 PAS

subjects and no additional rare variants with MAFs,0.5% were

identified.

Autosomal recessive LOF mutations in KERA cause cornea

plana type 2 (CP2), an ophthalmologic disorder characterised by

corneal flattening, but split lamp examination in 2 carriers of the

KERA p.Ser307Cys mutation did not reveal CP2 characteristics.

Additionally, in 9 CP2 cases and their 9 first-degree relatives

(age.55 and .65 years for males and females) no evidence of

clinical events related with atherosclerosis were detected.

The Effect of the Mutation on the KERA Protein Structure;
In silico Analysis (Figure 3)
The cysteine residues at 303 and 343 in KERA are highly

conserved among a large range of animal species. The mutation,

which introduces a novel cysteine at residue 307 leads to a

substantial change in this conserved region. This was studied in

more detail by molecular dynamics (MD) computer simulations

started from a homology model based on the crystal structure of

decorin. [22] The Ser307Cys mutation is localised in the C-

terminal part of KERA and is flanked by cysteine residues at

positions 303 and 343, which are assumed to be covalently bonded

(Figure 3A). Whilst the horseshoe fold, typical of leucine-rich

repeat domain containing proteins, was maintained during

simulation, the mutation at residue 307 may form a preferred

disulphide bond with Cys303, resulting in Cys343 being unpaired

and to become more solvent exposed than in the wild-type KERA

protein (Figures 3A–D).

Table 2. Characteristics of the core pedigree included in linkage analysis.

No atherosclerosis Atherosclerosis present

Age 7864 66613

Sex (N =male/female) BMI 3/0 30.564.3 6/3 31.062.7

Total cholesterol (mmol/l) 6.4 [5.5–6.4] 4.1 [3.5–4.3]

LDL cholesterol (mmol/l) 4.2 [3.5–4.2] 2.1 [1.8–2.6]

HDL cholesterol (mmol/l) 1.7 [1.5–1.7] 1.1 [0.8–1.4]

Triglyceride (mmol/l) 1.2 [1.0–1.2] 1.3 [1.1–1.8]

Age is expressed as mean 6 standard deviation and data are expressed as number (N). Lipid values are expressed as median with interquartile range (IQR). Pedigree
members with an event use lipid lowering medication. LDL = low density lipoprotein; HDL =high density lipoprotein.
doi:10.1371/journal.pone.0098289.t002
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KERA is Associated with Atherosclerotic Burden in
Humans
KERA was not expressed in tonsil tissue (Figure 4A) and

mammary artery segments (Figure 4C). KERA was nicely

expressed in cornea (Figure 4B). Interestingly KERA was present

in a human artery segment obtained from a patient who is a

carrier of the KERA mutation (Figure 4D). Additionally we have

tested arterial segments from 9 patients at different stages of

atherosclerosis progression (Figures S2B and S2C in File S1) and

found that KERA was not expressed in 2 non-diseased arterial

segments (Figure S2A in File S1) but was expressed in

atherosclerotic plaque regions. KERA was localised within the

extracellular matrix, in close vicinity to the lipid core of the

atherosclerotic plaque. Domains rich in KERA showed a strong

staining by antibodies against CD3 and Chemokine (C-X-C motif)

ligand 1 (CXCL1), indicating the presence of lymphoid T helper

(Th1) cells in addition to the myeloid cells (Figures 5A–C).

KERA Expression is Associated with Atherosclerotic
Burden in Apoe2/2 Mice
Next we tested whether KERA protein expression was

associated with atherosclerotic burden in an established Apoe2/2

mouse model for atherosclerosis, in which atherosclerosis was

induced by perivascular collar placement. At different time points

after collar placement the degree of atherosclerosis and KERA

protein expression was analysed in carotid artery. KERA was

detected in both early and advanced atherosclerotic lesions

(Figures 6A and B). Interestingly, the extent of atherosclerotic

lesion formation, quantified by intima area, was over time

significantly correlated with KERA protein expression (r2 = 0.69,

P,0.0001) (Figures 6C and D).

Discussion

We identified a novel p.Ser307Cys mutation in the extracellular

matrix protein KERA in a large pedigree with a Mendelian form

of premature atherosclerosis by linkage analysis combined with

Figure 3. Structures obtained from molecular dynamic simulations of the mutant p.Ser307Cys KERA protein. Molecular dynamic
simulations were performed as described in File S1. The residue Cys303 is highlighted in yellow, Cys343 in green, Ser307 in cyan and Cys307 residue
in blue. A, Structure of wild-type KERA. C Structure of the KERA mutant p.Ser307Cys. B, A detailed view of the C-terminal part of wild type KERA
highlighting the Cys303–Cys343 disulphide bond. D, Possible structural effects of the substitution of a serine for a cysteine at residue 307 showing a
favourable Cys303–Cys307 disulphide bond. Consequently, Cys343 is available for binding with cysteine residues of other proteins.
doi:10.1371/journal.pone.0098289.g003
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next generation sequencing. The variant was absent from nearly

28,000 DNA samples. KERA encodes for a keratan sulfate

proteoglycan expressed in the cornea, trachea and at lower levels

in the intestine, skeletal muscle, ovary and lung, However no

expression in the vasculature has been reported [23]. Interestingly,

the protein was absent from healthy artery segments, but heavily

abundant within the lipid core of atherosclerotic lesions, which

emphasizes that KERA might be a novel actor in the pathobiology

underlying atherosclerosis. This notion is further strengthened by

the fact that in Apoe2/2 mice, induction of atherosclerosis in the

carotid arteries by cuff placements significantly correlated with

KERA expression in the plaques.

The mutation introduces a cysteine at residue 307 in the

carboxy-terminal of the gene and is flanked by similar residues at

positions 303 and 343, which are assumed to be disulphide bonded

in wild-type KERA. Molecular dynamic simulations suggested

that the new Cys307 favours form a disulphide bond with Cys303,

which may lead to improved stability of the protein fold and

structure around this carboxy-terminal domain. In addition,

during simulation Cys343 was found to be more solvent exposed

in the mutant protein thus enabling novel protein-protein

interactions. Collectively, the results from the molecular dynamic

simulations favour a gain of function (GOF) for the p.Ser307Cys

mutation.

The concept of GOF is further substantiated by studies in

patients with LOF mutations in KERA. Thus far, autosomal

recessive LOF mutations in KERA cause cornea plane type 2

(CP2) (OMIM 121400; 217300), a rare disorder characterized by

excessively flat and thin corneas. Worldwide about 100 cases have

been described [24–28]. An increased risk for atherosclerosis has

Figure 4. KERA is expressed in atherosclerotic but not in non-diseased arteries. A, KERA is not expressed in tonsil tissue; B: KERA is
expressed in corneal tissue C: KERA is not expressed in mammary artery. D: KERA is expressed in arterial segments obtained from a patient with the
KERA mutation.
doi:10.1371/journal.pone.0098289.g004
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not been reported in these individuals, but this might have been

overlooked because previous studies may have focussed solely on

the ophthalmological consequences of KERA mutations. However,

in the 9 identified CP2 patients in the Netherlands, and in their

first degree relatives, no symptoms of premature atherosclerosis

were observed, suggesting that both partial or complete LOF for

Figure 5. Co-localization of KERA with CXCL1 and CD3 positive type I helper T lymphocytes was assessed in human plaque
segments. A: triple stain with KERA (blue), CXCL1 (red) and CD3 positive cells (brown). B: Spectral Imaging of triple staining. C: The yellow staining
demonstrates that these cells are positive for all three components.
doi:10.1371/journal.pone.0098289.g005

Figure 6. Expression of KERA in atherosclerotic tissue in Apoe2/2 mice after induction of atherosclerosis by collar placement. A–B,
Early (week = 2, A) and advanced (week = 8, B) atherosclerotic tissue from murine carotid arteries were stained for KERA (brown) and hematoxylin
(blue). While present mainly near endothelial cells in early lesion, KERA is predominantly present in the matrix of the plaque at more advanced lesions.
C–D, KERA expression overtime in Apoe2/2 mice with collar placement show significant correlation with plaque size (r2 = 0.69, P,0.0001).
doi:10.1371/journal.pone.0098289.g006

KERA and Atherosclerosis

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e98289



KERA does not confer a substantial increase in the risk of

atherosclerosis. No corneal abnormalities were identified in 2

affected family members (IV:I and IV:2, Figure 2B) carrying the

novel p.Ser305Cys mutation. The absence of opthalmic effects in

the assumed GOF mutation carriers is in line with previous

studies, showing that KERA mutations are not identified in

subjects suffering from cornea plane type 1 (CP1), the autosomal

dominant form of cornea plana [29].

The clinical diversity between heterozygous carriers of our novel

GOF KERA variant, characterized by atherosclerosis risk, and

homozygous carriers of LOF KERA variants, resulting in CP2,

might be related to the putative GOF effect of the novel mutation.

The role of KERA in atherosclerosis has not been investigated so

far, but it is interesting to note that KERA has been shown to play

a role in neutrophil migration [30]. In mice, neutrophil migration

is orchestrated by a chemical gradient of a wide range of

chemokines including CXCL1 in the vessel wall [31]. KERA is

one of the regulators of the CXCL1 gradient [32]. Interestingly,

endothelial CXCL1 has recently been shown to play a crucial role

in hyperlipidemia-induced arterial leukocyte arrest [33]. The

receptor for CXCL1 CXCR2 is present on myeloid cells like

neutrophils and monocyte/macrophages, which are directly

involved in all aspects of atherosclerosis [30]. We hypothesize

that the GOF mutation observed in the large PAS pedigree results

in an augmented binding of KERA to CXCL1, which may lead to

increased neutrophil migration into the vessel wall. This notion is

supported by recent observations in mice, where both arterial

CXCL1 and leukocyte-specific CXCR2 expression are central to

macrophage accumulation in established fatty streak lesions [34].

Concomitantly in mice lacking Cxcl1, atherosclerosis is signifi-

cantly reduced [35]. Notably, in human artery segments we

observe a co-localisation of KERA with CXCL1 and the lymphoid

T cell marker CD3. Further functional studies are required to

confirm our proposed model.

A number of considerations have to be taken into account while

interpreting the data. Although the results from this study are

suggestive of a role for KERA in atherosclerosis, a direct causative

role has not been established thus far.

A specific concern is that neither we, nor others did observe

possible KERA GOF mutations in other cases with premature

atherosclerosis. However, the identification of this extremely rare

variant, which is absent from nearly 56,000 alleles and the

confirmation of the presence of KERA in the plaque in mice and

men does suggest that KERA may be an active player in an, as of

yet, not fully elucidated novel pathway in atherosclerosis. Further

studies are warranted to confirm our findings and to establish

whether KERA might be an attractive target for therapy.
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