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Markov-type models have been used in the analysis of diseaseprogression. Although
standard errors of model parameters are usually estimated,available software often does
not permit the construction of confidence intervals around predictions of the dependent
or response variable. A method is presented to calculate means and confidence intervals
of model-predicted responses in time governed by a non-homogeneous hidden Markov
model in continuous time. The Kolmogorov equations serve asthe basis for the calcu-
lations. The method is realised in S-Plus and is applied to the prediction of headache
responses in clinical studies of anti-migraine treatment.Means and confidence intervals
are calculated by numerically solving differential equations that are nonlinear in the ex-
planatory variable. Results indicate that uncertainty on predicted drug responses is larger
than that on predicted placebo responses and that pain-freeresponses are less precisely
predicted than pain relief responses. This is due to the uncertainty in the drug-specific
parameters which is not present in predicted placebo responses.
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A.1 Introduction

The outcome of clinical studies into paroxysmal diseases and disease progression is typ-
ically characterised by categorical data and multiple measurements. Acknowledging the
existence of onset and offset features in most diseases, it has been shown that these data
are suitably analysed using Markov model approaches. Markov analysis avoids the diffi-
culty of making multiple comparisons between time points. Assessment of the efficacy of
anti-migraine drugs often requires comparison of responses at various discrete times [1].

Over the years, a considerable effort has been put into making available software
packages for Markov model analysis. While differing in flexibility and the numbers of
modelling options offered, they all provide estimates of parameter precision. It usu-
ally involves standard errors calculated from the asymptotic variance-covariance matrix,
which is obtained by the inverse matrix of second-order derivatives of the objective func-
tion evaluated at the maximum likelihood estimates.

Though this is insightful from the modeller’s point of view,the results are often com-
municated graphically, plotting the modelled dependent variable (usually referred to as
the response) versus time. This representation most clearly conveys the essence of dis-
ease progression, including effects that can be expected from any medical intervention.

Confidence intervals should be a part of this representation. Firstly, because it is of
interest to know to what extent (a lack of) precision in the individual parameters affects
the range of response predicted by the model. The narrower the intervals, the higher the
precision in the estimates. Secondly, because the width of the interval is indicative of the
chance of detecting a significant treatment effect under thenull hypothesis.

Calculating confidence intervals for responses is a featurethat is not usually present
in the Markov software packages. It is true that confidence intervals for a single model
parameter can be easily constructed assuming asymptotic normality. For simple func-
tions of a parameter, such as the odds ratio, intervals can bereadily approximated by
scaling [2]. However, this paper addresses the calculationof confidence intervals for a
special function which depends on the trajectory of a hiddenMarkov chain. Calculation
of the errors of this function is not straightforward and to our knowledge has not been
demonstrated in the literature.

The rationale for presenting this method is to enable fast and routine calculation of
confidence intervals. The tools available for the derivation of confidence intervals for
Markov models are limited. Only one paper was found in which confidence intervals
were constructed for Markovian variables [3]. In that paper, Monte Carlo simulation of a
Markov model and a linear approximation to this model were used to obtain confidence
intervals. The first of these approaches is computationallyexpensive, the second requires
that a new approximation model be built for every new or modified Markov model. Both
methods are therefore not convenient for the routine evaluation of Markov models.

Our method uses the following approach to obtain mean responses and their confi-
dence intervals by numerical calculation:

1. An S-Plus procedure is applied to obtain parameter estimates and standard errors
for a hidden Markov model based on series of treatment responses observed over
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time.

2. The Kolmogorov differential equations are taken for the transition probabilities of
a non-homogeneous Markov model.

3. A system of differential equations is derived for the derivatives of transition prob-
abilities with respect to the parameters defining them. These are similar to the
Kolmogorov differential equations.

4. Replacing the parameters with their estimates, a numerical algorithm calculates
the transition probabilities from (2) and their derivatives from (3).

5. Mean responses over time are calculated using the transition probabilities. Using
the delta method it is shown that the confidence intervals canbe constructed using
the derivatives of transition probabilities and the variance-covariance matrix of the
estimates. Calculations were performed in a numerical S-Plus procedure.

The delta method approximates the expected values of functions of random variables
when direct evaluation is not feasible [4]. The approximation usually is a truncated Tay-
lor series centered at the mean of the variables. In the current application the functions
are the transition probabilities of the Markov chain.

The approach can be applied to both homogeneous and non-homogeneous Markov
models and hidden Markov models in continuous time. Non-homogeneity in these mod-
els is a feature which is necessary for describing the time-dependent effects of medical
interventions on disease progression. These effects may beboth linear or nonlinear in
nature. Hidden Markov models [5] differ from their regular counterparts in that they
contain a layer for observations that are conditionally dependent on the states in the un-
derlying unobserved Markov chain. The observational layermay be used to account for
the misclassification of scores or simply to cluster a numberof scores into a smaller
number of states.

Headache relief and headache-free status are the most important endpoints measured
in clinical trials investigating the efficacy of serotonin receptor agonists to abort headache
during migraine attacks. In this paper, an example is presented in which the algorithm
is applied to calculate predicted means and confidence intervals for headache responses.
Parameter estimates which are at the basis of these predictions are obtained by fitting
headache scores derived from efficacy trials to a three-state hidden Markov model. Blood
concentrations of anti-migraine drugs (triptans) are included in the fitting procedure as a
covariate explaining the difference between the placebo response and the response after
drug treatment. The hidden Markov model consists of i) a hidden layer representing the
clinical state of a patient’s migraine attack, which can be described as “no relief”, “re-
lief” or “pain-free”, and ii) an open or observational layerthat includes the distributions
of headache scores for each state of the hidden layer (FigureA.1) Headache scores re-
flect pain intensity and can assume the values0, 1, 2, 3 in increasing order of intensity.
Input arguments for the algorithm include the parameter estimates, the elements of the
asymptotic variance-covariance matrix corresponding to the transition rate matrix, co-
variate values and sequences of time-points for which predicted headache responses are
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Figure A.1: Hidden Markov model for migraine attacks. Bold arrows denote transitions that are
affected by the covariate (drug concentration).

desired. The algorithm then applies the Kolmogorov differential equations to the input
arguments in order to obtain mean responses. In parallel to this, variances of the mean
responses are calculated by applying the delta method to thetransition probabilities.

The results show that the prediction of the mean responses obtained with this ap-
proach agrees well with that obtained using Monte Carlo simulations. Using the delta
method, confidence intervals could be calculated in a matterof minutes. The speed of
this method mainly depends on the step-size of the iterations. Monte Carlo simulations
were performed in several hours. Simulation speed depends both on the step-size and the
number of samples drawn from the parameter space.

Confidence intervals calculated with this method clearly reflect the amount of uncer-
tainty expressed by the standard errors. This is demonstrated by comparing the width
of the 95% confidence intervals for placebo responses with that for the drug-induced
responses. The relatively large uncertainty in the drug-related parameters is translated
into wide intervals around drug-induced response, whereasthe intervals around placebo
responses (which are not influenced by drug) are narrow.

The procedure of estimating confidence intervals uses estimators of the parameters
of a hidden Markov model. For this purpose we use an S-Plus algorithm developed by
Bureauet al. [6] [2] and later adapted for applications in migraine modelling [7]. For
general information on this software, we recommend [8] and [9]. Bureauet. al. describe
a hidden Markov model applied to longitudinal measurementsof binary disease outcome.
Disease dynamics are characterised by a two-state Markov process the states of which
denote the actual presence and absence of disease. A second layer gives the distribu-
tions of the measured responses conditional on the (latent)states. The structure allows
taking into account the misclassification of disease outcomes due to measurement error.
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Covariates on the transitions in the Markov process and on the distribution of responses
are accommodated in a generalised regression framework. The papers demonstrate the
inclusion of covariates on the Markov transitions. The current paper differs from [6]
and [2] in the following aspects: the functions used for the regression of covariates are
more complex, the Markov process contains three states instead of two and the purpose
of the conditional distributions of the observed response is to cluster scores rather then
to account for measurement error. Output from “hmm” fitting procedures can be directly
used for predicting mean responses and confidence intervals.

A.2 Methods

A.2.1 Model

A hidden Markov model is developed to analyse headache intensity data derived from
three clinical efficacy studies on the anti-migraine drug sumatriptan. Headache inten-
sity is expressed on a four-point scale on which0, 1, 2, 3 represent no pain, mild pain,
moderate pain and severe pain, respectively. Patients enter a study when their migraine
headache is at its worst and at least of moderate intensity. Assessments of headache are
performed at various times after oral administration of placebo or active treatment (25,
50 or 100 mg of sumatriptan). The model is applied to predict the time course of the
clinical endpoints “pain-free status” and “pain relief”. These endpoints are composites
of the headache intensities. A patient is pain-free when headache intensity has decreased
to 0 starting at2 or 3. Pain relief is defined as headache intensity of at most1, starting
from 2 or 3.

Based on the aforementioned definitions, a three-state hidden Markov model is de-
veloped (Figure A.1) in which the hidden states represent the clinical state (state1 no
relief, state2 relief, state3 pain-free). The observed layer contains the headache inten-
sity scores which are assumed to be distributed multinomially and are conditional on the
hidden states. Starting in state1 with a score of either3 or 2, patients progress over time
to the states with less severe headache scores (rightward transitions). However, we also
assume that there is a possibility of temporary worsening ofthe status of the patient, that
means, we also allow leftward transitions from states with less severe headache scores to
the states with more severe scores. Finally, we assume that the model has a structure of
birth-and-death process, which means that direct transitions from state1 to state3 and
vice versaare not allowed.

The rates of transition towards states of less headache are assumed to be affected
by sumatriptan concentrations. Since sumatriptan concentration data are not available
for most patients in the efficacy studies, concentration data from early phase studies of
sumatriptan are used to construct concentration versus time profiles. These profiles are
obtained using the nonlinear mixed effects modelling program NONMEM V (Globomax
LLC, MD, USA) [10], which allows prediction of so-called population-based pharma-
cokinetic parameters.

Using this method, the time course of drug concentration in plasma is modelled ac-
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cording to a two-compartment pharmacokinetic model with combined first-order and
zero-order drug input rates, as described by Cossonet al. [11]. The first-order absorption
rate represents the initial absorption process starting∼ 15 minutes after dosing and ac-
counts for most of the drug absorbed. Utilising the pharmacokinetic parameter estimates,
concentration versus time profiles are simulated and added to the headache intensity data
and treated as a covariate that changes over time. The addition of a time-varying covariate
renders the Markov chain non-homogeneous.

The use of pharmacokinetic data from healthy volunteers to predict concentration-
effect relations in patients requires some justification. It is known that the absorption
kinetics in patients having a migraine attack may be altered. In particular, gastric stasis
delays the uptake of drug into the bloodstream in some patients. Comparisons between
the pharmacokinetics in patients and those in volunteers are generally complicated due
to infrequent sampling in patients. A pharmacokinetic analysis investigating absorption
kinetics concluded that, apart from a delayed start of the zero-order absorption, absorp-
tion parameters were very similar between the two groups [11]. Considering that the
initial rate of absorption does not differ between populations and that the rate, not the ex-
tent of absorption is the main determinant of the onset of response [12], it was assumed
that using pharmacokinetics from volunteers would not change the concentration-effect
relationships.

We assume that in the case ofx < y, the time-dependent transition rates from statex
to statey, rx,y(t) are promoted by triptan drugs in a concentration-dependentway:

rx,y(t) = rx,y(0)exp

(
Emax,xyC(t)

EC50,xy + C(t)

)
. (A.1)

In this relation, drug concentrationC(t) is incorporated into the model’s covariate struc-
ture. Parameters in the transition rate matrix include baseline ratesrx,y(0) and drug-
related parametersEmax,xy andEC50,xy. Emax,xy denotes the maximum increase in
transition raterx,y(t) that can be achieved by the drug.EC50,xy is the concentration at
which half of the maximum effect is reached and is a measure ofdrug potency on the
transitionrx,y(t).

The general form of relation is that of a hazard rate. As suggested by Cox [13], the
expression in the exponent can be any known function. We use anon-linear function of
variableC(t). In pharmacology, this expression is known as theEmax function [14]. It is
based on the empirical observation that the concentration-response relation is a hyperbola
which is bounded at the top by the maximum pharmacological response. Relation (A.1)
was found to better describe the drug effect than a linear expression in the exponent.

Whenx > y, rx,y(t) is given by:

rx,y(t) = rx,y(0). (A.2)

(A.1) and (A.2) were chosen based on the observation that with increasing dose of a
triptan drug the headache pain decreases. In theory, this observation can be modelled by
1) increasing the forward transition rate in the Markov chain as a function of drug con-
centration, 2) decreasing the backward transition rate in the Markov chain as a function
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of drug concentration or 3) a combination of both effects. The first option was chosen
mainly because this mechanism is medically well-supported: triptan drugs promote pain
relief by inhibiting pain-producing neural mechanisms. Furthermore, assuming a drug
action on the backward transition rate of the Markov chain does not permit the descrip-
tion of rapid pain relief, which is often observed in migraine patients. Assuming drug
effects on both the forward and backward transition rates isnot feasible. Due to overpa-
rameterisation, the model parameters become unidentifiable.

According to our assumptions,r1,3(·) = r3,1(·) = 0.
Data from three clinical migraine studies are used to estimate these parameters. In

addition, the distribution of scores in each of the states isassessed. Since all patients
enter the studies at moderate or severe headache levels (i.e. “no relief” state), the ini-
tial distribution over states is fixed. Headache intensity score is treated as the dependent
variable and sumatriptan concentration is treated as a time-varying covariate affecting
headache intensity. The clinical studies consists of a placebo and a drug arm, the lat-
ter including three dose groups. In total, data are available from1180 migraine attacks.
392 attacks were treated with placebo whereas46, 44 and698 attacks were treated with
single doses of25 mg, 50 mg and100 mg oral sumatriptan, respectively. Headache as-
sessments were made at0, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0, 12 and24 hours after dosing.
Data up to8.0 hours are included in the analysis. Firstly, because an accurate prediction
of headache responses is therapeutically most relevant at early time points. Secondly,
because the assumption underlying the model, the Markov property, is only valid for a
particular time interval [15]. After8.0 hours the Markov property appears not tenable
without losing accuracy at earlier times. In fact, later sampling times were captured to
understand recurrence of headache, rather than to directlyassess efficacy. Table A.1
summarises estimates and standard errors (se) of the parameters in the transition rate
matrix and the estimates of the distribution of scores in theobservational layer in differ-
ent states. Standard errors are square roots of the diagonalelements of the asymptotic
variance-covariance matrix which equals the inverted information matrix of the observed
data. This matrix requires the calculation of second derivatives of the matrix of transition
probabilities.

Parameter estimation is performed by the Expectation Maximisation (EM) algorithm
using an open-codeC program which is operated within S-Plus on a linux workstation
(SuSE Linux 7.2 Professional, kernel version 2.4.4-4GB-SMP). A user-written model
defining the covariate effect and the first and second derivatives of the transition ma-
trix is implemented in the model specification file. A generalised regression framework
allows for linear and nonlinear regression of continuous covariates as well as for re-
gression of categorical covariates. Implementation of a new model requires coding the
regression function and its first and second partial derivatives. Both time-invariant and
time-varying covariates can be dealt with. Between two adjacent observations, a time-
varying covariate takes on the value associated with the later observation. In the current
nonlinear covariate model (A.1), the parameterEC50 is estimated as its natural loga-
rithm, ln(EC50). This transformation is applied becauseEC50 values are known to
be log-normally distributed. This is in contrast withEmax values, which are normally
distributed [16]. Further details on parameter estimationin non-homogeneous hidden
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Table A.1: parameter estimates of the transition rate matrix and distribution of scores in the HMM.
Estimates were obtained by the EM algorithm.

transition parameter (unit) estimate se

1-2 r1,2(0) (h−1) 0.16 0.07

ln(EC50) 2.2 0.60

Emax 1.3 0.15

2-1 r2,1(0) (h−1) 0.08 0.16

2-3 r2,3(0) (h−1) 0.22 0.09

ln(EC50) 5.0 0.62

Emax 6.0 2.8

3-2 r3,2(0) (h−1) 0.04 0.17

state 1 2 3

score

no pain 0.0 0.0 1.0

mild pain 0.0 0.96 0.0

moderate pain 0.55 0.04 0.0

severe pain 0.45 0.0 0.0

Markov models in continuous time can be found in papers by Bureauet al. [2, 6]. These
include a description of the likelihood function and the EM algorithm.

A.2.2 Predictions

We consider the8 parameters defining the time-dependent transition rates ofthe intensity
matrix as the main parameters of the model (Table A.1). Theseparameters are contained
in the vectorθ. The EM algorithm gives as output a) the estimated elements of θ̂ and b)
the variance-covariance matrix ofθ̂. We use these estimators to calculate the predicted
state probabilities of the HMM, the predicted mean headacheresponses and correspond-
ing confidence intervals at any time pointt. For this purpose, a newly written S-Plus
routine is created. Central to this routine are Kolmogorov’s differential equations which
translate the transition rates of a HMM into transition probabilities.

A.2.3 Mean responses

Consider a Markov process, non–homogeneous in time,X(t) with states{1, 2, 3} and
transition rates at timet, rx,y(θ, t) from statex to statey. Denote byP (x, y,θ, t) a
transition probability on time interval[0, t]:
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P (x, y,θ, t) = P (X(t) = y|X(0) = x) , x, y = 1, 2, 3.

ThenP (x, y,θ, t) can be calculated by solving the system of Kolmogorov’s differ-
ential equations in the non–homogeneous case. Denote byp(x,θ, t) the row vector with
componentsP (x, y,θ, t), y = 1, 2, 3, and define the transition rate matrix by

R(θ, t) =




−r1(θ, t) r1,2(θ, t) r1,3(θ, t)

r2,1(θ, t) −r2(θ, t) r2,3(θ, t)

r3,1(θ, t) r3,2(θ, t) −r3(θ, t)



 ,

whererx(θ, t) =
∑

y 6=x rx,y(θ, t). Then, for any initial statex, the vectorp(x,θ, t) is a
solution of the system of Kolmogorov’s differential equations

∂

∂t
p(x,θ, t) = p(x,θ, t)R(θ, t) (A.3)

with the initial conditionp(x,θ, 0) = ex, whereex is a row vector with thex-th entry
equal to one and other entries equal to zeros. This system canbe solved using a quick
recurrent numerical procedure. Take forh some small value (in our calculationsh =
0.001 is sufficiently small). Denote bŷP (x, y,θ, kh) the calculated value ofP (x, y,θ, t)
at the pointt = kh. For any initial statex, let p̂(x,θ, kh) be the row vector with
componentŝP (x, y,θ, kh), y = 1, 2, 3. To find a numerical solution of (A.3), we use the
following algorithm: atk = 0 start withp̂(x, y,θ, kh) = p(x,θ, 0). Then for anyk ≥ 0,

p̂(x,θ, (k + 1)h) = p̂(x,θ, kh) + hp̂(x,θ, kh)R(θ, kh).

To predict the mean response, the pain scores conditional onthe states of the Markov
chain should also be taken into account. In the following, this is done for the pain relief
response, thus including all scores 0 and 1. Given the initial statex, the predicted mean
fraction of patientsM̂ with responses{0, 1} at time pointkh is:

M̂(x, kh, {0, 1}) =

3∑

y=1

P̂ (x, y,θ, kh)

1∑

j=0

p̂y(j), (A.4)

wherep̂y(j), with j = 0, 1, 2, 3, are the probabilities of the scores in statey which are
estimated together with the Markov transition rate parameters in the EM algorithm. A
total mean taking into account the initial distributionπ(x), x = 1, 2, 3, is

M̂(kh, {0, 1}) =

3∑

x=1

π(x)M̂(x, kh, {0, 1}). (A.5)

If the initial conditions are fixed top(x,θ, 0) = (1, 0, 0), as is the case in the migraine
attack application, thenπ(1) = 1 andπ(2) = π(3) = 0.
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A.2.4 Confidence intervals

The procedure for calculating the confidence intervals on the mean predicted responses
involves the delta method which approximates the variance of a nonlinear function of
a random variable. The basic idea is to approximate the function of the estimator with
a first-order Taylor approximation. The variance can then becalculated using standard
rules.

Calculation of confidence intervals for the nonlinear function of unknown parame-
ters

Letf(θ) be some nonlinear differentiable function of the vector of parametersθ. Assume
that the estimator̂θ of a vectorθ has the properties:

E[θ̂] ≈ θ, E[(θ̂ − θ)T (θ̂ − θ)] ≈ B2, (A.6)

whereB2 is the asymptotic variance-covariance matrix corresponding to the parameters
in the transition rates only.B2 is assumed to be reasonably small. SymbolaT denotes
a column vector transposed toa. Using the delta method we show how to construct the
approximation of the variance off(θ̂) and its confidence intervals. Denote

f ′
i(θ) =

∂f(θ)

∂θi
, i = 1, 2, .., r.

Let ∇f(θ) be the row vector with components(f ′
i(θ), i = 1, 2, .., r). Using Taylor

expansion up to the first term we get

f(θ̂) ≈ f(θ) + ∇f(θ)(θ̂ − θ)T = f(θ) +
∑

i

f ′
i(θ)(θ̂i − θi), (A.7)

whereθ̂i = (θ̂1, ..., θ̂r). Denote byσ2

i the diagonal elements ofB2 and byρij all other
elements. Using (A.7) we get:

E[f(θ̂)] ≈ f(θ), (A.8)

Var[f(θ̂)] ≈ ∇f(θ) B2 ∇f(θ)T =
∑

i

f ′
i(θ)

2σ2

i + 2
∑

i<j

f ′
i(θ)f

′
j(θ)ρij .

Thus, the asymptotic(1 − α)100% confidence interval forf(θ) can be calculated as
follows:

(
f(θ̂) − z1−α/2

√
Var[f(θ̂)], f(θ̂) + z1−α/2

√
Var[f(θ̂)]

)
, (A.9)

wherez1−α is the(1 − α)- quantile of the standard normal distribution:P(N (0, 1) ≤
z1−α) = 1 − α.
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Calculation of confidence intervals for mean responses

Given the initial statex, the mean fraction of patients with responses{0, 1} at time point
t is:

M(t,θ, {0, 1}) =

3∑

x=1

π(x)

3∑

y=1

P (x, y,θ, kh)

1∑

j=0

p̂y(j). (A.10)

Using formula (A.8) we get

Var

[
M(t, θ̂, {0, 1}

]
= ∇M(t,θ, {0, 1})B2∇M(t,θ, {0, 1})T , (A.11)

where∇M(t,θ, {0, 1}) is a row vector with entriesM ′
i(t,θ, {0, 1}) = ∂

∂θi

M(t,θ, {0, 1}),

i = 1, 2, . . . , r (which are the partial derivatives ofM(·) with respect toθi) andB2 is
the estimated variance-covariance matrix of the parameters θ included in the transition
rate matrix. From (A.10) it follows

M ′
i(t,θ, {0, 1}) =

3∑

x=1

π(x)
3∑

y=1

P ′
i (x, y,θ, t)

1∑

j=0

py(j). (A.12)

Thus, to computeVar

[
M(t, θ̂, {0, 1}

]
we need to compute the functionsP ′

i (x, y,θ, t),

which, for convenience, will be renamedΨi(x, y,θ, t). Note thatΨi(x, y,θ, t) is the
derivative ofP (x, y,θ, t) with respect toθi. As att = 0 the functionP (x, y,θ, 0) does
not depend onθ andP (x, y,θ, 0) = δx(y), whereδx(y) = 1, if x = y, andδx(y) = 0
otherwise, we get the initial conditions forΨi(x, y,θ, t):

Ψi(x, y,θ, 0) = 0, x, y = 1, 2, 3, i = 1, 2, . . . , r.

Using again Kolmogorov’s differential equations for the transition probabilities
P (x, y,θ, t), we now derive differential equations for the functionsΨi(x, y,θ, t). De-
note byp(x,θ, t) andψi(x,θ, t) the row vectors with entriesP (x, y,θ, t) and
Ψi(x, y,θ, t). Taking the derivative of both parts in equation (A.3) with respect toθi we
obtain the following equation:

∂

∂t
ψi(x,θ, t) = ψi(x,θ, t)R(θ, t) + p(x,θ, t)

∂

∂θi
R(θ, t). (A.13)

Using the formulae for the ratesrx,y(t) the functions ∂
∂θi

R(θ, t) can be calculated in a
closed form. The system of equations (A.13) can be solved numerically and simultane-
ously with (A.3). The numerical procedure returns the values Ψ̂i(x, y,θ, kh), enabling

the calculation ofVar

[
M̂(kh,θ, {0, 1})

]
.

To assure that confidence intervals on responses are confinedbetween0 and1, a logit
transformation is applied on̂M(kh,θ, {0, 1}) before calculating the confidence interval.
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This transformation is of the formln(M̂/(1− M̂)) (omitting the arguments for simplic-
ity). The logit function is the most commonly used link function. In the range 0.1 – 0.9
it is almost indistinguishable from the probit function. Itis symmetric, mathematically
tractable and can be interpreted as a log odds ratio. For these reasons, a logit trans-
formation was preferred over a probit transformation and noother link functions were
considered. The transformed variance is approximated as follows:

V ar[M̂logit] ≈ V ar[M̂ ]
(
M̂(1 − M̂)

)−2

.

Denoting the transformed function̂Mlogit(kh,θ, {0, 1}), the interval is given by expres-
sion (A.14):

(
M̂logit(kh,θ, {0, 1}) − z1−α/2

√
V ar

[
M̂logit(kh,θ, {0, 1})

]
,

M̂logit(kh,θ, {0, 1}) + z1−α/2

√
V ar

[
M̂logit(kh,θ, {0, 1})

])
, (A.14)

wherez1−α is the(1 − α)-quantile of the standard normal distribution:P (N(0, 1) ≤
z1−α) = 1 − α. Mean responses and intervals were then back-transformed to obtain
probabilities.

A.2.5 Performance of the algorithm

It is tested how well the confidence intervals calculated by the new algorithm agree with
responses generated by the standard Monte Carlo simulationalgorithm in the S-Plus
module. The latter generates headache scores on the basis ofthe parameter estimates and
a random number generator. The Monte Carlo simulations of the response versus time
profiles are generated based on1000 samples. Pain scores are simulated with between-
observation intervals of0.001 hours. Calculations are performed to assess both pain-free
and pain relief responses after administration of placebo and100 mg sumatriptan.

A.3 Results

Based on the parameter estimates in Table A.1, the time course of mean headache relief
and mean pain-free status (Figure A.2) is predicted for placebo treatment and100 mg
sumatriptan, until8.0 hours after dosing. Predicted time courses of pain relief and pain
free status are compared with those found in the original data (markers in Figure A.2).
Mean responses and95% confidence intervals are calculated using the new algorithm.
A Monte Carlo simulation was performed taking into account variability in the parame-
ters of the transition matrix. Figure A.3 compares the analytically calculated confidence
intervals for placebo and sumatriptan and for two endpoints, pain-free and pain relief.
There is a good agreement among confidence intervals for all placebo predictions and
for the pain relief predictions. Only in the case of pain-free predictions for a high dose
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Figure A.2: Hidden Markov model predictions of headache response after treatment with placebo
or sumatriptan100 mg: mean pain relief response (left panel), mean pain-free response (right
panel), and95% confidence intervals. Markers denote observed responses. The diameters of the
markers reflect the numbers of patients included at consecutive time points. Means and95% confi-
dence intervals were calculated using the algorithm based on the Kolmogorov equations described
in this paper.

of sumatriptan the agreement was not good. This is due to the rather large standard er-
rors associated with parametersEC50,23 andEmax23. Because less data were available
to estimate parameters for this transition, we examined thebehaviour of the confidence
intervals in the hypothetical case where more patients are available to estimate the pa-
rameters (Figure A.3, lower panel). If50% more patients would be added, then there
would be a better agreement between the confidence intervals. It can also be observed
that the interval based on analytical calculation is generally wider than that obtained by
simulation. Thus, for a large enough number of patients, theanalytically constructed
intervals are more conservative.

The 95% confidence intervals obtained from calculations with the delta method are
compared with those generated by a Monte Carlo simulation routine. Simulation con-
ditions are as described in section A.2.5. The results from the two methods are broadly
similar although the delta method tends to give narrower boundaries especially at early
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time points (Figure A.3).
Figure A.4 illustrates the use of95% confidence intervals in concentration versus

response relationships. For three fixed times (1, 2 and4 hours) after dose administration,
pain relief responses are plotted that correspond to various oral doses of sumatriptan.
These graphs are constructed by i) calculating mean placeboresponses and confidence
intervals for a sequence of time points including the times used in the graphs, ii) repeating
these calculations for a large number of doses, iii) extracting from these calculations the
concentrations and responses (including intervals) corresponding to the times of interest
(1, 2 and4 hours), iv) subtracting the placebo responses from the drugresponses at these
times and v) plotting for each time the pairs of concentrations and responses. The width
of confidence intervals increases with time.

A.4 Discussion

This paper describes an algorithm for the calculation of mean predicted headache re-
sponses as well as confidence intervals. These predictions are based on a hidden Markov
model in continuous time. Due to time-varying drug concentrations, the Markov model
is non-homogeneous. The method is based on i) Kolmogorov’s differential equations
which are used to obtain state-to-state transition probabilities from transition rates and ii)
the delta method for approximating the derivatives of nonlinear functions with respect to
their parameters. The algorithm provides a fast solution for obtaining confidence bound-
aries which clearly reflect the uncertainty in the parameterestimates as given by their
standard errors.

The hidden Markov model adequately predicts headache responses. Figure A.2 in-
dicates that the mean predicted pain relief and pain-free responses largely correspond
to the observed responses. After2 hours, the95% confidence interval on the pain-free
response after sumatriptan is relatively wide. This reflects the large standard errors of
the drug-related parametersEC50 andEmax on the transition from state2 (pain relief
state) to state3 (pain-free state). Explanations for the poor precision of the pain-free pa-
rameters include a lesser availability of pain-free data (not all patients reach the pain-free
state), lack of different dose groups in the data set and an intrinsically high variability
in the pain-free response in a population of patients. Subject-to-subject variability in
the transition rates is an important concern when modellingmigraine responses. There
is a need to explore random-effect models to account for the large interindividual vari-
ability. In the current hidden Markov S-Plus library the incorporation of random effects
was not considered as it is not included as an option. Moreover, as our model contains
a rather complicated nonlinear covariate function, addingrandom effects to the model
could further complicate parameter estimation.

Given the transient character of Markov chains and the fact that each of the transitions
in the model is associated with different uncertainties, one can expect the confidence
intervals to vary over time. The cumulative nature of pain relief and pain free responses
causes the width of the confidence interval to increase over time. On the other hand, the
size of the interval is limited by the natural bounds of the probability measure which is
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Figure A.3: Pain relief responses (mean and95% confidence interval, upper two panels) and
pain free responses (mean and95% confidence interval, middle and lower panels) for sumatriptan
100 mg and placebo. Responses are calculated using the delta method based on the Kolmogorov
equations (horizontal shading) and simulated using a Monte Carlo simulations (vertical shading).
The lower panel shows the hypothetical effect of increasing the number of patients by50% (equiv-
alent to dividing the standard errors by1.5).
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Figure A.4: Concentration versus response relationships for sumatriptan. The three graphs give
the placebo-corrected pain relief that can be expected at1.0 hours,2.0 hours and4.0 hours after
oral dosing. Note that a concentration ofe.g. 10 nM represents different doses in each of the
graphs, as plasma drug concentration is time-dependent [11]. Thus,for a concentration of10 nM
to be reached after4 hours, a higher dose would be needed than for reaching the same concentration
after2 hours. The main application of these graphs is to determine the maximum response that can
be gained relative to placebo. Means and95% confidence bands were calculated using the new
algorithm.

defined between zero and unity. All these factors make that assigning confidence levels
to migraine responses is not so straightforward.

The calculated confidence intervals represent uncertaintyarising from estimation of
unknown parameters in the transition rate matrix. These include both baseline transition
rates and parameters linking these rates to non-homogeneous covariates, such as drug
concentrations. When link functions are nonlinear, these parameters are particularly dif-
ficult to estimate. In the current application of acute anti-migraine therapy the parameters
in the link function are the potencies (EC50) and maximum effects (Emax) of the drug.
It can be verified in Table A.1 that the drug-related parameters are less precisely esti-
mated than the baseline transition rates. These differences in precision are reflected in
Figure A.2. The width of the confidence intervals is considerably larger in the predictions
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for 100 mg sumatriptan than those for placebo.
As indicated in Figure A.4, the width of the confidence intervals depends on the value

of the drug concentration. Confidence intervals are widest when the mean response is
close to50% of its half-maximum value. This is explained by the relatively large stan-
dard error of the parameterEC50,12 and the sensitivity of the response toEC50,12, which
is highest in this part of the curve. Note that the concentration at half-maximum pain re-
lief is not equal to the value of parameterEC50,12. Whereas this parameter expresses
the potency of the drug for a single transition in the model, the pain relief responses
are the result of individual trajectories consisting of many transitions. Moreover, pain
relief responses are plotted as placebo-subtracted values, making the concentrations at
half maximum response appear smaller as exposure time increases. The width of the
confidence intervals is smaller than is expected on the basisof findings on variability in
studies of anti-migraine therapy. This is because the intervals reflect uncertainty due to
parameter estimation, rather than biological variabilitybetween patients and occasions.
Although a high biological variability may affect parameter precision, the main determi-
nant of parameter precision is the amount of data available.

In the current application standard errors in the matrix of observed scores have not
been taken into account when calculating the95% confidence intervals. However, the
current algorithm can be extended relatively easily to accommodate the errors in the
observed scores. The vector of parameters will be extended by adding the probabilities
of the scorespy(j) and the variance-covariance matrixB2 will be replaced byB2∗, which
includes the (co)variances of thepy(j). From A.4 and A.5 it is clear that the errors in the
score probabilities are linearly combined with errors in the initial distribution vector and
the transition matrix. The errors i n the observed scores aretherefore additive to the other
sources of uncertainty. This means that the same formulas can be used if uncertainties in
the scores need to be included.

Time-dependent misclassification rates (score probabilities) can be part of a formal
and theoretic discussion on confidence intervals. However,such rates, in the practice
of longitudinal data analysis, rarely occur or have not beenidentified. This is likely
due to1) the difficulty of identifying such effects in longitudinaldata sets and2) the
large number of records that would be needed to estimate the associated parameters, in
particular when the distribution of observed scores is multinomial. It is not the aim of
this manuscript to explore all possible combinations of covariates. Rather, it illustrates
for the first time how confidence intervals can be easily constructed for Markov models
in continuous time, while focusing on the practice of modelling clinical migraine data.

In reality, drug concentrations are measurements and therefore they are random vari-
ables. Thus, it is expected that the pharmacokinetics of a drug also add to the variability
of the response. In this analysis, due to the absence of pharmacokinetics in patients, drug
concentrations at specific time points were treated as constants. Moreover, the currently
applied software does not allow for uncertainty in the explanatory level to be incorpo-
rated into the model. An impression can be obtained of the extent to which variability in
the pharmacokinetics adds to the variability in response byrecalculating the confidence
levels using quantiles of the concentration profiles. For example, the lower and upper
confidence levels of the response can be calculated using the5th and 95th percentiles of
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the distribution of concentration profiles, respectively.
The delta method is a fast and appealing method for calculating confidence levels.

Although its results are often good, there are conditions under which the results are less
accurate [4]. It has been argued that when the diagonal entries in the variance-covariance
matrix are large, this method tends to underestimate variance [17]. In general, the more
terms are included in the Taylor series the more accurate arethe approximations. A
trade-off ought to be made between precision on the one hand and feasibility of calcula-
tion on the other hand. Second and higher order partial derivatives of the parameters in
the Markov transition matrix are extremely large expressions. They are prone to round-
ing errors and overflow. Considering the main objective of this paper, illustrating the
application of the delta method to the Kolmogorov equations, the calculation of further
terms of the Taylor series is not thought essential. Rather than comparing different ap-
proximations, the accuracy lost by using a first-order Taylor approximation may be more
conveniently assessed by comparing the calculated confidence intervals with those ob-
tained by a Monte Carlo analysis.

In conclusion, an approach has been developed for the calculation of mean predicted
headache responses and confidence intervals, based on (hidden) Markov models. The
calculated means are shown to be equivalent to those obtained from simulations. More-
over, responses are calculated considerably faster using the algorithm. To our knowledge,
no other methods have been described in literature to calculate confidence intervals on
responses obtained with Markov modelling. This approach will help in identifying un-
certainty in predictions of clinical responses predicted by Markov models.
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