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Markov-type models have been used in the analysis of diggageession. Although
standard errors of model parameters are usually estimataiable software often does
not permit the construction of confidence intervals arourgdijotions of the dependent
or response variable. A method is presented to calculatesraaal confidence intervals
of model-predicted responses in time governed by a non-geneous hidden Markov
model in continuous time. The Kolmogorov equations servthasasis for the calcu-
lations. The method is realised in S-Plus and is applied égptfediction of headache
responses in clinical studies of anti-migraine treatmbfgans and confidence intervals
are calculated by numerically solving differential eqaa$ that are nonlinear in the ex-
planatory variable. Results indicate that uncertainty edjeted drug responses is larger
than that on predicted placebo responses and that paimespenses are less precisely
predicted than pain relief responses. This is due to thertaiongy in the drug-specific
parameters which is not present in predicted placebo regson
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A.1 Introduction

The outcome of clinical studies into paroxysmal diseasegiisease progression is typ-
ically characterised by categorical data and multiple messents. Acknowledging the
existence of onset and offset features in most diseasess lbden shown that these data
are suitably analysed using Markov model approaches. MaaRkalysis avoids the diffi-
culty of making multiple comparisons between time pointsséssment of the efficacy of
anti-migraine drugs often requires comparison of respoasearious discrete times [1].

Over the years, a considerable effort has been put into madmilable software
packages for Markov model analysis. While differing in flékilp and the numbers of
modelling options offered, they all provide estimates ofapaeter precision. It usu-
ally involves standard errors calculated from the asynipt@triance-covariance matrix,
which is obtained by the inverse matrix of second-ordenagies of the objective func-
tion evaluated at the maximum likelihood estimates.

Though this is insightful from the modeller’s point of vietlug results are often com-
municated graphically, plotting the modelled dependenlte (usually referred to as
the response) versus time. This representation most gleanlveys the essence of dis-
ease progression, including effects that can be expeateddny medical intervention.

Confidence intervals should be a part of this representaftinstly, because it is of
interest to know to what extent (a lack of) precision in thdividual parameters affects
the range of response predicted by the model. The narrowentérvals, the higher the
precision in the estimates. Secondly, because the widtiedhterval is indicative of the
chance of detecting a significant treatment effect undentiiehypothesis.

Calculating confidence intervals for responses is a fedhateis not usually present
in the Markov software packages. It is true that confidenterwals for a single model
parameter can be easily constructed assuming asymptaticatity. For simple func-
tions of a parameter, such as the odds ratio, intervals caedumbly approximated by
scaling [2]. However, this paper addresses the calculatiaonfidence intervals for a
special function which depends on the trajectory of a hiddarkov chain. Calculation
of the errors of this function is not straightforward and to &nowledge has not been
demonstrated in the literature.

The rationale for presenting this method is to enable fadtrantine calculation of
confidence intervals. The tools available for the derivatid confidence intervals for
Markov models are limited. Only one paper was found in whiohfence intervals
were constructed for Markovian variables [3]. In that papnte Carlo simulation of a
Markov model and a linear approximation to this model wetedu® obtain confidence
intervals. The first of these approaches is computatioeaihpensive, the second requires
that a new approximation model be built for every new or medifilarkov model. Both
methods are therefore not convenient for the routine etialuaf Markov models.

Our method uses the following approach to obtain mean resgzsoand their confi-
dence intervals by numerical calculation:

1. An S-Plus procedure is applied to obtain parameter estBrand standard errors
for a hidden Markov model based on series of treatment regsoobserved over
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time.

2. The Kolmogorov differential equations are taken for tiamsition probabilities of
a non-homogeneous Markov model.

3. A system of differential equations is derived for the datives of transition prob-
abilities with respect to the parameters defining them. &lae similar to the
Kolmogorov differential equations.

4. Replacing the parameters with their estimates, a nualealgorithm calculates
the transition probabilities from (2) and their derivativieom (3).

5. Mean responses over time are calculated using the fanpitobabilities. Using
the delta method it is shown that the confidence intervaldearonstructed using
the derivatives of transition probabilities and the vatiedcovariance matrix of the
estimates. Calculations were performed in a numericaluS-plocedure.

The delta method approximates the expected values of amsctif random variables
when direct evaluation is not feasible [4]. The approximatisually is a truncated Tay-
lor series centered at the mean of the variables. In the muagplication the functions
are the transition probabilities of the Markov chain.

The approach can be applied to both homogeneous and nongeoeaus Markov
models and hidden Markov models in continuous time. Nondganeity in these mod-
els is a feature which is necessary for describing the tisfeddent effects of medical
interventions on disease progression. These effects méapthelinear or nonlinear in
nature. Hidden Markov models [5] differ from their regulasunterparts in that they
contain a layer for observations that are conditionallyashglent on the states in the un-
derlying unobserved Markov chain. The observational layay be used to account for
the misclassification of scores or simply to cluster a nundfescores into a smaller
number of states.

Headache relief and headache-free status are the mostanpendpoints measured
in clinical trials investigating the efficacy of serotoneteptor agonists to abort headache
during migraine attacks. In this paper, an example is ptegein which the algorithm
is applied to calculate predicted means and confidencevaitefor headache responses.
Parameter estimates which are at the basis of these poedicire obtained by fitting
headache scores derived from efficacy trials to a three-stdtlen Markov model. Blood
concentrations of anti-migraine drugs (triptans) areuded in the fitting procedure as a
covariate explaining the difference between the placebpamse and the response after
drug treatment. The hidden Markov model consists of i) addidyer representing the
clinical state of a patient’s migraine attack, which can bealibed as “no relief”, “re-
lief” or “pain-free”, and ii) an open or observational layteat includes the distributions
of headache scores for each state of the hidden layer (FAgd)eHeadache scores re-
flect pain intensity and can assume the valtiel 2, 3 in increasing order of intensity.
Input arguments for the algorithm include the parametemases, the elements of the
asymptotic variance-covariance matrix correspondindhéottansition rate matrix, co-
variate values and sequences of time-points for which prediheadache responses are
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open layer:

scores

hidden layer:

states
no relief relief pain-free

Figure A.1: Hidden Markov model for migraine attacks. Bold arrows denote transitibat are
affected by the covariate (drug concentration).

desired. The algorithm then applies the Kolmogorov diffiéied equations to the input
arguments in order to obtain mean responses. In paralleigpuariances of the mean
responses are calculated by applying the delta method teathsition probabilities.

The results show that the prediction of the mean responsaineld with this ap-
proach agrees well with that obtained using Monte Carlo Etians. Using the delta
method, confidence intervals could be calculated in a mafterinutes. The speed of
this method mainly depends on the step-size of the itermtidfonte Carlo simulations
were performed in several hours. Simulation speed depestioh the step-size and the
number of samples drawn from the parameter space.

Confidence intervals calculated with this method clearieot the amount of uncer-
tainty expressed by the standard errors. This is demoedtitat comparing the width
of the 95% confidence intervals for placebo responses wih ftir the drug-induced
responses. The relatively large uncertainty in the drlated parameters is translated
into wide intervals around drug-induced response, whetteasitervals around placebo
responses (which are not influenced by drug) are narrow.

The procedure of estimating confidence intervals uses asimnof the parameters
of a hidden Markov model. For this purpose we use an S-Plusitign developed by
Bureauet al. [6] [2] and later adapted for applications in migraine mdidgl [7]. For
general information on this software, we recommend [8] &dBureauet. al. describe
a hidden Markov model applied to longitudinal measuremefiténary disease outcome.
Disease dynamics are characterised by a two-state Markmegs the states of which
denote the actual presence and absence of disease. A sagendjives the distribu-
tions of the measured responses conditional on the (laséats. The structure allows
taking into account the misclassification of disease outdue to measurement error.
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Covariates on the transitions in the Markov process and euligtribution of responses
are accommodated in a generalised regression framewokk pdjpers demonstrate the
inclusion of covariates on the Markov transitions. The entrpaper differs from [6]
and [2] in the following aspects: the functions used for thgression of covariates are
more complex, the Markov process contains three statesaidsif two and the purpose
of the conditional distributions of the observed resposs® icluster scores rather then
to account for measurement error. Output from “hmm?” fittimgqedures can be directly
used for predicting mean responses and confidence intervals

A.2 Methods

A.2.1 Model

A hidden Markov model is developed to analyse headachedityedata derived from
three clinical efficacy studies on the anti-migraine drumatriptan. Headache inten-
sity is expressed on a four-point scale on whigh, 2, 3 represent no pain, mild pain,
moderate pain and severe pain, respectively. Patients &istedy when their migraine
headache is at its worst and at least of moderate intensitsye#sments of headache are
performed at various times after oral administration otplao or active treatment (25,
50 or 100 mg of sumatriptan). The model is applied to prediettime course of the
clinical endpoints “pain-free status” and “pain relief”hdse endpoints are composites
of the headache intensities. A patient is pain-free wheddgze intensity has decreased
to 0 starting a2 or 3. Pain relief is defined as headache intensity of at nipstarting
from 2 or 3.

Based on the aforementioned definitions, a three-stateehitithrkov model is de-
veloped (Figure A.1) in which the hidden states representtimical state (staté no
relief, state2 relief, state3 pain-free). The observed layer contains the headache-inten
sity scores which are assumed to be distributed multindyraald are conditional on the
hidden states. Starting in statavith a score of eithes or 2, patients progress over time
to the states with less severe headache scores (rightveausitions). However, we also
assume that there is a possibility of temporary worsenirntgestatus of the patient, that
means, we also allow leftward transitions from states véisIsevere headache scores to
the states with more severe scores. Finally, we assumehthatddel has a structure of
birth-and-death process, which means that direct transitirom state to state3 and
vice versaare not allowed.

The rates of transition towards states of less headachesavenad to be affected
by sumatriptan concentrations. Since sumatriptan coratimt data are not available
for most patients in the efficacy studies, concentratioa fl@m early phase studies of
sumatriptan are used to construct concentration versigspnafiles. These profiles are
obtained using the nonlinear mixed effects modelling progNONMEM V (Globomax
LLC, MD, USA) [10], which allows prediction of so-called pojation-based pharma-
cokinetic parameters.

Using this method, the time course of drug concentratiorasma is modelled ac-
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cording to a two-compartment pharmacokinetic model witimbimmed first-order and
zero-order drug input rates, as described by Cossah[11]. The first-order absorption
rate represents the initial absorption process startinig minutes after dosing and ac-
counts for most of the drug absorbed. Utilising the pharrkexatic parameter estimates,
concentration versus time profiles are simulated and addibe theadache intensity data
and treated as a covariate that changes over time. The@ddita time-varying covariate
renders the Markov chain non-homogeneous.

The use of pharmacokinetic data from healthy volunteersedipt concentration-
effect relations in patients requires some justificatiohis lknown that the absorption
kinetics in patients having a migraine attack may be altehegbarticular, gastric stasis
delays the uptake of drug into the bloodstream in some pati€@omparisons between
the pharmacokinetics in patients and those in volunteerganerally complicated due
to infrequent sampling in patients. A pharmacokinetic gsialinvestigating absorption
kinetics concluded that, apart from a delayed start of tle-peder absorption, absorp-
tion parameters were very similar between the two group§ [Cbnsidering that the
initial rate of absorption does not differ between popolasiand that the rate, not the ex-
tent of absorption is the main determinant of the onset qgdarese [12], it was assumed
that using pharmacokinetics from volunteers would not gleathe concentration-effect
relationships.

We assume that in the casexok y, the time-dependent transition rates from state
to statey, r, ,(t) are promoted by triptan drugs in a concentration-dependant

Emaw,wyc(t) )

ECs0,4y +C(2) (A1)

Tay(t) = rzy(0)exp (
In this relation, drug concentratia®i(¢) is incorporated into the model’s covariate struc-
ture. Parameters in the transition rate matrix include lbeseatesr, ,(0) and drug-
related parameterB,, .o oy aNd ECsg zy. Emaz,zy denotes the maximum increase in
transition rater;, ,,(¢) that can be achieved by the drugC’ ., is the concentration at
which half of the maximum effect is reached and is a measudrugf potency on the
transitionr, ,, (t).

The general form of relation is that of a hazard rate. As ssiggeby Cox [13], the
expression in the exponent can be any known function. We uneadinear function of
variableC(t). In pharmacology, this expression is known askhe,,. function [14]. Itis
based on the empirical observation that the concentraéispense relation is a hyperbola
which is bounded at the top by the maximum pharmacologicgarse. Relation (A.1)
was found to better describe the drug effect than a linearessjon in the exponent.

Whenz >y, r, () is given by:

Ty () = 72,4/(0). (A.2)

(A.1) and (A.2) were chosen based on the observation that inmitreasing dose of a
triptan drug the headache pain decreases. In theory, thenadtion can be modelled by
1) increasing the forward transition rate in the Markov ahas a function of drug con-
centration, 2) decreasing the backward transition rateérMarkov chain as a function
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of drug concentration or 3) a combination of both effectse Tirst option was chosen
mainly because this mechanism is medically well-suppotrgatan drugs promote pain
relief by inhibiting pain-producing neural mechanisms.rtharmore, assuming a drug
action on the backward transition rate of the Markov chaiesdoot permit the descrip-
tion of rapid pain relief, which is often observed in migripatients. Assuming drug
effects on both the forward and backward transition rate®igeasible. Due to overpa-
rameterisation, the model parameters become unidengfiabl

According to our assumptions, 3(-) = r3,1(-) = 0.

Data from three clinical migraine studies are used to esérfeese parameters. In
addition, the distribution of scores in each of the statessisessed. Since all patients
enter the studies at moderate or severe headache leeel$np relief” state), the ini-
tial distribution over states is fixed. Headache intensityrs is treated as the dependent
variable and sumatriptan concentration is treated as avangng covariate affecting
headache intensity. The clinical studies consists of agbla@nd a drug arm, the lat-
ter including three dose groups. In total, data are aval&ioim 1180 migraine attacks.
392 attacks were treated with placebo wheréési4 and698 attacks were treated with
single doses o5 mg, 50 mg and100 mg oral sumatriptan, respectively. Headache as-
sessments were made (8t0.5, 1.0, 1.5, 2.0, 4.0, 8.0, 12 and 24 hours after dosing.
Data up to8.0 hours are included in the analysis. Firstly, because arratprediction
of headache responses is therapeutically most releva@trigttene points. Secondly,
because the assumption underlying the model, the Markqgwepty is only valid for a
particular time interval [15]. AfteB.0 hours the Markov property appears not tenable
without losing accuracy at earlier times. In fact, later pling times were captured to
understand recurrence of headache, rather than to direstlgss efficacy. Table A.1
summarises estimates and standard errors (se) of the pgaranmethe transition rate
matrix and the estimates of the distribution of scores inotervational layer in differ-
ent states. Standard errors are square roots of the diaglemaénts of the asymptotic
variance-covariance matrix which equals the invertedrimftion matrix of the observed
data. This matrix requires the calculation of second dévea of the matrix of transition
probabilities.

Parameter estimation is performed by the Expectation Mixsition (EM) algorithm
using an open-cod€ program which is operated within S-Plus on a linux workstati
(SUSE Linux 7.2 Professional, kernel version 2.4.4-AGBP3MA user-written model
defining the covariate effect and the first and second derdésbf the transition ma-
trix is implemented in the model specification file. A genised regression framework
allows for linear and nonlinear regression of continuougaciates as well as for re-
gression of categorical covariates. Implementation ofva m@del requires coding the
regression function and its first and second partial devieat Both time-invariant and
time-varying covariates can be dealt with. Between two @ty observations, a time-
varying covariate takes on the value associated with tlee tdiservation. In the current
nonlinear covariate model (A.1), the paramefar’, is estimated as its natural loga-
rithm, in(EC5p). This transformation is applied becauB€'s, values are known to
be log-normally distributed. This is in contrast wiff),,,, values, which are normally
distributed [16]. Further details on parameter estimationon-homogeneous hidden
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Table A.1: parameter estimates of the transition rate matrix and distribution of scoreshiMM.
Estimates were obtained by the EM algorithm.

transition | parameter (unit)| estimate| se
1-2 r12(0) (h7') | 0.16 0.07
Erax 1.3 0.15
2-1 r21(0) (h7Y) | 0.08 0.16
2-3 r23(0) (A7) | 0.22 0.09
In(ECs0) 5.0 0.62
Erax 6.0 2.8
3-2 r32(0) (7)) | 0.04 0.17
state| 1 2 3
score
no pain 00 |00 |10
mild pain 0.0 | 0.96| 0.0
moderate pain 0.55| 0.04 | 0.0
severe pain 0.45| 0.0 | 0.0

Markov models in continuous time can be found in papers by Bugt al.[2, 6]. These
include a description of the likelihood function and the ENgaaithm.

A.2.2 Predictions

We consider th& parameters defining the time-dependent transition ratéeohtensity
matrix as the main parameters of the model (Table A.1). Thasemeters are contained
in the vectord. The EM algorithm gives as output a) the estimated elemédrdsand b)

the variance-covariance matrix 8f We use these estimators to calculate the predicted
state probabilities of the HMM, the predicted mean headaesgonses and correspond-
ing confidence intervals at any time point For this purpose, a newly written S-Plus
routine is created. Central to this routine are Kolmogaalifferential equations which
translate the transition rates of a HMM into transition abittities.

A.2.3 Mean responses

Consider a Markov process, non—-homogeneous in tikg) with states{1, 2,3} and
transition rates at time, r, ,(0,t¢) from statez to statey. Denote byP(z,y,0,t) a
transition probability on time interva0, ¢]:
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P(z,y,0,t) = P(X(t) =y|X(0)=2), z,y =1,2,3.

ThenP(x,y,0,t) can be calculated by solving the system of Kolmogorov'sediff
ential equations in the non—homogeneous case. Dengiéihy, t) the row vector with
componentd(z,y, 0,t),y = 1,2, 3, and define the transition rate matrix by

—T1(9,t) 7“1,2(0,75) 7"173(9,1?)
R(07t) = T2,1(07t) _r2(0)t> T2 3(67t) )
r31(0,t) r32(0,t) —r3(0,1)

wherer,(0,t) =3, ., r2,4(6,t). Then, for any initial state, the vectorp(x, 0, t) is a
solution of the system of Kolmogorov’s differential equeits

%p(z, 0,t) = p(x,0,t)R(0,1) (A.3)
with the initial conditionp(z, 8,0) = e,, wheree,, is a row vector with thec-th entry
equal to one and other entries equal to zeros. This systerhecanlved using a quick
recurrent numerical procedure. Take fosome small value (in our calculatiohs=
0.001 is sufficiently small). Denote b?(a:, y, 0, kh) the calculated value d?(x, y, 0, t)

at the pointt = kh. For any initial stater, let p(z, 0, kh) be the row vector with
componentgf’(x, y,0,kh),y = 1,2, 3. To find a numerical solution of (A.3), we use the
following algorithm: atk = 0 start withp(z, y, 8, kh) = p(z, 6,0). Then for anyk > 0,

p(z,0,(k+1)h) = p(x,0,kh) + hp(z,0,kh)R(0, kh).

To predict the mean response, the pain scores conditiontileostates of the Markov
chain should also be taken into account. In the followings i done for the pain relief
response, thus including all scores 0 and 1. Given the lisiiggex, the predicted mean
fraction of patients\/ with response$0, 1} at time pointkh is:

3

M(z,kh,{0,1}) = > P(z,y,0,kh) > py(j), (A.4)
7=0

y=1

wherep, (j), with j = 0,1,2, 3, are the probabilities of the scores in staterhich are
estimated together with the Markov transition rate paransein the EM algorithm. A
total mean taking into account the initial distributiotz), z = 1,2, 3, is

3
M (kh,{0,1}) = Zw M (z, kh,{0,1}). (A.5)

If the initial conditions are fixed t@(z,0,0) = (1,0, 0) as is the case in the migraine
attack application, then(1) = 1 andn(2) = 7(3) =



130 APPENDIXA

A.2.4 Confidence intervals

The procedure for calculating the confidence intervals emtlean predicted responses
involves the delta method which approximates the variarice rionlinear function of

a random variable. The basic idea is to approximate the ifumcif the estimator with

a first-order Taylor approximation. The variance can therdleulated using standard
rules.

Calculation of confidence intervals for the nonlinear functon of unknown parame-
ters

Let f(@) be some nonlinear differentiable function of the vectorarfgmeter®. Assume
that the estimatof of a vectord has the properties:

E[6] ~ 60, E[(6 — )" (6 — 0)] ~ B, (A.6)

whereB? is the asymptotic variance-covariance matrix correspunth the parameters
in the transition rates onlyB? is assumed to be reasonably small. Symbbldenotes

a column vector transposed & Using the delta method we show how to construct the
approximation of the variance q’f(@) and its confidence intervals. Denote

9f(0)

716) = =57,

i=1,2.,r

Let V£(0) be the row vector with componentg/(0),i = 1,2,..,r). Using Taylor
expansion up to the first term we get

F(6)~ f(8)+Vf(0)(0— )+ Zf )(8; — 6,) (A7)

whered); = (91, . @). Denote byo? the diagonal elements @? and byp;; all other
elements. Using (A.7) we get:
E[f(0)] ~ f(0), (A.8)
Var[f(8)] ~ V[(0)B>Vf(® Zf T2 f(0)1(0)pi;-

1<J

Thus, the asymptoti€l — «)100% confidence interval forf (@) can be calculated as
follows:

(£8) = 2102\ Varlf(©)]. S 8) + 212/ Var[£(9)]). (A.9)

wherez; _, is the(1 — a)- quantile of the standard normal distributioB{\(0,1) <
Zl—a) =1-a.
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Calculation of confidence intervals for mean responses

Given the initial stater, the mean fraction of patients with respon$esl } at time point
tis:

3 3 1
M(t,0,{0,1}) = w(x) > P(z,y.0,kh) > py,(j). (A.10)
z=1 y=1 j=0

Using formula (A.8) we get

Var {M(t, 9, {0, 1}} = VM(t,0,{0,1}) B>V M(t,0,{0,1})7, (A.11)

whereV M (t,0,{0,1}) is arow vector with entried?/ (¢, 0, {0,1}) = 8%M(t, 0,{0,1}),
i =1,2,...,r (which are the partial derivatives af/ (-) with respect t®f;) and B? is
the estimated variance-covariance matrix of the paramétarcluded in the transition
rate matrix. From (A.10) it follows

3

3 1
1(t,0,{0,1}) = Zﬂ' Z (x,y,0,t Zpy(j). (A.12)
=1 7=0

Thus, to comput&ar [M(t, 5, {0, 1}} we need to compute the functioRS(x, v, 0, t),

which, for convenience, will be renameld; (x, y, 6,t). Note that¥;(z,y, 0,t) is the
derivative of P(z,y, 8,t) with respect td#;. As att = 0 the functionP(z, y, 8,0) does
not depend o and P(x,y, 8,0) = 6,(y), whered,(y) = 1, if z = y, andd,(y) = 0
otherwise, we get the initial conditions for; (z, y, 8, t):

U(x,y,0,0)=0,z,y=1,2,3,i =1,2,... 7.

Using again Kolmogorov’s differential equations for thartsition probabilities
P(z,y,0,t), we now derive differential equations for the functiobgz, y, 0,t). De-
note byp(z, 8,t) and,(x, 0, t) the row vectors with entrieB(x, y, 8,t) and
U, (z,y,0,t). Taking the derivative of both parts in equation (A.3) widlspect t@; we
obtain the following equation:

0

B,
o R(6,1). (A.13)

Bi(2.0,0) = (2,0, )R(0.1) + pla. 0.1) 5

Using the formulae for the rates , (¢) the functlon%R(G t) can be calculated in a
closed form. The system of equations (A.13) can be solvecenically and simultane-
ously with (A.3). The numerical procedure returns the vame(x y, 8, kh), enabling
the calculation oVar {M(kh, 0,{0,1})|.

To assure that confidence intervals on responses are cobteeer) andl, a logit
transformation is applied o/ (kh, 0, {0, 1}) before calculating the confidence interval.
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This transformation is of the forim (1 /(1 — M) (omitting the arguments for simplic-
ity). The logit function is the most commonly used link fuiect. In the range 0.1 — 0.9
it is almost indistinguishable from the probit function.idtsymmetric, mathematically
tractable and can be interpreted as a log odds ratio. Foe tlesons, a logit trans-
formation was preferred over a probit transformation anati@r link functions were
considered. The transformed variance is approximatediiasvi

Var[Mipgs) ~ Var[M] (M(1 - M))_Q.

Denoting the transformed functid@(kh, 0,{0,1}), the interval is given by expres-
sion (A.14):

(z\m(kh, 6,{0,1}) - zla/g\/Var | Miogin(kh. 6, {0, 1})],

Miogir(kh,0,{0,1}) + zla/g\/Var | Miogi (. 6, {0, 1})]), (A.14)

wherez;_,, is the(1 — «)-quantile of the standard normal distributioR{N (0,1) <
z1—-o) = 1 — a. Mean responses and intervals were then back-transfornebtain
probabilities.

A.2.5 Performance of the algorithm

It is tested how well the confidence intervals calculatedhgyrtew algorithm agree with
responses generated by the standard Monte Carlo simulalgomithm in the S-Plus
module. The latter generates headache scores on the bttsspairameter estimates and

a random number generator. The Monte Carlo simulationseofélponse versus time
profiles are generated based @90 samples. Pain scores are simulated with between-
observation intervals df.001 hours. Calculations are performed to assess both pain-free
and pain relief responses after administration of placetbl80 mg sumatriptan.

A.3 Results

Based on the parameter estimates in Table A.1, the timeeafirsean headache relief
and mean pain-free status (Figure A.2) is predicted forgiladreatment anti00 mg
sumatriptan, unti8.0 hours after dosing. Predicted time courses of pain relidffzain
free status are compared with those found in the origina ¢fatrkers in Figure A.2).
Mean responses ari$% confidence intervals are calculated using the new algorith
A Monte Carlo simulation was performed taking into accouariability in the parame-
ters of the transition matrix. Figure A.3 compares the aitily calculated confidence
intervals for placebo and sumatriptan and for two endppipdain-free and pain relief.
There is a good agreement among confidence intervals fotaaépo predictions and
for the pain relief predictions. Only in the case of painefgredictions for a high dose
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Figure A.2: Hidden Markov model predictions of headache response after tretimita placebo
or sumatriptanl00 mg: mean pain relief response (left panel), mean pain-free respoight
panel), and)5% confidence intervals. Markers denote observed responses.idrhetdrs of the
markers reflect the numbers of patients included at consecutive timis pleans an@5% confi-
dence intervals were calculated using the algorithm based on the Kolnvogmuations described
in this paper.

of sumatriptan the agreement was not good. This is due tcatherrlarge standard er-
rors associated with parametérs’s, 3 and Emax23. Because less data were available
to estimate parameters for this transition, we examinedétmaviour of the confidence
intervals in the hypothetical case where more patients \aitable to estimate the pa-
rameters (Figure A.3, lower panel). 3% more patients would be added, then there
would be a better agreement between the confidence intentalan also be observed
that the interval based on analytical calculation is gdhevdader than that obtained by
simulation. Thus, for a large enough number of patients,athedytically constructed
intervals are more conservative.

The 95% confidence intervals obtained from calculations wie delta method are
compared with those generated by a Monte Carlo simulatiatine. Simulation con-
ditions are as described in section A.2.5. The results fiwertwo methods are broadly
similar although the delta method tends to give narrowemnbaties especially at early
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time points (Figure A.3).

Figure A.4 illustrates the use &6% confidence intervals in concentration versus
response relationships. For three fixed time<2 @nd4 hours) after dose administration,
pain relief responses are plotted that correspond to varwal doses of sumatriptan.
These graphs are constructed by i) calculating mean plasspmnses and confidence
intervals for a sequence of time points including the timselin the graphs, i) repeating
these calculations for a large number of doses, iii) exitigdtom these calculations the
concentrations and responses (including intervals) spmeding to the times of interest
(1, 2 and4 hours), iv) subtracting the placebo responses from the digjgpnses at these
times and v) plotting for each time the pairs of concentretiand responses. The width
of confidence intervals increases with time.

A.4 Discussion

This paper describes an algorithm for the calculation of mgdicted headache re-
sponses as well as confidence intervals. These predictietmaed on a hidden Markov
model in continuous time. Due to time-varying drug concatidns, the Markov model
is non-homogeneous. The method is based on i) Kolmogorafferehtial equations
which are used to obtain state-to-state transition prditiabifrom transition rates and ii)
the delta method for approximating the derivatives of noedir functions with respect to
their parameters. The algorithm provides a fast solutiomtaining confidence bound-
aries which clearly reflect the uncertainty in the paramestimates as given by their
standard errors.

The hidden Markov model adequately predicts headache mespo Figure A.2 in-
dicates that the mean predicted pain relief and pain-frepomses largely correspond
to the observed responses. Aftehours, thed5% confidence interval on the pain-free
response after sumatriptan is relatively wide. This refleloe large standard errors of
the drug-related parametef&5, and E,,,.,. on the transition from stat2 (pain relief
state) to stat8 (pain-free state). Explanations for the poor precisiorhefpiain-free pa-
rameters include a lesser availability of pain-free datd &fl patients reach the pain-free
state), lack of different dose groups in the data set and taimsically high variability
in the pain-free response in a population of patients. StHfesubject variability in
the transition rates is an important concern when modetftiigraine responses. There
is a need to explore random-effect models to account foratgelinterindividual vari-
ability. In the current hidden Markov S-Plus library the angoration of random effects
was not considered as it is not included as an option. Moreageour model contains
a rather complicated nonlinear covariate function, addamglom effects to the model
could further complicate parameter estimation.

Given the transient character of Markov chains and the fettdach of the transitions
in the model is associated with different uncertaintiess oan expect the confidence
intervals to vary over time. The cumulative nature of pairefend pain free responses
causes the width of the confidence interval to increase awer. tOn the other hand, the
size of the interval is limited by the natural bounds of thel@bility measure which is
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Figure A.3: Pain relief responses (mean adtPo confidence interval, upper two panels) and
pain free responses (mean &id confidence interval, middle and lower panels) for sumatriptan
100 mg and placebo. Responses are calculated using the delta method balsedolmogorov
equations (horizontal shading) and simulated using a Monte Carlo simddtiertical shading).
The lower panel shows the hypothetical effect of increasing the nudfipatients by50% (equiv-
alent to dividing the standard errors byp).
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Figure A.4: Concentration versus response relationships for sumatriptan. Thedtaphs give
the placebo-corrected pain relief that can be expectéddiours,2.0 hours andt.0 hours after
oral dosing. Note that a concentrationaf). 10 nM represents different doses in each of the
graphs, as plasma drug concentration is time-dependent [11]. finsconcentration of0 nM

to be reached aftdrhours, a higher dose would be needed than for reaching the sanent@tion
after2 hours. The main application of these graphs is to determine the maximponsssthat can

be gained relative to placebo. Means @36 confidence bands were calculated using the new
algorithm.

defined between zero and unity. All these factors make tlsg@iag confidence levels
to migraine responses is not so straightforward.

The calculated confidence intervals represent uncertanigjng from estimation of
unknown parameters in the transition rate matrix. Thesedecboth baseline transition
rates and parameters linking these rates to non-homoggsmevariates, such as drug
concentrations. When link functions are nonlinear, thesarpaters are particularly dif-
ficult to estimate. In the current application of acute anigraine therapy the parameters
in the link function are the potencie& (5y) and maximum effectsH,,,,..) of the drug.

It can be verified in Table A.1 that the drug-related paransesee less precisely esti-
mated than the baseline transition rates. These diffegeincprecision are reflected in
Figure A.2. The width of the confidence intervals is consatdér larger in the predictions
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for 100 mg sumatriptan than those for placebo.

As indicated in Figure A.4, the width of the confidence intds\depends on the value
of the drug concentration. Confidence intervals are widdstnthe mean response is
close t050% of its half-maximum value. This is explained by the relalyvlarge stan-
dard error of the parametéiCs ;2 and the sensitivity of the responsef@’s 12, which
is highest in this part of the curve. Note that the conceiotnadt half-maximum pain re-
lief is not equal to the value of parametBC’( 12. Whereas this parameter expresses
the potency of the drug for a single transition in the modet pain relief responses
are the result of individual trajectories consisting of maransitions. Moreover, pain
relief responses are plotted as placebo-subtracted yvahedsng the concentrations at
half maximum response appear smaller as exposure timeagese The width of the
confidence intervals is smaller than is expected on the bésiisdings on variability in
studies of anti-migraine therapy. This is because thevatereflect uncertainty due to
parameter estimation, rather than biological variablligfween patients and occasions.
Although a high biological variability may affect paramepeecision, the main determi-
nant of parameter precision is the amount of data available.

In the current application standard errors in the matrix liesved scores have not
been taken into account when calculating #3&6 confidence intervals. However, the
current algorithm can be extended relatively easily to aooodate the errors in the
observed scores. The vector of parameters will be extengedldiing the probabilities
of the scoreg, (j) and the variance-covariance matf% will be replaced by32*, which
includes the (co)variances of thg(j). From A.4 and A.5 it is clear that the errors in the
score probabilities are linearly combined with errors ia ithitial distribution vector and
the transition matrix. The errors i n the observed scoretharefore additive to the other
sources of uncertainty. This means that the same formutebeased if uncertainties in
the scores need to be included.

Time-dependent misclassification rates (score probigsiican be part of a formal
and theoretic discussion on confidence intervals. Howestgrh rates, in the practice
of longitudinal data analysis, rarely occur or have not biglemtified. This is likely
due to1) the difficulty of identifying such effects in longitudinalata sets and) the
large number of records that would be needed to estimatestuei@mted parameters, in
particular when the distribution of observed scores is imaithial. It is not the aim of
this manuscript to explore all possible combinations ofac@tes. Rather, it illustrates
for the first time how confidence intervals can be easily qoegtd for Markov models
in continuous time, while focusing on the practice of madelkclinical migraine data.

In reality, drug concentrations are measurements andftitertey are random vari-
ables. Thus, it is expected that the pharmacokinetics ofig dliso add to the variability
of the response. In this analysis, due to the absence of jgitakimetics in patients, drug
concentrations at specific time points were treated as aotsstMoreover, the currently
applied software does not allow for uncertainty in the emptary level to be incorpo-
rated into the model. An impression can be obtained of thengxo which variability in
the pharmacokinetics adds to the variability in responsesbgliculating the confidence
levels using quantiles of the concentration profiles. Fa@nagle, the lower and upper
confidence levels of the response can be calculated usirighrend 95th percentiles of
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the distribution of concentration profiles, respectively.

The delta method is a fast and appealing method for calaglatnfidence levels.
Although its results are often good, there are conditiordeumvhich the results are less
accurate [4]. It has been argued that when the diagonaésritrthe variance-covariance
matrix are large, this method tends to underestimate vegifli’]. In general, the more
terms are included in the Taylor series the more accurat¢her@approximations. A
trade-off ought to be made between precision on the one hahéeasibility of calcula-
tion on the other hand. Second and higher order partial at&rés of the parameters in
the Markov transition matrix are extremely large exprassiolrhey are prone to round-
ing errors and overflow. Considering the main objective @ haper, illustrating the
application of the delta method to the Kolmogorov equatioine calculation of further
terms of the Taylor series is not thought essential. Rati@r tomparing different ap-
proximations, the accuracy lost by using a first-order Tagfproximation may be more
conveniently assessed by comparing the calculated corfdetervals with those ob-
tained by a Monte Carlo analysis.

In conclusion, an approach has been developed for the atimulof mean predicted
headache responses and confidence intervals, based oar(hiddrkov models. The
calculated means are shown to be equivalent to those obithima simulations. More-
over, responses are calculated considerably faster usraggorithm. To our knowledge,
no other methods have been described in literature to edé&abnfidence intervals on
responses obtained with Markov modelling. This approadhheip in identifying un-
certainty in predictions of clinical responses predictgd/tarkov models.
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