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Modelling of the PK-PD relationship
of anti-migraine drugs using a

Markov approach:
Summary, conclusions and

perspectives

The previous chapters described the application of Markov models to data from clin-
ical trials of migraine. It has been shown that these models can be used to derive
concentration-effect relationships, evaluate the effectof changes in formulation, study
the role of demographic variables on efficacy and predict theresponse to medication
both during and outside attacks.

The use of Markov models for analysing migraine data is not entirely new. Ebutt
and Hassani were the first to propose a non-homogeneous Markov chain in discrete-time
time to describe the course of attacks in patients [1]. The Markov chain acknowledges the
highly variable course of headache which, though eventually resolving, exhibits features
of randomness. More importantly, the Markov chain recognises a disease as a dynamic
process giving rise to a pattern of symptoms. Therapeutic intervention is either directed
against these symptoms or against the underlying disease process itself. Often, knowl-
edge about the process is lacking, as are adequate biomarkers. In an effort to understand
the process, disease stages or states are then defined on clinical grounds. These states
may or may not have suspected biological substrates. The dynamic behaviour of such
disease models is realised by assigning progression rates from one state to the next. The
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dynamics of Markov chains often resemble those of diseases albeit within a limited pe-
riod of time. This is remarkable given the strict Markov property, which states that the
future state of the process only depends on the current stateand not on any previous
states.

The studies in this thesis were not only aimed at describing the pain course of mi-
graine attacks, but also to relate pain response to the concentration of triptans,i.e. to
develop a model that describes the PK-PD relationship of triptans. In the following sec-
tions, the development and application of the hidden Markovmodel for migraine attacks
are discussed by chapter.

8.1 Developing a disease-state approach to modelling

Chapter 2 described the development of the hidden Markov model and its application to
data of clinical trials of sumatriptan. In the development of this model, several issues
were addressed.

In selecting the model structure, the clinical differentiation into a pain free and a
pain relief state was considered most important. The numberof states (three) reflects
this differentiation: a baseline state occupied by moderate and severe headache scores,
a pain relief state containing mostly mild pain scores and a pain free state. It can be
argued that four states would give the most accurate description of the migraine attack
as the pain is assessed using a four-point scale. However, itwas mainly because of the
large heterogeneity in headache scores that it was decided to only use three states. The
heterogeneity can partly be explained by the setup of typical acute anti-migraine trials.
Patients enrol into a study once their headache intensity isat least moderate. The interval
leading up to the point of enrolment is highly variable and asa result patients are all
in different phases of their attacks. Some may have a moderate score and will progress
to a severe score, while others with moderate headache will not experience an increase
anymore. Because these different phases cannot be distinguished from the data, it was
decided to group all patients into a single starting state. Another reason for not assigning
different states to moderate and severe scores is related tothe first reason. Once headache
starts to decrease, patients with severe headache first experience moderate headache and
then progress to mild and no pain. In other words, the moderate pain phase is a transient
phase. This is in contrast to the severe pain phase, in which these patients reside for a
longer time. Patients entering the study with moderate painseverity on the other hand
are likely to stay in that phase before eventually progressing to mild and pain free states.
Thus, for different patients, the moderate pain phase has dynamically different meanings.
Treating all transitions from this state as the same, the variability of this transition will
increase and the expected benefits of having four states are not materialised.

Rather than adding a hidden layer to the Markov chain, the moderate and severe pain
scores could just be grouped manually into a single categoryand further analysed using
a standard three-state Markov chain. This was not done as it appeared that estimating
the distribution of the four scores over the three states provides a useful measure of sim-
ilarity among data sets. If two data sets were to be analysed that differ appreciably in



SUMMARY AND CONCLUSIONS 113

the length of the observation interval, the states of their models will contain different
score distributions. If for example the observation interval only covers the first 2 hours
after dosing, relatively few patients will have attained pain free status. Hence, if a state
existed that contained only pain-free scores, not enough information would be available
to estimate the associated transition rate to this state. The minimisation algorithm cir-
cumvents this by finding another distribution of the four scores over the three states. As
a result, the transition rates obtained from two data sets that considerably differ in their
observation windows cannot be compared but due to the redistribution of scores, pre-
dictions of headache course can still be made. This characteristic property was used to
determine an optimal observation window for the data sets. On the one hand, the obser-
vation period was short enough to ensure that the Markov property was not violated. On
the other hand, the period was long enough to generate a distribution of headache scores
over the states that reflected the clinical subdivision intoa pain state, pain relief state and
a pain free state. A disadvantage of using a HMM for clustering scores into states is that
the algorithms are more complex and less efficient than thoseused for regular Markov
chains.

Modelling was performed using an S-Plus library for (hidden) Markov models. This
library allowed for the implementation of user-specified functions to link transition rates
to covariate values. Because of this, a nonlinear concentration vs transition rate relation-
ship could be built into the Markov chain part of the model. This feature allowed for the
first time the evaluation of a nonlinear concentration-effect relation within a stochastic
dynamic system (the Markov chain). The most obvious advantage is the characterisation
of both improvement and worsening of pain over time. Other analytical methods have
not been able to describe the migraine attack using these dynamical concepts.

A complicating factor in the development of the concentration-effect relation was the
presence of a natural exponent in the coded transition rates. Though the use of these ex-
ponents prevented transition rates from becoming negative, it also prohibited describing
concentration-dependency of the transition rate using a regularEmax model. Instead,
the concentrationvs transition rate relationship follows the shape of an exponentiated
Emax model. Though the shape is roughly equal, the interpretation of drug-related
parameters is slightly different.

Another difficulty is related to the identifiability of drug-related parameters (EC50

andEmax) in the absence of a sufficient number of different doses. Since 50 mg and
100 mg sumatriptan have similar efficacy and because few studies have been performed
using the 25 mg oral dose, precise estimations of these parameters could not always be
obtained. It was demonstrated during the development of a similar model for sumatriptan
that with a broader range of doses, these parameters could indeed be estimated more
precisely. The information available in the concentrationdata was further limited by
the fact that only population-averaged predictions of concentration were available for
the PK-PD analysis. In most studies, PK measurements and pain assessments were not
both present. Instead, PK information was derived mostly from phase I clinical studies.
Using these data requires that there are no relevant differences between sumatriptan PK
in healthy volunteers and in patients. Though it is often claimed that these differences
can be considerable, PK analysis has previously shown that the PK characteristics are
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not relevantly different [2]. Yet, it cannot be ruled out that estimates of drug-related
parameters would be different had patient PK samples been available.

8.2 Development of diagnostic tools

Goodness-of-fit evaluation of categorical data analysis isnotoriously underdeveloped.
Except for comparison of likelihoods, no tools were presentin the HMM S-Plus library.
Therefore, an S-Plus routine was developed for the routine evaluation of goodness-of-fit
and for assessing the precision of the predictions (chapter3). Goodness-of-fit was as-
sessed by comparing observed pain relief and pain free percentages over time with those
generated by a recurrent algorithm using the parameter estimates obtained from fitting
the data to the hidden Markov model. The recurrent algorithmuses the Kolmogorov dif-
ferential equations to generate mean scorevs time profiles. This method is both accurate
(i.e. it is not an approximation, like simulation methods) and fast. Pain free and pain
relief profiles were chosen as a measure of goodness-of-fit rather than the separate pain
scores because it was the objective of the Markov modelling to predict these primary
and secondary clinical endpoints. Moreover, since moderate and severe pain scores were
grouped into a single state, assessing the courses of the separate scores over time would
not be helpful as this would lead to consider the use of a 4-state Markov chain, the use of
which had been ruled out based on arguments mentioned above.

The uncertainty in the predicted headache response profileswas visualised by con-
structing 95% confidence intervals around the mean-predicted headache profiles. These
intervals were constructed using a modified version of the Kolmogorov algorithm that in-
cluded the standard errors of the parameter estimates. Thiscalculation used a first-order
approximation of the variance. The validity of the approximation was evaluated by per-
forming a series of Monte Carlo simulations. It appeared that a first-order approximation
could be used for most of the responses. For the pain free response in the presence of
sumatriptan, however, the standard errors were large and the calculated confidence in-
terval differed considerably from the simulated one. The simulated confidence intervals
were asymmetrically distributed around the mean. This is due to the exponent in the
equations describing the state-to-state transition rates.

The method proposed is fast and works well for small errors. When errors are large,
the use of simulation techniques is necessary.

8.3 Model consistency across drugs

The concentration-effect relationships of both sumatriptan and naratriptan were derived
using the Markov modelling approach. The results confirmed the general clinical ob-
servation that, for pain relief, naratriptan is approximately three times more potent than
sumatriptan and that the maximum effects are more or less equal.

In the case of sumatriptan, the pharmacodynamic parameterson the transition to-
wards pain free status could not be precisely estimated. However, the naratriptan analy-
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ses resulted in estimates with higher precision. This was attributed to the availability of
a broader range of doses for the latter drug.

On the same transition, different values were also found forthe parameter estimates
themselves. Possibly, the lack of sumatriptan dose groups caused unidentifiability and
strong correlation among the PD parameters.

Provided that sufficient information is available, the characterisation of concentration-
effect relationships using Markov models can give more meaningful parameter estimates
than when obtained by other modelling techniques. By considering the fluctuations in
headache score over time, a realistic framework for the disease was built that served as
the background against which drug action was modelled. Previous PK-PD analyses did
not take into account fluctuations and therefore could not describe phenomena such as
recurrence. An incomplete characterisation of the diseasecan lead to biased estimates
of the PD parameters. This in turn complicates comparison between drugs and between
studies.

The PD estimates were also compared with the values of potency and the maximum
effects obtained inin vitro andex vivo experiments. The extent of agreement depended
on drug and transition, but in general the in vitro values corresponded best with the
estimates. This result is promising for the evaluation of the efficacy of new compounds
in man. Substitution of in vitro values can give an indication of the efficacy that can be
expected in patients.

As for the expected recurrence, no difference was found in the recurrence rates de-
rived for both drugs after correcting for placebo rates. In this respect therefore, the model
structure assumes that recurrence is a phenomenon inherentto the patient rather than drug
action. This view was previously taken by [3] but is in contrast with findings in [4].

8.4 The effect of covariates on the anti-migraine
response

Markov disease models are traditionally used to describe chronic and episodic disorders,
covering time spans of months or years. Little is known aboutthe episodic nature of
migraine. A combination of endogenous and exogenous triggers seem to illicit attacks,
making their frequency highly variable both within and between patients. Stochastic
models such as Markov models are the preferred modelling tools under these conditions.
In the current analysis, a two-state Markov model with a single layer of variables was
used to characterise the attack frequency in the presence and absence of oral sumatriptan
treatment. This method was evaluated against simple distribution fitting.

Compared with distribution fitting, the choice of distributions offered in standard
Markov models is limited to exponential and Erlang distributions (a concatenation ofn
exponential distributions, withn an integer). On the other hand, the Markov approach
acknowledges the dynamic character of the disease, iterating over the time series of pain
data, rather than requiring that the time intervals betweenattacks be already calculated.
for this reason, this approach can also be more easily extended to contain subject-specific
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effects.
Preferentially, this type of analysis is performed on time series studies where pain is

assessed daily and for a year or longer. The data in the current analysis were derived from
an acute study investigating the reproducibility of the drug effect over the course of up
to three subsequent attacks within one year. Though this didnot impede the estimation
of frequencies, if more information had been available, theinfluence of one or more
covariates on the duration of the period between attacks could have been assessed.

The greater flexibility of the distribution analysis was apparent from the accuracy of
prediction, which was better than that for the Markov model.Neither model demon-
strated a significant difference between the duration of interictal periods in the presence
of placebo and active drug. These models can proof especially useful for assessing the
effect of prophylactic anti-migraine drugs, where such a difference should be demon-
strated.

8.5 The episodic nature of migraine

Many covariates can influence the course of resolution of a migraine attack.
Age, sex, baseline pain score, body weight and type of migraine are all known to

positively or negatively impact the pain duration [5, 6]. These factors add to the het-
erogeneity of the disease and as a result frustrate the search for effective drugs. The
current analysis focused on the effect of patient age on boththe placebo and the drug
effect in oral sumatriptan studies. It has been reported that in contrast to the response
to drug, the response to placebo decreases with age [7, 8]. This observation can be ex-
plained by assuming a maximum stimulus on the transition rate towards a state of less
pain. Once that rate has been reached, other stimuli cannot increase the rate further. In
clinical terms, the increased response after placebo in young patients can be attributed
to the placebo effect. However, non-treated attacks are also known to be shorter-lasting
in children and adolescents. Placing these facts into the above theory, this would mean
that either young patients are intrinsically closer to the maximum transition rate or the
placebo effect increases the transition rate.

In either case, modelling this scenario requires that two covariates be taken into ac-
count: one time-varying (drug concentration) and one constant (age). As both covariates
were assumed to affect the transition rates towards states of less pain, they were incor-
porated in the same equations describing the transition rates in the hidden layer of a
three-state HMM.

The range of available age groups was extended by adding a study of migraine in
adolescents. On the other hand, the range of time points in this study was limited to
times of up to 4 h post dose. This was not expected to severely impact estimation, as the
duration of attacks is intrinsically shorter in the young.

The equations describing the transitions to states of less pain were based on an anal-
ysis of the interaction of toxic compounds [9]. These equations were embedded into the
HMM.

The effect of other continuous covariates can be characterised using a similar model.
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Alternatively, covariate effects can also be tested on the open layer of score distributions.
For example, the covariate sex can be placed on the distribution of scores in the first state
of the HMM, as it was found that female patients are more likely to experience severe
headache at the start of the study (difference 5%, unpublished results).

8.6 Perspectives

Hidden/latent states concept The need for a hidden layer in a Markov model is usually
based on one of two considerations.

Firstly, the latent states in this layer are used to classifysequences of measurements
sharing particular properties. In the analysis of electrocardiogram (ECG) and elec-
troencephalogram (EEG) signals, locally stationary sequences are grouped into separate
states [10, 11]. The properties of each state are then described in the open layer by means
of statistical distributions. Most biological signals arenonstationary. That is, their sta-
tistical characteristics such as mean and variance change over time. The grouping of
headache intensity scores measured in the course of a migraine attack is another example
of this use of latent states. Each state corresponds to a clinically defined endpoint and
may well have a pathophysiological analogue. The number of latent states required to
model a nonstationary time sequence depends on degree of nonstationarity in the signal
and the signal’s information content. The number of states should be sufficiently large
to encompass the periods marked by local stationarity. However, their number should be
sufficiently small to maintain parameter identifiability.

A second motivation for using latent states is to address theissue of misclassified
observations or missing observations. In both cases, theseobservations are treated as
sampled from a distribution that corresponds to one of the latent states. For example, a
false-positive outcome of an imperfect diagnostic test will be treated as an observation
drawn from a state representing absence of the disease. The correctness of this procedure
strongly depends on the validity of the Markov property in a given system.

Hidden Markov models (HMMs) have been successfully appliedto model chron-
ically recurring infections, such as herpes [12], papillomavirus [13] and malaria [14].
Misclassification by diagnostic tests is an important concern in these diseases.

Other applications Migraine has been described as a chronic neurological disorder
with episodic manifestations [15]. Other disorders in thiscategory include epilepsy and
cluster headache. For these diseases aetiology and pathophysiology are incompletely
understood. Data collected in a clinical setting usually involves ordinal measures of pain
and disability or simply count data. Although individual events may be too short to be
effectively characterised by Markov models, the occurrence of events can be the object
of Markovian analysis.

Before frequency analysis was introduced in the field of epilepsy, two-state Markov
models were used to analyse patterns of seizures [16]. It wasconjectured that if the
occurrence of an epileptic episode is a random event, it can be described by a Markov
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chain. Alternatively, if the events are periodical, a Markov chain cannot characterise the
patterns.

The issue of randomness versus periodicity of events is particularly interesting in
cluster headache [17]. Cluster periods are mostly periodical (often season-bound). How-
ever, the end of every period may constitute the end of the disease itself, rendering the
disease dynamics highly non-stationary. Furthermore, every period is characterised by a
number of recurrent attacks (up to 8 attacks per 24 h) which may be triggered by rapid
eye movement (REM) sleep.

8.7 Extensions to the techniques

Single migraine attacks develop and resolve within a matterof hours, whereas the period
between attacks spans multiple days. Applying Markov approaches to analyse the effects
of acute anti-migraine drugs on both the length of the attackand the between-attack pe-
riods requires that both time frames are combined. This can be achieved by introducing
one or more additional levels of progression within a singlestate of the original pro-
cess. The resulting structure is referred to as a multi-dimensional or hierarchical Markov
model. Applications have arisen in the field of chronic obstructive pulmonary disease
(COPD) [18]. This application is also useful when analysingthe effects of drugs that can
be used both for prophylaxis and abortion of attacks [19].

In most multi-state applications it is assumed that transition rates do not vary between
patients. That is, every transition is characterised by a distribution with fixed parameters.
In reality, any parameter that determines disease progression displays natural variability
and as a result, can be characterised by a statistical distribution. Application of mixed
effects models offers an appealing approach to account for inter-patient variability [20,
21].

As the structures of Markov models become increasingly complex, parameter esti-
mation becomes ever more difficult. Bayesian estimation methods can aid in two ways.
Firstly, by using Markov Chain Monte Carlo (MCMC) algorithms which are readily
available in software for Bayesian estimation, the problemof finding (approximations
of) the likelihood function can be avoided. A disadvantage is that MCMC is generally
less robust than analytic statistical methods. Secondly, if the data available are insuffi-
cient to estimate all parameters in the mixed model, it is still possible to obtain estimates
using prior information. Other data sources can be exploited

When a disease is detected at an early stage, it may be more amenable to treatment.
Systematic screening of a population can therefore be an effective way of reducing mor-
tality from a disease.

Establishing an adequate screening policy for the disease requires knowledge of its
natural history. The type of individuals to screen, and the time of the screen, should
be chosen according to the risk of onset of the disease, whereas the intervals between
successive screens should be chosen according to the risk ofprogression. Both risks may
vary with characteristics of the patients and the risk of progression may vary with the
current stage of the disease.
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