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Modelling of the PK-PD relationship
of anti-migrainedrugsusing a
Markov approach:
Summary, conclusions and
per spectives

The previous chapters described the application of Markodets to data from clin-
ical trials of migraine. It has been shown that these modails lze used to derive
concentration-effect relationships, evaluate the efféathanges in formulation, study
the role of demographic variables on efficacy and predictrésponse to medication
both during and outside attacks.

The use of Markov models for analysing migraine data is ntitedp new. Ebutt
and Hassani were the first to propose a non-homogeneous Wetkin in discrete-time
time to describe the course of attacks in patients [1]. ThekMachain acknowledges the
highly variable course of headache which, though eventuaediolving, exhibits features
of randomness. More importantly, the Markov chain recogmis disease as a dynamic
process giving rise to a pattern of symptoms. Therapeutievantion is either directed
against these symptoms or against the underlying diseasegy itself. Often, knowl-
edge about the process is lacking, as are adequate biomalkan effort to understand
the process, disease stages or states are then definedioal gnounds. These states
may or may not have suspected biological substrates. Thantigrbehaviour of such
disease models is realised by assigning progression ratesoihe state to the next. The



112 CHAPTERS8

dynamics of Markov chains often resemble those of disedbeg avithin a limited pe-
riod of time. This is remarkable given the strict Markov peday, which states that the
future state of the process only depends on the current ataterot on any previous
states.

The studies in this thesis were not only aimed at descrildiegogin course of mi-
graine attacks, but also to relate pain response to the otatien of triptansj.e. to
develop a model that describes the PK-PD relationship jtfatnis. In the following sec-
tions, the development and application of the hidden Markodel for migraine attacks
are discussed by chapter.

8.1 Developing a disease-state approach to modelling

Chapter 2 described the development of the hidden Markowetsdl its application to
data of clinical trials of sumatriptan. In the developmehttos model, several issues
were addressed.

In selecting the model structure, the clinical differetitia into a pain free and a
pain relief state was considered most important. The nuraobstates (three) reflects
this differentiation: a baseline state occupied by modeaaitd severe headache scores,
a pain relief state containing mostly mild pain scores andia free state. It can be
argued that four states would give the most accurate déseripf the migraine attack
as the pain is assessed using a four-point scale. Howewesisitnainly because of the
large heterogeneity in headache scores that it was deaidealyt use three states. The
heterogeneity can partly be explained by the setup of tyjpicate anti-migraine trials.
Patients enrol into a study once their headache intensityié&ast moderate. The interval
leading up to the point of enrolment is highly variable andaa®sult patients are all
in different phases of their attacks. Some may have a magscare and will progress
to a severe score, while others with moderate headache atikxperience an increase
anymore. Because these different phases cannot be distieglufrom the data, it was
decided to group all patients into a single starting stateother reason for not assigning
different states to moderate and severe scores is relatied fiost reason. Once headache
starts to decrease, patients with severe headache firsieaxpemoderate headache and
then progress to mild and no pain. In other words, the modgrain phase is a transient
phase. This is in contrast to the severe pain phase, in whagetpatients reside for a
longer time. Patients entering the study with moderate pauerity on the other hand
are likely to stay in that phase before eventually progrest mild and pain free states.
Thus, for different patients, the moderate pain phase haardically different meanings.
Treating all transitions from this state as the same, theity of this transition will
increase and the expected benefits of having four stateameaterialised.

Rather than adding a hidden layer to the Markov chain, thearadd and severe pain
scores could just be grouped manually into a single categiodyfurther analysed using
a standard three-state Markov chain. This was not done apéaaed that estimating
the distribution of the four scores over the three stategiges a useful measure of sim-
ilarity among data sets. If two data sets were to be analysatddiffer appreciably in



SUMMARY AND CONCLUSIONS 113

the length of the observation interval, the states of thedets will contain different
score distributions. If for example the observation indé¢enly covers the first 2 hours
after dosing, relatively few patients will have attainedhp@ee status. Hence, if a state
existed that contained only pain-free scores, not enoughnration would be available
to estimate the associated transition rate to this state. niinimisation algorithm cir-
cumvents this by finding another distribution of the fourresoover the three states. As
a result, the transition rates obtained from two data setisabnsiderably differ in their
observation windows cannot be compared but due to the nbditibn of scores, pre-
dictions of headache course can still be made. This chaistateproperty was used to
determine an optimal observation window for the data setsth® one hand, the obser-
vation period was short enough to ensure that the Markovestpmvas not violated. On
the other hand, the period was long enough to generate @dtgin of headache scores
over the states that reflected the clinical subdivision @npain state, pain relief state and
a pain free state. A disadvantage of using a HMM for clustesitores into states is that
the algorithms are more complex and less efficient than theed for regular Markov
chains.

Modelling was performed using an S-Plus library for (hiddetarkov models. This
library allowed for the implementation of user-specifieddtions to link transition rates
to covariate values. Because of this, a nonlinear condérings transition rate relation-
ship could be built into the Markov chain part of the modelisTeature allowed for the
first time the evaluation of a nonlinear concentration-affelation within a stochastic
dynamic system (the Markov chain). The most obvious adgenigathe characterisation
of both improvement and worsening of pain over time. Othexdital methods have
not been able to describe the migraine attack using thessnuigal concepts.

A complicating factor in the development of the concentratéffect relation was the
presence of a natural exponent in the coded transition. réitesigh the use of these ex-
ponents prevented transition rates from becoming negatigtso prohibited describing
concentration-dependency of the transition rate usingyalae Emax model. Instead,
the concentrations transition rate relationship follows the shape of an exptinged
Emax model. Though the shape is roughly equal, the interpretatfodrug-related
parameters is slightly different.

Another difficulty is related to the identifiability of drugplated parameterd(C50
and Emax) in the absence of a sufficient number of different dosesces0 mg and
100 mg sumatriptan have similar efficacy and because feviestinidve been performed
using the 25 mg oral dose, precise estimations of these paessrcould not always be
obtained. It was demonstrated during the development ofidgesimodel for sumatriptan
that with a broader range of doses, these parameters caldgédnbe estimated more
precisely. The information available in the concentratitata was further limited by
the fact that only population-averaged predictions of emtiation were available for
the PK-PD analysis. In most studies, PK measurements andapaéssments were not
both present. Instead, PK information was derived mostiynfphase | clinical studies.
Using these data requires that there are no relevant diffesebetween sumatriptan PK
in healthy volunteers and in patients. Though it is oftennatal that these differences
can be considerable, PK analysis has previously shown liealPK characteristics are
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not relevantly different [2]. Yet, it cannot be ruled out thestimates of drug-related
parameters would be different had patient PK samples beslable.

8.2 Development of diagnostic tools

Goodness-of-fit evaluation of categorical data analysisot®riously underdeveloped.
Except for comparison of likelihoods, no tools were pregethe HMM S-Plus library.
Therefore, an S-Plus routine was developed for the routiakiation of goodness-of-fit
and for assessing the precision of the predictions (ch&)teGoodness-of-fit was as-
sessed by comparing observed pain relief and pain free qtages over time with those
generated by a recurrent algorithm using the parametenaists obtained from fitting
the data to the hidden Markov model. The recurrent algoritises the Kolmogorov dif-
ferential equations to generate mean sasrigme profiles. This method is both accurate
(i.e it is not an approximation, like simulation methods) and.fd3ain free and pain
relief profiles were chosen as a measure of goodness-ofH#rthan the separate pain
scores because it was the objective of the Markov modelbngrédict these primary
and secondary clinical endpoints. Moreover, since modenadl severe pain scores were
grouped into a single state, assessing the courses of theasegcores over time would
not be helpful as this would lead to consider the use of a#-8arkov chain, the use of
which had been ruled out based on arguments mentioned above.

The uncertainty in the predicted headache response profissvisualised by con-
structing 95% confidence intervals around the mean-prediiceadache profiles. These
intervals were constructed using a modified version of thienégorov algorithm that in-
cluded the standard errors of the parameter estimatescaluiglation used a first-order
approximation of the variance. The validity of the approation was evaluated by per-
forming a series of Monte Carlo simulations. It appearetiafast-order approximation
could be used for most of the responses. For the pain freemssgn the presence of
sumatriptan, however, the standard errors were large andaleculated confidence in-
terval differed considerably from the simulated one. Theutated confidence intervals
were asymmetrically distributed around the mean. This is Wuthe exponent in the
equations describing the state-to-state transition.rates

The method proposed is fast and works well for small errorsei\drrors are large,
the use of simulation techniques is necessary.

8.3 Model consistency acrossdrugs

The concentration-effect relationships of both sumadripnd naratriptan were derived
using the Markov modelling approach. The results confirniedgeneral clinical ob-
servation that, for pain relief, naratriptan is approxietathree times more potent than
sumatriptan and that the maximum effects are more or lesa.equ

In the case of sumatriptan, the pharmacodynamic parametetse transition to-
wards pain free status could not be precisely estimated.eMeryvthe naratriptan analy-
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ses resulted in estimates with higher precision. This wiaibatted to the availability of
a broader range of doses for the latter drug.

On the same transition, different values were also foundhfeiparameter estimates
themselves. Possibly, the lack of sumatriptan dose groapsed unidentifiability and
strong correlation among the PD parameters.

Provided that sufficient information is available, the awerisation of concentration-
effect relationships using Markov models can give more rimggdinl parameter estimates
than when obtained by other modelling techniques. By camsid the fluctuations in
headache score over time, a realistic framework for theadisevas built that served as
the background against which drug action was modelled.i®us\WPK-PD analyses did
not take into account fluctuations and therefore could netrlge phenomena such as
recurrence. An incomplete characterisation of the diseasdead to biased estimates
of the PD parameters. This in turn complicates comparistwdsn drugs and between
studies.

The PD estimates were also compared with the values of pptertthe maximum
effects obtained inin vitro andex vivo experiments. The extent of agreement depended
on drug and transition, but in general the in vitro valuesesponded best with the
estimates. This result is promising for the evaluation efefficacy of new compounds
in man. Substitution of in vitro values can give an indicataf the efficacy that can be
expected in patients.

As for the expected recurrence, no difference was foundérrékurrence rates de-
rived for both drugs after correcting for placebo rateshia tespect therefore, the model
structure assumes that recurrence is a phenomenon inketkatpatient rather than drug
action. This view was previously taken by [3] but is in costraith findings in [4].

8.4 Theeffect of covariateson the anti-migraine
response

Markov disease models are traditionally used to describendtand episodic disorders,
covering time spans of months or years. Little is known alibatepisodic nature of
migraine. A combination of endogenous and exogenous msgggem to illicit attacks,
making their frequency highly variable both within and betm patients. Stochastic
models such as Markov models are the preferred modelling towler these conditions.
In the current analysis, a two-state Markov model with alsitayer of variables was
used to characterise the attack frequency in the presexcabmence of oral sumatriptan
treatment. This method was evaluated against simple laligimn fitting.

Compared with distribution fitting, the choice of distrilmrts offered in standard
Markov models is limited to exponential and Erlang disttibos (a concatenation of
exponential distributions, with an integer). On the other hand, the Markov approach
acknowledges the dynamic character of the disease, itgratier the time series of pain
data, rather than requiring that the time intervals betwattatks be already calculated.
for this reason, this approach can also be more easily extetioccontain subject-specific
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effects.

Preferentially, this type of analysis is performed on tireges studies where pain is
assessed daily and for a year or longer. The data in the ¢amatysis were derived from
an acute study investigating the reproducibility of thegdeffect over the course of up
to three subsequent attacks within one year. Though thisatidmpede the estimation
of frequencies, if more information had been available, itifience of one or more
covariates on the duration of the period between attackisl tmve been assessed.

The greater flexibility of the distribution analysis was apmt from the accuracy of
prediction, which was better than that for the Markov moddkither model demon-
strated a significant difference between the duration efictial periods in the presence
of placebo and active drug. These models can proof espeaisdiful for assessing the
effect of prophylactic anti-migraine drugs, where such fleténce should be demon-
strated.

8.5 Theepisodic nature of migraine

Many covariates can influence the course of resolution ofgaairie attack.

Age, sex, baseline pain score, body weight and type of nrigrare all known to
positively or negatively impact the pain duration [5, 6]. €Be factors add to the het-
erogeneity of the disease and as a result frustrate thehséareffective drugs. The
current analysis focused on the effect of patient age on thattplacebo and the drug
effect in oral sumatriptan studies. It has been reportetlitheontrast to the response
to drug, the response to placebo decreases with age [7, &.obkervation can be ex-
plained by assuming a maximum stimulus on the transitiom t@ards a state of less
pain. Once that rate has been reached, other stimuli cancraaise the rate further. In
clinical terms, the increased response after placebo imy@atients can be attributed
to the placebo effect. However, non-treated attacks acekaiswn to be shorter-lasting
in children and adolescents. Placing these facts into theeatheory, this would mean
that either young patients are intrinsically closer to theximum transition rate or the
placebo effect increases the transition rate.

In either case, modelling this scenario requires that twagates be taken into ac-
count: one time-varying (drug concentration) and one @migage). As both covariates
were assumed to affect the transition rates towards stélesopain, they were incor-
porated in the same equations describing the transitias fiat the hidden layer of a
three-state HMM.

The range of available age groups was extended by addinglg sfumigraine in
adolescents. On the other hand, the range of time pointsdsrstady was limited to
times of up to 4 h post dose. This was not expected to sevenggat estimation, as the
duration of attacks is intrinsically shorter in the young.

The equations describing the transitions to states of lasswpere based on an anal-
ysis of the interaction of toxic compounds [9]. These equetiwere embedded into the
HMM.

The effect of other continuous covariates can be charaetbrising a similar model.
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Alternatively, covariate effects can also be tested on gendayer of score distributions.
For example, the covariate sex can be placed on the distnibot scores in the first state
of the HMM, as it was found that female patients are more Yikelexperience severe
headache at the start of the study (difference 5%, unpudaisésults).

8.6 Perspectives

Hidden/latent statesconcept The need for a hidden layer in a Markov model is usually
based on one of two considerations.

Firstly, the latent states in this layer are used to clasgfyuences of measurements
sharing particular properties. In the analysis of ele@rdomgram (ECG) and elec-
troencephalogram (EEG) signals, locally stationary seqge® are grouped into separate
states [10, 11]. The properties of each state are then tesddn the open layer by means
of statistical distributions. Most biological signals arenstationary. That is, their sta-
tistical characteristics such as mean and variance chavegetime. The grouping of
headache intensity scores measured in the course of a megrtiack is another example
of this use of latent states. Each state corresponds toiaatlindefined endpoint and
may well have a pathophysiological analogue. The numbeateht states required to
model a nonstationary time sequence depends on degree sthtionarity in the signal
and the signal’s information content. The number of statesilsl be sufficiently large
to encompass the periods marked by local stationarity. Mewéheir number should be
sufficiently small to maintain parameter identifiability.

A second motivation for using latent states is to addresssthee of misclassified
observations or missing observations. In both cases, thieservations are treated as
sampled from a distribution that corresponds to one of ttentestates. For example, a
false-positive outcome of an imperfect diagnostic test bél treated as an observation
drawn from a state representing absence of the disease ofifleetniess of this procedure
strongly depends on the validity of the Markov property inaeg system.

Hidden Markov models (HMMs) have been successfully applgedhodel chron-
ically recurring infections, such as herpes [12], papiminus [13] and malaria [14].
Misclassification by diagnostic tests is an important comde these diseases.

Other applications Migraine has been described as a chronic neurological disor
with episodic manifestations [15]. Other disorders in tasegory include epilepsy and
cluster headache. For these diseases aetiology and pgsiaplgy are incompletely
understood. Data collected in a clinical setting usuaNpives ordinal measures of pain
and disability or simply count data. Although individualess may be too short to be
effectively characterised by Markov models, the occureenicevents can be the object
of Markovian analysis.

Before frequency analysis was introduced in the field ofegysy, two-state Markov
models were used to analyse patterns of seizures [16]. Itcomctured that if the
occurrence of an epileptic episode is a random event, it eatelscribed by a Markov



118 CHAPTERS8

chain. Alternatively, if the events are periodical, a Markbain cannot characterise the
patterns.

The issue of randomness versus periodicity of events iscpéatly interesting in
cluster headache [17]. Cluster periods are mostly perdb¢idten season-bound). How-
ever, the end of every period may constitute the end of theadis itself, rendering the
disease dynamics highly non-stationary. Furthermoreygweriod is characterised by a
number of recurrent attacks (up to 8 attacks per 24 h) which Imeatriggered by rapid
eye movement (REM) sleep.

8.7 Extensionstothetechniques

Single migraine attacks develop and resolve within a mafteours, whereas the period
between attacks spans multiple days. Applying Markov aggines to analyse the effects
of acute anti-migraine drugs on both the length of the attaukthe between-attack pe-
riods requires that both time frames are combined. This eaachieved by introducing
one or more additional levels of progression within a sirglte of the original pro-
cess. The resulting structure is referred to as a multi-dgiomal or hierarchical Markov
model. Applications have arisen in the field of chronic obstive pulmonary disease
(COPD) [18]. This application is also useful when analysimgeffects of drugs that can
be used both for prophylaxis and abortion of attacks [19].

In most multi-state applications it is assumed that tréomsitates do not vary between
patients. That is, every transition is characterised bytitution with fixed parameters.
In reality, any parameter that determines disease prdgredsplays natural variability
and as a result, can be characterised by a statisticalbdistmn. Application of mixed
effects models offers an appealing approach to accountfer-patient variability [20,
21].

As the structures of Markov models become increasingly dexpparameter esti-
mation becomes ever more difficult. Bayesian estimatiorhous can aid in two ways.
Firstly, by using Markov Chain Monte Carlo (MCMC) algoritlsnwhich are readily
available in software for Bayesian estimation, the probt#nfinding (approximations
of) the likelihood function can be avoided. A disadvantegy¢hat MCMC is generally
less robust than analytic statistical methods. Seconidiigei data available are insuffi-
cient to estimate all parameters in the mixed model, it Isggissible to obtain estimates
using prior information. Other data sources can be expmloite

When a disease is detected at an early stage, it may be morablaém treatment.
Systematic screening of a population can therefore be antefé way of reducing mor-
tality from a disease.

Establishing an adequate screening policy for the disespgres knowledge of its
natural history. The type of individuals to screen, and iheetof the screen, should
be chosen according to the risk of onset of the disease, afe¢he intervals between
successive screens should be chosen according to the psgression. Both risks may
vary with characteristics of the patients and the risk ofgpession may vary with the
current stage of the disease.
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