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Prediction of attack frequency in
migraine:
a Markov approach

HJ Maas, N Shelder, M Danhof, OE Della Pasgua
Submitted to Cephalalgia

Clinical studies of acute anti-migraine drugs have beed asea source of informa-
tion for characterising migraine attacks in terms of damatand intensity. The design
of some of these studies is such that they also encompasstivel petween attacks.
Using this type of information it is shown that, for a cliniggopulation of migraineurs,
alternating attack and interictal periods can be descidsealsingle stochastic process.

An analysis was performed on clinical data derived fromgordt who had 2 or 3 sub-
sequent migraine attacks that were all treated with singéesl of oral placebov(= 73
patients), naratriptan 2.5 mg & 143) or sumatriptan 100 mgy(= 154). It was proved
that the distribution of interictal durations in each ofgbghree populations can be de-
scribed by the Gamma distribution. Likewise, the exporadrtistribution accurately
describes the duration of an attack. Based on these findingsnple stochastic pro-
cess was developed and evaluated consisting of two exgahaistributions to describe
interictal durations and another one to describe attacatutuns.

According to this process, the mean duration of the intekferiod is 26 (18-40), 20
(14-25) and 19 (13-24) days (mean, 95% confidence inteovahé placebo, naratriptan
2.5 mg and sumatriptan 100 mg groups, respectively. Theattt mean durations of a
migraine attack are 0.86 (0.67-1.1), 0.54 (0.46-0.62) abdl 0.46-0.62) days for the
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three groups. Compared with the distribution analysis,stbehastic process predicted
the duration between attacks less accurately.

Modelling of paroxysmal diseases such as migraine usinglalifions and stochastic
processes provides valuable insight into the dynamicseolitbease. The results of such
analyses are directly applicable to questions in healéhaad the design of new clinical
studies.

7.1 Introduction

Although migraine manifests itself in the form of attackathpphysiological events are
continuously unfolding even in the period between attadk®[ 3]. Electrophysiology
studies show abnormal brain activity in migraine patientsrdy this period [4]. Raised
sensitivity to pain stimuli has been demonstrated [5]. Bm@remonitory symptoms
precede the actual attack by several hours [2, 3]. A few thgs®s have been advanced
to explain this alternating pattern of attacks and periddsearonal instability. Among
them is the energy imbalance model suggesting hypoxia asairse of attacks [6, 7].
Another compares the condition with epilepsy, where a digttl equilibrium between
excitatory and inhibitory cortical activity is at the basisthe migraine attack [8]. Un-
ravelling the dynamics of the different events has proveyaificant challenge in un-
derstanding migraine.

Recently, an interest in time-series analysis has ariséirthg intention to express the
dynamics of headaches in a quantitative manner [9, 10]. b of analysis has since
long been common practice in the field of epilepsy. Among ttet duestions addressed
using this methodology was the matter of independence cfegjuent seizures [11, 12].
When seizures tend to cluster in time or conversely occur wilttigh degree of peri-
odicity, this may indicate regulation by physiological tmh systems, such as feedback
loops. A random distribution of times between seizures vewevould point at the in-
volvement of chaotic systems or the influence of multiplemal factors. Though the
results of these analyses varies between studies, theitpabiseizures patterns was
found to be random. Knowledge thus obtained has contribiatékde understanding of
epilepsy and paroxysmal diseases in general.

A necessity for time series analysis to be performed is théahility of suitable data.
In particular, it requires observations on large seriesvehis (attacks) within the same
patient. In epilepsy there is a relative abundance of detaihta sets accounting the status
of individual epilepsy patients on a day-by-day basis. Thigartly due to the disease
dynamics. Short durations of events and short intervale/dest events facilitate the
collection of detailed data. Furthermore, the urgent neegfophylactic anti-epilepsy
medication warranted longitudinal studies to be performed

Perhaps the largest data source on migraine is constitytdtelyandomised clinical
trials of acute anti-migraine medication. It has been axpioscientifically to study the
course of migraine attacks in the presence and absence gfrdatment [13, 14, 15].
Long-term studies investigating patients’ efficacy anérability to these drugs are also
available [16, 17], yet these have not been utilised for telysof migraine disease
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dynamics. This study explores the possibilities of apmyétinical trial data on triptans

to advance the understanding of the dynamics of migrainearfatysis of the alternating
pattern of migraine attacks and interictal periods can aésof use in providing answers
to practical problems arising in healthcare [18]. Examptedude the calculation of

the expected number of migraine attacks in a populationimviihcertain period or the

calculation of the total number of headache days.

The current analysis starts by showing that, within a lichitiene window, the time
between migraine attacks can be described by the two pagesradtthe Gamma distri-
bution, whereas the duration of an attack can be describiad tlee exponential distri-
bution. Using this result, it is demonstrated that the alition of attacks and attack-free
periods can be thought of as a chain of transitions, formisgrgle stochastic process.
Finally, the effect of acute anti-migraine therapy on migeadynamics is investigated
and the usefulness of inference with stochastic processisnonstrated.

7.2 Methods

7.2.1 Data

Data analysis was performed on a sample selected from aofo1&I88 patients partic-
ipating in a clinical study investigating the efficacy of attiptan and sumatriptan over
multiple attacks. 394 patients included in the analysigikex single doses of placebo,
naratriptan 2.5 mg or sumatriptan 100 mg in each attackhEtntore, only patients were
selected for which two or three subsequent migraine atthaklsbeen recorded. Patient
characteristics are summarised in Table 7.1.

Headache was measured on a 4-point scale with scores 0, dl,2rapresenting no
pain, mild pain, moderate pain and severe pain. Measuregtaried once a patient’s
first migraine attack reached maximum pain intensity. Theeokation times were 0,
0.5,1.0, 15, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 8.0, 12.0, 24200 4nd 48.0 h. Second and
third attacks were recorded similarly. To accommodate itadghal analysis on these
headache recordings, observations were reformatted iep3.sFirst, observation times
of subsequent migraine attacks were expressed relativeetbirst measurement of the
first attack. In the next step, the time unit was convertedalgsd Lastly, time intervals
between observations were discretised by 1) preservingatrgervations at integer time
values and 2) imputing ‘0’ scores for days on which headachg mot measured (the
periods between two recorded attacks).

7.2.2 Distribution analysis

The durations of inter-attack periods were extracted fromreformatted data set by
determining the lengths of all ‘0’-score sequendes headache free periods) in the data.
This set of durations was then modelled using the Gammahiistn. This distribution

is typically used to characterise processes involvingingitimes. It is bounded at the

lower end by zero and is unbounded at the upper end. Its agpesais determined by
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two parameters, a scale parameter reflecting the degrealtdwhess of the distribution
curve and a shape parameter reflecting the position of the top

The durations of attacks were found by determining the lengt all non-zero score
sequences in the reformatted data. These durations werdithe the exponential dis-
tribution. This distribution is characterised by only alsgaarameter. The position of
the maximum is at time zero, reflecting the observation thastrpatients experience
resolution of headache within one day after headache hakgdamaximum intensity.

The parameters of the Gamma and exponential distributicere wstimated sepa-
rately for the naratriptan, sumatriptan and placebo dataussng maximum likelihood
estimation in the statistical software package S-Plus.

7.2.3 Stochastic process

Using the results of the distribution analysis, a simplelséstic process was constructed
in the form of a Markov chain (Figure 7.1). It describes thegasss of migraine as a cycle
of transitions leading up to and away from a migraine att@gkdefinition, the duration
of an individual transition in a Markov chain is given by arperential distribution. As
in the distribution analysis, a single exponential disttibn accounts for the duration of
attacks. In Figure 7.1, this is represented by the tramsftimm stateA (Attack) to N A1l
(No Attack 1). The duration of the period between attacksasgletied as the sum of two
identical transitions, to wit from stat¥ A1 to N A2 (No Attack 2) and from stat&/ A2

to A. This part of the model conveniently uses the statistiogperty that summing over
a number of Markov transitions amounts to using a Gammailaigion with the shape
parameter equal to the number of the transitions.

Therefore, as in the distribution analysis, a Gamma digtidl accounts for the dura-
tion of the period between attacks. The only difference @, tim the stochastic process,
the shape parameter is restricted to positive integer salleereas the actual Gamma
distribution allows the shape to be any positive real numipeiotal, the model contains
only two scale parameters: one to characterise the duratiattacks and one to charac-
terise the duration between attacks. These parametersestmeated separately for the
sumatriptan, naratriptan and placebo data sets.

In contrast to static distributions, stochastic processebl/e over time. Thus, instead
of extracting the attack durations (non-zero headacheesyand inter-attack durations
(zero headache scores) prior to analysis, the reformattexideries could be analysed
directly. However, it had to be verified whether the modelldautomatically and cor-
rectly allocate non-zero headache scores to staéed zero scores to statdsA1 and
N A2. This was achieved by applying a Hidden Markov model (HMMj][which, for
every state in the modeld( N Al, N A2), determines the headache scores (0, 1, 2, 3)
associated with it. The model was implemented in open-soswétware [19] which was
operated from within S-Plus 6.2.1 on a Linux workstationdéma Core 3).
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7.2.4 Goodness-of-fit statistics

The results of the distribution analysis were assessechigidfy. The accuracy of the
Gamma distribution fits was determined by inspection of ¢jleaplots, showing the
correspondence between the sample distribution and ttrébdison hypothesised by the
model. The accuracy of the exponential distribution fits aaalysed by comparing the
predicted distributions with the histograms of the datar éach bar in the histogram,
the area under the distribution curve in that interval stianatch that of the bar. This is
because the total area under the histogram and under eaehisscaled to 1.

The estimates from the stochastic process were expressedria of their distribu-
tions: exponential distributions for the attack duratiamsl Gamma distributions with
integer-value shape parameter for the durations betwdeokat These distributions
were also compared by means of quantile plots and histograms

Parameters and their standard errors were estimated. d&ssirare reported includ-
ing 95% confidence intervals. These were derived from thedsta errors using log-
normal approximations for scale parameters and normabappations for shape param-
eters [20]. Significant differences between parameteridieated by non-overlapping

Gamma(2,2u)

3

Figure 7.1: Structure of the proposed stochastic process describing migraine inicklin
Setting. Patients start in state (attack) which is characterised by headache scores 1, 2 and
3. Their pain resolves (staf§ A1, headache score 0) according to r&tep(\) which is
exponentially distributed with scale paramelerA process leading up to a new attack via
intermediary statéN A2 is then initiated. This process is described by two identical exponen-
tially distributed rate€oxp(u) with scale parametgr . These rates correspond to a single
Gamma distribution with shape 2 and scale @s it covers 2 transitions).
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Table 7.1: Clinical characteristics of the patient groups used in the data analysis.
H placebo \ naratriptan 2.5 mg\ sumatriptan 100 mg

Number of patients | male 9 32 24
female 64 111 154
Age (y) mean 39 40 40
range 21-60 18 -64 18-63
Percentage of attacks duration = 1 day 73 89 89
duration> 1 day 27 11 11
Duration between mean 24 22 20
attacks (days) range 2-78 1-133 1-88

95% confidence intervals.

To demonstrate the model’s practical value, an examplevengidf inference on the
stochastic process. Using a numerical procedure [21] ituS;Fhe stationary or long-
term proportion of patients experiencing an attack wasutaed based on the parameter
estimates of the placebo, naratriptan 2.5 mg and sumatrii@ mg models. Mean and
confidence intervals for this prediction were derived fréra standard errors.

7.3 Results

It was first verified whether the HMM program running the s&stic process had cor-
rectly allocated no pain scores to stafésil and N A2 and pain scores 1, 2 and 3 to
stateA. This was case for all analyses. This observation providghdr evidence that
exponential transitions adequately fit the time-seriea.dat

Table 7.2 shows the distributions of the between-attacktihurs as estimated by
the Gamma distribution analysis and the stochastic procHss estimates of the scale
parameter in the distribution analysis are similar acnesgttnents. The shape parameters
for naratriptan and sumatriptan are somewhat smaller thetrfor placebo (1.7 and 1.8
vs 2.0, respectively). The overlap in the confidence intervalgates that this difference
does not reach significance. As a result, the means of thébditsdns, which is defined
as the product of the scale and the shape, does not diffeebatthe treatments either.
Though not significant, the estimates in the stochasticgg®are clearly different from
those in the distribution analysis. In particular, the td@ptan and sumatriptan scale
parameters are smaller than their corresponding valudseinlistribution analysis (9.9
and 9.7vs 12 and 13) Due to the model’s structure (Figure 7.1), all slgyrameters are
confined to 2. The differences between the two models areifiedgh the means. The
actual mean values calculated from the data (Table 7.1pfecximately between those
estimated for the two methods.

To determine the accuracy of both models with respect tokseovred data, quan-
tile plots were constructed (Figure 7.2). Although the agrent is reasonable in both
analyses, it immediately becomes evident from these phatisthe distribution analysis
predicts the data better. Particularly for the longer darst (> 30 days), the stochas-
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Table 7.2: Estimates of distribution parameters describing the durations betweensattack
following the three treatments. The parameters of the stochastic praeessmessed as
their corresponding Gamma-based parameters to facilitate comparisorthe Gamma
distribution fit. The means of the estimated distributions are given by thetiegua
mean = scale x shape. The values on the lower lines represent the 95% confidence intervals
of the estimates. The shape of the stochastic process was constraméed? as the model
contains 2 transitions leading up to an attack (see Figure 7.1).

Model: Gamma distribution Stochastic process
Parameter: scale (days)\ shape \ mean (days)|| scale (days)\ shape \ mean (days)
Placebo 12 2.0 24 13 2 26
9.2-16 15-25 17-34 8.9-20 18-40
Naratriptan 12 1.8 23 9.9 2 20
2.5mg 10-15 15-21 18-29 6.8-13 14-25
Sumatriptan 13 1.7 22 9.7 2 19
100 mg 11-16 1.4-2.0 17-28 6.6 -12 13-24

tic process seems to underestimate the drug treatmentvalisess and overestimate the
placebo data.

Figure 7.3 illustrates the results of modelling the betwattack durations in terms
of distribution plots. From this figure it also appears ttnat distribution analysis results
agree best with the data. In contrast with the quantile ptbtsdifference is clearest in
the relatively short durations< 20 days).

Table 7.3 gives the modelling results for the durations ef aftacks. The attack
durations are significantly shorter in the presence of diwgspective of the type of
analysis and drug. Consistent with the duration betweertlast the stochastic model
predicts a higher value for the placebo scale parameterawer Ivalues for the drug
scale parameters, compared with the distribution ana(@s&6, 0.54 and 0.54 days
0.77,0.61 and 0.61 days, respectively).

As the observed attack durations are either one or two daymtide plots cannot
be constructed from these data. Instead, the accuracy qfrdthictions with respect
to the data is assessed using the areas under the distnilptits (Figure 7.4). From
day O to 1 in the placebo plot, the areas are 0.73, 0.73 and fa68he observed data,
distribution analysis and stochastic process, respégtive the naratriptan plot, these
areas respectively are 0.89, 0.81 and 0.84. The areas inregigptan plot are identical
to those in the naratriptan plot. The areas between day 1 am@@ not be calculated
since they are the complements of the areas between day Q arttug, the stochastic
process performs slightly better than the distributionlysis in predicting the attack
durations after sumatriptan and naratriptan. It perforowrer in predicting the duration
after placebo.

Lastly, an example is given of how the dynamics of the stabhg@socess can be
used for statistical inference. This is done using the ptggbat on the long term the
proportions of patients residing in each of the states &f thddel become stationary.
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Figure 7.2: Quantile plots showing the accuracy of the predicted durations betweehksattac
The distribution hypothesised by the model is plotted on the horizontal agiglistribution
of the data sample is plotted on the vertical axis. The diagonal represprabte between
the hypothesised and the sample distribution. Left: results of the distribusdoffithe three
treatments. Right: results of the stochastic (Markov) process for the tfe@tments.
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Figure 7.3: Predicted and observed distributions of duration between attacks. Jiesref
the distribution analysis (solid line) and the stochastic process (dotted Imeyperimposed
on the histograms of the observed between-attack durations. The uppéte and lower
panels show the analyses for placebo, naratriptan 2.5 mg and sunmattfiftang, respec-
tively. For comparison, the distributions are scaled so that the area awele/ curve and
under the histogram adds up to 1.
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Figure 7.4: Prediction of the distributions of attack durations. The results of the distributio
analysis (solid line) and the stochastic process modelling (dotted line) pegimwosed on the
histograms of the observed attack durations. The upper, middle andgawels show the analyses
for placebo, naratriptan 2.5 mg and sumatriptan 100 mg, respectiedyarea under every curve
and under the histogram adds up to 1.
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Table 7.3: Estimates of distribution parameters describing the durations of attackaifagio
the three treatments. By definition, the means of the estimated distributioegquzakto the
Scale parameters. The values on the lower lines represent the 95%ecmefintervals of the
estimates.

Model: Exponential distribution| Stochastic process
Parameter: scale (days) scale (days)
Placebo 0.77 0.86
0.69-0.92 0.67-1.1
Naratriptan 2.5 mg 0.61 0.54
0.55-0.68 0.46 - 0.62
Sumatriptan 100 mg 0.61 0.54
0.55-0.67 0.46 - 0.62

Therefore, given the dynamics of alternating attack andttaek periods in the stochastic
process, the proportion of patients suffering migraine @diany time in the future can
be derived. The percentages of the clinical populationrfgamiigraine pain at any given
moment were found to be 5.5 (3.8-7.8)% for placebo, 4.9 @3% for naratriptan
2.5 mg and 4.9 (3.9-6.3)% for sumatriptan 100 mg.

7.4 Discussion

A cyclical stochastic process was developed to charaetéhnis dynamics of migraine.

Although simple, the model captures the alternating patbéperiods of attack and no-

attack using Gamma and exponential distributions. Thecehof these distributions

was confirmed by a distribution analysis performed on trecittiurations and between-
attack intervals. Inspection of different graphical goeskof-fit criteria learned that

the distribution analysis predicted the durations betwetteicks more accurately than
the stochastic process. Most likely, the variable shapameater enabled the Gamma
distribution to better characterise the shape of the Higions of durations. As can

be expected, the estimated attack durations were sigrificsimorter in the drug treat-

ment groups, relative to the placebo group. No significaffiedinces were found for

the between-attack durations, indicated by the scale peteam) but there was a trend
towards a smaller duration with drug treatment. Although ttend was not found in the

distribution analysis, here a downward trend in the shapanpeter, defining the posi-

tion of the distribution, was observed in the presence of dreatment. This difference

in trends is likely due to the fact that the shape in the stsiih@rocess was confined to
the integer 2. Any changes in the distribution curve couktéfore only be effectuated

by changing the scale parameter.

The model parameters were estimated based on data from@mésadi clinical trial
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of the acute anti-migraine drugs sumatriptan and naratript-or each patient in this
trial, up to three subsequent migraine attacks were redordiais number of events is
too small to determine migraine dynamics on an individuaidaFor an analysis of a
population of migraineurs however, the 394 patients inetlith the analysis provide suf-
ficient information to allow parameter estimation. Duras@nd frequencies of migraine
attacks are commonly reported in demographic studies usggn values and ranges.
Yet, no attention has been given to the distribution of thesasures. A statistical dis-
tribution captures the complete information of a measunegusnly a few parameters.
Recently, the individual distributions of migraine andgiem-type headaches have been
described by Houlet al. [10]. To clearly distinguish between these types of hehdac
attacks and headache-free episodes were considered padagle distribution, which
was found to be closer to normal when the headache conditaanmore chronic and
more bimodal (two-peaked) otherwise. In this paper the ersighis on the timing of mi-
graine attacks. To this purpose attacks were treated asasewents characterised by
distributions which, in contrast to bimodal distributipase quantitatively well-defined.

In formulating the model, the terms headache-free andlaftae have been used
interchangeably. This assumption implies that the acutienasigraine drugs act by ter-
minating the attack, rather than only suppressing the paised by it. This is visualised
in Figure 7.1, where “no headache” scores are only assdcigitd attack-free states
NAlandN A2.

There is no obvious interpretation for intermediary statd2. It was required to
characterise the period between attacks which spans owedéntically distributed time
intervals A—N A1 and N A1-N A2). It is however not inconceivable that the time be-
tween two attacks can be subdivided into periods accorditigeir susceptibility to pre-
cipitating factors or occurrence of premonitory symptorfikese periods are not likely
to have equal durations.

Statistical distributions are important tools for makimference on data samples.
They summarise many properties of data sets using a few pteesn However, they
cannot describe by themselves more complex dynamics sualiessating sequences
of events. In order to describe these, a number of distdhatheeds to be linked by
stochastic processes. Once a stochastic process has bieenl da system’s dynamics
can be investigated. With regard to this type of analysespttoperty of interest is usually
the stationary distribution of the process, reflectingatsg-term behaviour. In epilepsy,
simple Markov chains have been applied to test for the exéstef stationary behaviour
in a patient’s seizures [12]. A Poisson process has beentaseddel the number of
cardiac arrests that can be expected in a hospital populatioa given time interval.
Although migraine and headaches in general are charasddrismore complicated time
distributions, developing statistical descriptors faggh conditions will proof useful in a
practical sense and will help to understand them.
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