
Which compound to select in lead optimization? Prospectively validated
proteochemometric models guide preclinical development
Westen, G.J.P. van; Wegner, J.K.; Geluykens, P.; Kwanten, L.; Vereycken, I.; Peeters, A.; ... ;
Bender, A.

Citation
Westen, G. J. P. van, Wegner, J. K., Geluykens, P., Kwanten, L., Vereycken, I., Peeters, A., …
Bender, A. (2011). Which compound to select in lead optimization? Prospectively validated
proteochemometric models guide preclinical development. Plos One, 6(11), e27518.
doi:10.1371/journal.pone.0027518
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/59705
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/59705


Which Compound to Select in Lead Optimization?
Prospectively Validated Proteochemometric Models
Guide Preclinical Development
Gerard J. P. van Westen1, Jörg K. Wegner2, Peggy Geluykens2, Leen Kwanten2, Inge Vereycken2, Anik

Peeters2, Adriaan P. IJzerman1, Herman W. T. van Vlijmen1,2, Andreas Bender1,3*

1 Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands, 2 Tibotec BVBA, Beerse, Belgium, 3 Unilever Centre for Molecular

Science Informatics, University of Cambridge, Cambridge, United Kingdom

Abstract

In quite a few diseases, drug resistance due to target variability poses a serious problem in pharmacotherapy. This is
certainly true for HIV, and hence, it is often unknown which drug is best to use or to develop against an individual HIV strain.
In this work we applied ‘proteochemometric’ modeling of HIV Non-Nucleoside Reverse Transcriptase (NNRTI) inhibitors to
support preclinical development by predicting compound performance on multiple mutants in the lead selection stage.
Proteochemometric models are based on both small molecule and target properties and can thus capture multi-target
activity relationships simultaneously, the targets in this case being a set of 14 HIV Reverse Transcriptase (RT) mutants. We
validated our model by experimentally confirming model predictions for 317 untested compound – mutant pairs, with a
prediction error comparable with assay variability (RMSE 0.62). Furthermore, dependent on the similarity of a new mutant to
the training set, we could predict with high accuracy which compound will be most effective on a sequence with a
previously unknown genotype. Hence, our models allow the evaluation of compound performance on untested sequences
and the selection of the most promising leads for further preclinical research. The modeling concept is likely to be
applicable also to other target families with genetic variability like other viruses or bacteria, or with similar orthologs like
GPCRs.
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Introduction

Genetic Information is readily available
Over the last decade extensive sequencing efforts have unraveled

the human genome and provide an insight into the extent of human

genetic variation [1,2]. On the one hand this provides possible new

drug targets that can lead to new drugs [3–5]; on the other hand it

shows clearly that natural genetic variation needs to be addressed by

some form of personalized medicine that works in a particular

patient [6]. An exhaustive, individual ‘‘pharmacogenomics’’

approach for a patient, taking the full genetic make-up of a human

into account, is unfortunately not feasible in the short term. This is

due to the cost of sequencing but even more so to insufficient

understanding of biological processes in humans [7]. However,

what is already feasible today for every patient is the full sequencing

of pathogens such as bacteria and viruses, as these contain a

significantly smaller genome with relatively established locations

and functions of drug targets. It is now possible through ‘Deep

Sequencing’ technologies, to identify dominant and subdominant

viral strains present in an individual patient, paving the way for the

development of HIV inhibitors with an optimal potency profile

made to target all relevant HIV variants [8,9].

What is required for the development of an optimal preclinical

candidate on the other hand is a knowledge base of the effect

mutations have on the binding of current inhibitors. When this

information is available it can be used to create a model that

allows the user to extrapolate between target sequence variants

and predict binding affinities of preclinical compounds on

previously untested viral target sequences. While similar models

have been trained on this data for clinical drugs, these models

have in common that they solely are trained on recognizing

patterns of the presence and absence of mutations, thus only

considering target information [10–15]. They do not take into

account structural information of the compound – target

interaction; hence they are not able to rationalize why an

inhibitor is active on one sequence but not on another. As a

result, the application to the discovery of preclinical candidates is

rather limited.
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How to Choose the Right Drug for a Genotype?
In the current work we present one approach to remedy the

situation, by making use of the large amount of structural data

available on the binding of HIV Reverse Transcriptase (RT)

inhibitors to their targets. We will show using prospective

experimental validation on hundreds of data points that we can

indeed predict which compound is preferable with regard to

activity against particular mutants, compared to other com-

pounds. In particular, our aim was to predict activity of

compounds on previously untested genetic variants of the virus.

Given our in-depth understanding of the structural differences

between viral enzyme sequences we can incorporate this

knowledge to arrive at much improved extrapolation abilities,

which enables the design of new inhibitors with improved broad

activity profiles.

Extrapolating in Target Space
When learning from bioactivity data, and attempting to make

predictions for novel chemical structures, statistical and machine

learning techniques have a proven ability to ‘make sense’ of large

data sets under certain conditions (such as interpretable variables

used in the model) and to relate chemical structure to activity

against a protein target. Bioactivity models are generally based on

the ‘Molecular Similarity Principle’ stating that similar compounds

(individual compounds or with respect to the distribution of

chemistry in a given data set) possess similar properties, such as in

this case similar bioactivity [16–18]. Yet conventional bioactivity

models possess a severe limitation when considering sets of targets,

which may be members of a target family such as kinases or G

protein-coupled receptors (GPCRs), or as in the case presented

here, sequences of viral enzymes. Those models take into account

multiple molecules active on a single protein target, yet they

completely neglect our extensive knowledge on the similarities of

targets to each other. Hence, conventionally a single bioactivity

model is generated for every target – neglecting that not only

similar compounds show similar bioactivity, but reversely also that

similar targets bind similar compounds. In addition, this concept is

crucial for the chemogenomics paradigm that has been receiving

lots of attention recently [19,20]. In practice this means that even

if a particular ligand-protein target data point is unknown, we can

often extrapolate from neighboring activities in both ligand and

target space, and not only in ligand space as has previously been

done.

In this work we employed a modeling technique called

‘proteochemometric modeling’ (PCM) to model bioactivity data

on a set of 14 enzyme sequences. This technique was introduced

by Lapinsh, Wikberg et al. [21,22] and similar approaches have

since appeared [23]. These techniques have been recently

reviewed by the authors [24]. However, no large prospective

studies have been presented until today. As PCM uses both ligand

and target information, the hypothesis of our work was that PCM

would be able to extrapolate the activity of compounds

encountered in the training set to novel target sequences. The

extension of bioactivity modeling and its impact on preclinical

drug research, plus the extensive prospective experimental

validation performed, is the main contribution of the current

work to the bioactivity modeling field. In addition, applications of

PCM to novel target families including, but not limited to: Class A,

B and C GPCRs; Kinases; Voltage-gated ion channels and others,

can also be covered by this concept. The flexibility of the method

is of particular interest when taking current multi-target drug

paradigms into account [25,26].

Methods

Data set used to build the models
The data set employed comprises 451 compounds and 14 HIV

RT sequences and hence 6,314 possible compound – target

combinations. The set was generously provided by Tibotec BVBA.

For a total of 4,024 of these combinations an activity value in the

form of a pEC50 value was available for training the bioactivity

model. Compounds with a pEC50 value on a certain sequence

closer than 0.3 log units to the toxic concentration for that

compound (expressed as pCC50) were discarded (81 compound –

sequence pairs). Table 1 shows the point mutations present in the

13 mutated sequences as well as the wild type (HXB2 / IIIB

reference strain [27], sequence 1 in the table) and the average

pEC50 per sequence. A graphic representation of our data set is

shown in Figure 1; a histogram of the pEC50 values of all

compounds – sequence pairs is available in Figure S8. A sample

dataset, the final full model (in the form of a pipeline pilot

component), and a protocol to perform PCM are included in the

electronic Supporting information.

Compound and protein descriptors
All descriptors were calculated in the academic version of

PipelinePilot 6.1.5 [28]. Ligands were described by Scitegic

FCFP_6 circular fingerprints [29,30], which have previously been

shown to capture a large amount of information with respect to

compound bioactivity [31,32]. FCFP_6 descriptors provide

individual substructures and treat these as a feature of a

compound. These substructures have a maximal diameter of 6

bonds from a central atom. In the final model we can link these

substructures to a change in pEC50.

Sequences were encoded based on the binding site sequence in

which each amino acid was represented as a single unique feature.

The residues used to define the binding site are shown in Figure 2

(PDB Code 2ZD1, HIV RT bound to Rilpivirine [33], created

with Molsoft ICM version 3.6-h) and Table 1. The residues used

to define the binding site are shown in red and black, where the

black residues are the ones that were mutated only in sequence 7.

The features describing the binding site were obtained by hashing

an array of 58 physicochemical properties obtained from the

AAindex database [34]; the used indices can be found in Table S3.

Finally, both ligand and protein fingerprints were converted to a

fixed length array of features which were then used in the

modeling. The ligands were converted to a fixed length array of

155 features while the sequences were converted to a fixed length

array of 24 features using default Pipeline Pilot settings.

Machine learning
Models were constructed in the academic version of Pipeline

Pilot 6.1.5 [28] using the R-statistics package. Support vector

machines (SVM) as coded in the e1071 package were used for

model creation [35]. Parameters gamma and cost were tuned over

an exponential range and epsilon was set at 0.2 as this was the

given assay error. It has been shown that setting epsilon to the data

error is the optimal value for training [36]. The optimal model was

determined using 5-fold cross validation before proceeding to

experimental prospective validation of the model. The parameters

used for validation were RMSE and R0
2, although the regular R2

was also determined it has been shown that R0
2 provides better

reliability [37,38]. R0
2, in contrast to R2, takes into account that

the regression line of our model predictions should intersect with

the origin. In silico validation on trained models was done via

learning curves (see Figure S9).

Proteochemometric Guided Lead Optimization

PLoS ONE | www.plosone.org 2 November 2011 | Volume 6 | Issue 11 | e27518



T
a

b
le

1
.

Se
q

u
e

n
ce

in
fo

rm
at

io
n

o
f

th
e

R
T

se
q

u
e

n
ce

s
in

th
e

d
at

a
se

t.

R
e

si
d

u
e

/S
e

q
u

e
n

ce
8

9
1

0
0

1
0

1
1

0
2

1
0

3
1

0
6

1
1

8
1

6
2

1
6

9
1

7
9

1
8

1
1

8
8

1
9

0
2

0
3

2
0

7
2

1
0

2
1

1
2

1
4

2
1

5
2

1
9

2
2

7
2

3
4

2
4

5
1

3
8

(b
)

M
e

a
n

p
E

C
5

0

p
E

C
5

0

(s
d

)
n

1
A

L
K

K
K

V
V

S
E

V
Y

Y
G

E
Q

L
R

L
T

K
F

L
V

E
8

.3
0

.6
4

5
1

2
F

C
6

.9
0

.7
2

5
9

3
C

7
.6

0
.6

4
4

4

4
N

C
7

.5
0

.7
4

4
3

5
I

N
7

.4
0

.8
4

2
9

6
I

N
I

C
F

G
6

.0
0

.6
3

1
6

7
S

P
R

I
C

A
V

E
W

F
Y

N
I

6
.5

0
.6

9
9

8
P

6
.9

0
.7

1
4

7

9
N

8
.3

0
.6

2
2

2

1
0

I
7

.9
0

.7
2

5
2

1
1

K
L

7
.5

0
.7

2
5

7

1
2

E
N

8
.0

0
.6

2
4

2

1
3

C
I

7
.4

0
.8

2
4

4

1
4

A
G

L
8

.2
0

.8
2

2
0

Se
q

u
e

n
ce

1
is

w
ild

ty
p

e
R

T
.T

h
e

o
th

e
r

se
q

u
e

n
ce

s
co

n
ta

in
e

d
o

n
e

o
r

m
u

lt
ip

le
p

o
in

t
m

u
ta

ti
o

n
s

o
f

th
e

b
in

d
in

g
si

te
re

si
d

u
e

s.
T

h
e

m
e

an
p

EC
5

0
o

f
th

e
co

m
p

o
u

n
d

s
te

st
e

d
o

n
th

e
se

q
u

e
n

ce
is

g
iv

e
n

as
is

th
e

st
an

d
ar

d
d

e
vi

at
io

n
o

f
th

e
se

ri
e

s
o

f
co

m
p

o
u

n
d

s
te

st
e

d
o

n
th

e
se

q
u

e
n

ce
.

n
in

d
ic

at
e

s
th

e
n

u
m

b
e

r
o

f
co

m
p

o
u

n
d

s
te

st
e

d
o

n
a

p
ar

ti
cu

la
r

se
q

u
e

n
ce

.
R

e
si

d
u

e
n

u
m

b
e

r
1

3
8

is
lo

ca
te

d
o

n
th

e
b

-c
h

ai
n

o
f

R
T

w
h

ile
th

e
o

th
e

r
re

si
d

u
e

s
ar

e
lo

ca
te

d
o

n
th

e
a-

ch
ai

n
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
2

7
5

1
8

.t
0

0
1

Proteochemometric Guided Lead Optimization

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e27518



Prospective Experimental Validation
To assess the prospective capabilities of PCM we used our final

model, which was trained on the full data set, to predict the

activity of all compounds for which no pEC50 value was available.

In total 835 data points were subsequently experimentally

validated, 317 of these represented novel predictions and 518

were repeat experiments to establish reproducibility of the assay.

The 317 novel predictions included 130 compound – sequence

pairs that were predicted to differ 2 standard deviations from

either compound average (69 compound – sequence pairs), called

compound outliers, or sequence average (61 compound – sequence

pairs), called sequence outliers. Therefore we specifically tested the

ability of our model to extrapolate outside of the bioactivity space

of ‘typical’ compound – sequence pairs.

The techniques used as a benchmark were QSAR, kNN and

pEC50 scaling. Individual QSAR models were trained for all

sequences based on the same FCFP_6 compound descriptors as

the PCM model. The kNN models were created based on Jensen

et al. [39]. In total nine kNN models were created. Three models

were based on only compound data using 3, 10 or 20 neighbors,

three models on only target data using 3, 10 or 14 neighbors and

three models based on both compound and target data using 3, 10

or 20 neighbors. In addition we also performed simple

interpolation of pEC50 values (‘scaling’), by assuming that the

affinity of a compound on a sequence follows the general trend

displayed by a series of other compounds. Thus, if a series of

compounds on average has a 0.3 log unit lower pEC50 value than

on the wild-type sequence, then the new compound is also

assigned a 0.3 log unit lower pEC50 value.

Antiviral assays
The antiviral activity of different inhibitors was determined in a

cell-based HIV-1 replication assay. Here MT4 cells (150,000 cells/

ml), stably transformed with an LTR-EGFP reporter gene, were

infected with HIV-1 (IIIB, clinical isolates, or site-directed

sequence strains; multiplicity of infection MOI = 0.0025) in the

presence or absence of different inhibitor concentrations. After

three days of incubation, the amount of HIV replication was

quantified by measuring the EGFP fluorescence, and expressed as

EC50 values. The toxicity of inhibitors was determined in parallel

on mock-infected MT4 (150,000 cells/ml) cells stably transformed

with a CMV-EGFP reporter gene and cultured in the presence or

absence of test compound concentrations. After three days of

incubation, cell proliferation was quantified by measuring the

EGFP fluorescence, and expressed as CC50 values (cytotoxicity,

50% inhibitory concentration of cell growth).

Figure 2. The binding site used in our models. PDB X-ray structure
2ZD1 of RT with Rilpivirine, an NNRTI like the analog series we modeled
and shown in grey. The residues that were used to identify the binding
site (and which were used for activity modeling) are shown in black and
red. The black residues are only mutated in sequence 7 (heavy mutant)
while the red residues are mutated in more than one sequence.
Indicated by a green ribbon is the ‘A’ chain of HIV RT while the ‘B’ chain
is displayed in yellow.
doi:10.1371/journal.pone.0027518.g002

Figure 1. Graphical representation of the NNRTI dataset. (A) Our dataset consisted of 451 compounds (in rows) and 14 sequences (in
columns) of HIV Reverse Transcriptase with about 60% of the experimental data pairs known. Black indicates a low pEC50, grey indicates a high pEC50

and white indicates a missing value. (B) The dataset with the missing pEC50 values completed by our model from which 317 experimental validation
data points were chosen.
doi:10.1371/journal.pone.0027518.g001
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Leave-one-sequence-out validation
In order to assess the models’ capability to extrapolate between

the different sequences we performed ‘Leave-one-sequence-out

validation’ (LOSO). In this approach for each of the 14 sequences

all data points of the sequence under consideration are left out of

the training set, a model is trained on the remainder and the points

left out are used as a test set for that model. Both the RMSE and

the R0
2 values of the validation plot were subsequently determined

for each of the 14 sequences in turn.

Model interpretation
To determine the effect of individual residues, for each sequence

each residue was mutated back to wild type in silico. Subsequently

for all compounds the model prediction on the original mutant

sequence was compared with the prediction of the model on the in

silico changed mutant sequence. The difference was interpreted as

the change in pEC50 induced by that particular residue. From all

these changed prediction values the following values were

calculated: the average overall, the average per sequence and

per individual mutation. This provided the model interpretability.

However, changes that led to a 0 value shift in pEC50 were

removed in the calculation of the average per position since in all

cases this was caused by mutation back to wild type of a residue

that was already wild type in that particular sequence. In addition

the large amount of 0 value shifts lead to a shift of the average

towards 0 when it was calculated thereby masking the actual

contribution of mutations.

To interpret the influence of compound substructures a slightly

different approach was chosen. Here each FCFP_6 feature,

corresponding with a particular substructure, was substituted by

the feature representing a single Carbon atom (‘0’). Since this

carbon atom was already present in all compounds, its effect on

binding serves as a calibration. Subsequently the full model was

used to predict the pEC50 of the adapted compound fingerprint

lacking a certain substructure on all sequences and compared with

the model prediction of the original compound fingerprint on all

sequences. From all these changed predictions the average overall

and per sequence was calculated for that particular feature, or

chemical substructure in this case.

Chemistry
Synthesis of the analog series we used in this work has been

described in multiple patents. Compound 1 is listed in patent WO

2007/113256 [40], compound 2 is listed in WO 2008/080965

[41] and compounds 3 and 4 are listed in WO 2008/080964 [42].

Compound 6 is listed in patent WO 2008/080965 [41],

compounds 5, 7 and 8 are published in WO2007/113254 [43].

In addition the electronic Supporting information to this work

contain the structures of 57 of the modeled compounds. For these

compounds the full biological activity spectrum on the 14

sequences as we had it available is included along with the

pEC50 predicted by our model on each of the 14 sequences (Table

S4 and Archive S1).

Results and Discussion

In the current work PCM was applied to a data set of Non-

Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), which

constitutes one of the major classes of anti HIV drugs on the

market. Among these are compounds such as Nevirapine [44] and

Efavirenz [45], but also novel compounds such as Etravirine [46],

which was approved by the FDA as recently as 2008. Since

NNRTIs are allosteric binders they have shown considerably

fewer side effects than orthosteric drugs [47]. However they are

also known for a quick onset of viral resistance due to the

accumulation of resistance associated mutations [48,49]. Hence,

the pharmacological profile of NNRTIs is highly desirable, but

their effectiveness is hampered by the onset of resistance. This

problem is also encountered in other viral infections like Hepatitis

B [50], Hepatitis C [51] and Influenza A (H5N1) [52,53].

Resistance can therefore be considered a universal problem when

developing a new anti-viral drug. Thus, when new anti-virals are

developed it is important that they retain their effectiveness despite

the presence of these mutations. To be able to predict the activity

of a preclinical drug candidate on an adapted pathogen would be

an important contribution to drug discovery. Here we present an

application of PCM that can predict drug performance on

unknown sequences or adapted pathogens, when staying within

model limitations.

Solving the problem of sparse data sets
Our data set contains compounds that inhibit wild type Reverse

Transcriptase (RT), but also some that inhibit a number of RT

sequences that are highly resistant against inhibition. NNRTIs are

allosteric inhibitors of RT, which is illustrated in Figure 2 [33].

Incomplete bioactivity data sets are common in real-world settings,

and this study is no exception. The data set is graphically displayed

in Figure 1, with ‘blanks’ representing unknown data points that

we would like to predict using computational methods. A pEC50

value was available for approximately 60% of the data set.

In a preclinical drug discovery setting, the ability to make

decisions on a full rather than a sparse matrix increases the

likelihood that the best candidate will be selected. This is of vital

importance as a SAR table of drug – target interactions does not

necessarily show linear relationships, e.g., a substituent in a given

compound will not lead to the same increase or decrease in

binding on different targets. This is even the case in analog series

like our data set [54,55]. Especially in anti-viral research

Figure 3. Model performance in the prospective experimental
validation. Shown are both predictive performance of the model
(black dots; R0

2: 0.69, RMSE: 0.62 log units) and assay reproducibility
(grey squares; R0

2: 0.88, RMSE: 0.50 log units). The continuous lines
indicate an error of 1 log unit, while the center dashed line indicates a
perfect correlation (see main text for further details).
doi:10.1371/journal.pone.0027518.g003

Proteochemometric Guided Lead Optimization
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compounds can display unexpected behavior on the different

sequences. It is this behavior we are able to capture and translate

into accurate predictions.

Prospective Experimental Model Validation
During model development, learning curves were generated

that represent in silico validation, in addition we performed Y-

scrambling [56] (Figure S9 and Figure S11). More importantly, we

predicted the pEC50 of 317 unknown compound – target pairs.

These predictions were subsequently measured experimentally. By

predicting first and subsequent experimental validation, we obtain

an estimate of model performance when considering novel

compound – target pairs. Here we explicitly selected the more

‘difficult’ compound – target pairs; namely those with predicted

pEC50 values that are either atypical for the particular compound

tested (compound outliers), or for the particular sequence under

consideration (sequence outliers). It is trivial to pick the

compounds that are always active or always less active – we

precisely removed those cases from our prospective testing and

focused on the inhibitors that were predicted to be active against highly

resistant sequences, or those which were predicted to be less active against very

susceptible sequences.

Figure 3 shows the performance of the model, trained on the full

data set, in these prospective validation experiments. During cross-

validation the full model achieved a Root-Mean-Square Error

(RMSE) of 0.38 log units (with a Q2 of 0.84) while employing 155

ligand features and 23 protein features. When applied to the new

untested data, the model achieves an RMSE of 0.62 log units and

an R0
2 of 0.69 in the prospective validation. Our model can

predict the pEC50 of untested compound – target pairs with average

accuracy of 0.62 log units. This RMSE approaches the

reproducibility of the assay which was 0.50 log units (R0
2 of 0.88).

To benchmark this performance against conventional ap-

proaches we applied QSAR modeling, k-Nearest Neighbor

(kNN) modeling (using 3, 10 or 20 nearest neighbors and based

on compound, target, or compound and target information) and

pEC50 scaling to the same data set. The results are shown in

Table 2. Here PCM outperforms QSAR and all forms of kNN

modeling, while pEC50 scaling seems to perform slightly better.

More specifically, PCM had an RMSE of 0.62 log units, while

kNN showed 0.90 for the best model and scaling performed

slightly better with 0.57. The R0
2 reached 0.69 for PCM, where

kNN showed 0.41 and scaling also reached 0.69. Scaling of pEC50

values performs second best but this method has two major

disadvantages. When we consider the sequence and compound

outliers, PCM outperformed the simple pEC50 scaling. It is

precisely those data points that points are most interesting in

research. The sequence outliers represent the inhibitors that

inhibit all present HIV mutants, candidates to select in lead selection.

The compound outliers can be completely inactive on one

particular sequence, candidates to avoid in lead selection. When

considering these compounds, the average RMSE was 0.52 for

PCM and 0.58 for scaling (R0
2 was 0.61 for PCM and 0.59 for

scaling). A second disadvantage of scaling is that this method

cannot be applied to untested viral sequences, whereas PCM can.

Hence, we conclude that the prospective experimental valida-

tion confirms the validity of our model, and the applicability of

PCM to extrapolate in both ligand (chemical) space and target

(biological) space. The other benchmarked techniques, kNN and

QSAR, do not accurately capture the compound – target

interaction space. The ability to model all these situations with a

comparable reliability and the possibility to interpret the model

from both a sequence and compound perspective, are the major

advantages of PCM over kNN, QSAR and scaling methods.

Table 2. Performance of different methods in experimental validation.

Validation
Experiment Assay PCM

pEC50

scaling QSAR
3-NN
(both)

3-NN
(target)

3-NN
(cmpd)

10-NN
(both)

10-NN
(target)

10-NN
(cmpd)

20-NN
(both)

14-NN
(target)

20-NN
(cmpd)

R0
2 (Full plot) 0.88 0.69 0.69 0.31 0.38 0.04 0.21 0.41 0.21 0.28 0.40 0.21 0.28

RMSE (Full plot) 0.50 0.62 0.57 0.96 0.90 1.55 1.24 0.90 1.29 1.16 0.90 1.21 1.17

R0
2 (Sequence Outliers) 0.88 0.65 0.52 0.32 0.32 ,0.00 ,0.00 0.32 0.15 0.03 0.32 0.22 0.02

RMSE (Sequence Outliers) 0.50 0.39 0.52 1.40 0.57 2.25 1.68 0.57 1.88 1.65 0.57 1.79 1.67

R0
2 (Compound Outliers) 0.88 0.56 0.65 0.39 0.30 0.19 0.18 0.36 0.49 0.33 0.38 0.54 0.35

RMSE (Compound Outliers) 0.50 0.65 0.64 0.72 0.87 1.18 1.05 0.86 0.90 0.93 0.86 0.82 0.92

R0
2 (Outliers) 0.88 0.61 0.59 0.36 0.31 ,0.00 0.08 0.34 0.32 0.18 0.35 0.38 0.19

RMSE (Outliers) 0.50 0.52 0.58 1.06 0.72 1.72 1.37 0.72 1.39 1.29 0.72 1.31 1.30

PCM and pEC50 scaling outperform the other techniques (QSAR and k-Nearest Neighbors) with pEC50 scaling having a slight advantage. However, PCM performs better
when the selection is narrowed to those compound – sequence pairs that show a pEC50 two standard deviations higher or lower than average (shown here as Sequence
and Compound Outliers). Also shown is the average score of each technique on the combined outliers (shown as Outliers). Negative values are denoted as ,0.00.
doi:10.1371/journal.pone.0027518.t002

Figure 4. Extension of the applicability domain to target space.
Prediction error (measured as R0

2 and RMSE in log units) versus the
average similarity of the sequence to the rest of the training set,
extending the ‘Molecular Similarity Principle’ to biological space which
is of crucial relevance in PCM. It can be seen that a higher similarity to
the training set leads to more accurate predictions. Still, predictions on
the most dissimilar sequence have an average error of less than 1 log
unit.
doi:10.1371/journal.pone.0027518.g004

Proteochemometric Guided Lead Optimization

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e27518



Neighborhood Behavior in Target Space
In the prospective validation we noticed that a number (15) of

data points were predicted inaccurately with an error larger than

twice the RMSE, all of which involved sequence 7. Trying to

elucidate the reason for this behavior the different sequences were

clustered based on similarity (Figure S5 for details), where

sequence 7 was found to be most dissimilar to all other sequences,

containing a rather large number of 13 point mutations (for

sequence information see Table 1). In addition, it is the sequence

with the smallest number of tested compounds in the training set,

thus diminishing the number of compound – target pairings that

were used in the model directly (without extrapolation from

neighboring sequences), thereby rationalizing the large number of

false predictions on this sequence.

In order to systematically investigate the dependence of the

prediction error on the sequence similarity we plotted the

prediction error as a function of the average Tanimoto similarity

of the individual sequences to the rest of the training set (shown in

Figure 4). A correlation between model error and average

sequence similarity is observed. The prediction error increases

when the average similarity decreases between the sequence, for

which the compound activity is predicted, and the rest of the

training set sequences. This observation is an extension to the

‘Molecular Similarity Principle’ which states that similar com-

pounds have similar properties, and in this work we are able to

show that this paradigm also holds in biological space where similar

sequences show similar ligand binding abilities; a concept we are now able

to quantify numerically. This extends recent work on ‘applicability

domains’ and ‘activity cliffs’ by also taking the biological target

side into account [54,55,57,58]. An improved distance measure is

an ensemble of both the distance between the compounds (Figure

S10), as has been previously shown [16], and the distance on the

target side. To our knowledge this neighborhood behavior in target

space has not been previously shown but is a natural extension of

the chemical similarity principle to this new technique.

The dependence of model accuracy on the average distance

provides a useful tool to set the model applicability domain. As this

distance is a property dependent on the training set on one hand

and the unknown compound – target pair on the other hand it can

be measured before any model prediction is made. Furthermore,

neighborhood behavior can determine beforehand if the model is

capable of predicting pEC50 changes on a previously untested

genotype. This approach ensures that only model predictions with

certain accuracy are used and that those that do not meet this

accuracy are disregarded. For our current model this accuracy is

defined as an error in pEC50 prediction (Figure 4) but this can also

be an error in pKi value or any other value the model is trained to

predict.

How to anticipate bioactivity for novel protein targets?
As we have shown that our model displays neighborhood

behavior in target space, here we explore the possibility to use such

a model in extrapolation. Conventionally a fraction of the full data

set is left out from the training set when testing bioactivity models.

The ability of the model to make predictions for the previously

untested (‘novel’) compounds is taken as a predictor of model

performance. In our case, we not only extrapolated in compound

space, but also in sequence space. Hence, in order to confirm the

ability of the model to extrapolate the activity of compounds to

related sequences we performed a ‘Leave-one-sequence-out’

experiment (LOSO). Here, it emulates the prediction of inhibitor

activity for a virus with a not previously encountered RT sequence,

based solely on bioactivity measurements against other sequences

in the data set. While applied to enzyme mutants here, the concept

is generally applicable and the authors are currently investigating

its performance on other target families such as GPCRs.

Figure 5 shows the R0
2 and RMSE of the LOSO validation

experiment (see Figures S1 and S2 for additional information

including error depending on similarity to the training set in

sequence space). We observe that for 13 of the 14 sequences an

RMSE of less than one log unit was obtained, and five of the 14

sequences even yielded an RMSE of less than 0.5 log units, which

is the order of magnitude of assay reproducibility. Most

interestingly, the model was able to use the information contained

in all the different mutant sequences and predict the affinity of the

compounds on the wild type sequence (Sequence 1). This means

that this LOSO-1 model was able to deconvolute the individual

contributions of the different mutants. Furthermore other LOSO

models were also capable of predicting activity on unknown

sequences 2–5 and 9–14. All these sequences contain very different

mutations (Table 1). Finally, the LOSO-7 model was able to

predict the pEC50 of the compounds on the ‘‘heavy’’ mutant

(sequence 7), which contains a total of 13 point mutations. These

findings underline the ability of PCM to extrapolate in target

Figure 5. Performance of PCM in leave-one-sequence-out experiments. Performance was measured by R0
2 and the RMSE in log units. The

number below the bar corresponds to the sequence left out of the training set.
doi:10.1371/journal.pone.0027518.g005
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space, which supports the application of the technique to predict

compound activity on different mutants.

Our results show that the model is indeed able to predict the

pEC50 values of a known compound on an unknown sequence.

However it should be noted that PCM performs lesser in 2 of the

14 mutants considered. The first of the two exceptions is sequence

6, which can be seen as a singleton since one of the mutations it

carries (E138G) is only present in this particular sequence.

Therefore, bioactivity prediction based on other sequences that

do not carry this mutation is not straightforward. It was already

known from the full model interpretation (see ‘Model Based

Interpretation of Mutants’) that the impact of this mutant was

underestimated. The LOSO-6 model correctly predicted that all

compounds have a lower activity on this sequence (giving rise to a

small RMSE value); however, the ranking among compounds is

not very accurate (explaining the low R0
2).

The second sequence where our model underperforms is

sequence 8. This case is different from the previous one: while

the model is able to correctly rank the compounds, leading to an

acceptable R0
2 of about 0.6, it consistently overpredicts the activity

of compounds, leading to a high RMSE. In sequence 8 at position

101 a positively charged lysine residue is replaced with a proline,

which likely induces conformational changes to the backbone of

the protein. K101P is present as a single mutation in sequence 8,

as well as in combination with a total of 12 other mutations in

sequence 7 (which is then the only sequence that contains K101P

in the training set when sequence 8 is left out for LOSO

validation). Hence, the model likely underestimates the impact of

the K101P mutation due to the large number of other mutations

present in sequence 7; it is not able to deconvolute the impact of

every single mutation properly. In this case, while the model would

overestimate drug activity on this particular target, in a computer-

aided compound selection setting the correct candidate would still

be identified due to the accurate ranking of the compounds by the

model.

Model performance in relation to chemical structure
To get an idea of the ability of the LOSO models’ ability to

predict individual compounds we have shown representative

examples of compounds either predicted accurately or inaccu-

rately in Figure 6. The activities of compounds 1 and 2 on the

different sequences were correctly predicted by our leave-one-

sequence-out models, while compounds 3 and 4 were predicted

inaccurate (see Figures S3 and S4 for the predictions and

experimental activities of the compounds discussed here). Please

note that we made predictions challenging as we used LOSO

models to predict the activity of compounds on the sequences left

out of the training of these exact LOSO models. It is therefore a

realistic emulation of a preclinical PCM application.

From the data we conclude that inaccurately predicted

compounds have a large functional group in the 4 position of the

pyrimidine ring. Apparently the LOSO models are unable to

capture this information correctly. When we further analyzed the

individual predictions on the different mutants (shown in Figure S4),

Figure 6. Example structures that where included in the model. A selection of both compounds containing accurately (1,2) and inaccurately
modeled chemistry (3,4). Also shown are compounds containing a substructure positively correlated with pEC50 (5,6) and compounds containing a
substructure negatively correlated with pEC50 (7,8). In the upper part, shown are sample compounds that were accurately predicted using the LOSO
models, a low RMSE (1, RMSE was 0.22 log units, R0

2 was 0.96) and a high R0
2 (2, R0

2 was 0.89 , RMSE was 0.26). Secondly, sample compounds that
were predicted inaccurately using the LOSO models, a high RMSE (3, RMSE was 1.12 log units, R0

2 was 20.10) and a low R0
2 (4, R0

2 was 23.66, RMSE
was 0.61). The lower part shows the 17th best substructure (5) and the 30th best substructure (6). Conversely the 3rd worst substructure (7) and the
4th worst substructure (8) are depicted.
doi:10.1371/journal.pone.0027518.g006
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we noticed that the compounds are predicted accurately (error ,0.5

log units) on the majority of the sequences. The underperformance

for compound 3 is caused by overprediction on sequence 8 (2.7 log

units, carrying K101P) and the underperformance of compound 4
by underprediction on sequence 2 (carrying V179F).

To explain this behavior, we need to consider the ligand binding

mode. A shared binding mode of all compounds is very likely since

i), they all share a common chemical scaffold and ii), NNRTIs are

known to have a highly homologous binding mode [59]. Hence we

can correlate these mispredictions with the protein structure. The

substitution position on the pyrimidine ring in the compounds

corresponds to the location of residues L100, K101 and V179 in

crystal structure 2ZD1. It is known that these residues mutate

easily and sequences carrying point mutations in this location are

present in our training set [60]. When studying the crystal

structure, it can be seen that the side chains of these residues are

likely to hamper the binding of compounds with a large functional

group in position 4.

Hence, we propose the presence of a large functional group on

position 4 on the pyrimidine ring to be a predictor of insufficient

model performance in combination with mutations on positions

101 and 179 in the protein. While compounds with a large

substituent on the 4 position are accurately predicted on targets not

carrying mutations on positions 101 and 179, they tend to be

predicted inaccurately when the targets are mutated in these

positions. However, if no large substituent is present on the 4

position, compounds are predicted accurately on targets carrying

mutations on positions 101 and 179. Using this knowledge we can

define an applicability domain when applying this particular

model, but this finding should also be taken as a warning when

using any PCM model to predict the affinity of known compounds

on unknown sequences.

Model based interpretation of mutations
After completion of the full validation, the final full model was

subsequently interpreted to explain the differences in activity of the

compounds on the individual mutants. This is the model we used

to perform the experimental validation and not one of the LOSO

models. Firstly we focused on the sequence side of the model

(Table 1 and for a multiple sequence alignment see Figure S6). By

correlating model predictions of all compounds on each mutant

sequence, where all amino acids were replaced in turn by their

wild type counterpart on that particular position, an overview of

the variation present at all individual residues was created

(Figure 7A). The full model explains the lowered activity (pEC50)

on mutants mainly by mutations at residues 100, 101, 103, 162,

179, 181, 188, 227, 234 and slightly by residue 138 on the ‘b’

chain. Interestingly the model interprets mutations at positions 89,

102, 118, 190, 203, 207, 210, 215, 219, 245 to actually slightly

increase compound activity. Residues 106, 169 and 214 have little

influence in this model and residue 211 does not seem to

contribute at all (Figure S7 shows the variation in pEC50 caused by

individual mutations).

The main contributor to lowered affinity appears to be residue

179 rather than residue 181, while the latter is known to lead to

NNRTI cross resistance [60]. Supporting this finding, it is known

that clinically used Etravirine, a compound similar to but not

included in our data set, is also sensitive to mutations at position

179 (V179D, V179F, and V179T [60]). Secondly, the influence of

mutations at position 101 differs widely indicated by the high

standard deviation. This is caused mainly by the K101P mutant,

which causes a large decrease in pEC50 for some compounds and

very little for others, depending on the chemistry (see below). The

K101E mutant overall has little influence. This interpretation is in

line with the results from the LOSO experiments mentioned above

where both residues 101 and 179 were identified as having a high

impact on model reliability.

Model based interpretation of ligand substructures
Similar to the mutation interpretation, the full model was

interpreted to elucidate the average contribution of individual

compound substructures to changes in activity (Figure 7B). Here

the substructure that was being investigated was replaced by a

single carbon atom in all compounds and the subsequent model

predictions were compared to the model predictions for the

original compounds. Figure 7B shows the contribution of the

substructures after a selection was made to only use substructures

that occur in more than one compound in order to lower a bias of

a continuously active compound (resulting in 1068 of 2546

substructures). In the figure some examples of substructures that

Figure 7. Interpretation of the full model. (A) Overview of the contribution of mutations present at all individual residue positions. The full
model explains the lowered activity (pEC50 in log units) on mutants mainly by mutations at residues 100, 101, 103, 162, 179, 181, 188, 227, 234 and
residue 138 on the ‘b’ chain. (B) Overview of the contribution of the different chemical substructures. Substructures occurring only in a single
compound have been removed and the remaining substructures have been numbered sequentially. Several substructures have been visualized and
linked to their position on the overview.
doi:10.1371/journal.pone.0027518.g007
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Table 3. Best performing compounds (per sequence and overall).

Sequence Compound with highest pEC50 Activity (pEC50) Full Model (pEC50)
Difference (Activity and
Model)

All 326 8.39 (60.61) 8.53 (60.73) 0.14

1 365 9.16 9.55 0.39

2 221 8.19 8.38 0.19

3 79 8.71 8.81 0.10

4 321 8.83 8.79 0.04

5 321 9.12 8.73 0.39

6 221 8.01 7.93 0.08

7 364 untested 7.50 n/a

8 221 untested 8.42 n/a

9 365 untested 9.43 n/a

10 326 untested 9.23 n/a

11 151 9.05 8.86 0.19

12 321 untested 9.29 n/a

13 100 9.06 8.87 0.19

14 79 9.51 9.62 0.11

Average 0.18

Overview of the compounds with the highest pEC50 as obtained from the model. Shown are the pEC50 values differentiated over all sequences (all) or per sequence.
Also shown is the standard deviation of the distribution over all sequences used to calculate this mean value. It should be noted that compound 326 was not tested on
sequences 9, 10 and 14, illustrating the importance of extrapolating in bioactivity space.
doi:10.1371/journal.pone.0027518.t003

Table 4. Worst performing compounds (per sequence and overall).

Sequence Compound with Lowest pEC50 Activity (pEC50) Full Model (pEC50)
Difference (Activity and
Model)

All 109 5.85 (60.54) 5.82 (60.66) 0.03

1 248 6.09 6.01 0.08

2 109 untested 4.87 n/a

3 422 untested 5.78 n/a

4 84 5.84 5.67 0.17

5 84 5.65 5.54 0.11

6 109 4.60 4.06 0.54

7 439 5.01 5.20 0.19

8 84 4.74 5.20 0.46

9 248 untested 5.96 n/a

10 181 5.82 6.01 0.19

11 181 5.42 5.61 0.19

12 109 5.90 6.09 0.19

13 181 5.11 5.29 0.18

14 181 5.62 5.81 0.19

Average 0.21

Overview of the compounds with the lowest pEC50 as obtained from the model. Shown are the pEC50 values differentiated over all sequences (all) or per sequence. Also
shown is the standard deviation of the distribution over all sequences used to calculate this mean value. It should be noted that compound 109 was not tested on
sequences 2, 7 and 8, illustrating the importance of extrapolating in bioactivity space.
doi:10.1371/journal.pone.0027518.t004
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improve activity and substructures that decrease activity are

shown. For a full table with the top 15 best and top 15 worst

substructures, please see Table S1 and Table S2. Figure 6

(compounds 5,6) shows two examples of compounds that contain

a substructure, which has been highlighted, that the model

predicts to lead to a good activity and two examples of compounds

(7,8) that contain a substructure that the model predicts to have a

negative effect on activity. The effect is expressed as an average

increase or decrease of all compounds containing that substructure

and their activities on all sequences. Compound 5 contains the

17th best substructure, leading to an average increase in pEC50 of

0.14, and compound 6 contains the 30th best substructure, leading

to an average increase in pEC50 of 0.12. Therefore these

substructures constitute chemistry that is optimally contained in

the compound. Compound 7 contains the 3rd worst substructure,

leading to an average decrease in pEC50 of 0.23, and compound 8
contains the 4th worst substructure, leading to average decrease in

pEC50 of 0.19. These two substructures constitute chemistry that is

rather avoided in possible drug candidates.

Application of PCM in preclinical drug research
We have shown that PCM can be applied in a preclinical setting to

predict the resistance profile of compounds. In addition we can

interpret our final full model and identify favorable and unfavorable

substructures, providing insights that can be used in compound

design. For this data set we can conclude that the mutations in the

protein sequences have a larger impact on pEC50 values than the

compound substructures. However, we have also shown that the

substructures still possess a significant influence, as PCM was the only

technique that was able to combine target and substructures

information.

Combining all our results from prospective experimental

validation, the LOSO and the model interpretation, we feel

confident that our model can be used to estimate the activity of

previously untested compound – sequence pairs, with the main

limitation (which can be quantified) being the similarity of the target

protein. This opens the door for models that are able to predict the

changes in activity of different compounds on clinical isolates

obtained from patients [13]. PCM can thereby serve as a modeling

tool to predict the activity for untested compound – isolate pairs

before any assay measurement is performed, providing a quick

guidance to medicinal chemists in the development of drugs based

on their expected resistance profile. An example of this application

is given in Tables 3 and 4, listing which inhibitors show best activity

against a particular sequence and for which inhibitors resistance

would be expected. (Table S4 lists a total of 57 compounds and their

activity on the 14 sequences) Likewise, our method also aids in the

development of drugs that have a broad inhibition profile.

Noteworthy is that eight of the 28 specific compound - sequence

predictions are untested compound – sequence pairs, which

underlines the value of PCM to extrapolate to untested drug –

sequence pairings, a feature not possible to achieve in conventional

(single-target based) bioactivity modeling.

Conclusions
In this work we have shown how to incorporate personalized data

(specific viral mutants) as a tool to select optimal candidates in drug

development by using proteochemometrics modeling in combination

with a large scale experimental validation of inhibitors of HIV

Reverse Transcriptase. While applied here to NNRTIs, PCM is a

universally applicable method since all it requires is the sequence of a

target of interest and structures of ligands. These two prerequisites are

something that is available in any preclinical drug research project.

We employed a prospective validation of 317 new experimental data

points and a new type of ‘leave one sequence out’ validation

(representing the case of a previously untested virus genotype). We

were able to predict which compounds are best for a particular HIV

RT sequence (with high accuracy in 12 out of the 14 sequences in the

data set). We established that distance in biological (target) space is

tightly correlated with prediction performance, enabling us to judge

where the model likely succeeds, and where it may fail. Hence, in this

work, we present a real-world scenario of HIV drug development,

make practical steps towards drug design tailored towards specific

patients, and we aim to extend this to other target families in the

future.

Supporting Information
Additional figures (Figures S1, S2, S3, S4, S5, S6, S7, S8, S9,

S10, S11), four tables (Tables S1, S2, S3, S4), the final model and

57 of the here modeled compounds with biological activity ( are

available online. A protocol to be run in pipeline pilot to apply this

model and perform PCM is also available online.

Supporting Information

Figure S1 Correlation parameters plotted against the
average similarity with the training set. (A) The R0

2 of the

different leave-one-sequence-out experiments (LOSO) against the

average similarity between that specific sequence and the training

set. (B) The RMSE of the different leave-one-sequence-out

experiments against the average similarity between that specific

sequence and the training set.

(TIF)

Figure S2 The distribution of the correlation parame-
ters when validating individual compound predictions
using the individual LOSO models. (A) Distribution of the

RMSE and the R0
2 of the individual compound predictions using

the LOSO models. The compounds have been ranked by increasing

RMSE in (A), the corresponding R0
2 is shown in (B). Please note

that the number on the x-axis is not the name of the compound, it is

merely a serial number. Likewise the compounds have been ranked

by increasing R0
2 (C) the corresponding RMSE is shown in (D).

(TIF)

Figure S3 Two compounds that were predicted accu-
rately using the LOSO models. (A) Prediction of the activity

(pEC50 value) of compound 1 on the different sequences using the

LOSO models (RMSE of 0.22 log units, R0
2 of 0.96). (B)

Prediction of the activity (pEC50 value) of compound 2 on the

different sequences using the LOSO models (RMSE of 0.26 log

units, R0
2 of 0.89).

(TIF)

Figure S4 Two compounds that were predicted inaccu-
rately using the LOSO models. (A) Prediction of the activity

(pEC50 value) of compound 3 on the different sequences using the

LOSO models (RMSE of 1.12 log units, R0
2 of 20.10). (B)

Prediction of the activity (pEC50 value) of compound 4 on the

different sequences using the LOSO models (RMSE of 0.61 log

units, R0
2 of 23.66).

(TIF)

Figure S5 Sequences present in the dataset clustered to
similarity based on the protein descriptor.
(TIF)

Figure S6 Multiple sequence alignment of the used
mutants. Outside the shown alignment the 14 sequences were

equal; therefore these residues were omitted from the PCM model.

(TIF)
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Figure S7 Average contribution to pEC50 according to
the full model of all present mutants. The standard

deviation was determined over all calculated pEC50 changes.

(TIF)

Figure S8 Overview of the pEC50 values of all compound
– sequence pairs.

(TIF)

Figure S9 PCM and QSAR learning curves. As training is

performed on an increasing part of the data set, validation is

performed on a decreasing part of the data set. The PCM models

are shown by solid lines and the QSAR by dashed lines. The

validation parameters were calculated per sequence, using a single

PCM model for all sequences, as well as for comparison and

dedicated QSAR models for each individual sequence. The error

bars indicate the standard deviation over the R0
2 and RMSE

values of the validation on the different sequences. The PCM

single models outperform the dedicated QSAR models in each

case both measured by the R0
2 and the RMSE.

(TIF)

Figure S10 The maximal distance of the compound
from the training set plotted to the prediction error. The

plot shows that the distance relates to the prediction error as

compounds closer than 0.98 are predicted better than compounds

further away than 0.98 from the training set.

(TIF)

Figure S11 Y-scrambling plot. In order to rule out chance

correlations 100-fold Y-scrambling was performed. After scram-

bling the pEC50 values, these 100 data sets were in each case

divided into a training set consisting of 80% of the total set and a

test set consisting of 20%. The models built on permutated data

cannot be validated with a Q2, R2 and R0
2 of approximately 0.

After training and validation, Q2, R2 of the training and R0
2 of the

validation were plotted against the similarity of the scrambled

dataset with the original training set. This correlation was defined

as the % of compounds that had a pEC50 value within 0.3 log units

of its true value. A simple linear regression was subsequently

performed for Q2, R2 and R0
2. The regression lines for Q2, R2 of

the training and R0
2 of the validation crossed the y-axis at 20.12,

20.10 and 20.16 respectively. We conclude that it is highly

unlikely that our model was created based on chance correlations

between the different descriptors. Therefore we are modeling an

actual correlation between the pEC50 values on the one hand and

the compounds and proteins on the other hand.

(TIF)

Table S1 The top 15 substructures contributing the
most to binding on all sequences. Mean indicates the mean

increase in pEC50 by the presence of that particular substructure,

StdDev represents the standard deviation of the distribution of all

changes in pEC50 correlated with the presence of that substructure

and N represents the amount of predicted changes within this

distribution. Binvalue is the identifier for that particular substruc-

ture (FCFP_6 format) and the properties Variance, Skew and

Kurtosis have also been calculated over the distribution to

determine the distribution pattern of the changes caused by that

substructure.

(DOC)

Table S2 The top 15 substructures leading on average
to a lower pEC50 on all sequences. Mean indicates the mean

decrease in pEC50 by the presence of that particular substructure,

StdDev represents the standard deviation of the distribution of all

changes in pEC50 correlated with the presence of that substructure

and N represents the amount of predicted changes within this

distribution. Binvalue is the identifier for that particular substruc-

ture (FCFP_6 format) and the properties Variance, Skew and

Kurtosis have also been calculated over the distribution to

determine the distribution pattern of the changes caused by that

substructure.

(DOC)

Table S3 All AAindices used with their reference on the
AAindex website. This table lists all indices we used to create a

unique hashed value per amino acid.

(DOC)

Table S4 The complete SAR of 57 of the modeled
compounds.
(DOC)

Archive S1 Model and sample data set.
(RAR)
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