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Abstract
Background: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with 
significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual 
GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding 
only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-
based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the 
potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan 
receptors.

Results: We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based 
phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both 
sequence space and ligand (substructure) space. The overall organization of the sequence-based tree and 
substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide 
receptor subtypes (e.g. opioid, somatostatin) and adrenoceptor subtypes. In ligand space, the prostanoid and 
cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin 
receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of 
the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors 
performed better than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was good (AUC > 
0.7).

Conclusions: We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these 
receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand-
based classification uncovers relationships among GPCRs that are not apparent from the sequence-based 
classification. This will shed light on potential cross-reactivity of GPCR ligands and will aid the design of new ligands 
with the desired activity profiles. In addition, we linked the ligand-based classification with a ligand-focused sequence-
based classification described in literature and proved the potential of this method for de-orphanization of GPCRs.

Background
G protein-coupled receptors (GPCRs) comprise a large
family, more than 800 in human [1], of cell surface recep-

tors that consist of seven transmembrane (TM) helices.
These receptors are activated by a variety of external
stimuli, including light, ions, small molecules, lipids, and
proteins; moreover, the majority of therapeutic drugs act
on GPCRs [2]. Because of the limited number of target
crystal structures [3-6], GPCR drug design relies largely
on ligand-based approaches [7] such as property-based
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methods [8], pharmacophore models [9], and substruc-
ture methods [10]. These methods do not require any
knowledge about the target protein; however, combining
them with target information often increases their poten-
tial. The resulting so-called 'chemogenomics' approaches
thus involve both ligand-based and target-based aspects
[11]. They do not focus on a single group of ligands and
one individual target, but rather on groups of ligands
against groups of targets. The central idea is that similar
targets have similar ligands [12,13]. Therefore, relation-
ships between targets from the sequence side can be
exploited to search for novel receptor ligands on the
chemical structure side.

Traditionally, the GPCR superfamily has been classified
based on sequence homology of the receptors. Kola-
kowski grouped all seven transmembrane (7-TM) pro-
teins into classes A to F for receptors proven to bind G-
proteins and class O for the other 7-TM proteins [14].
Class A receptors resemble rhodopsin and form the larg-
est cluster. Later, Fredriksson et al. proposed a more elab-
orate classification for known and predicted human
GPCRs [1]. Surgand et al. presented a sequence-based
phylogenetic classification of GPCRs viewed from a
ligand perspective [15]. By selecting residues pointing
inwards into the generic binding pocket of GPCRs, the
authors assembled a set of 30 residues most likely to be
accessible for ligand binding. Based on these residues,
phylogenetic clustering was performed. Although only a
subset of residues was used, the classification was similar
to classifications based on the full sequence. Applications
of a grouping such as proposed by Surgand et al. consti-
tute ligand design for related receptors, as well as de-
orphanization of GPCRs [15]. However, the study by Sur-
gant et al. is somewhat limited by the scarcity of struc-
tural protein data where the identification of binding site
residues was solely based on the structure of bovine rho-
dopsin. It could not yet take into account recent advances
that yielded three pharmacologically relevant X-ray crys-
tal structures, namely those of the human β2 and turkey
β1 adrenoceptors, as well as of the human adenosine A2A
receptor [3,5,6,16]. Building further on Surgand's work,
Gloriam et al. proposed an extended set of ligand-acces-
sible residues, derived from visual inspection of the newly
available X-ray GPCR crystal structures, from supporting
mutagenesis data and from the evaluation of previously
established residue sets [17]. The resulting set of 44 resi-
dues was then applied to cluster class A GPCRs into a
phylogenetic tree, which reflected similarities in binding
site of the receptors.

Complementary to these sequence-based classifica-
tions are the ligand-based classifications of GPCRs.
Approaches that use ligand similarity measures for target
classification have been previously described [18,19].
Keiser et al. related targets by pair-wise comparison of

their ligands [20]. From a set of 65 k ligands, a network
was constructed connecting almost all 246 targets
through sequential linkage. From this, previously
unknown antagonism of methadone on the muscarinic
M3 receptor and of emetine on the α2-adrenoceptor was
identified.

While sequence-based similarity relies on comparison
of the residues at certain positions in the sequence, there
is no unambiguously defined method to measure ligand-
based similarity. One way of defining ligand similarity is
to consider the overlap of substructures in the molecules.
Frequent substructure mining is a method for finding the
most common substructures in a set of molecules [21-
23]. It evaluates all possible substructures, not only dis-
crete fragments that are present in the molecules; it is
therefore an exhaustive approach, resulting in a more
complete view on the structural features in the set.

In this study, we employ frequent substructure mining
to determine the similarity between groups of ligands in a
thorough and unbiased manner. This substructural simi-
larity is then used for classification of GPCRs according
to relatedness of substructure profiles of their ligands.
The substructure-based classification of GPCRs visual-
izes relatedness of receptors in the form of a phylogenetic
tree, which is then compared to the sequence-based phy-
logenetic classifications of GPCRs. The differences in tree
organization are examined with methods that visualize
changes in target position. Taken together, we present a
(GPCR) classification from the small molecule (ligand)
perspective, which facilitates analysis of target similarities
and differences in ligand-binding behavior. In addition,
we explore the potential of our ligand-based classification
in receptor de-orphanization, i.e. the prediction of new
ligands for orphan receptors.

Results and Discussion
Sequence-based classification
Three types of sequence-based phylogenetic trees were
built, namely: one tree that was based on the full 7-TM
sequence, one tree employing 30 residues described by
Surgand et al. [15], and one tree which was based on the
set of 44 residues described by Gloriam et al. [17]. Note
that the three sequence-based trees presented here are
different from those published in the referenced original
work [1,15,17], since in the current study orphan recep-
tors, receptors with a low number of ligands, and single-
ton receptors were left out. Singleton receptors are
receptors that are the only (available) member in their
respective subfamily. Due to the chemogenomic nature of
this study, we focus on the phylogenetic tree based on the
set of Gloriam et al. since it represents the ligand per-
spective best; this set is referenced as the GSK set [17].
The two other trees are provided for reference purposes
in Additional file 1 - Phylogenetic trees based on 7TM
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domain and selected residues. The tree that was built
based on the multiple sequence alignment of the GSK set
is shown in Figure 1. The GPCR subtypes in this tree are
grouped as branches in the tree according to subfamily
and target since it resembles the sequence-based phylo-
genetic tree on which GPCR classification is based [1].
For instance, the opioid receptor subtypes δ, κ, μ, and
NOP cluster together, as well as the α- and β-adrenocep-

tor subtypes. The fact that clustering follows the receptor
classification is expected since the classification of
GPCRs was based on sequence similarity [24,25]. Four
clusters are clearly defined in the tree: the aminergic
receptors, the adenosine receptors, the prostanoid recep-
tors, and the peptide-binding receptors.

Figure 1 Phylogenetic tree of human Class A GPCRs based on sequence information (44 residues of the GSK set). Human Class A GPCRs are 
clustered based on the 44 ligand-binding residues as defined in the GSK set. Subfamilies are color-coded according to ligand type whereby the broad 
ligand types applied by Gloriam et al. [17] were used. red - receptor with aminergic ligands; pink - peptide ligands; green - lipid ligands; dark blue - 
purinergic P2Y ligands; light blue - adenosine ligands; brown - melatonin ligands.
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Ligand-based classification
The ligand-based receptor classification, which we will
compare to the sequence-based classification, is provided
in Figure 2. Subfamilies in this tree are more scattered;
however, most subfamilies cluster together. For instance,
except for the two purinergic receptors (P2Y1 and P2Y12)
and the two glycoprotein hormone receptors (FSH and
LH), all other receptors represented by only two sub-

types, such as the melatonin or the leukotriene B4 recep-
tors, are clustered together. The adenosine receptors A1
(ADORA1), A2A (ADORA2A), A2B (ADORA2B), and A3
(ADORA3) group together, indicating overlap in ligand
profiles. This may imply that ligands for these receptor
subtypes are non-selective, such as the adenosine recep-
tor antagonists caffeine and theophylline. Additionally,
receptor selectivity may vary with relatively small

Figure 2 Phylogenetic tree of human Class A GPCRs based on ligand information (frequent substructure mining). Human Class A GPCRs are 
clustered based on the frequent substructure analysis. Subfamilies are color-coded according to ligand type whereby the broad ligand types applied 
by Gloriam et al. [17] were used. red - receptor with aminergic ligands; pink - peptide ligands; green - lipid ligands; dark blue - purinergic P2Y ligands; 
light blue - adenosine ligands; brown - melatonin ligands.
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changes in ligand structure: an 8-cycloalkyl substituent
on theophylline confers A1 receptor selectivity, whereas a
phenylstyryl substituent on the same position in caffeine
renders these compounds selective for the A2A receptor.
The purinergic receptor P2Y12 is found near the adenos-
ine receptors owing to the purine core typical for ligands
of both these subfamilies. In agreement with the ligand
selectivity reported for the α1-, α2-, and β-adrenoceptor
subfamilies, these receptors form three distinct clusters
[26]; furthermore, the α1B and α1D receptors are the clos-
est in the distance matrix. The muscarinic acetylcholine
receptors M1, M3, M4, and M5 (CHRM1/3/4/5, in Figure
2) cluster together as one group, supporting the low sub-
type selectivity of muscarinic antagonists [27]. However,
the acetylcholine receptor M2 is found more distant from
this cluster. This indicates the presence of distinct chemi-
cal classes in the ligand set of the M2 receptor, which may
be the result of inclusion of allosteric ligands. For
instance, gallamine is an allosteric modulator of the mus-
carinic M2 receptor [28] that is also present in the GLIDA
database [29], classified as an M2 antagonist. In general,
the remaining aminergic receptors (serotonergic, dop-
aminergic, histaminergic and cholinergic) are more scat-
tered throughout the substructure tree. This means that
targets share ligands or ligand substructures among sub-
families/subtypes, which is in line with the high level of
polypharmacology observed for these aminergic GPCRs
[30]. For instance, the serotonin receptor 5-HT1A clusters
together with the D2 dopamine receptor, which fits with
reports on antipsychotic compounds combining dop-
amine D2 receptor antagonism and serotonin 5-HT1A
receptor agonism [31,32]. Structurally similar ligands
may act on diverse targets, for instance, when ligands
have a GPCR-privileged structure at their core [33,34].
The grouping of the eight prostanoid receptors (Figure 2)
indicates similarity in substructure profiles of the ligands.
This is based on the fact that most prostanoid receptor
ligands are direct derivatives of the endogenous ligands
[35,36], the so-called eicosanoids. These ligands are
highly similar, all consisting of large aliphatic, lipophilic
alkyl chains. The presence of the leukotriene and cannab-
inoid receptors in this lipid cluster may seem strange at
first. Leukotrienes are however also eicosanoids, which
clarifies the position of the leukotriene B4 and cysteinyl-
leukotriene receptors in this cluster [37,38]. In addition,
arachidonic acid is the common precursor for eico-
sanoids and two derivatives of arachidonic acid, anand-
amide and 2-arachidonylglycerol, both of which are
endogenous ligands ('endocannabinoids') of the cannabi-
noid receptors.

The relationship between target clustering in the sub-
structure tree (Figure 2) and ligand promiscuity suggests

that the substructure tree may be used to identify possi-
ble side effects on receptors that are close neighbors in
this tree. For instance, off-target activity of ligands can be
identified. If inspection reveals a ligand to bind to recep-
tor(s) that are phylogenetically related to the target of
interest, a more detailed experimental follow-up with
respect to receptor selectivity would be worthwhile.

Tree comparison
Visual comparison of the sequence tree (Figure 1) with
the substructure tree (Figure 2) reveals that the overall
phylogenetic organization is similar. For instance, with
the exclusion of the glycoprotein, P2Y, angiotensin, and
bradykinin receptors, all other receptors represented by
two subtypes occur in pairs in both the ligand tree and
the sequence tree. This is also true for receptors with
three subtypes present in the dataset, e.g. the three mem-
bers of the α1, the α2, and the β1 adrenoceptors, as well as
the bombesin receptors. Exceptions to this rule are the
neuropeptide Y and vasopressin receptors. In addition,
the prostanoid receptors largely group together in both
trees, as do most of the aminergic receptors.

The clear distinction between the two dopamine recep-
tor types, i.e. D1 and D5 (D1-like) versus D2, D3, and D4
(D2-like), exists both in the sequence-based classification
and ligand-based classification. This is in agreement with
a previous study [39] and also known from drugs on the
market such as the benzazepines that favor D1-like over
D2-like dopamine receptors. Similarly, antipsychotics
such as chlorpromazine have a higher affinity for the D2-
like subtypes than D1-like receptors [40].

The fact that many clusters arise in both trees indicates
that the receptors in these clusters have similar sequences
and similar ligands, that is, ligands with substantially
overlapping substructure sets. However, there are also
receptor targets for which this is clearly not the case. The
(qualitative) similarities and differences among sequence
and substructure trees are discussed in the following. A
delta-delta plot was constructed to compare how pairs of
receptors change. This plot, provided in Figure 3 (and
described in detail in the Materials and Methods section),
visualizes how receptor distances deviate between the
sequence-based tree and the ligand-based classification
of receptors. In sequence space, receptor distances indi-
cate the (dis)similarly between protein sequences, while
in ligand space, receptor distances reflect the overlap in
structural features found in ligands for these receptors.
For each receptor, the mean distance to all other recep-
tors is plotted. From the delta-delta plot, it becomes
apparent that the prostanoid receptors and P2Y1 receptor
are on average the most distant receptors from the rest of
the classes. The distances of the purine P2Y1 receptor, the
prostanoid FP receptor, and leukotriene receptor CysLT2
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towards the other classes are all larger in substructure
space than in sequence space, implicating that overall
their ligands show little resemblance with ligands of the
other GPCRs. In contrast, for most aminergic receptors,
e.g. for the α2B-adrenoceptors and the 5-HT2B serotonin
receptor in Figure 3, distances are smaller in substructure
space compared to sequence space. This, again, corre-
sponds with the high polypharmacology found for amin-
ergic ligands, such as for most atypical antipsychotics
[41], with clozapine as a prominent example [42]. With
the exception of a few targets (FSH, LH), the distribution
of targets in the delta-delta plot is more scattered along
the x-axis (substructure space) than the y-axis (sequence
space). This may be a reflection of the evolutionary rela-
tionship between sequences, which results in coverage of
a small region of the overall sequence space. The ligands
for these targets do not have such a direct relationship
and thus cover a broader range in overall substructure
space.

The difference between ligand-based and target-based
classifications may be due to convergent evolution [43].

Functional convergence denotes how proteins that differ
in sequence may fulfill the same protein function. The
protein sequence of GPCR subtypes will be similar in
parts that are involved in the endogenous ligand recogni-
tion but may be different in other parts, for instance those
parts that play a role in recognition of other, exogenous,
ligands (e.g. synthetic drugs). These may therefore have a
different selectivity profile compared to the endogenous
ligand.

Validation
To validate how well our method performed as a chemog-
enomics method, i.e. how well it connects sequence space
with small molecule space and how applicable the rela-
tionship is in practice, we conducted a 'virtual de-orpha-
nization exercise'. For each receptor in the dataset, we
pretended not to know any of its ligands by excluding
them from the datasets (we 'orphanized' the receptor in
this particular run of the protocol). We next predicted its
ligands by considering a model derived from the closest
neighbors of the receptor in sequence space (we
attempted to 'de-orphanize' the receptor whose ligands
we omitted from the study in the previous step). For this
calculation, the distance matrix for the GSK residue set
was used. The cumulative number of correctly identified
ligands of every receptor is plotted against the number of
closest neighbors (sequences) included to find these
ligands. The (relative) area under the curve (AUC) and
shape of the curve are measures of the performance of
our method. In 93% of the studied receptors, de-orphani-
zation of the pretended orphan receptor using the ligands
of related receptors performed better than random (AUC
> 0.5) and for 35% of receptors de-orphanization perfor-
mance was good (AUC > 0.7). All AUC plots could be
divided into four categories according to curve shape and
AUC (the complete set of plotted scores is available as
additional material in Additional file 2 - Plotted scores for
the leave-one-out validation). Typical examples of the
four categories are given in Figure 4. The first category is
most abundant and consists of curves with a convex
shape and an AUC above 0.5, marking good performance.
An example of this category is the muscarinic acetylcho-
line receptor M1 (CHRM1 in Figure 4) with an AUC of
0.7990. Curves of the second category display a gradual
rise that is approximately equal to the diagonal of the
plot. These plots have an AUC near 0.5, indicating perfor-
mance that is equal to random prediction. An example is
the plot of the angiotensin receptor AT1 (AGTR1 in Fig-
ure 4) with an AUC of 0.5120. Curves of the third cate-
gory perform worse than random and are characterized
by a concave shape and an AUC below 0.5. Clearly the
worst example is the P2Y1 purinoceptor with an AUC
value of 0.0857 (P2RY1 in Figure 4). In contrast to the
first three categories, curves of the fourth category do not

Figure 3 Delta-delta plot visualization of receptor distances in se-
quence and substructure space. The delta-delta plot visualizes how 
target distances differ between sequence-based classification (GSK set, 
y-axis) and substructure-based classification (x-axis). The average dis-
tance towards the other targets is plotted for sequence and substruc-
ture space. A few targets are highlighted in the plot to serve as 
examples. These are marked by a black dot and a label that denotes the 
gene symbol. Targets that are, on average, more distant from the rest 
are plotted further away from the origin; targets plotted above the di-
agonal are more distant in sequence space, while targets plotted be-
low the diagonal are more distant in substructure space. For example, 
the FSH receptor (FSHR) is positioned relatively far from the origin and 
above the diagonal. This indicates that this receptor is, in general, more 
distant from the other receptors, most prominent in sequence space.
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have a clear AUC range. This category consists of curves
that are divided into several discrete parts of alternating
rises and plateaus, as shown in the plot of bombesin
receptor BB3 (BRS3 in Figure 4), with an AUC of 0.8145.
Performance varies from good (BRS3) to worse than ran-
dom, depending on the value of the AUC. An example of
such a plot with an AUC value below 0.5 is the FSH
receptor (not shown, see: Additional file 2 - Plotted scores
for the leave-one-out validation) with an AUC of 0.4428.
The steep rises are caused by a few receptors identifying

the majority of ligands. Some of these curves are steeply
rising at the start, which suggests that part of its ligand
set could be readily identified even though this is not
reflected in the AUC. The poor performance concerning
the P2Y1 receptor is probably due to the nature of its
ligands: this set consists of a small number of highly simi-
lar ligands that all possess a phosphate group, a feature
not found in other ligands in the database. The number of
features (substructures) shared with ligands of this recep-
tor and other receptors is therefore small. Interestingly,

Figure 4 Examples of plotted scores for the leave-one-out validation. Example plots expressing the performance of the simulated receptor de-
orphanization. Performance plots for the following receptors are provided (from left to right and from top to bottom): CHRM1 - muscarinic acetylcho-
line receptor M1 (first category); AGTR1 - angiotensin receptor AT1 (second category); P2RY1 - P2Y1 purinoceptor (third category); BRS3 - bombesin re-
ceptor BB3 (fourth category). These examples are discussed in the text. The full set of plotted scores is provided in Additional file 2 - Plotted scores for 
the leave-one-out validation. For each plot, receptors are ordered along the x-axis (labeled "Number of included receptors") in order of increasing dis-
tance in sequence space to the receptor under study. On the y-axis (labeled "Ligands identified"), the cumulative number of retrieved ligands is de-
picted, normalized linearly to the interval [0;1]. The red curve indicates the number of active ligands that are retrieved when including all (closest) 
receptors that are listed along the x-axis up to that point. For example, the plot of the muscarinic acetylcholine receptor M1 (CHRM1) displays a steeply 
rising curve near the origin, indicating that many of its ligands are retrieved using a small number of closest receptors. The blue diagonal illustrates 
recovery of ligands when performance is equal to random prediction. The relative area under the curve (AUC) of the red curve is stated at the bottom 
of each plot. An AUC above 0.5 indicates good performance, while poor performance is indicated by an AUC of 0.5 or below.
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the adenosine A1 and A3 receptors, which are also puri-
nergic, identify most (28 out of 42) of the P2Y1 ligands.
However, in sequence space these receptors are at great
distance (at positions 91 and 92, respectively).

Overall, our method proves useful for receptor de-
orphanization, since for 93% of receptors studied de-oph-
anization performed better than random selection (AUC
> 0.5) and for 35% of receptors de-orphanization per-
formed well (AUC > 0.7).

Limitations of the work
In the present study, some targets were excluded due to
insufficient availability of ligand data in the source data-
bases. The absence of a receptor may influence the order
of other receptors in the trees. Scarcity of ligand data is
reflected in the substructure profiles, thereby influencing
the correlations among receptors. The issue of data (in)
completeness and its effect on interaction networks was
recently discussed by Mestres et al. [44]. Using three
datasets of increasing complexity (more connections)
that linked ligands to targets based on full chemical iden-
tity, the authors showed that an increase in the number of
connections rapidly leads to shifts in connection patterns.
However, our study linked targets based on overlap in
substructures; as a consequence sharing of substructures
rather than of ligands is sufficient for targets to be identi-
fied as related. Bender et al. and Keiser et al. already
showed that overlapping ligands are not necessary to pre-
dict whether targets are close in ligand space [19,20]. In
addition, our method employs an exhaustive approach to
analyze the structural features of ligands. Frequent sub-
structure mining considers all possible substructures that
occur in the ligands and is therefore unbiased, i.e. all pos-
sible substructures were evaluated, not only those intui-
tive to chemists, such as functional groups, ring systems
(e.g. a phenyl ring), and linkers [45]. However, in the pres-
ent study less 'obvious' substructures such as ethyl or
isobutyl are also considered [21]. For a complete discus-
sion on substructure generation and evaluation, see ref.
[46]. Our method is not limited to GPCRs alone; it is eas-
ily extended to other protein families for analysis of the
differences between subfamily phylogenies, given that
sufficient ligand information is available. For instance, it
can be applied to the realm of enzymes to complement
other chemogenomics analyses [47].

Conclusions
In this work, we presented a ligand-based phylogenetic
classification that complements the well-established
sequence-based classification of proteins, and applied our
method to classification of GPCRs. This alternate view
may contribute to our understanding of GPCR classifica-
tion since it reveals relationships that are unnoticed with
conventional phylogeny. Targets were analyzed based on

the substructure profiles of their ligands using an unbi-
ased approach. The overall organization of the sequence
tree and the substructure tree was similar; however, sub-
stantial differences were also discovered. In the substruc-
ture tree, several clusters of subtypes were identified. For
instance, it was found that the adenosine receptors group
together, and that certain GPCR subfamilies that do not
share sequence homology cluster because of ligand simi-
larity. Thus, receptor similarities that signal for potential
off-target effects, such as for the serotonergic receptors,
are readily identified. In addition, combined with
sequence-based classification, the ligand-based classifica-
tion presented has proven potential (93% of receptors
with AUC > 0.5 and 35% with AUC > 0.7) for de-orphani-
zation of receptors.

Methods
Datasets
Ligands
Ligands for human GPCRs were collected from three
publicly available data sources: the StARLITe database, as
made available by ChEBI (EMBL-EBI) as part of the
ChEMBL database [48], GLIDA [29], and KiDB [49].
ChEMBL consists of a collection of more than 500,000
small molecules annotated with activity. Here, only activ-
ity values measured directly from binding studies were
included. Compounds with Ki, IC50, or EC values below
10 μM were considered active. GLIDA provides biologi-
cal information on GPCRs (sequences) and chemical
information about ligand structures. It has links to sev-
eral external databases, GPCRDB [25], UniProt [50], Pub-
Chem [51], and DrugBank [52]. A reported affinity in one
of these source databases classifies a compound as active,
independent of the reported binding affinity. Ligands are
annotated with an activity type, namely: full agonist, par-
tial agonist, agonist, antagonist or inverse agonist. In the
present study, we focused only on binding affinity and not
on the activity type. This allowed us to merge the set with
the rest of the data. KiDB provides information on drugs
and molecular compounds that interact with GPCRs, ion
channels, transporters, and enzymes. The entries in KiDB
are annotated with ligand, Ki value, radiolabeled ligand,
receptor name, source & tissue, species, and PubMed link
to the publication(s). Our dataset consisted of ligands
from all three sources, by selecting human GPCR ligands
with a molecular weight between 50 and 700 Da. Only
targets that had 20 or more ligands listed were used. In
this study, we focused on class A (rhodopsin-like) GPCRs
since the majority of targets are from class A and only a
minor part from class C; combining both classes would
have negatively affected homogeneity of the phylogenetic
trees, thereby hampering comparison. For the same rea-
son, we removed two singleton targets (targets that are
the only member in a subfamily), the gonadotrophin-
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releasing hormone receptor and the ghrelin receptor. The
final set consisted of 102 targets (provided in Table 1 of
Additional file 3 - List of GPCRs used in this study) with
37350 unique ligands in total.
Sequences
The multiple sequence alignment of (specific residues of )
the 7-TM domain was obtained from GPCRDB [25,53].
Only human receptors that were non-olfactory and not
orphan were used.

Tree generation
Frequent Substructure Mining
For the ligands of each receptor, the most frequently
occurring substructures were determined. This was
accomplished by using the frequent subgraph-mining
algorithm [54], which finds all frequent substructures in a
set of molecular graphs [23]. For a description and a
quantitative comparison of recent substructure mining
algorithms, see [55]. Briefly, starting from the smallest
substructure, namely the single atoms, the algorithm
finds the number of molecules in which the substructure
occurs. If this occurrence is above a user-defined mini-
mum, the minimum support value, the substructure is
stored. Stored substructures are stepwise extended, and
tested in a systematic manner, with the aim of testing all
possible substructures that have at least one of the stored
substructures as their basis. The algorithm seeks ways to
test only those substructures that actually occur in the
set, and that have a frequency above the set minimum.
An important concept of frequent substructure mining is
the a priori principle, originating from frequent item set
mining [56]. Algorithms based on the a priori principle
exploit that the frequency of a substructure will be equal
or lower than the frequency of the substructures it con-
tains. Therefore, whenever the occurrence of a substruc-
ture is below the minimum support, all extensions of that
substructure are discarded.

Structures were represented as labeled graphs with a
special type for aromatic bonds. In this study, the mini-
mum support value was set to 30% of the number of
ligands in each activity set. At this value, the algorithm
provided a large group of substructures while still being
computationally feasible to work with. In addition,
molecular structures were sorted in ascending order
according to the number of bonds. This allowed the algo-
rithm to prune scarce, complicated substructures that
consisted of a large number of bonds, thereby reducing
memory requirements. If the set of generated substruc-
tures is disproportionately large (more than 1000 times
larger) compared to the majority of the other classes, the
generated substructures are discarded except for those
that also occur in other classes. This step was performed
in order to prevent single targets from dominating the
analysis. Since in practice most classes generated sets of

less than 1000 substructures, a cut-off of 1 M substruc-
tures was used. Substructures with molecular weight
below 50 Dalton were discarded. The frequent substruc-
tures of all classes were merged into one set, removing
any duplicates. For all substructures in this set, the fre-
quency in each subfamily was determined. To calculate
the correlation between two targets, we used the sub-
structure frequencies as features for that target. A corre-
lation matrix was constructed by calculating the Pearson
correlation coefficient for each pair of targets. Finally, a
distance matrix was constructed by subtracting the val-
ues of the correlation matrix from unity and normalizing
the results linearly to the interval [0;1].
Phylogenetic Trees
To study receptor organization, receptors were clustered
into a phylogenetic tree using the Neighbor-Joining (NJ)
method (Neighbor from the PHYLIP package [57]). This
method infers phylogenies from the pair-wise distances
between receptors. Phylogenetic trees built from distance
matrices facilitate tree comparison across domains. In
addition, NJ clusters each domain equally well since it
does not involve an 'evolutionary clock', a concept rooted
in evolutionary biology. Two distance matrices repre-
sented the similarities of the receptors: according to the
frequent substructures of their ligands and the 7-TM
domain sequence alignment, both were visualized as a
phylogenetic tree, with receptors as leaves of the tree.
The number of branches between two leaves in the tree
grows with dissimilarity of these two leaves.

The protein distances between the aligned sequences
were calculated with Protdist from the PHYLIP package
version 3.6. using the Jones-Taylor-Thornton matrix
(default) [57]. Both the sequence-based and ligand-based
phylogenetic trees were constructed using the neigh-
bor.exe program from the PHYLIP package. Tree con-
struction might be influenced by the order in which
targets are provided to the tree constructor. To minimize
the influence on the resulting phylogenetic tree, target
input order was randomized 10 times and 10 new trees
were generated. From these, a consensus tree was built.
MEGA4 [58] was used for editing the layout of the trees
and for visualization. Trees were rooted on the mid-
points, that is, a root is placed at the mid-point of the lon-
gest distance between two taxa of the unrooted tree. Taxa
were arranged for balanced shape and trees were visual-
ized as circular trees showing only topology, i.e. branch
lengths do not reflect evolutionary distance in a quantita-
tive manner.

Tree comparison
For the comparison of trees, several methods and visual-
izations are available; however, there is not a single defin-
itive measure for tree difference. To visualize how the
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receptor positions change between two trees we
employed a delta-delta plot.
Delta-Delta plots
The delta-delta plot reveals how receptor locations
behave globally with respect to the median of all recep-
tors. It was used to visualize the differences in location of
each receptor in sequence space and in substructure
space. This plot is an adaptation from the delta-delta plot
in Garr et al. [59]. It is a new way of tree comparison,
which visualizes the differences among trees graphically,
as opposed to the sole calculation of a numerical distance
between two trees which is not trivial to interpret. For
each receptor, the mean distance of that receptor to all
other receptors was calculated. This value was plotted in
a scatter plot, with each axis representing the mean dis-
tance of the respective node in one of the trees. The inter-
pretation of this plot is as follows. Along both axes,
receptors plotted far from the origin are, on average,
more distant from the rest of the group, while receptors
plotted close to the origin were closer to the rest of recep-
tors. Receptors plotted near the diagonal do not change
much in their mean distance to other receptors when
going from one tree to the other (since they are close to
the X = Y diagonal). Receptors plotted above or below the
diagonal have different average distance to the other
receptors between trees. For instance, consider a delta-
delta plot that plots a substructure tree along the x-axis
and a sequence tree along the y-axis. If a receptor is plot-
ted above the diagonal, the mean distance of that receptor
to the other receptors is larger in the sequence tree than
the substructure tree; for receptors plotted below the
diagonal, the opposite is true.

Validation
Leave-one-out validation
This experiment is repeated for every receptor (the
'orphan receptor') by temporarily removing ligands of this
receptor from the dataset and predicting the position of
molecules of this class in the substructure tree. A mole-
cule from the left-out class is a hit when it is predicted to
belong to one of the closest classes in sequence space.
The closest classes in sequence space are found using the
distance matrix from the multiple sequence alignment.
Prediction of the class of a molecule is based on the
Euclidean distance in substructure space. This distance is
calculated as follows: for each substructure, the square of
the difference between the relative frequency in a class
and the molecule is calculated. The relative frequency of
a substructure in a molecule is either 0 for absence, or 1
for presence of the substructure. The square root of the
sum of all squared differences is the Euclidean distance
between a molecule and a class. The area under the curve
(AUC) of the receiver operating characteristic (ROC) plot
served as a quality measure of the predictions for a class.

Instead of repeating the substructure mining for every
left-out class, a lookup table of substructure occurrence
was used. This table related all generated substructures
with all molecules in which they occurred. Substructures
that had a frequency just above the support threshold in
the left-out class were not considered when analysis was
performed for molecules of this class.
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included receptors") in order of increasing distance in sequence space to 
the receptor under study. The y-axis (labeled "Ligands identified") indicates 
the cumulative number of retrieved ligands, normalized linearly to the 
interval [0;1]. The red curve indicates the number of active ligands that are 
retrieved when including all (closest) receptors that are listed along the x-
axis up to that point. More specifically, the number of correctly predicted 
ligands is plotted against the number of closely related receptors on which 
the prediction was based. For example, the plot of the muscarinic acetyl-
choline receptor M1 (CHRM1, third row, third plot from the left) displays a 
steeply rising curve near the origin, indicating that many of its ligands are 
retrieved using a small number of closest receptors. The blue diagonal illus-
trates recovery of ligands when performance is equal to random prediction. 
The relative area under the curve (AUC) of the red curve is stated at the bot-
tom of each plot. An AUC above 0.5 indicates good performance, while 
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Additional file 3 List of GPCRs used in this study. List of GPCRs used in 
this study. The list of GPCRs used in this study (Class A, excluding single-
tons). Only receptors that are human, non-olfactory, and not orphan, were 
used. For each receptor, the respective (sub) family, gene symbol, official 
IUPHAR name, and number of ligands are provided.

http://www.biomedcentral.com/content/supplementary/1471-2105-11-316-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-316-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-316-S3.PDF


van der Horst et al. BMC Bioinformatics 2010, 11:316
http://www.biomedcentral.com/1471-2105/11/316

Page 11 of 12
Author Details
1Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, 
Leiden University, Einsteinweg 55, 2333CC, The Netherlands, 2Leiden Institute 
for Advanced Computer Science, University of Leiden, The Netherlands, 
3Department of PharmacoInformatics, Center for Integrative Education of 
Pharmacy Frontier, Graduate School of Pharmaceutical Sciences, Kyoto 
University, Kyoto, Japan and 4Unilever Centre for Molecular Science 
Informatics, Department of Chemistry, University of Cambridge, Cambridge, 
UK

References
1. Fredriksson R, Lagerstrom MC, Lundin L-G, Schioth HB: The G-Protein-

Coupled Receptors in the Human Genome Form Five Main Families. 
Phylogenetic Analysis, Paralogon Groups, and Fingerprints.  Molecular 
Pharmacology 2003, 63(6):1256-1272.

2. Jacoby E, Bouhelal R, Gerspacher M, Seuwen K: The 7 TM G-Protein-
Coupled Receptor Target Family.  Chem Med Chem 2006, 1(8):760-782.

3. Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, 
IJzerman AP, Stevens RC: The 2.6 Angstrom Crystal Structure of a 
Human A2A Adenosine Receptor Bound to an Antagonist.  Science 
2008:1164772.

4. Ballesteros J, Palczewski K: G protein-coupled receptor drug discovery: 
Implications from the crystal structure of rhodopsin.  Curr Opin Drug 
Discovery Dev 2001, 4(5):561-574.

5. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, 
Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, et al.: High-Resolution 
Crystal Structure of an Engineered Human β2-Adrenergic G Protein 
Coupled Receptor.  Science 2007, 318(5854):1258-1265.

6. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, 
Henderson R, Leslie AGW, Tate CG, Schertler GFX: Structure of a β1-
adrenergic G-protein-coupled receptor.  Nature 2008, 
454(7203):486-491.

7. Klabunde T, Hessler G: Drug Design Strategies for Targeting G-Protein-
Coupled Receptors.  Chem Bio Chem 2002, 3(10):928-944.

8. Balakin KV, Tkachenko SE, Lang SA, Okun I, Ivashchenko AA, Savchuk NP: 
Property-Based Design of GPCR-Targeted Library.  J Chem Inf Comput Sci 
2002, 42(6):1332-1342.

9. Chang LCW, Spanjersberg RF, von Frijtag Drabbe-Künzel JK, Mulder-
Krieger T, van den Hout G, Beukers MW, Brussee J, IJzerman AP: 2,4,6-
Trisubstituted Pyrimidines as a New Class of Selective Adenosine A1 

Receptor Antagonists.  J Med Chem 2004, 47(26):6529-6540.
10. Bywater R: Privileged Structures in GPCRs.  In GPCRs: From 

Deorphanization to Lead Structure Identification Edited by: Bourne H, Horuk 
R, Kuhnke J, Michel H. Springer-Verlag; 2007:75-92. 

11. Doddareddy MR, Westen GJPv, Horst Evd, Peironcely JE, Corthals F, 
IJzerman AP, Emmerich M, Jenkins JL, Bender A: Chemogenomics: 
Looking at biology through the lens of chemistry.  Statistical Analysis 
and Data Mining 2009, 2(3):149-160.

12. Bender A, Young DW, Jenkins JL, Serrano M, Mikhailov D, Clemons PA, 
Davies JW: Chemogenomic data analysis: Prediction of small-molecule 
targets and the advent of biological fingerprints.  Comb Chem High 
Throughput Screening 2007, 10(8):719-731.

13. Klabunde T: Chemogenomic approaches to drug discovery: similar 
receptors bind similar ligands.  Br J Pharmacol 2007, 152(1):5-7.

14. Kolakowski LFJ: GCRDb: a G-protein-coupled receptor database.  Recept 
Channels 1994, 2:1-7.

15. Surgand J-S, Rodrigo J, Kellenberger E, Rognan D: A chemogenomic 
analysis of the transmembrane binding cavity of human G-protein-
coupled receptors.  Proteins: Struct, Funct, Bioinf 2006, 62(2):509-538.

16. Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards 
PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, et al.: Crystal 
structure of the human β2 adrenergic G-protein-coupled receptor.  
Nature 2007, 450(7168):383-387.

17. Gloriam DE, Foord SM, Blaney FE, Garland SL: Definition of the G Protein-
Coupled Receptor Transmembrane Bundle Binding Pocket and 
Calculation of Receptor Similarities for Drug Design.  J Med Chem 2009, 
52(14):4429-4442.

18. Bender A, Jenkins JL, Glick M, Deng Z, Nettles JH, Davies JW: "Bayes 
Affinity Fingerprints" Improve Retrieval Rates in Virtual Screening and 
Define Orthogonal Bioactivity Space: When Are Multitarget Drugs a 
Feasible Concept?  J Chem Inf Model 2006, 46(6):2445-2456.

19. Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, Urban L, 
Whitebread S, Jenkins JL: Analysis of Pharmacology Data and the 
Prediction of Adverse Drug Reactions and Off-Target Effects from 
Chemical Structure.  ChemMedChem 2007, 2(6):861-873.

20. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK: 
Relating protein pharmacology by ligand chemistry.  Nat Biotech 2007, 
25(2):197-206.

21. van der Horst E, Okuno Y, Bender A, IJzerman AP: Substructure Mining of 
GPCR Ligands Reveals Activity-Class Specific Functional Groups in an 
Unbiased Manner.  J Chem Inf Model 2009, 49(2):348-360.

22. Borgelt C, Berthold MR: Mining Molecular Fragments: Finding Relevant 
Substructures of Molecules.  In Proceedings of the 2002 IEEE International 
Conference on Data Mining: 2002 IEEE Computer Society; 2002:51-58. 

23. Nijssen S, Kok JN: A quickstart in frequent structure mining can make a 
difference.  In Proceedings of the tenth ACM SIGKDD international 
conference on Knowledge discovery and data mining: 2004 ACM Press, New 
York, USA; 2004:647-652. 

24. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin J-P, Davenport AP, 
Spedding M, Harmar AJ: International Union of Pharmacology. XLVI. G 
Protein-Coupled Receptor List.  Pharmacol Rev 2005, 57(2):279-288.

25. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G: GPCRDB 
information system for G protein-coupled receptors.  Nucl Acids Res 
2003, 31(1):294-297.

26. Baker JG: The selectivity of β-adrenoceptor antagonists at the human 
β1, β2 and β3 adrenoceptors.  Br J Pharmacol 2005, 144(3):317-322.

27. Van Zwieten PA, Doods HN: Muscarinic receptors and drugs in 
cardiovascular medicine.  Cardiovascular Drugs and Therapy 1995, 
9(1):159-167.

28. Voigtländer U, Jöhren K, Mohr M, Raasch A, Tränkle C, Buller S, Ellis J, Höltje 
H-D, Mohr K: Allosteric site on muscarinic acetylcholine receptors: 
identification of two amino acids in the muscarinic M2 receptor that 
account entirely for the M2/M5 subtype selectivities of some 
structurally diverse allosteric ligands in N-methylscopolamine-
occupied receptors.  Molecular Pharmacology 2003, 64(1):21-31.

29. Okuno Y, Tamon A, Yabuuchi H, Niijima S, Minowa Y, Tonomura K, 
Kunimoto R, Feng C: GLIDA: GPCR ligand database for chemical 
genomics drug discovery database and tools update.  Nucl Acids Res 
2008, 36(suppl_1):D907-912.

30. Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL: Global 
mapping of pharmacological space.  Nat Biotech 2006, 24(7):805-815.

31. Cuisiat S, Bourdiol N, Lacharme V, Newman-Tancredi A, Colpaert F, Vacher 
B: Towards a New Generation of Potential Antipsychotic Agents 
Combining D2 and 5-HT1A Receptor Activities.  J Med Chem 2007, 
50(4):865-876.

32. Lawrence AJ: Optimisation of anti-psychotic therapeutics: a balancing 
act?  Br J Pharmacol 2007, 151(2):161-162.

33. Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS, Bywater 
RP: Recognition of Privileged Structures by G-Protein Coupled 
Receptors.  J Med Chem 2004, 47(4):888-899.

34. Schnur DM, Hermsmeier MA, Tebben AJ: Are Target-Family-Privileged 
Substructures Truly Privileged?  J Med Chem 2006, 49(6):2000-2009.

35. Abramovitz M, Adam M, Boie Y, Carrière M-C, Denis D, Godbout C, 
Lamontagne S, Rochette C, Sawyer N, Tremblay NM, et al.: The utilization 
of recombinant prostanoid receptors to determine the affinities and 
selectivities of prostaglandins and related analogs.  Biochim Biophys 
Acta, Mol Cell Biol Lipids 2000, 1483(2):285-293.

36. Pettipher R, Hansel TT, Armer R: Antagonism of the prostaglandin D2 
receptors DP1 and CRTH2 as an approach to treat allergic diseases.  Nat 
Rev Drug Discov 2007, 6(4):313-325.

37. Wang S, Gustafson E, Pang L, Qiao X, Behan J, Maguire M, Bayne M, Laz T: A 
Novel Hepatointestinal Leukotriene B4 Receptor. Cloning and 
Functional Characterization.  J Biol Chem 2000, 275(52):40686-40694.

38. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T: A G-protein-coupled 
receptor for leukotriene B4 that mediates chemotaxis.  Nature 1997, 
387(6633):620-624.

39. Le Crom S, Kapsimali M, Barôme P-O, Vernier P: Dopamine receptors for 
every species: Gene duplications and functional diversification in 

Received: 4 March 2010 Accepted: 10 June 2010 
Published: 10 June 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/316© 2010 van der Horst et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:316

http://www.biomedcentral.com/1471-2105/11/316
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18594507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12362358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8081729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17952055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19537715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17125186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17477341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19434836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15655528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7786837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12815157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17986454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17300168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17375084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16539387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17396136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11006272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9177352


van der Horst et al. BMC Bioinformatics 2010, 11:316
http://www.biomedcentral.com/1471-2105/11/316

Page 12 of 12
Craniates.  Journal of Structural and Functional Genomics 2003, 
3(1):161-176.

40. Zhang J, Xiong B, Zhen X, Zhang A: Dopamine D1 receptor ligands: 
where are we now and where are we going.  Med Res Rev 2009, 
29(2):272-294.

41. Roth BL, Sheffler D, Potkin SG: Atypical antipsychotic drug actions: 
unitary or multiple mechanisms for 'atypicality'?  Clinical Neuroscience 
Research 2003, 3(1-2):108-117.

42. Coward DM: General pharmacology of clozapine.  The British Journal of 
Psychiatry Supplement 1992:5-11.

43. Zakon HH: Convergent Evolution on the Molecular Level.  Brain, 
Behavior and Evolution 2002, 59(5-6):250-261.

44. Mestres J, Gregori-Puigjane E, Valverde S, Sole RV: Data completeness--
the Achilles heel of drug-target networks.  Nat Biotech 2008, 
26(9):983-984.

45. Bemis GW, Murcko MA: The Properties of Known Drugs. 1. Molecular 
Frameworks.  J Med Chem 1996, 39(15):2887-2893.

46. van der Horst E, IJzerman AP: Computational Approaches to Fragment 
and Substructure Discovery and Evaluation.  In Fragment-Based Drug 
Discovery: A Practical Approach Edited by: Zartler ER, Shapiro J, Chichester 
M. West Sussex, U.K.: John Wiley & Sons, Ltd; 2008. 

47. Bernasconi P, Min C, Galasinski S, Popa-Burke I, Bobasheva A, Coudurier L, 
Birkos S, Hallam R, Janzen WP: A Chemogenomic Analysis of the Human 
Proteome: Application to Enzyme Families.  J Biomol Screen 2007, 
12(7):972-982.

48. ChEMBL   [http://www.ebi.ac.uk/chembl/]
49. Roth BL, Lopez E, Beischel S, Westkaemper RB, Evans JM: Screening the 

receptorome to discover the molecular targets for plant-derived 
psychoactive compounds: a novel approach for CNS drug discovery.  
Pharmacol Ther 2004, 102(2):99-110.

50. The UniProt Consortium: The Universal Protein Resource (UniProt).  Nucl 
Acids Res 2008, 36(suppl_1):D190-195.

51. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, 
Church DM, DiCuccio M, Edgar R, Federhen S, et al.: Database resources 
of the National Center for Biotechnology Information.  Nucl Acids Res 
2008:D13-D21.

52. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang 
Z, Woolsey J: DrugBank: a comprehensive resource for in silico drug 
discovery and exploration.  Nucl Acids Res 2006, 34(suppl_1):D668-672.

53. GPCRDB   [http://www.gpcr.org/7tm/]
54. GASTON   [http://www.liacs.nl/~snijssen/gaston/]
55. Wörlein M, Meinl T, Fischer I, Philippsen M: A Quantitative Comparison of 

the Subgraph Miners MoFa, gSpan, FFSM, and Gaston.  Knowledge 
Discovery in Databases: PKDD 2005 2005:392-403.

56. Agrawal R, Srikant R: Fast Algorithms for Mining Association Rules in 
Large Databases.  In Proceedings of the 20th International Conference on 
Very Large Data Bases: September 12 - 15 1994 Morgan Kaufmann 
Publishers, San Francisco, CA; 1994:487-499. 

57. Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.6. 
Distributed by the author. Department of Genome Sciences, University 
of Washington, Seattle.  2005.

58. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary 
Genetics Analysis (MEGA) Software Version 4.0.  Mol Biol Evol 2007, 
24(8):1596-1599.

59. Garr CD, Peterson JR, Schultz L, Oliver AR, Underiner TL, Cramer RD, 
Ferguson AM, Lawless MS, Patterson DE: Solution Phase Synthesis of 
Chemical Libraries for Lead Discovery.  J Biomol Screen 1996, 
1(4):179-186.

doi: 10.1186/1471-2105-11-316
Cite this article as: van der Horst et al., A novel chemogenomics analysis of 
G protein-coupled receptors (GPCRs) and their ligands: a potential strategy 
for receptor de-orphanization BMC Bioinformatics 2010, 11:316

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12836695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18642350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1358127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12207082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8709122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17942790
http://www.ebi.ac.uk/chembl/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15163592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18045790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381955
http://www.gpcr.org/7tm/
http://www.liacs.nl/~snijssen/gaston/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488738

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Sequence-based classification
	Ligand-based classification
	Tree comparison
	Validation
	Limitations of the work

	Conclusions
	Methods
	Datasets
	Tree generation
	Tree comparison
	Validation

	Additional material
	Authors' contributions
	Acknowledgements
	Author Details
	References

