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4
Machine Learning to Identify Subtle Patterns

and Improve Object Recognition

“ In this chapter, we choose some sophisticated features and use them in a
machine learning approach to improve the recognition of objects and to
identify subtle patterns between different objects. As a case study, we applied
this machine learning approach on S. cerevisiae yeast cells. In the first
experiment, we identify different characteristics between two different cell
groups cultivated under different stress levels. In the second experiment, we
improve the recognition of S. cerevisiae yeast cells by classifying the intact
cells from artefacts, i.e. debris and dead cells existing in the culture medium.
Since the dataset generated in both experiments are imbalanced, we were
careful in the evaluation of classifiers built by the machine learning process.
We considered sampling of data, scaling, feature selection, cross-validation
and evaluation metrics. ”

This chapter is based on the following publications:

• Mohamed S. Tleis and Fons J. Verbeek. "Machine Learning approach to discriminate
Saccharomyces cerevisiae yeast cells using sophisticated image features." Journal of
Integrative Bioinformatics, 12(3):276, 2015.

• Mohamed S. Tleis and Fons J. Verbeek. "Machine Learning approach to segment Sac-
charomyces cerevisiae yeast cells." In third International Conference on Advances in
Biomedical Engineering (ICABME). pp. 278-281. IEEE, 2015.
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4.1 Introduction

SUBTLE Patterns such as different characteristics that are hard to notice from the basic
measurment and statistical analysis of data, are not easily extracted from these measurement

or basic statistical analysis. These subtle patterns are especially intrinsic in high throughput
screening (HTS) where thousands of images are analysed. Moreover, when biologists study an
organism in two different conditions, it can be not possible to know if different groups of that
organism have different characteristics. In addition, recognition of objects in images prior to
their analysis is quintessential in order to generate meaningful conclusions. Thus, the need of
an automatic system to extract those hidden features and to recognize objects.

As an application, we take the S. cerevisiae as a case study. The segmentation module of the
automated analysis platform, i.e. YeastAnalysis, discussed in Chapter 2, provides a segmentation
of the cells obtained from the microscope images, while the measurement module measures
various features of the segmented cells. The data analysis part analyzes the measurement and
report relevant statistics about the different cell groups. When biologists construct and study
different yeast cell strains cultivated in different media, it can be not possible to know if the
different cell groups have different characteristics for the same expressed proteins. Thus the
need for an automatic system to identify any charactersitic difference.

Our novel segmentation algorithm in YeastAnalysis segments intact cells as well as artefacts.
These artefacts can be dead cells or debris existing in the culture medium. Artefacts have
negative effects on the analysis result of the experiments. These artefacts can be interactively
excluded after the segmentation using YeastAnalysis platform; however, in high throughput
screening (HTS) where thousands of images are analysed, manual checking is not feasible
anymore. Thus, the need of an automatic system to exclude such artefacts prior to analysis.

The research question in this work is what machine learning approach can be used to improve
object recognition and identify subtle patterns in a dataset of sophisticated features? and the sub-
question is whether the combination of various feature sets can improve the performance of this
machine learning approach? The features (attributes) for training the machine learning system
were selected in a way to offer a more sophisticated description of the intensity and morphology
characteristics of the objects. The machine learning workflow is depicted in Fig. 4.1.

Applying the extraction techniques that we will use is mentioned in the first section. We cre-
ated two different dataset on the basis of sophisticated features. Since our dataset is imbalanced
with a different ratio for different cell groups, we were careful in our evaluation to choose the
classifier system that can classify well the majority as well as the minority classes. Therefore,
we considered sampling and normalization techniques prior to feature selection algorithms. A
number of linear and non-linear classifiers were evaluated to select the best model that can
classify the instances in the first dataspace into cells belonging to a different group, i.e. different
strain, or cultured in a different medium, and the best model that can classify the instances in
the second dataset into intact cells or artefacts.
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The result shows that many classifiers have an excellent performance after data preprocess-
ing. Consequently, two classification models are built. As a result, the first model allows to
identify the different characteristics of objects, while the second model has raised the perfor-
mance level of the measurement and consequently the pattern recognition system.

In the next section, we will discuss the sophisticated feature sets we presented then we
discuss the classification process for our dataset.

4.2 Sophisticated Features
In Chapter 2 we presented our developed platform to perform image analysis on S. cerevisiae
yeast cells. This platform can segment the cells and measure a range of features and textures for
each individual cell obtained from two channel images acquired by a laser scanning confocal
microscope (CLSM). Figure 4.2 shows a sample two-channels image of S. cerevisiae yeast
cells. The first channel in Fig. 4.2(a) is a bright-field channel depicting yeast cell structures.
The second overlaid channel in Fig. 4.2(b) is a fluorescent channel of the BMH1 gene expressed
Bmh1 protein binding with GFP protein cultivated in lowNaCl medium. The yellow contours
surrounding the cells in Fig. 4.2 are the results of our segmentation algorithm [Tle14]. Such
segmentation of individual cells enables us to introduce sophisticated features and texture
measurement to describe the characteristics of cell morphology and intensity distribution of
individual cells. These features and texture measurement (cf. Section 1.3.2) facilitate the
analysis and discrimination of different yeast cells.

Next, we define the concept of extraction techniques. Subsequently, we select and discuss
well-known extraction techniques that are useful in analyzing biological images. The benefits
of combining these extraction techniques will be revealed in the results. Before that, we discuss
building a machine learning system using the feature set extracted using these techniques
explained in this section.'
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4.2.1 Feature Extraction Techniques

Feature extraction is one very important area of application in image processing, in which
algorithms are used to detect and isolate various desired portions or shapes (features) of a
digitized image. Feature extraction is defined as locating those pixels in an image that have
some distinctive characteristics [Gub09]. In our research, we considered the most known feature
extraction techniques in image analysis. These techniques are classified into histogram based
features and the moment invariants derived from them, co-occurrence matrix based features,
and multi-scale features [Mat98]. Hereafter, we start discussing the histogram based features
then the moment invariants derived from them. Subsequently, we explain the additional features
derived from the co-occurrence matrix. We complete this sub-section by highlighting on the
multi-scale features and specifically wavelet-based texture features.

First order statistics based features

The histogram of intensity levels is a concise and simple summary of the statistical information
contained in the image. Calculation of the grey-level histogram involves single pixel. Thus
the histogram contains the first-order statistical information about the image, i.e. the region of
interest (RoI) of cell objects. Different useful image features are worked out from the histogram
to quantitatively describe the first-order statistical properties of the cells. In this study, we
considered many basic shape descriptors based on the first order statistics, and the most relevant
texture features among those originally proposed by Haralick et al. [Har79, Gon08]. These
features were already discussed in Section 2.4 and a list of those features are listed in Table 2.1
and Table 2.2.

Another way to characterize the texture is by deriving moment invariants from the first order
statistical information in the histogram [Pap65]. The following sub-section discusses these
moment invariant features.'
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(a) Bright-field channel depicting structure of cells. (b) Fluorescent channel depicting Bmh1-GFP gene

expressed protein.

Figure 4.2: S. cerevisiae Yeast Cell Images.
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Moment invariant features

Recognition of visual patterns independent of position, size, and orientation in the visual field
has been a goal of much recent research. To achieve maximum utility and flexibility, it would
be useful if the extraction technique is insensitive to variations in shape and provide improved
performance with repeated trials. This property is known in moment invariant techniques. An
image moment is a certain particular weighted average, i.e. moment, of the pixel intensities in an
image or a function of such moments chosen to have some attractive property or interpretation.
Traditionally, moment invariants are computed based on the information provided by both the
shape boundary and its interior region. Image moments are useful after segmentation to describe
cell characteristics that uniquely describe the shape of that cell. Low order moments are used
to derive simple properties including area, total intensity, centroid, skewness, kurtosis and
information about the cell’s orientation. Moment invariant values are invariant to translation,
scale and rotation of the cell [Key01]. For example, the first rotation invariant moment is known
to be analogous to the moment of inertia around the image’s centroid, where the pixel intensities
are analogous to physical density. The seventh one, is skew invariant, which enables it to
distinguish mirror images of otherwise identical images [Hu62]. Although wavelet transform
(discussed in section 4.2.1) is scale invariant, it is not in all cases translation or rotation
invariant [Jaf05], this is an additional advantage of moment invariants in our measurements.
Moment Invariants have been frequently used as features for image processing, remote sensing,
shape recognition and classification. They showed to be fairly reliable at distinguishing certain
classes of topographic objects [Key01] as well as in many other applications [Mat98]. In yeast
studies, the first and second moment invariants were the top predictors to classify virulent from
non virulent cells [van07].

Hu [Hu62] defines seven shape descriptor values derived from central moments through or-
der three that are independent to object translation, scale and orientation. Translation invariance
is achieved by computing moments that are normalized with respect to the center of gravity
so that the center of mass of the distribution is at the origin (central moments). Size invariant
moments are derived from algebraic invariants but these can be shown to be the result of a
simple size normalization. From the second and third order values of the normalized central
moments a set of seven invariant moments can be computed which are independent of rotation.
The set of seven moment invariants proposed by Hu are widely known [Gon08], and hence we
adopted them in our study. We define Hu’s set as in Eq. 4.1, where Φ1 and Φ2 are invariants
based on second order moments, whileΦ3 ...Φ7 are invariants based on third order moment.

hu = {Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ7} (4.1)

The effectiveness of moment invariants will increase when fused with the results of other
techniques [Key01]. In this research we fuse them with wavelet-based texture measurements to
get the best from these approaches in the classification step required to discriminate between
various cell conditions. The co-occurrence matrix based features and the wavelet-based texture
features are discussed in the following sub-sections.
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Co-occurrence matrix based features

The simplicity of texture attributes can not completely characterize texture of the cells. Studies
state that similar textures agree in their second-order statistics [Mat98] and hence textures can be
discriminated if they differ in their second-order statistics. Therefore one of the major statistical
methods used in texture analysis is the one based on the definition of the joint probability
distribution of pairs of pixels. Methods based on second-order statistics, i.e. statistics given
by pairs of pixels, have been shown to achieve good discrimination rates in texture classifi-
cation [Wes76], and considered to be important in automated image analysis [Nie81]. The
second-order statistical features for texture analysis are derived from the co-occurrence ma-
trix [Har79]. They were demonstrated to feature a potential for effective texture discrimination
in biomedical images as well [Ler93].

The second-order histogram is defined as the co-occurrence matrix Cdθ(i, j). When divided
by the total number of neighbouring pixels R(d,θ) in the image, this matrix becomes the
estimate of the joint probability Pdθ(i, j) of two pixels, a distance d apart along a given
direction θ having particular "co-occurring" values i and j [Mat98]. Formally, for image
f(x,y) with a set of L discrete intensity levels, the matrix Cdθ(i, j) is defined such that its
(i, j)th entry is equal to the number of times that: f(x1,y1) = i and f(x2,y2) = j, where
(x2,y2) = (x1,y1) + (dcosθ,dsinθ). This yields a square matrix of dimension equal to
the number of intensity levels in the image, for each distance d and orientation θ. Most
relevant co-occurrence matrix derived features used for the purpose of texture discrimination
are the angular second moment, correlation, inertia, absolute value, entropy and maximum
probability [Har79, Lah09]. Table 4.1 lists descriptions for these features. In this research we
calculated the measures at distance d = 1 for horizontal, vertical and diagonal orientations at
θ = 0°, 90°, 45° and 135° to achieve a degree of rotational invariance.

Multi-scale features and Wavelet-based texture measurement

Various methods adopted for calculating multi-scale features. The most commonly used are
the Wigner distributions, Gabor functions and wavelet transforms. These transform methods of
texture analysis represent an image in a space whose coordinate system has an interpretation that
is closely related to the characteristics of a texture, i.e. frequency or size. Wigner distribution
are found to possess interference terms between different components of a signal. These
interference terms lead to wrong signal interpretation. Gabor filters are criticized for their
non-orthogonality that result in redundant features at different scales or channel. On the
other hand, the wavelet transform, being a linear operation, does not produce interference
terms nor redundant features. For this reason, our interest is in the application of the wavelet
transform to texture analysis. Discrete wavelet transform (DWT) derived features appear to
be a suitable tool to be used for digital image texture analysis, because they allow analysis of
images at various levels of resolution. The DWT provides powerful insight into an image’s
spatial and frequency characteristics [Koc01]. Moreover, it has shown to be an efficient
descriptor for phenotyping [Cao14]. In general, wavelet analysis is highly capable of revealing
aspects of data such as trends, breakdown points, discontinuities in higher derivatives and self
similarity [Shr13].
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Table 4.1: Co-occurrence-matrix based features

Features Description
Angular second
moment (ASM)

Also known as uniformity and it is a measure of cell homogeneity. The maximum value is
achieved when all the elements in the co-occurrence matrix are equal.

ASM =
L−1
∑
i=0

L−1
∑
j=0

[p(i, j)]2 (4.2)

Correlation The correlation measures the dependencies between the yeast cell image pixels. µx, µy
and σx, σy denote the mean and standard deviations of the row and column sums of the
co-occurrence matrix respectively.

Correlation =
L−1
∑
i=0

L−1
∑
j=0

ijp(i, j) −µxµy
σxσy

(4.3)

Inertia Inertia is also known as contrast. It is calculated by squaring the subtraction of the examined
pixel values. Thus, the minimum value is when the pixels have the same grey-level value,
and the maximum is achieved when squaring the subtraction of L and 1.

Inertia =
L−1
∑
i=0

L−1
∑
j=0

(i − j)2p(i, j) (4.4)

Absolute value It calculates the absolute value of the subtraction of the examined pixel values. Hence it
ranges between 0 and L.

Absolute value =
L−1
∑
i=0

L−1
∑
j=0

∣i − j∣p(i, j) (4.5)

Inverse difference It has relatively high value when the high value in the co-occurrence matrix are near the
main diagonal, where the difference (i − j) is smaller there.

Inverse difference =
L−1
∑
i=0

L−1
∑
j=0

p(i, j)
1 + (i − j)2

. (4.6)

Entropy The entropy measures the complexity of the texture. It is a measure of randomness,
achieving its highest value when the elements in the matrix are maximally random.

entropy = −
L−1
∑
i=0

L−1
∑
j=0
p(i, j)log2[p(i, j)]. (4.7)

Maximum probability Gives an indication of the strongest response in the co-occurrence matrix.

Maximum probability =maxi,jp(i, j) (4.8)
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Approximations and details are the most important terms in wavelet analysis. The ap-
proximations are the high-scale, low-frequency components of the image signal, while the
decomposition process in the wavelet transform generates the coefficient matrices for the level-
one approximation and horizontal, vertical and diagonal details. In this study, we include a
bi-orthogonal wavelet in which texture details are derived from the three different directions on
the same scale as the original image [Cao14]. The derived wavelet-based textures are the same
as those derived for the original cells and listed in Table 2.2.

In this section we highlight on the powerful set of extraction techniques that we haven
chosen in our research to measure individual yeast cells. The extracted sophisticated features
and textures are quintessential for pattern recognition and identification of subtle patterns
residing within our measured data. In the following section, we will discuss the application of
machine learning using these sophisticated features. Then we show the results that reveal the
advantages of these features.

4.3 Constructing the Classification Model
In this section, we will address the creation of our datasets and discuss the sampling techniques
applied on these datasets to study whether such techniques have any impact on the classification
results. Similarly we discuss the various normalization schemes used. Subsequently we highlight
the used feature selection algorithms. Thereafter we provide detail about the evaluation metrics.
The last part is about the classifiers considered in the comparison. The results are discussed
later in the next section.

4.3.1 Imbalanced Dataset and Sampling Techniques
In order to generate our dataset for the purpose of object pattern discrimination and object
recognition, we extracted features to describe the object characteristics and morophology in a
more sophisticated way.

In our two experiments performed on S. cerevisiae yeast cells, we generate two datasets
S1 and S2. S1 consisting of 1440 yeast cell instances belonging to two major classes, one
representing cells showing genes tagged with (GFP) reporter and expressing 14-3-3 proteins.
The first class of cells is cultivated under low osmotic stress level, i.e. non-NaCl medium, and
the other representing same cell strains under a high stress level, i.e. 0.5M-NaCl medium. The
second dataset, i.e. S2, consists of 1380 segmented objects belonging to two major classes, one
representing intact yeast cells and the other representing artefacts in the microscope images.
After segmentation, all cells are measured for the features mentioned previously in Section 4.2.
Each instance I in these two datasets is mapped to one element of the set (p,n) of positive and
negative class labels representing the two different cell classes of low vs. high stress levels in
S1 and intact vs. artefacts in S2 respectively. We need to build a classification model to map
from instances to predicted classes. Given a classifier and a test set of instances, a two-by-two
confusion matrix, also known as contingency table is constructed to represent the dispositions
of the set of instances. This matrix forms the basis for many metrics we used to evaluate the
classifiers [Faw06].
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Our dataset S1 and S2 are considered imbalanced since they exhibit an unequal distribution
between their positive class, i.e. yeast cells under low osmotic stress in S1 or intact cells in S2,
and their negative class, i.e. yeast cells under high stress in S1 or artefacts in S2 classes. The ratio
of positive to negative classes being around 2.7 ∶ 1 in S1 and 8 ∶ 1 in S2. Hence, in this domain,
we require a classifier that will provide high accuracy for the negative minority class without
severely jeopardizing the accuracy of the positive majority class. In conventional evaluation
practice, singular assessment criteria, e.g. the overall accuracy or error rate are used. These
criteria do not provide adequate information in the case of imbalanced learning because most
standard algorithms assume or expect balanced class distributions or equal misclassification
costs.

The problem of learning from imbalanced data is a relatively new challenge that has attracted
growing attention and has become apparent in all kinds of datasets.

The induction rules that describe the minority concepts are often fewer and weaker than
those of majority concepts, since the minority class is often both outnumbered and under-
represented. Successive partitioning of the dataspace results in fewer and fewer observations of
minority class examples resulting in fewer rules describing minority concepts and successively
weaker confidence estimates. In addition, concepts that have dependencies on different feature
space conjunctions can go unlearned by the sparseness introduced through partitioning. The
application of sampling techniques has shown to improve classifier accuracy. Therefore, we
considered three well-known sampling techniques, namely under-sampling, over-sampling and
Synthetic Minority Oversampling technique (SMOTE).

We define subsets Smin ⊂ Sd and Smaj ⊂ Sd where Sd refers to either dataset S1 or S2,
Smin is the set of minority class instances in Sd, and Smaj is the set of majority class instances
in Sd, so that Smin ∩ Smaj = {φ} and Smin ∪ Smaj = {Sd}.

Random under-sampling removes data from the original data set. In particular, we randomly
select a set of majority class instances in Smaj and remove these instances from Sd so that
∣Sd∣ = ∣Smin∣ + ∣Smaj∣ − ∣E∣, where E represents the set removed by the sampling procedure.
Under-sampling readily gives us a simple method for adjusting the balance of the original data
set Sd; however, removing instances from the majority class may cause the classifier to miss
important concepts pertaining to the majority class.

In oversampling, multiple instances of certain examples become "tied" since it simply
appends replicated data to the original dataset, leading to overfitting. In particular, overfitting
in oversampling occurs when classifiers produce multiple clauses in a rule for multiple copies
of the sample example which causes the rule to become too specific; although the training
accuracy will be high in this scenario, the classification performance on the unseen testing data
is generally far worse.

The synthetic minority oversampling technique (SMOTE), on the other hand, is a powerful
method that has shown a great deal of success in various applications. It creates artificial data
based on the feature space similarities between existing minority instances. Specifically, for
subset Smin, consider the K-nearest neighbours for each instance xi ∈ Smin for some specified
integer K; the K-nearest neighbours are defined as the K elements of Smin whose euclidean
distance between itself and xi under consideration exhibits the smallest magnitude along the
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n-dimensions of feature space X. To create a synthetic sample, we randomly select one of the
K-nearest neighbours, then multiply the corresponding feature vector difference with a random
number ∈ [0, 1], and finally add this vector to the minority instance xi ∈ Smin as depicted in
Eq. 4.9, where x̂i ∈ Smin is one of the K-nearest neighbours for xi, and δ ∈ [0, 1] is a random
number. Therefore, the resulting synthetic instance according to Eq. 4.9 is a point along the
line segment joining xi under consideration and the randomly selected K-nearest neighbour
x̂i [He09]. Applying SMOTE to balance both of our datasets increased the accuracy of the
classification as we will see in the next section. Moreover, the classification accuracy obtained
after applying SMOTE significantly outperformed both the under-sampling and over-sampling
methods.

xnew = xi + (x̂i − xi) × δ, where δ ∈ [0, 1] (4.9)

4.3.2 Feature Scaling or Normalization
Feature scaling is a method used to standardize the range of independent variables or features
of data. In data processing, it is also known as data normalization and is generally performed
during the data preprocessing step [Ver14]. Since the range of values of the raw data in our
dataset varies, some machine learning algorithms will not work properly without normalization.
For example in distance classifiers, the range of all features should be normalized so that
each feature contributes approximately proportionately to the final distance. In our work we
considered two well-known normalization techniques which are unit-length normalization (UL)
and zero-mean and unit-variance normalization (MV) [Štr09]. Feature normalization techniques
represent a vital part in building the classification model. They aim at normalizing the individual
components of the extracted feature vectors in such a way that the resulting vectors are better
suited for classification.

Unit length normalization (UL) scales all of the components xi (i = 1, 2,. . . .,d) of vector x
of all instances in our dataset Sd in accordance with the expression in Eq. 4.10 to produce the
normalized feature vector x∗, where ∣∣.∣∣ denotes the norm operator, and xi∗ stands for the ith

component of the normalized vector x∗.

xi
∗
=
xi

∣∣x∣∣
, i = 1, 2, ...d, (4.10)
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The zero-mean and unit-variance normalization is defined in Eq. 4.11, where µ denotes the
mean value of the feature vector x and σ represents its standard deviation. TheMV technique
transforms the feature vector x to a random variable with a mean value of zero and variance of
one. It is assumed the individual components of the feature vector are normally distributed.

xi
∗
=

(xi − µ)

σ
, i = 1, 2, . . . .,d, (4.11)

Applying both normalization schemes to scale our dataset improved the accuracy of the
classification. More details are illustrated in the next section. The zero-mean and unit-variance
normalization outperforms the unit length normalization in both experiment dataset, hence, we
adopted the zero-mean unit variance as a normalization scheme for our datasets.

4.3.3 Feature Selection

In machine learning and statistics, dimensionality reduction or dimension reduction is the
process of reducing the number of random variables under consideration, and can be divided
into feature selection and feature extraction. It is used to assist in the data analysis process.

Feature selection also known as variable or attribute selection, can be defined as a process
that chooses a minimum subset of M features from the original set of N features, so that the
feature space is optimally reduced according to a certain evaluation criterion. The reduced
feature space are the most important parameters which help in predicting the outcome. Finding
the best feature subset is usually intractable and many problems related to feature selection have
been shown to NP-hard. The objective of feature or variable selection is three-fold:

• improving the prediction performance of the classifiers on the testing dataset.

• providing faster and more cost effective classifiers.

• providing a better understanding of the underlying process that generated the data.

Selecting the most relevant features is suboptimal for building our predictor, particularly
if the features are redundant or irrelevant. Redundant features are those that provide no more
information than the currently selected features, and irrelevant features provide no useful
information in any context. For our data, we considered two well-known feature selection
algorithms which are the Information Gain (IG) method and the Correlation Feature Selection
(CFS).

Next to feature selection is feature extraction, which transforms the data in the high-
dimensional space to a space of fewer dimensions. We considered the main linear technique
for feature extraction, i.e. the principal component analysis (PCA), which performs a linear
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mapping of the data to a lower-dimensional space in such a way that the variance of the data in
the low-dimensional representation is maximized.

4.3.4 Building a Classifier

The prediction problem for our case study is to predict whether the cells are cultivated under high
osmotic stress vs. those under low osmotic stress in dataset S1 or those intact cells vs. artefacts
in dataset S2. The classification models are given a training dataset of known ground-truth data,
and a testing dataset of unknown first-seen data against which the models are tested. In order
to limit problems like over-fitting and give an insight on how the model will generalize to an
independent dataset, the widely used 10-fold cross validation is considered [Kim11]. Over-
fitting occurs when the classification model does not fit this validation data as well as it fits the
training data. Cross validation is important in protecting against testing hypotheses suggested
by the data, also known as Type III errors [Don13a]. Its advantage is that all observations are
used for both training and validation, and each observation is used for validation exactly once.

4.3.5 Evaluation metrics, ROC and AUC

A receiver operating characteristic (ROC) curve is a two dimensional graphical plot that illus-
trates the performance of a binary classifier system, which predicts a two-class problem in which
the outcomes are labelled either as positive (p) or negative (n) [Lak11]. The curve is created by
plotting the true positive rate (TPR) on the Y axis against the false positive rate (FPR) on the
X-axis at various threshold settings. TPR is also known as sensitivity in biomedical informatics,
or recall in machine learning [Li14]. TPR defines how many correct positive results occur
among all positive samples available during the test. On the other hand, FPR also known in
biomedical informatics as (1-Specificity) defines how many incorrectly labeled positive results
occur among all negative samples available during the test [Sen13]. Each prediction result or
instance of a confusion matrix represents one point in the ROC space [Ras13].

The ROC graphs are useful for evaluating our classifiers and visualizing their performance.
ROC graphs have been successfully used in medical decision making, and in recent years,
they are popular in machine learning and data mining research, due to the realization that
scalar measures such as simple classification accuracy, error rate or error cost are often poor
metrics for measuring performance. ROC graphs have properties that make them especially
useful for domains with skewed class distribution and unequal classification error costs. These
characteristics have become increasingly important as research continues into the areas of
cost-sensitive learning and learning in the presence of unbalanced classes [Faw06]. ROC
analysis provides tools to select possibly optimal models [Bes10]. Classifiers appearing on the
left-hand side of an ROC graph, near the X axis, may be thought of as “conservative”: they
make positive classifications only with strong evidence so they make few false positive errors,
but they often have low true positive rates as well. Classifiers on the upper right-hand side of an
ROC graph may be thought of as “liberal”: they make positive classification with weak evidence
so they classify nearly all positives correctly, but they often have high false positive rates. Many
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real world domains are dominated by large numbers of negative instances, so performance
in the far left-hand side of the ROC graph comes more interesting. We have used the area
under the ROC curve (AUC), also known as c-statistic [Her11], which is usually interpreted
according to the following ratings: x = 1, perfect; 1 > x ≥ 0.9, excellent; 0.9 > x ≥ 0.8, good;
0.8 > x ≥ 0.7, fair; 0.7 > x ≥ 0.6, poor; 0.6 > x ≥ 0.5, fail (random guessing for AUC); x < 0.5,
unacceptable [Tsa12]. AUC is a common statistic most often used for model comparison in the
machine learning community [Chi13]. Despite its popularity, some machine learning researches
show that the AUC is quite noisy as a classification measure [Han10], and has some other
significant problems in model comparison [Lob08, Han09]. Therefore, we also considered the
standard accuracy metric, which is widely used to get an additional insight into the results. More
importantly, we considered the AUC for the minority class (Amin) as well. Amin reveals the
dangers of blindly looking into the AUC alone in the raw dataset classifiers evaluation. However,
the AUC becomes a safe metric when the data is preprocessed with a sampling technique as the
result will show in the following section.

4.3.6 Classifiers Evaluated

In this work, 23 different linear and non-linear classification systems were evaluated on our
dataset. These systems including the popular predictors such as decision trees, naive Bayes,
least-square linear predictors, and support vector mahcines. A complete list of these models
along with short descriptions are shown in Table 4.2. We applied a supervised classification on
our two datasets S1 and S2, with a 10 fold cross validation.

4.4 Results

Using our dataset with the presented sophisticated features, we evaluated the classifiers by
considering the area under ROC curve (AUC) as our main metric in addition to the minority class
Amin and ACC (accuracy) of each classification system. For dataset S1, we listed in Table 4.3
the AUC, Amin and ACC scores for each classifier under the best sampling, normalization and
feature selection algorithms. For dataset S2, we only listed the top ten classifiers in Table 4.4.
Figures 4.3 and 4.4 shows the noticeable difference between AUC and Amin. This is the
rational behind evaluating the AUC for the minority class as well as that of the complete dataset.

For our case study, most classifiers have optimal results with the SMOTE sampling technique
and the MV normalization scheme. The Feature Selection with the best results was the IG
method. It is clear from the results that a number of classifiers were able to excellently
discriminate between the two cell groups in both datasets S1 and S2 with an AUC, Amin and
ACC metrics above 0.9. The following subsections reveal the power of sampling, the effect of
normalization and feature selection, in addition to the power of the discriminators based on our
feature space.
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Table 4.2: Classification Algorithms evaluated in this study

Classifier Description
C4.5 A decision tree classifier. At each node of the tree, C4.5 chooses the attribute that most

effectively splits its set of samples into subsets enriched in one class or the other [Qui93].
Adaptive Boosting
(AdaB)

A machine learning meta-algorithm used in conjunction with a weak learner (Decision
Tree) to improve its performance [Fre96].

PART Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a
rule [Fra98].

Decision Table
Majority (DTM)

A decision table with a default rule mapping to the majority class. It has a set of features
(schema) and a set of labelled instances (body) [Koh95].

Decision Stump
(DSmp)

A model consisting of a one-level decision tree. i.e, it is a decision tree with one internal
node (the root) which is immediately connected to the terminal nodes (its leaves) [Iba92].

One Rule (OneR) OneR generates one rule for each predictor in the data, then selects the rule with the
smallest total error as its "one rule" [Hol93].

JRip JRip implements a propositional rule learner, Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) [Coh95].

Bayes Network
(BNet)

Bayes Network learning represents the dataset variables via a directed acyclic graph (DAG)
based on probability theory [Fri97].

K-Nearest Neighbour
(IBK)

Predicts the class of the single nearest training instance for each test instance [Aha91].

Locally Weighted
Learning (LWL)

Uses an instance-based algorithm (Decision Stump) to assign instance weights [Atk96].

LogitBoost (ALR) Performs additive logistic regression on the base learner (Decision Stump) [Fri98].
Random Committee
(RCom)

Builds an ensemble of randomization base classifiers (Random Tree). The final prediction
is a straight average of the predictions generated by the individual base classifiers..

Random Subspace
(RSub)

Constructs a decision tree based classifier (REPTree) with multiple trees constructed in
randomly chosen subspaces [Ho98].

Hoeffding Tree
(VFDT)

An incremental decision tree induction algorithm capable of learning from massive data. It
assumes that the distribution of variables does not change over time [Hul01].

Logistic Model Tree
(LMT)

A logistic model tree basically consists of a standard decision tree structure with logistic
regression functions at the leaves [Lan05].

REPTree Fast decision tree learner. Builds a decision/regression tree using information gain/variance
and prunes it using reduced-error pruning.

Random Forest
(RFor)

Constructs a forest of random decision trees at training time and outputting the mode class
(classification) or mean prediction (regression) of the individual trees [Bre01].

Random Tree (RTre) Constructs a tree with randomly chosen attributes at each node.
Logistic (Log) Building and using a multinomial logistic regression model with a ridge estimator [Ces92].
Stochastic Gradient
Descent (SGD)

Implements stochastic gradient descent for learning various linear models (binary SVM,
binary logistic regression, squared loss, Huber loss and epsilon-insensitive loss).

Sequential Minimal
Optimization (SMO)

Sequential minimal optimization algorithm for training a support vector classifier [Pla98].

SimpleLogistic
(SLog)

Classifier for building linear logistic regression models. LogitBoost with simple regression
functions as base learners is used for fitting the logistic models [Lan05].

Voted Perceptron
(VPer)

Based on a linear predictor function combining a set of weights with the feature vector,
and a transformation of online learning, in that it processes elements one at a time [Fre98].
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4.4.1 Power of Sampling

The first obvious fact from the result in Table 4.3 and 4.4 is the power of data sampling on
the classifiers performance. SMOTE has not failed to improve the overall classification within
all the algorithms tested, unlike the under-sampling and over-sampling methods. This makes
SMOTE an excellent choice for our data. Moreover, SMOTE addresses the information loss of
the under-sampling and the over-representation issue of the over-sampling methods.

After applying SMOTE on dataset S1, the AUC was improved in average by .025, and the
average accuracy increased slightly by 0.007. However, the strongly significant different is
shown when considering the AUC for the minority class (Amin) where the average improvement
was increased by .139 per classifier from an average of .708 to .847. This demonstrates the
reason why accuracy is not a sufficient measure in our imbalanced dataset. Generally, power of
sampling is more conspicuous in PART, C4.5, JRIP, SMO and VFDT classifiers (cf. Fig. 4.5).

On dataset S2, the power of sampling is more obvious since S2 exhibits a higher ratio
between majority and minority class instances. After applying SMOTE on dataset S2, the
AUC was improved in average by .127, but the average accuracy decreased slightly by 1.1%.
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Figure 4.3: AUC and Amin of classifiers for raw dataset S1.
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However, the strongly significant different is shown when considering the AUC for the minority
class (Amin) where the average improvement was increased by .369 per classifier from an
average of .565 (poor classification) to .935 (excellent classification) (cf. Fig. 4.6). This also
reveals the reason why accuracy is not a sufficient measure in our imbalanced dataset.

4.4.2 The effect of Normalization and Feature Selection

On dataset S1, Normalization showed an extra average improvement of .015 and .013 for the
AUC and Amin respectively, and improved accuracy by 1.2% over the original dataset. As can
be noticed from Fig. 4.7 and 4.8, the most significant difference of normalization was shown in
VPer and VFDT classifiers. Similarly for dataset S2, Normalization showed an extra average
improvement of .007 and .009 for the AUC and Amin respectively, and improved accuracy by
5.8% over the sampled dataset.

The best feature selection algorithm, i.e. IG, showed no significant change in the averages
of AUC and Amin for both dataset. On dataset S2, the AUC was .949 and Amin .944. The
accuracy metric has a slight extra increase of .03% up to a final average accuracy of 92.2%.
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Figure 4.4: AUC and Amin of classifiers for raw dataset S2.
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Table 4.3: AUC, Amin and ACC of classification algorithms using raw dataset S1, and
after sampling, normalization and feature selection.

Cl
as

sifi
er Raw Dataset Sampled Normalized Features Selected

AUC Amin ACC AUC Amin ACC AUC Amin ACC AUC Amin ACC

RCom .972 .937 .940 .984 .980 .943 .983 .979 .939 .982 .977 .939
RSub .959 .923 .911 .978 .978 .928 .976 .976 .921 .975 .974 .927
RFor .965 .917 .920 .981 .974 .937 .977 .972 .922 .978 .970 .930
SLog .926 .841 .867 .926 .911 .854 .926 .911 .853 .926 .911 .854
Log .945 .839 .898 .916 .925 .872 .916 .919 .872 .916 .920 .872
LogB .930 .837 .878 .933 .918 .874 .932 .918 .868 .932 .918 .868
DTab .922 .833 .876 .942 .933 .872 .942 .936 .873 .943 .936 .872
LMT .927 .808 .901 .937 .898 .908 .936 .896 .905 .937 .895 .904
REPT .891 .789 .887 .932 .912 .892 .923 .903 .887 .923 .904 .887
AdaB .908 .767 .855 .919 .899 .850 .917 .895 .849 .917 .895 .849
PART .884 .764 .901 .916 .892 .904 .932 .906 .910 .925 .901 .909
C4.5 .853 .747 .893 .915 .885 .914 .900 .864 .906 .898 .861 .906
JRip .853 .747 .893 .916 .887 .905 .918 .891 .894 .911 .877 .894
BNet .881 .703 .808 .888 .853 .830 .889 .862 .824 .889 .862 .824
SGD .950 .683 .888 .869 .815 .869 .866 .810 .864 .866 .810 .864
RTre .853 .669 .883 .877 .830 .877 .879 .835 .879 .875 .826 .874
IBK .851 .668 .881 .881 .839 .881 .881 .839 .881 .881 .839 .881
LWL .870 .644 .736 .874 .819 .773 .874 .819 .773 .874 .819 .773
SMO .803 .628 .867 .866 .815 .866 .866 .814 .865 .866 .814 .865
OneR .767 .553 .834 .795 .733 .794 .795 .733 .794 .795 .733 .794
DSmp .769 .450 .733 .774 .692 .774 .774 .692 .774 .774 .692 .774
VPer .543 .289 .638 .526 .515 .527 .802 .735 .798 .802 .736 .798
VFDT .500 .267 .733 .638 .582 .606 .736 .668 .661 .736 .668 .661

Although the effect of feature selection is negligible on the prediction performance of the
classifiers, it has two advantages; the first advantage is the provision of faster and more cost
effective calssifiers, and the second is the provision of a better understanding of the underlying
process that generated the data.

4.4.3 The Powerful discriminators

Wavelet-based texture measurement has shown their superiority to discriminate our instances
in the top classifiers. Specifically, the Smoothness and Uniformity textures in the horizontal,
diagonal and vertical wavelet detail images were used as root nodes in most base trees in the
RCom, RFor, RSub and C4.5 Decision tree classifiers. In addition, the fusion of invariant
moments with wavelet details in many dimensions obtained high weights in the functions of
SLog and LMT classifiers revealing their discriminative power. They also showed up multiple
times within the decision trees built by various models. The second order histogram features
extracted from the co-occurrence matrix have also played a major role in the discrimination of
yeast cells, they showed up in almost every classifier, though at lower level in decision trees or
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Table 4.4: Area under ROC and Accuracy of the top 10 classification algorithms using
raw dataset S2, and after sampling, normalization and feature selection.

Cl
as

sifi
er Raw Dataset Sampled Normalized Features

Selected

AUC AC1 ACC AC1 ACC AC1 ACC AC1 ACC

SLG .930 .797 .944 .987 .948 .987 .948 .986 .948
LMT .930 .797 .944 .981 .953 .981 .956 .979 .956
BYN .922 .743 .918 .974 .930 .971 .927 .971 .927
RNC .920 .750 .937 .991 .973 .992 .972 .991 .968
RNF .914 .722 .938 .988 .966 .991 .964 .990 .962
LBS .906 .758 .942 .975 .920 .975 .919 .975 .919
RSS .905 .739 .938 .990 .955 .989 .958 .988 .955
BGG .903 .763 .938 .989 .952 .990 .950 .990 .951
ABM .887 .664 .930 .966 .910 .967 .903 .967 .903
DTB .870 .642 .930 .953 .888 .961 .895 .964 .898

with a smaller weight in regression functions.
Considering dataset S1, most of the top classifiers built complex models that are not easy

to interpret. RCom has built ten random trees of sizes between 267 and 297. RSub built a
"relatively" less complex model of ten random REP trees of sizes between 47 and 87. RFor
built ten random trees each using seven random attribute values in its construction. On the other
hand, the Logistic and Simple Logistic algorithms built decent regression functions. Simple
Logistic built its function with a few attributes (22 of the total 90 considered). This makes
Logistic regression a much more appealing classification model for our domain. The Logistic
regression classifier has two output terms, coefficients and odds ratios. High coefficient values
when predicting the negative class were noticed in many moment invariant features in the
wavelet detail images. Moreover, high odds ratios were noticed in texture measurements and
co-occurrence matrix features. The Simple Logistic has used in its function, eight features from
the co-occurrence matrix, five features from the wavelet texture measurement, two features
from the combination of wavelet and moment invariants, four features from moment invariants,
one texture measure and two basic shape descriptors.
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Figure 4.5: Amin of classifiers for raw and sampled dataset S1.'
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Figure 4.6: Amin of classifiers for raw and sampled dataset S2.
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Figure 4.7: Amin of classifiers for raw, sampled and scaled dataset S1.'
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Figure 4.8: Amin of classifiers for raw, sampled and scaled dataset S2.
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Figure 4.9: Amin of SMO classifier for raw

dataset S1, and after the applica-
tion of SMOTE, MV and IG algo-
rithms for sampling, scaling and
feature selection respectively.

Support Vector Machines (SVMs) are pop-
ular classifiers. The SMO, which is an imple-
mentation of the SVMs, did not rank as an ex-
cellent classifier in dataset S1 when using the
default parameters. However, this changes
when optimizing its parameters by increas-
ing the complexity constant to 5, disabling
any normalization within the classifier itself,
fit logistic models to SVM outputs and use a
normalized Polynomial Kernel.

Figure 4.9 shows initially that the SVM
classifier evaluated as a poor classifier with
an Amin value of .628. This value is im-
proved into "good" level after sampling with
the SMOTE algorithm, i.e. .815. However,
optimization pushed the SMO into the top five
classifiers with an Amin of 0.92.

Next we study the considered feature sets
for their contribution to the power of discrim-
ination.

4.4.4 Feature sets performance

In order to investigate whether our composed
feature sets has any added value to the dis-
crimination power, we started by comparing
the classification performance on dataset S1 using different set of features including basic shape
descriptors, invariant moments, wavelet texture measurement, invariant moments on wavelet
detail images, co-occurrence matrix derived features, basic texture measurement and a full
feature space combining all the feature sets. The difference is shown in Fig. 4.10. This test was
performed on both Logistic and C4.5 classifiers. Logistic regression was chosen as it is the
top "non-random based" classifier and C4.5 as a non-linear approach for comparison. In both
classifiers, the benefits of using the full set is obvious. In the Logistic classifier, the performance
of individual feature sets were not sufficient, except for the basic texture measurement which
shows a very good discrimination with an AUC of 0.82. However, using the full features set
shifted the performance of the Logistic classifier into the excellent category with an AUC of
0.916. In the non-linear C4.5 decision tree classifier, all the individual feature sets except the
basic set have good discrimination. However, none is ranked as excellent. Only when the feature
sets are fused together the classifier has an excellent discrimination rate with an AUC of 0.914.

Since 3rd order moment invariants are more complex than there 2nd order counterpart, and
they might be more noise-prone [Goo96], we study whether it really adds any discrimination
value by creating only two small feature spaces. The first having only the second moment
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invariants while the second feature space contains the whole set of seven invariant moments.
Figure 4.11 show the ROC graph of the performance of the Logistic and C4.5 classifiers on
both feature spaces. The third order moments show to have an additional discriminative value
in both classifiers for this dataset.
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Figure 4.10: ROC analysis and AUC value of C4.5 (left) and Logistic (right) classifiers using

various feature sets'
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Figure 4.11: Performance of C4.5 (left) and Logistic (right) classifiers using second and up-to

third order moment invariant features
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4.5 Discussion

In this chapter, we addressed our principal research question and showed that a machine learning
approach can discriminate S. cerevisiae yeast cells to identify essential characteristic differences
between two groups treated under different conditions, and a similar approach can improve the
object recognition based on its measured sophisticated features. In addition we address the sub
question and showed that a combination of various feature extraction methods have a significant
role in improving the accuracy of the built classification models.

In the case study of yeast cells, we were able to find a significant difference in the expression
of 14-3-3 proteins for cells cultivated under different stress levels. This difference in their
characteristics is a subtle pattern that is hard to be noticed using standard methods, such as
investigation the measurement data and examining the basic statistical information. On the
other hand, the object recognition allow us in our experiment to exclude artefacts prior to data
analysis, which consequently improves the identification of subtle patterns.

In this work, we introduced a machine learning workflow to be followed in building a
classification model. We showed that the extracted object features explained in Section 4.2
are advantageous to predict the group that an object belongs to. The Wavelet-based texture
measurements, co-occurrence matrix derived features, moment invariant features and texture
measurement derived from the image histogram, forms a set of powerful discriminators in
the top classification models, from which the Logistic model was chosen as the most efficient
for classifying our cells. Sampling of our dataset with the SMOTE method showed to have a
significant effect on building the classification model system. In addition, the MV normalization
scheme showed an extra improvement. The best feature selection algorithm tested showed a
little non-significant improvement; however, it provides a more simple, faster and cost effective
classification model. With this machine learning process and the chosen feature sets, it becomes
possible as future work, to classify different cell strains and conditions in a high-volume
high-throughput studies.




