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3
Hough-based Contour Extraction and

Optimization

“ In this chapter, we present our novel algorithm for the segmentation of ovoid
objects. Our method implements a variation of the Hough Transform and
Minimal Path algorithms. We propose equations and parameters to control
the detection of objects through Hough Transform. The contours of these
objects are extracted through minimal path algorithms implemented on a
polar resampled representation of the object images. In addition, we present
a contour expansion algorithm using the same polar representation of object
images. Such expansion is necessary under some microscope settings. ”

This chapter is based on the following publications:

• Mohamed Tleis and Fons J. Verbeek. "Extracting contours of oval-shaped objects by
Hough transform and minimal path algorithms." In Sixth International Conference on
Digital Image Processing, pp. 915903-5. International Society for Optics and Photonics,
2014. (Excellent Paper Award).

• Mohamed Tleis and Fons J. Verbeek. "Contour Expansion preceded by the Application
of Hough transform and Minimal Path Algorithm". In Fifth International Conference on
Image Processing Theory, Tools and Applications, pp. 149-154. IEEE, 2015.
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3.1 Background

IN Chapter Two, the Hough transform based segmentation methods and contour optimization
were introduced. This chapter explains in details the underlying algorithms of such methods

and their implementation. The following section introduces Hough transform, generation of
the cube-like accumulator, and how this accumulator is threshold in order to get information
about the object locations in the image. In Section 3.3 polar transformations are described
and how these are applied to ovoid objects to generate a rectangular array that is used to
obtain the minimal path in the object image. In Section 3.4, the implemented minimal path
algorithms are explained. The polar representation of object images is also used for the purpose
of contour optimization; our novel optimization method to expand object contours is explained
in Section 3.5. Section 3.6 validates the introduced methods by comparing them to other
state-of-the-art solutions and assess their performance under various noise levels.

3.2 Hough Transform

In the daily practice of processing microscope images, sets of pixels yielded by edge detection
methods seldom characterize the edge because of noise, breaks in the edges due to non-uniform
illumination and the effects that introduce spurious discontinuities in intensity values. This is
often observed with the S. cerevisiae cells in bright-field images.

A well-known global approach to edge linking is Hough transform [Gon08]. Hough
transform is applicable to any function of the form g(v, c) where v is a vector of coordinates
and c is a vector of coefficients. Since many objects in systems and micro-biology such as S.
cerevisiae yeast cells are characterized as having nearly ovoid shapes [Fel10], detecting circular
arcs in yeast images would help in detecting the yeast cells. A circle is represented as in Eq. 3.1,
which can be rewritten in its normalized form as depicted in Eq. 3.2.

(x − c1)
2
+ (y − c2)

2
= c

2

3
(3.1)

x = r.cosθ

y = r.sinθ
(3.2)

Our implementation of the Hough transform includes two steps. The first step is to fill
the accumulator and the second is to threshold this accumulator in order to extract the circles
corresponding to the estimated object locations. These steps are discussed hereafter.
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3.2.1 Filling the Accumulator
Figure 3.1(a) illustrates the geometrical interpretation of the parameters x, y, θ and r. The x,
y, r parameter space is sub-divided into accumulator cells forming a 3-D cube-like cells and
accumulator of the form A[x,y, r]. The x and y dimensions of this accumulator are related
with the width and height of image I and the r dimension is defined by the constraint of the
possible object radius values. This accumulator is illustrated in Fig. 3.1(b). The procedure is
to increment x and y and solve the equations in Eq. 3.2 for θ at a pre-specified value of the
radius r and update the accumulator cell associated with the triplet (x,y, r), i.e. increment
accumulator cell by 1 if a foreground edge pixel is found at angle θ for the circle of center (x,
y) and radius r. The flowchart in Fig. 3.2 illustrates the filling process in more detail. At radius
r specified from a range of radii, all the pixels in the image are checked and if a certain pixel is
an edge pixel, i.e. foreground in the binary image, the accumulator cell is incremented by the
value of one. After filling the Hough accumulator array, we need to decide on which pixels in
the binary image are to be considered as center of circles. This required specifying a rule to find
a threshold for the accumulator. The following sub-section discusses our approach to find this
accumulator threshold.

3.2.2 Accumulator Threshold
Hough values in the accumulator array are related to the number of pixels located in the
circumference of a certain circle with a specified center c and radius r where a maximum of
2πr pixels can belong to that circumference. A threshold value is set to allow detection of
structures that lie a pre-specified percentage of the circumference. This threshold starts at 2πr
and decrements for smaller values of the radius. The threshold value is calculated according to
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(a) Geometrical interpretation of parameters x,
y ,θ and r.
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(b) Cube AccumulatorA[x,y,r].

Figure 3.1: The Hough Accumulator.
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the equations depicted in Eq. 3.3 and 3.4, where r is the radius of the circle, rmax and rmin
are the maximum and minimum specified radius values, rindex is an index to track the current
radius value. α and β are control values. Parameter p in Eq. 3.4 ensures that the threshold value
is relatively high for smaller circles. This allows detecting some deformed shapes at a smaller
radius (r − 1) if not detected at radius r.

T = 2πr − {2πr ×α + p} (3.3)

p = β × (rmax − rmin) − rindex (3.4)

The flowchart in Fig. 3.3 walks-through the process of using the threshold value to get the
geometrical arcs that form part of circles in the binary image. Starting from the largest radius
and decrementing until the minimal radius, we loop through Hough values in every cell of
the cube accumulator starting from the maximum Hough value until the specified threshold
given in Eq. 3.3. As long as there are pixels associated with that Hough value, we check if the
circles occupying that space overlap with the previously detected circles. If not, then the space
occupied by the new circle is reserved, preventing subsequent circles from occupying this space.
The parameters α and β control the threshold equation depicted in Eq. 3.3 and 3.4.

The parameter α is a weighting factor in the range [0, 1] and is used to determine the
percentage of pixels that must exist as edge pixels in order to consider them as being part of
a closed circumference of a circle; e.g. at α = 0.5, at least 50% of the pixels located on the
circumference must be edge pixels. The parameter β acts similar to α except that it increases in
value at the examination of circles with lower radius values, allowing more shape deformation
at lower radii.

Figure 3.2: Filling the Hough Accumulator.
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3.3 Polar Transformation
After estimating the initial position of the ovoid objects such as S. cerevisiae yeast cells in
bright-field microscope images through Hough transform, our objective is to extract the exact
contour of that object. For this, we resample each object into a polar representation for each
object where a polar transformation is applied on the image part as a RoI for that object. On
this polar image, we extract the minimal path corresponding to the actual contour of the object.
In this section, we explain the Polar Coordinate system? How the transformation is achieved
from cartesian to polar system? And how is that applied on actual objects such that S. cerevisiae
cells? The minimal path algorithm is discussed later in Section 3.4.

3.3.1 Polar Coordinate system
In 2D space, the polar coordinate system is a two-dimensional coordinate system in which
each point on a plane is determined by a distance from a reference point and an angle from a
reference direction. The reference point is analogous to the origin of a cartesian system. It is
known as the "pole", and the ray from the pole in the reference direction is known as the "polar
axis". The distance from the pole is called the radial coordinate or radius and we will refer to it
as r, and the angle is the angular coordinate, polar angle, or azimuth and we will refer to it as
θ [Bro97].

3.3.2 Cartesian to Polar System
The cartesian coordinates x and y can be converted to polar coordinates r and θ with r ≥ 0 and
θ in the interval (−π,π] using Eq. 3.5 and 3.6. The atan2 notation in Eq. 3.6 is a common
variation of the arctangent function as defined in Eq. 3.7. The geometrical interpretation of
the relationship between the polar and cartesian coordinates is further illustrated in Fig. 3.4.

Figure 3.3: Extracting the Circles from Image.
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r =
√

(x2 + y2) (3.5)

θ = atan2(y,x). (3.6)

atan2(y,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(
y

x
), if x > 0

arctan(
y

x
) + π, if x < 0 and y ≥ 0

arctan(
y

x
) − π, if x < 0 and y < 0

π

2
, if x = 0 and y > 0

−
π

2
, if x = 0 and y < 0

undefined, if x = 0 and y = 0

(3.7)
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Figure 3.4: Geometrical interpretation of relationship between polar and cartesian coordinates.
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3.3.3 Polar Image of Yeast Cells

Figure 3.5(a) shows an example of a yeast cell after locating its center point by Hough transform.
The red circles and blue lines are labels to illustrate the resampling of the polar image of the
pixels surrounding the center point of the cell as shown in Fig. 3.5(b). The radius at an angle
θ in the original image plane is transformed into a column in the polar image. The circles
surrounding the center point, i.e. red circles of radius r in the original image plane in Fig. 3.5(a),
are transformed into rows of the polar image, i.e. red horizontal lines in Fig. 3.5(b).

As a rule, the height of the polar image I is determined based on the scale information of the
images, and a priori generic knowledge on the objects, i.e. scale × maximum radius. The width
of I is dependent of the length of the contour. In order to have a sufficient region to evaluate, we
use a resampling length equal to twice the height of I. The minimal path algorithm then finds
the circular shortest path from the first to the last angular coordinate in image I.

3.4 Minimal Path Algorithms

Once all the center of objects, i.e. cells, are estimated as circle centers using the Hough
transform, a polar image I relative to each circle center is resampled from the original intensity
image [Kva08]. In our work, we adopted dynamic programming to extract the object contours
by finding the minmal path in the polar representation of these objects. In this section, we
discuss our implementation of a minimal path algorithm that uses grey weighted distance
transform followed by our novel approach to extract a circular shortest path for the polar image.
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%
(a) An example of a cell after detection of
the center point by Hough transform.

(b) A polar image is generated for the yeast cell in Fig. 3.5(a). The
columns correspond to the pixels along the radius at an angle θ of the
largest possible circle (red lines). The rows correspond to the circles
surrounding the center point (blue lines, blue circles in Fig. 3.5(a)).

Figure 3.5: Polar transform of a yeast cell image.
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3.4.1 Grey-weighted Distance Transform

Grey-weighted distance transform algorithm was developed originally [Vin88] to find the path
in grey-scale images. Let I be a polar image, which is formally a matrix of weights C(r,θ);
then let A denotes the first column of pixels in image I and B denotes the last column of
pixels. The objective is to find the minimal path from A to B. Considering I as a neighbouring
graph, let E be the edge between two neighbouring pixels p and q. E is assigned a value
VI(E) = VI(p,q) = I(p) + I(q). Let P be a path in this graph, and let CI(P) be a cost
associated with path P. This cost equals to the sum of all the edge values. This provides
a new metric in image I for which the distance dI between two pixels p and q is given by:
dI(p,q) =minCI(P), P: path between p and q. A pixel p belongs to the minimal path if and
only if dI(p,A) + dI(p,B) = dI(A,B), therefore, the grey-weighted distance transform to A
for each pixel is created by computing dI(p,A) for every pixel p, and similarly creating the
grey-weighted distance transform to B. The two distance functions are added. Subsequently, a
column-wise threshold is applied to the resulting image taking the minimum pixel value of the
column as a threshold in order to keep the pixels p belonging to the minimal cost between A
and B. This result represents the actual contour of the object. We ensure a closed contour by
assigning the coordinates of the extracted pixels p ∈ I as vertices of a polygon region of Interest
(RoI), which is filled to create a binary mask representing a closed object.

Figure 3.6(a) shows a sample polar image, where the first and last columns are labelled as A
and B as shown in Fig. 3.6(b). Figure 3.6(c) shows the grey-weighted distance transform to A
for each pixel created by computing dI(p,A). Similarly, Fig. 3.6(d) shows the grey-weighted
distance transform to B. The addition of the two distance images is shown as Fig. 3.6(e). The
result of the application of column-wise threshold to obtain the minimal cost between A and B
is shown in Fig. 3.6(f). This minimal path is the acutal contour of the cell. Figure 3.7 shows
another example for a cell whose contour is extracted from within a group of clumped cells.

3.4.2 Circular Shortest Path

Object contours are extracted from the computation of the minimal path through distance
transform as discussed in the previous subsection. However, this extracted contour is not
circular as the pixels pA and pB of column A and B in the polar image I are actually the same
pixels (at θ = 0 and θ = 360○). Hence, we developed an algorithm to extract the circular shortest
path from column A to column B in the polar image with the constraint that a path that starts at
row ri must also end at ri.

While the standard shortest path problem aims at finding a shortest path between two known
nodes in a graph or an image grid, the shortest circular path problem is to find a closed path with
minimum cost. This problem is more difficult than the standard shortest path problem since no
explicit start or end node is known. Our circular shortest path algorithm uses the concept of
ordinary shortest path obtained with dynamic programming [Buc97] but with the constraint that
the first and last pixels pA and pB of the detected path P are at the same radial coordinate in
order to ensure a circular path (cf. Fig. 3.8).
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We apply the shortest path algorithm just once starting at the first angular coordinate θ = 0
of each row ri in image I and only evaluating the pixels ph that would have a high probability
of belonging to the path. The global minimummin{CI(P)} of these shortest paths CI(P) is
guaranteed to be the global circular shortest path CSP [App03]. Our algorithm does not require
evaluating all the pixels while checking for shortest paths. It actually visits the pixels (w

2l

4
)

times instead ofw2l times stated in the standard circular shortest path algorithm [Sun03], where
w and l are the width and height of image I respectively.

In Box 3.1 the pseudo-code for the circular shortest path algorithm is depicted. For each
radial coordinate r in the polar image I (cf. line 2), we create a matrix C(r,θ) having the same
dimensions as I, i.e. w × l (cf. line 3). Ultimately all contour points need to get the status final.
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(a) Polar representation of S. cerevisiae yeast cell. (b) Labeling First and Last Column asA and B.

(c) IA = Distance Transform to Column A. (d) IB = Distance Transform to Column B.

(e) Add grey-weighted distance transform to A (IA)
and that to B (IB), i.e. (IA + IB).

(f) Threshold (IA + IB) in Fig. 3.6(e).

Figure 3.6: Hough Transform and Minimal Path Algorithm to Extract Cell Contours.
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Input :A polar image I of size w × l.
Integer variables i, j, i2, k and Costmin.

Output :Integer array CSP of length w.
1 Initialization: Costmin ←Maximum Value; i2 ← w − 1;
2 for each radial coordinate r do
3 Create cost matrix C(r,θ) of size w × l ;

/* Initialize first column of C(r,θ) to the value 1 */
4 C(r,θ)[0...l − 1, 0]← 1;

/* For each column in the left half of the image */

5 for i from 1 to (
w

2
− 1) do

/* And for each row within the possible range R */

6 for j from (r − i%
w

2
) to (r + i%

w

2
) do

7 C(r,θ)[i, j]← I[i, j] +min(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];
8 K[i, j]← argmin

k
(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];

9 endfor
10 endfor

/* For each column in the right half of the image */

11 for i from (
w

2
) to (w − 1) do

/* And for each row within the possible range R */

12 for j from (r − i2%
w

2
) to (r + i2%

w

2
) do

13 C(r,θ)[i, j]← I[i, j] +min(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];
14 K[i, j]← argmin

k
(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];

15 i2 ← i2 − 1;
16 endfor
17 endfor

/* Keep track of the global minimal Cost */
18 if C(r,θ)[w − 1, r] < Costmin then
19 Indexmin ← r;
20 Costmin ← C(r,θ)[w − 1, r];
21 end
22 endfor
/* BackTrace path at row r */

23 CSP[w − 1]← Indexmin ;
24 for j from (w − 2) to 0 do
25 CSP[j] = CSP[j + 1] + k[CSP[j + 1], j + 1];
26 endfor
27 return CSP.

Box 3.1: Find Circular Shortest Path.
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For each angular coordinate less than w

2
, we check all pixels that have a radial coordinate

in the possible range R ∈ [(r − i% w

2
), (r + i% w

2
)], where i is the current angular coordinate.

When a pixel meets the aforementioned conditions, its value is added to the minimum cost at

the previous angular coordinate and a radial coordinate in the range of r± 1 (cf. line 7), where r

is the radial coordinate of the current pixel. The distance from the current radial coordinate to

the minimum cost at the previous angular coordinate is stored in an index matrix K (cf. line 8).

For the right part of the image I, the same procedure is performed with the constraint that the

range of R is dependent on the integer variable i2 instead of the current angular coordinate i. i2
decrements from w − 1 as i increments from w

2
to w − 1 (cf. lines 11- 17). After computing the

cost matrix C(r,θ), we update the minimal circular shortest path cost Costmin by first checking

if the minimal cost at the last angular coordinate is less than the global variable Costmin (cf.

line 18). If this is the case, the current radial coordinate is stored as an index for the global

minimal path Indexmin (cf. line 19). The minimum cost value is also stored by updating the

global variable Costmin (cf. line 20). Now that all the radial levels are examined in the polar

image I, we created a rule to extract the circular minimal path by back-tracing the pixels of this

path starting from the index of the global minima Indexmin that will be the radial index for

the last contour point (cf. line 23). As an additional rule at each current angular coordinate,

the radial index of the circular shortest path is stored by checking the radial index at the next

angular coordinate and adds to it the distance stored in the index matrix K (cf. line 25).

A sample application of the circular shotest path algorithm is applied on the S. cerevisiae

yeast cell shown previously in Fig. 3.5(a). The result of this application is illustrated in

Fig. 3.9(a), where the final extracted contour is displayed as cyan points on the resampled image.

The backprojection of the contour on the original image is shown in Fig. 3.9(b).
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Figure 3.7: Hough transform and grey-weighted distance transform to extract cell contours.
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3.5 Contour Optimization
Our objective is to find reliable methods for the extraction of an accurate contour delineating
the object. We have shown to be successful in achieving this objective through dynamic
programming (DP) [Ger86], where we used Hough transform and set a cost matrix where we
applied a minimal path algorithm to estimate the contour location [Tle14]. We described two
minimal path methods, consequently we have two segmentation algorithms. The first is the'
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(a) Pathological cost function from [App03]. Last col-
umn shows CSP cost for each row.

(b) Shortest path at first row with a total weight=7.

(c) Shortest path at 3rd row with a total weight=24. (d) Shortest path at last row with a total weight=33.

Figure 3.8: Finding the Circular Shortest Path (CSP). Black, grey and white squares represent
pixel intensity values of 0, 1 and 11 respectively (similar to [App03]). Pixels marked
with X are not evaluated. The path with the minimum weight is the global CSP.



Contour Optimization 45

Hough transfrom followed by grey-weighted distance transform method; i.e. HDT, and the
second is the Hough transform followed by circular shortest path method; i.e. HCSP. However,
since microscope imaging can be very delicate and edges have an inherently fuzzy nature,
a refinement of the initial estimate is sometimes required. For example, the objects to be
segmented have contours that are described by more than one pixel thick contour line. This
is typically true for the yeast image dataset that we show as a case study in this section. This
problem is observed when high resolution images using high numerical aperture (NA) lenses are
used with image sizes larger than 512x512 pixels. Further analysis of the results demonstrates
that the circular minimal path method has a bias toward the inner part of the object as a result
of the fact that some inner pixel values are lower than the edge pixel values. We state that, in
these cases, the minimal path is no longer the ultimate valid representation of the contour. In
this section, we use a yeast dataset for which this is typically the case.

As a possible solution to this problem, we developed an expansion algorithm that directly
evaluates the polar image I used to extract the minimal path. We refer to I as a polar image,
which is a polar representation of each object Oi in the original image. With our additional
heuristic, we are able to achieve the necessary refinement of contours. This contributes to the
accomplishment of precise measurements of the objects so that machine learning techniques
can better recognize the subtle patterns within the data.

In the following subsections, we provide a background and subsequently the control param-
eters are described. In the last subsection we discuss the contour expansion (CE) algorithm.

3.5.1 Background
Our goal is to obtain the exact contours of ovoid objects; here applied to yeast cells. The initial
contour detected by HCSP is expanded out toward the background surrounding the object until
it meets certain criteria. The expansion is realized using dynamic programming in the polar
image I. Starting from the initial contour detected by HCSP [Tle14], the contour is expanded in
such a way that r ′ ≥ r, where r ′ is the radial coordinate of the new contour pixel in image I and
r is the initial radial coordinate. Every contour pixel considers a number of factors that decides'
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(a) Extracted minimal path from the resampled image.

(b) Contour backprojected on the original image.

Figure 3.9: Sample application of circular shortest path on S. cerevisiae cell.
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whether it should be expanded to the next level or if it is a final contour point. To decide if
the current contour point is a final contour point, we have identified three parameters; i.e. the
resistance, limit and convergence; these parameters are discussed hereafter.

3.5.2 Control parameters

The resistance parameter res is a float variable in the range res ∈ [0, 1]. It is the key player in
this algorithm. It decides if the current contour point is a final point by evaluating the value
of the point at the next radial coordinate. When the value of res is 0 the expansion is blocked,
while at the value of 1 the pixels in I would not block the expansion. At a value of 0.5 we
threshold the image I at the mean of its histogram and consequently the background pixels
above that threshold value will block the expansion of the contour. At res values below and
above 0.5, we would threshold I according to Eq. 3.8 and Eq. 3.9 respectively.

t = hmin + 2(hµ − hmin) × res ∀ res ∈ (0, 0.5] (3.8)

t = hµ + 2(hmax − hµ) × (res − 0.5) ∀ res ∈ (0.5, 1] (3.9)

where hµ is the mean of the histogram of I, hmin is the minimum value of I histogram, and
hmax is its maximum histogram value, res is the value of resistance, and t is the returned
threshold value. The pseudocode of the threshold process is presented in Box 3.2.

The limit control parameter is an integer variable specifying a constraint of the maximally
allowed radial coordinate for a new contour point. Specifically, it is the number of radial
positions after the largest radial coordinate in the initial contour. After that level, the contour
expansion is blocked.'
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%

Input :A polar image I of size w × l
An integer resistance ∈ [0, 1]

Output :A binary image Bi of size w × l

1 if resistance ≤ 0.5 then
2 t← hmin + 2(hµ − hmin) × resistance
3 end
4 else
5 t← hµ + 2(hmax − hµ) × (resistance − 0.5)
6 end
7 Bi ← threshold I at t.
8 return Bi

Box 3.2: Polar image threshold based on resistance.
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The convergence parameter is an integer variable specifying a constraint of the maximum
number of iterations before the expansion process is terminated. Subsequently, the contour
at the last iteration is considered as a final contour. In general, the contour is saturated and
reaches its final status after a few iterations. This will be shown in an example in the following
sub-section.

3.5.3 The Expansion Algorithm

The expansion algorithm is applied after the initial contour processing. The flowchart in
Fig. 3.10 explains how the expansion algorithm works and how the pixels are processed in the
polar image I. The pseudocode of this algorithm is referred to in Box 3.3. The algorithm iterates
until the convergence criterion is met, or until, in an iteration, no point is expanded anymore
(cf. line 2). In each iteration, the expanded boolean variable is set to false (cf. line 3), and all
the contour points are processed (cf. line 4). If any point is expanded at that iteration, then
expanded variable is set to true, and the algorithm keeps running as long as the convergence
criteria is not reached.

The processing procedure of the contour points at each iteration is shown in a separate
block in the flowchart (Process Contour Pixels), and its pseudocode is presented separately as
Box 3.4. This procedure evaluates each point in the contour and considers whether to expand
it to the next radial coordinate or not. As long as the current contour point is not marked as a
final contour point (cf. line 2), it is marked as final if the limit parameter is reached (cf. line 4);
otherwise, the previous and the next neighbour contour points are checked if any of them is
at a radial position lower than that of the current point (cf. line 7), in which case the point
is skipped in this iteration. If none of these neighbour contour points is at a previous radial
coordinate, these neighbour points are checked whether they are both marked as final points,
forcing the current point to be final contour point as well (cf. line 8). If both neighbours are not
marked as final points, the current point is marked as final if the point at the next radial position
is blocked by the resistance parameter (cf. line 11). When the resistance control parameter
does not block the expansion, the point is expanded to the next radial position unless one of
the neighbours is marked as final and the current point has higher radial coordinate than that
neighbour (cf. line 13), then the current point is marked as a final contour point (cf. line 14).
Other than that, the point is expanded to the next radial position (cf. line 16), and normally this
expanded contour point will be marked as a final contour point in the next iteration or when the
convergence criteria is met before the next iteration.

Figure 3.11 illustrates an example showing the extracted initial estimate by HCSP algorithm
and the final expanded contour extracted by CE method in a pathological cost image function.
The image function shown in Fig. 3.11(a) is a sample of a polar image I having ten angular and
ten radial coordinates. The first and last angular coordinates θA and θB are actually for the
same point since as the path from θA to θB is a circular path. The black squares in I represent
pixels with an intensity value of 0, the grey squares represent pixels with an intensity value of 1,
and the white squares represent pixels with an intensity value of 11. In Fig. 3.11(b), the initial
contour points extracted by applying HCSP are displayed by green spots.
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Figure 3.10: Flow chart explaining the expansion algorithm.
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To illustrate how the CE algorithm works, we apply contour expansion on image I with
the parameters set as follows: resistance = 0.5, limit = 1, and convergence = 5. After the first
iteration, the contour evolves to take the position illustrated in Fig. 3.11(c). The points that
were not considered for expansion in this iteration are left as green spots. Those expanded are
displayed by blue spots and the red spot is the contour point marked as final. The point at the
eighth angular coordinate is marked as final because the point at the next radial position was
blocked by the resistance parameter. Figure 3.11(d) shows the contour points after the second
iteration. Note here that the point at the seventh angular coordinate is marked as final because
both its connected neighbours are marked final as well. Figure 3.11(e) shows the path after the
third iteration. In the fourth iteration, the first four points and consequently the last contour
point are marked as final points by the limit parameter (cf. Fig. 3.11(f)). In addition, the points
at the fifth and ninth angular coordinates were marked final because their connected neighbours
are marked final contour points as well. Since no contour point was expanded in this iteration,
the contour expansion process is terminated at this point, even before the convergence criteria is
met.

To demonstrate the application of this algorithm on a real sample, a RoI containing two
yeast cells is depicted in Fig. 3.12. The initial estimate is shown as well as the expanded
contour for two yeast cells from a sample image acquired by a Zeiss LSM5 confocal micro-
scope [Inc12]. The yellow contours represent the initial estimate extracted after the application
of Hough transform and circular minimal path algorithm, while the red contours represent the
final expanded version of the contours acquired ensuing the application of our new contour
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Input :A binary image Bi of size w × l.
Integer array CsP of initial contour, of size w.
Boolean array isFinal of size w.
Boolean variable expanded.
Integer limit ∈ [0, l].
Integer covergence ≥ 0.

Output :Integer array finalContour of size w.
1 initialize isFinal and expanded to false, i← 0.
2 while (expanded ≠ false && i < convergence) do
3 i ← i + 1
4 expanded← false
5 CsP ← ProcessContour(CsP) (Procedure in Box 3.4)
6 end
/* Current contour is final */

7 for each element p in CsP do
8 finalContour[p] ← CsP[p].
9 endfor

10 return finalContour

Box 3.3: Expand Contour Algorithm.
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expansion algorithm. Figure 3.12(a) shows the contours on the bright-field channel used for
initial estimation and expansion of the contours, while Fig. 3.12(b) shows the same contours
superimposed on the fluorescent counterpart of the cells acquired as a second image channel by
the same microscope. The latter channel is used to obtain the meaningful measurements and
pattern recognition regarding protein levels and gene expression in the yeast cells. It is clear
from this image, how much of the green signal would not be included in the cell measurement
if contour expansion would not have been applied. This is even more quintessential when
measuring proteins that are bound to the membrane of the cell.

3.6 Validation
In order to validate the new segmentation methods described in this chapter, i.e. the Hough
transform followed by minimal path algorithms, we create an artificial dataset of 1000 images
representing the yeast cells in an approach similar to that implemented in [Yan12]. Such dataset
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/* Process contour pixels */
1 for each point c in CsP with radial coordinate r do
2 if isFinal[c] ← false then
3 if r← limit then
4 isFinal[c] ← true
5 else
6 if (CsP[c − 1] ≠ (r − 1)) and (CsP[c + 1] ≠ (r − 1)) then
7 if CsP[c − 1]← true and CsP[c + 1]← true then
8 isFinal[c] ← true

9 else
10 if (Bi[c, r + 1]← Background pixel then
11 isFinal[c]← true
12 else
13 if (isFinal[c − 1]← true and c has higher r than c − 1) or

isFinal[c + 1]← true and c has higher r than c + 1 then
14 isFinal[c]← true

15 else
16 Expand c to next radial position (r + 1).
17 expanded← true

18 end
19 end
20 end
21 end
22 end
23 end
24 end

Box 3.4: Process Contour Points Procedure.
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has a random number of elliptical shapes ranging from 2 to100 per image with a random
Gaussian values for the background. The Gaussian values for the background is created to
resemble that of the real bright-field microscope images. The eccentricity of the ellipses ranges
randomly with semi −minor

semi −major
factor between 0.75and1 to resemble the actual cell shape. As a

case study, an experiment was performed and 8 images were acquired. These images depict 110
cells in total. Our methods were applied on this dataset.

To evaluate our segmentation methods, we considered well-known metrics; i.e. the Pratt
Figure of Merit (FoM) and F1-measure. Moreover, the tuning of parameters for the differ-
ent segmentation methods and inspection of the segmented results were performed using
Paramorama [Pre11], a prototype developed to optimize parameters based on parameter sam-
pling and interactive visual exploration. Paramorama is implemented as a plug-in for the
CellProfiler biomedical image analysis framework [Car06].

The following subsections provide definitions for the Pratt FoM and that of F1-Measure. The
last subsection shows the result comparing HCSP and HDT with state of the art segmentation
package, i.e. CellStat. In addition, it shows the result comparing the extension algorithm
HCSP-CE with CellStat, CellSerpent and the initial HCSP.'
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Expanding the Initial estimate of the contour. Black, grey and white squares
represent pixels with intensity values of 0, 1 and 11 respectively.
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3.6.1 Pratt Score

The Pratt Figure of Merit (FoM) is considered because it has been reported as a very good
criterion to detect the differences in segmentation results [Cha06]. Pratt’s FoM provides a
quantitative comparison of the results of the different contour detection methods by measuring
the deviation of the output contours from a ground-truth. The ground-truth dataset were
separately delineated using our dedicated structural annotation software (TDR) with a digitizer
tablet (WACOM, Cintiq LCD-tablet) [Ver02]. The Pratt measure is computed according to
Eq. 3.10.

P =
1

max(IA, II)

IA

∑
i=1

1
1 +α.d2(i)

(3.10)

(a) Bright-Field view of yeast cells. (b) Contours superimposed on a fluorescent channel of the
same yeast cells.

Figure 3.12: The expanded contour is depicted in red, while the yellow contour is the initial estimate
extracted by the Hough transform and Circular Shortest Path algorithm (HCSP).
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where IA being the number of detected edge points, II the edge points in the ideal ground-truth
image, α a scaling factor or an empirical calibration constant set to the optimal value established
by Pratt, α = 1÷9 [Abd79], d(i) is the distance between the detected edge point and the nearest
edge point in the ideal ground-truth [The10]. Pratt’s FoM is an indicator of the quality of edge
and reflects the overall behaviour of the distances between the edges. Pratt’s FoM is a relative
measure, which varies in the range [0,1], where 1 represents the optimal value, i.e., the detected
edges coincide with the ground truth [Boa09].

3.6.2 F1-Measure

The F1-measure, also known as F1-score, is a measure of accuracy used in many domains
including the comparison of segmentation algorithms. It considers the precision and recall in
its computation [Hou13]. The precision is defined as the number of correctly detected objects
divided by the number of detected objects by the segmentation method. The recall is defined as
the number of correctly detected objects divided by the number of actual objects. We considered
a yeast cell object correctly detected if the centroid of its detected binary mask also exists as a
foreground pixel in the ground-truth binary mask. The F1-score can also be used to measure
the accuracy of the extracted contour by considering the binary mask of the individual detected
object. In this case, the precision is defined as the correctly detected pixels in the binary mask
divided by the number of detected pixels. The recall is then defined as the number of correctly
detected pixels divided by number of actual pixels in the ground-truth mask. When this later
definition is used we will refer to the F1-score as F1p-score to indicate its computation at the
pixel level. The F1-score is computed according to Eq. 3.11.

F1 = 2 x
precision x recall
precision + recall

(3.11)

3.6.3 Results

In this subsection, we present the validation results of the methods we prooposed earlier
including the HDT and HCSP methods proposed in Section 3.2 and Section 3.4; in addition
to the optimization method applied after HCSP as discussed in Section 3.5, i.e. the HCSP-CE
method.

HDT and HCSP validation

The HDT method uses Hough transform followed by the grey-weighted distance transform as
the minimal path algorithm. The HCSP method uses Hough transform followed by our proposed
circular shortest path algorithm. To evaluate these methods, we compare them with state of the
art yeast segmentation software, i.e. CellStat.
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Detection Rate F1-score
HCSP 97.23% 0.972
HDT 97.23% 0.972
CellStat 94.97% 0.950

Table 3.1: Detection Rates and F1-measure on
artificial dataset.

CellStat also uses dynamic programming
and cost functions and it is implemented in
Matlab. It is designed to segment bright-field
images of S. cerevisiae, but it has a constraint
on the cells to be detected, as they can not be
clumped within other cells [Kva08].

In Table 3.1 the detection rates and F1-
scores [Hou13] are shown after applying the
three methods on the artificial dataset. In the last step of the contour extraction process, the
shape is checked for its circularity value. If this value is less than an empirically determined
value, i.e. 0.614, the object is rejected. Checking the detection rate on the whole artificial
dataset using CellStat is not feasible. Therefore, we manually checked on a sample drawn
from the complete set. To verify whether this sample is representative for the whole dataset,
an unpaired student t-test was performed on the results obtained from the HCSP method. The
p-value of this test is 0.95.

As a case study, an experiment with S. cerevisiae yeast cells was performed with 8 repre-
sentative images. In total, these images contain 110 cells. Our methods were applied on this
dataset (both HDT and HCSP). The results are compared to that obtained from CellStat [Kva08].

Detected Correct Precision F1
HCSP 115 106 0.964 0.942
HDT 120 104 0.945 0.904
CellStat 112 101 0.918 0.910

Table 3.2: Detection Rates and F1-measure on yeast images.

HCSP CellStat
Detected 106 101
Precision 96.4% 91.8%
Wins 60 50

HDT CellStat
104 101

94.5% 91.8%
57 51

Table 3.3: Comparing Detected Contours of yeast images.

The detection rates and F1 −
measures are shown in Ta-
ble 3.2.

For the comparison of the
accuracy of the detected con-
tours, Pratt’s FoM is selected.
Table 3.3 shows the results of
the comparison between the
proposed methods and that of
the CellStat software on our S.
cerevisiae dataset. The detec-
tion rate outperforms that of
CellStat and the number of de-
tected contours that gains bet-
ter Pratt score (referred to as Wins in Table 3.3) is also higher than that of CellStat making it
a suitable segmentation method to be used in analysis of yeast cells. Hence, this method is
successfully used in our yeast analysis platform proposed in Chapter 2.

HCSP-CE validation

In order to validate the new HCSP-CE method, its performance is compared to the previous
HCSP, CellSerpent and CellStat.

Figure 3.13 shows the number of detected cells that gained a higher Pratt score using HCSP
method followed by contour expansion (CE) algorithm (HSCP-CE). These cells were obtained
from a dataset of 312 Saccharomyces cerevisiae yeast cells distributed over 14 bright-field
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images acquired by a Zeiss LSM 5 Exciter-AxioImager M1 confocal microscope. Compared to
CellSerpent, the HCSP-CE method has 163 cells with better Pratt scores, referred to as wins,
while CellSerpent has only 138 wins. In addition, comparison with CellStat leads to 284 wins
of cells with higher Pratt scores in the HCSP-CE method, with only 16 wins for CellStat. This
result is expected as the method implemented in CellStat looks for the minimal path as the final
contour of yeast cells in a similar way to that of HCSP, which scored 18 wins. On the other
hand, CellSerpent performs better than CellStat because its method is based on Active Contour
models for cell detection. However, Active Contour models couldn’t outperform our algorithm.

In Table 3.4 a comparison between the detection rates of the four used segmentation
methods on the dataset of 312 cells is listed. In Table 3.5, the accuracy of the detected contours
is compared between the four methods using average Pratt scores and F1p-scores for the
individual objects.'
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Figure 3.13: Number of cells with higher Pratt score (wins)..

HCSP-CE CellSerpent HCSP CellStat

Detected 322 359 322 231
Correct 296 302 296 181
Precision 0.92 0.84 0.92 0.78
Recall 0.95 0.98 0.95 0.58
F1 0.93 0.90 0.93 0.67

Table 3.4: F1-measure and average Pratt Score of different segmentation methods on a yeast
dataset.

.

HCSP-CE CellSerpent HCSP CellStat
F1p 0.92 0.89 0.76 0.47
Pratt 0.58 0.55 0.19 0.15

Table 3.5: Accuracy of detected contours.
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The HCSP-CE segmentation method has an overall highest scores with an F1-score of 0.93,
F1p of 0.92 and an average Pratt score of 0.58. The following method is CellSerpent with an
F1-measure of 0.90, F1p of 0.89 and average Pratt of 0.55. CellStat follows with an F1-measure
of 0.67, F1p of 0.47 and average Pratt of 0.15. HCSP scores similar F1-measure to that of
HCSP-CE as they both use the same underlying method for detection, however the Pratt score
of HCSP is 0.19 and the F1p is 0.76, which is noticeably worse than HCSP-CE and close to
that of CellStat as they both look for minimal paths for contour extraction.

3.6.4 Robustness under Noise

The HCSP-CE method is further validated for its robustness under noise. We evaluate how the
method performs under various noise levels. First we selected a random sample and prepared a
groundtruth. The ground-truth is separately delineated using our dedicated structural annotation
software (TDR) with a digitizer tablet (WACOM, Cintiq LCD-tablet) [Ver02]. Subsequently, we
determined the optimal parameter values to perform the segmentation. This step involves an
initial heuristic determination of parameter values, then quantitatively evaluate the segmentation
accuracy after iterating each of the parameters individually while fixing values of all the other
parameters. This procedure is repeated until parameter values are saturated. Figure 3.14 shows
the optimal saturated parameter set values after three repetitions.

In order to evaluate the segmentation accuracy, we used F1-scores for the detected cells per
image in addition to F1-scores of the extracted mask per cell as described in Section 3.6.2. We
used the average of the two F1 scores to determine the optimal values.

In order to generate noisy images, we first determined three main types of noise. Gaussian
noise, Poisson noise and Speckle noise. The principal sources of Gaussian noise in digital
images arise during acquisition e.g. sensor noise caused by poor illumination and/or high
temperature, and/or transmission [Cat13]. Poisson noise is known also as Shot noise, it occurs
in photon counting in optical devices. Poisson noise describes the fluctuations of the number
of photons detected (or simply counted in the abstract) due to their occurrence independent
of each other [Bla00]. Speckle noise, also known as salt and pepper kind of noise, is caused
usually by the scattering of light from a highly coherent source, such as a laser, and generates a
random-intensity distribution of light that gives the image a granular appearance [fre16].

We vary the signal to noise ratio SNR for each type of noise, and perform the segmentation
on the sample using the optimal parameters mentioned in Fig 3.14. Image noise can often be
described by an additive noise model, where the resulted image f(i, j) is the sum of the true
image s(i, j) and the noise image n(i, j) as depicted in Eq. 3.12.

f(i, j) = s(i, j) +n(i, j) (3.12)
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We considered the noise n(i, j) as zero-mean and we describe it by its variance σ2
n. The

impact of the noise on the image is described by the signal to noise ratio (SNR), which is
given by Eq. 3.13, where σ2

s and σ2
n are the variances of the true image and the noise image

respectively.

SNR =
σs

σn
=

¿
Á
ÁÀ σ2

s

σ2
n

− 1 (3.13)
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Optimal Segmentation Parameters. (a) - The optimal value of the alpha parameter
for the sample dataset is 0.7. This parameter is part of the thresholding equation
described in 3.2.2. (b) - Beta parameter associated with alpha has an optimal
value at 0.022. (c) - The limit parameter used in the optimization of contours was
described in 3.5.2. It has an optimal value at 20. (d) - The resistance is also a
contour optimization parameter described in 3.5.2. Its optimal value is 0.56. (e) -
The radius range used in filling the Hough accumulator as described in 3.2.1. The
optimal value is 8. (f) - The minimum radius to consider during the acuumualtor
filling has an optimum at 15.
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Figure 3.15 shows the segmentation performance under the noisy conditions with an SNR
ranging from 1 to 35. For Gaussian noise, the final average F1-score is 0.926 and the standard
deviation is 0.009. For Poisson noise the final average F1-score is 0.934 and the standard
deviation is 0.012. For Speckle noise the final average F1-score is 0.928 and the standard
deviation is 0.010. These numbers along with the visual inspection of the plots show that the
HCSP-CE segmentation method is very robust under various noise conditions.'
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Figure 3.15: F1-score at various noise levels. (a) - Assessing segmentation performance under
various levels of Gaussian noise. (b) - Assessing segmentation performance under
various levels of Poisson noise. (c) - Assessing segmentation performance under
various levels of Speckle noise.

3.7 Conclusion
In this chapter, we proposed new methods to detect oval-shaped objects, such as yeast cells in
bright-field microscopy images. We started by defining Hough transform and introducing our
proposed equations to threshold the Hough accumulator array. Subsequently, we introduced the
definition of polar transformation, the concept of polar coordinate system and how transforma-
tion from cartesian to polar system is achieved. We also demonstrated the polar representation
of a sample yeast image. The polar representation of an object image is required to extract the
minimal path corresponding to the contour of the object. The minimal path concept is also
discussed in this chapter and two algorithms to extract this minimal path are introduced. These
algorithms are the Grey-weighted distance transform and Circular shortest path. Hence, we
proposed two segmentation methods that uses Hough transform and minimal path algorithms;
i.e. HDT and HCSP methods. Subsequently, we introduced our additional expansion algorithm
that operates on the polar representation of object images; i.e. HCSP-CE. To validate the HDT
and HCSP new methods, they have been applied on two datasets along with state of the art
software packages common to yeast biology. The first dataset is a large artificial dataset of
ovoid shapes, and the second is a actual small dataset of S. cerevisiae yeast cells. For evaluation,
we considered two metrics namely the Pratt Figure of Merit (FoM) and F1-Measure. The results
show higher Pratt score and F1-Measure compared to the method from the CellStat software.
On the other hand, the HSCP-CE is applied to a different dataset of 312 S. cerevisiae yeast cells
distributed over 14 bright-field images. HCSP-CE was compared to methods from CellStat and
CellSerpent.


