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1
Introduction

“ This chapter presents the reader with our research objective, the problem
that we address and the goals of this research. In addition, it offers a basic
background and definitions necessary to follow up in this thesis. Specif-
ically, it introduces the necessary background about cytomic studies and
pattern recognition methods followed within our research. The final section
illustrates the scope or structure of the thesis. ”
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1.1 Research Objective

THIS thesis addresses the main research problem on how pattern recognition systems can sup-
port objective analysis and phenotype characterization of single-cell in image-based gene

expression experiments. Hence, we address the crucial research questions directly connected to
this problem. Our starting point is spherical/ovoid shape cells. First we address the components
and processes required to build a comprehensive image analysis pipeline for single-cell image
based gene expression. Second we address the best approach to segment ovoid-shaped cells
that are common in micro/cell biology such as Saccharomyces cerevisiae. In addition, we
address how a machine learning approach can aid in the object recognition process, and how
it can improve the identification of subtle patterns residing within the measurement data? i.e.
recognizing the patterns that are not obvious and hard to notice within standard measurement
methods. Another directly related research question is about the features used by the machine
learning approach, where we address the extraction of relevant and meaningful feature sets.
Finally, we address the question on whether the recognition system can be validated on a yeast
study experiment to discriminate various cell groups.

1.2 Cytomics and Saccharomyces cerevisiae

Cytomics is the study of cell systems (cytomes) at a single cell level. It combines all the
bioinformatics knowledge to attempt to understand the molecular architecture and functionality
of the cell system. Much of this is achieved by using molecular and microscopic techniques that
allow the various components of a cell to be visualized as they interact in vivo [Bra11]. In this
section, we define and discuss the gene expression and measurement followed within cytomics.
Subsequently, we define and discuss fluorescent proteins used to study cell behaviours. Finally
we present and discuss the eukaryote model organism used commonly in cell/micro biological
studies, and which we take as a case study in our research, i.e. the Saccharomyces cerevisiae
yeast cells.

1.2.1 Gene Expression and Measurement

In genetics, gene expression is the most fundamental level at which the genotype gives rise to
the phenotype, i.e. observable trait. The genetic code stored in DNA is "interpreted" by gene
expression, and the properties of the expression give rise to the organism’s phenotype. Such
phenotypes are often expressed by the synthesis of proteins that control the organism’s shape,
or that act as enzymes catalysing specific metabolic pathways characterising the organism.
Protein-coding genes are transcribed into messenger RNA (mRNA), which is an information
carrier coding for the synthesis of one or more proteins.

Measuring gene expression is an important part of many life sciences. The ability to quantify
the level at which a particular gene is expressed within a cell or organism can provide a huge
amount of information. Similarly, the analysis of the location of expression protein is a powerful
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tool and this can be done on an organism or cellular scale. Investigation of localisation is
particularly important for study of development in multicellular organisms and as an indicator
of protein function in single cells. Ideally, measurement of expression is done by detecting the
final gene product (for many genes this is the protein); however, it is often easier to detect one
of the precursors, typically mRNA, and infer gene expression level. Levels of mRNA can be
quantitatively measured by northern blotting, which provides size and sequence information
about the mRNA molecules.

For expression profiling or high-throughput analysis of many genes within a sample, quanti-
tative PCR may be performed for hundreds of genes simultaneously in the case of low-density
arrays. A second approach is the hybridization microarray, which is a popular approach in
gene expression studies. Microarrays reveal expression profiles for a large number of genes at
different time points. A single array or "chip" may contain probes to determine transcript levels
for every known gene in the genome of one or more organisms [Wel07]. Alternatively, "tag
based" technologies can be used, such as Serial analysis of gene expression (SAGE), which can
provide a relative measure of the cellular concentration of different mRNAs. Next-generation
sequencing (NGS) such as RNA-Seq is another approach, producing vast quantities of sequence
data that can be matched to a reference genome. Although NGS is comparatively expensive, and
resource-intensive, it can identify single-nucleotide polymorphisms, splice-variants, and novel
genes, and can also be used to profile expression in organisms for which little or no sequence
information is available.

For genes encoding proteins, the expression level can be directly assessed by a number of
means with some clear analogies to the techniques for mRNA quantification. The most commonly
used method is to perform a Western blot against the protein of interest. The gel-based nature
of this method makes quantification less accurate although it has the advantage of being able
to identify later modifications to the protein [Nei00, Ama08]. Moreover, Mass spectroscopy
is developing fast and allows the quantification of a large part of the proteome, which directly
addresses the level of gene products present in a given cell state and can further characterize
protein activities, interactions and subcellular distributions [Ong05]. Mass spectrometry (MS)
is an analytical technique that ionizes chemical species and sorts the ions based on their mass to
charge ratio. In simpler terms, a mass spectrum measures the masses within a sample.

Analysis of expression is not limited to only quantification; localisation can also be deter-
mined. mRNA can be detected with a suitably labelled complementary mRNA strand and protein
can be detected via labelled antibodies. The probed sample is then observed by microscopy to
identify where the mRNA or protein is.

By tagging the gene with a reporter gene, i.e. by replacing the gene with a new version
fused to the reporter gene expressing fluorescent proteins as markers, expression may be directly
quantified in live cells. It is very difficult to clone a reporter gene into its native location in the
genome without affecting expression levels so this method often cannot be used to measure
endogenous gene expression. It is, however, widely used to measure the expression of a gene
artificially introduced into the cell; for example, via an expression vector. It is important to
note that, in some cases, by fusing a gene to a fluorescent reporter the expressed protein’s
behaviour, including its cellular localization and expression level might change. The analysis
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of reporters is initiated by imaging using a confocal laser scanning microscope and by flow
cytometry, discussed hereafter.

1.2.2 Fluorescent Microscopy and Flow Cytometry

There are two popular cell analysis techniques including fluorescent microscopy and flow
cytometry, these are discussed and subsequently their complementarity is considered.

Microscopy

Proteins that are tagged with fluorescent molecules can be studied through imaging. The most
common techniques is by using fluorescent microscopy. Laser scanning microscopy in general
is preferred for fluorescence imaging because of their resolution, higher contrast, ability to
reconstruct 3-D images, the absence of artefacts induced by conventional microscopy, and most
importantly its ability to penetrate into the specimen and obtaining an image of a specific focal
plane [Mas01]. The multi-photon photo-luminescence microscopes have high spatial resolution
and reduced background [Zho10] and also permit additional structures to be observed [Mas01].
However, multi-photon microscopes do not contain pinhole apertures, which give confocal
microscopes their optical sectioning quality [Kam13]. In addition, modern confocal laser
scanning microscope CLSM can do fast scanning that prevents photo-toxicity due to thermal
damage [Paw10], as well as minimizing photo-bleaching. In confocal microscopy, the focus
plane of illumination is the same as the focal plane of detection. In other words, the focus plane
of illumination and the focal plane of detection are confocal [Row00].

Flow Cytometry

In cell biology, flow cytometry is a laser-based, biophysical technology employed in cell
counting, cell sorting, biomarker detection and protein engineering. It suspends cells in a
stream of fluid and passes them by an electronic detector. Flow cytometry allows simultaneous
multi-parametric analysis of the physical and chemical characteristics of up-to thousands of
particles per second [Yan15]. A flow cytometer is similar to a microscope; however, it doesn’t
produce an image of the cell but offers high-throughput automated quantification of the set
parameters for a high number of single cells during each analysis session [Tho06].

Complementarity of Flow Cytometry and Fluorescence Microscopy

Flow cytometry and fluorescence microscopy both provide single-cell analysis using different
but complementary sets of data, essentially population-based target intensities versus target
morphology in relatively small sample sizes. Both approaches employ optical filters to analyze
fluorescence emissions and have to overcome some of the same physical limitations including
spectral overlap of dyes and the dynamic range limits of measuring systems. Hence, flow
cytometry and confocal fluorescence microscopy technologies both have specific characteristics
and limitations. In microscopy, photostability is a more critical issue. Flow cytometry is
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limited by its requirement that analyzed cells are in suspension, making information on tissue
architecture and cell-cell interactions inapplicable. On the other side, fluorescence microscopy
is well suited to the resolution of cell and tissue architecture, and to following kinetic and
trophic responses in single cells. In flow cytometry, cell subpopulations with similar marker
expression are difficult to differentiate, and analyses that employ more fluorophores are subject
to signal spillover [Jah12]. In addition, there is the inability of flow cytometry to recognize
morphologically analyzed cells [Mur08]. Flow cytometry rapidly quantifies small differences
between cell populations using statistically significant numbers of events. Flow cytometry can
represent a “black box” when looking at the magnitude of a population response; fluorescence
microscopy can help verify that measured results represent meaningful biological effects.

In general, the microscopist may arrive at quantitative data. However, the cooperative
use of both flow cytometry and microscopy can provide more robust numerical description of
biological phenomena [God05].

1.2.3 Cytomics and Fluorescent Proteins

Proteins are vital parts in living organisms. Many important proteins in human biology were
understood by studying their homologs in yeast; such proteins include cell cycle proteins,
signalling proteins, and protein-processing enzymes [Wal04]. The large-scale study of the
structures and functions of such proteins is called Proteomics [Bla99]. In Proteomics, Fluo-
rescent proteins such as green fluorescent protein (GFP) and its derived variants are widely
used. One of the most exciting applications is the generation of a library of S. cerevisiae strains
in which each coding sequence is tagged with green fluorescent protein (GFP) [Huh03]. This
library enables the determination of the localization of more than 70 percent of the S. cerevisiae
proteins. In addition, levels of these proteins can be quantified after cultivation under different
conditions.

Tagging genes with the reporter expressing green fluorescent protein (GFP) is a highly
specific and sensitive technique for studying the inter-cellular dynamics of proteins and or-
ganelles [Sha97]. GFP expression is an excellent marker to monitor the gene expression [Phi01]
and protein localization in the living yeast cells. The biggest advantage of the intracellular
GFP is that it is heritable, since it can be transformed with the use of DNA-encoding GFP.
Additionally, visualizing GFP is non-invasive as it is detectable by just shining light on it.
Furthermore, it is a relatively small and inert molecule that does not appear to interfere with
cell growth and function. Moreover, if GFP is used with a monomer it can diffuse readily
throughout cells [Cha09].

The green fluorescent protein (GFP) was first isolated from the jellyfish Aequorea victo-
ria [Sha97, Phi01]. It is a protein composed of 238 amino acid residues (26.9 kDa) that exhibits
bright green fluorescent when exposed to light in the blue to ultraviolet range [Wal04, Moy08,
Cha94]. It has a beta-barrel structure consisting of eleven β-strands. The beta barrel structure
is a nearly perfect cylinder, 42 Å long and 24 Å in diameter, creating what is referred to as a
"β-can" formation, which is unique to the GFP-like family [Yan97]. In GFP the fluorophore is
formed inside the protein globule by modification of amino acids [Shi79].
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Figure 1.1: Excitation and Emission of GFP and some variants. Data from [Hei96].

The GFP gene is widely used as a reporter gene and can be introduced into organisms and
maintained in their genome through breeding, injection with a viral vector, or cell transfection.
The GFP gene has been introduced and expressed in the S. cerevisiae yeast cells as well as other
types of yeast cells, bacteria, fungi, fish (such as zebrafish), plant, fly, and mammalian cells,
including human [Cha09].

GFP requires low excitation light intensity to prevent photo-bleaching and photo-toxicity at
a light wavelength of 490 nm or less [Sha97]. The GFP from A. victoria has a major excitation
peak at a wavelength of 395 nm and a minor one at 475 nm. Its emission peak is at 509 nm,
which is in the lower green portion of the visible spectrum [Phi01]. This fluorescence is very
stable, and virtually no photo-bleaching is observed [Cha94].

Many different mutants (variants) of the GFP have been engineered, with improved spectral
characteristics of GFP, resulting in increased fluorescence, photo-stability, and a shift of the
major excitation peak to 488 nm. EGFP and Superfolder GFP are examples of such variants.
Many other mutations have been made as well including color mutants; in particular, blue
fluorescent protein (EBFP, EBFP2, Azurite, mKalama1), cyan fluorescent protein (ECFP,
Cerulean, CyPet, mTurquoise2), and yellow fluorescent protein derivatives (YFP, Citrine, Venus,
YPet). They exhibit a broad absorption band in the ultraviolet spectrum (cf. Fig. 1.1).

Knowing how much of a protein is expressed is not sufficient to understanding its behaviour.
It is particularly important to also know its subcellular location because changes in protein
subcellular location can cause dramatic effects on cell behaviour. Changes in location within
a cell type may also cause or result from disease [Mur05]; however, subcellular location
has received less attention than many other aspects of gene and protein behaviour. The major
exception is in yeast, in which almost all proteins have been assigned to a set of major subcellular
structures using fusion of DNA, with the coding sequence of fluorescent proteins such as the
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green fluorescent protein. For example, Huh et al [Huh03] used green fluorescent protein
tagging of DNAs and visual examination to assign proteins to 12 categories: cell periphery,
bud, bud neck, cytoskeleton, microtubule, cytoplasm, nucleus, mitochondrion, endoplasmic
reticulum, vacuole, vacuolar membrane, and punctate. They then used colocalization with red
fluorescent protein markers to divide the cytoskeleton class into two classes, actin cytoskeleton
and spindle pole, and to add nine new categories: nucleolus, nuclear periphery, golgi apparatus,
three types of transport vesicles, endosome, peroxisome, and lipid particle. In all, 4,156 proteins
were assigned to these 22 categories in their study [Huh03, Mur05].

In our experiments on S. cerevisiae, the model organism is tagged with fluorescent proteins
and is visualized by confocal laser scanning microscope. The subsequent sub-section introduces
this organism that is used to understand gene expression and genetic networks in cytomics.

1.2.4 Saccharomyces cerevisiae in cytomics

Saccharomyces derives from Latinized Greek and means "sugar-mold" or "sugar-fungus",
saccharo being the combining form "sugar" and myces being "fungus". Cerevisiae comes from
Latin and means "of beer". This organism is also known as Baker’s yeast, Brewer’s yeast, Ale
yeast, Top-fermenting yeast and Budding yeast [Stă13].

S. cerevisiae is a well-known yeast species and used since ancient times in wine-making,
brewing and baking. It was originally isolated from the skin of grapes and has been one of the
most intensively studied eukaryote model organisms in molecular and cell biology. [Fel10].
S. cerevisiae cells are round to ovoid with a diameter between 2 to 10 micrometers. [Par97].

Many cell processes in the yeast model eukaryote cell are similar to that in plants and mam-
malians including humans. This fact makes yeast an excellent model organism to understand
the behaviour of proteins involved in such processes. Several traits in the S. cerevisiae drive
researchers to look for this organism. Among these traits is its size, generation time, accessibil-
ity, manipulation, genetics, conservation of mechanisms, potential economic benefits [Gov11],
cell’s transparency, the fact that its genome sequence was completed in 1996, and the availability
of a library of strains in which each individual coding sequence is tagged with green fluorescent
protein (GFP) [Huh03] in addition to a library of knock-out strains [Win99] and a library of
TAP-tagged strains [Gha03]. These traits make S. cerevisiae a significant tool in biological
research. Studying DNA damage and repair mechanisms is one example [Nic01].

S. cerevisiae yeast cells can survive and grow in two forms; as haploid or diploid cells where
they undergo a simple life-cycle of mitosis and growth. Haploid cells usually die under stress
conditions, while diploid can undergo sporulation, entering meiosis and producing four haploid
spores, which can proceed to mate. This reproduction process is known as budding and there
where Budding yeast get their name from. With adequate nutrients, yeast cells can double in
numbers within 100 minutes [Her88]. The mean replicative life span of the S. cerevisiae is
about 26 cell divisions [Kae05, Kae10].

In molecular genetics, S. cerevisiae is used as a model system in the understanding of
gene expression and genetic networks, because it combines considerable variation in key cell
characteristics such as protein levels and expression, cell size, shape and age. It also has short
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generation time and immobility [Don13b]. Moreover, it can be manipulated and genetically
engineered.

Genetic and hereditary diseases are still incurable because we lack the understanding
behaviours of many proteins. This fact drives research groups to use the S. cerevisiae yeast cell
to understand the behaviour of proteins responsible for many processes in the cells. Such as the
14-3-3 family of proteins which is considered vital to cell life. In order to prepare such cells for
the experiments, the gene expressing a protein under study is attached (tagged) to a report gene
that expresses fluorescent protein such as the popular green fluorescent protein (GFP) or any of
its variants. How we use this model organism to recognize patterns is the topic of next section.

1.3 Pattern Recognition

Pattern recognition aims to classify data (patterns) based on either a priori knowledge or on sta-
tistical information extracted from the patterns. The patterns to be classified are usually groups
of measurements or observations, defining points in an appropriate multidimensional space. A
complete pattern recognition system consists of: (i) a sensor that gathers the observations to be
classified or described, (ii) a feature extraction mechanism that computes numeric or symbolic
information from the observations and (iii) a classification or description scheme that does the
actual job of classifying or describing observations relying on the extracted features [dic16].

In our research, the sensor used is the fluorescence microscope that gathers the observations,
i.e. the yeast cell images. Such image observations are acquired by CLSM microscopy and are
discussed in the first sub-section. From such observations image analysis techniques are applied
to extract the features. Such techniques involve image processing, image segmentation, and
object measurement techniques; which will be the topic of the second sub-section. The last part
of the pattern recognition discussion is dedicated to the data analysis and classification of the
measured features obtained by image analysis.

1.3.1 Image Acquisition

All the images created in this work were analyzed by confocal laser scanning microscopy
(CLSM) to view fluorescent tagged proteins expressed within the cells. Images are acquired
as two or three channel images. One or two channels of the reporter construct (GFP, YFP,
CFP). The GFP is excited at 488nm and YFP at 514nm, and emission is at 500-550 for GFP or
530-600nm for YFP [Zah12]. In addition, a bright-field channel is acquired; the bright-field
image depicts the structure of the cells.

The Bright-field image channel is acquired through a bright-field technique embedded
within the confocal microscope. Since it depicts the yeast structure, this channel of the mi-
croscope images of yeast S. cerevisiae cells is used primarily, in our research, to detect the
cell contours. For optimal detection, optimal microscope settings have to be set and hence
the parameters to be used have to be determined. To determine these parameters, an exper-
iment was done where several images were generated under different microscope settings.
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Image Resolution Master Digital Laser
Label Gain Offset

A 512x512 320 -1.20 18%
B 1024x1024 320 -1.20 18%
C 1024x1024 340 -1.90 20%
D 1024x1024 261 -0.05 18%
E 1024x1024 301 -0.50 18%

Table 1.1: microscope settings

Table 1.1 lists all the different settings used,
where each setting is labelled with a different
letter (A...E). This label represents a different
category of images. To choose the optimal
image category that works best with segmen-
tation algorithms. We applied a segmentation
algorithm to try the detection of cell objects
in these images. A score of true positive cell
detections was computed for each category.

Image Label True Positive
A 67%
B 70%
C 52.6%
D 48.4%
E 47.6%

Table 1.2: Percentage of True Positives

The result in Table 1.2 shows different
labelled images with their acquired scores.
Each image label corresponds to images ac-
quired with the microscope settings listed in
Table 1.1. The score of true positive rate indi-
cates the number of cells correctly detected.
The highest score corresponds to category la-
belled as B, i.e. the microscope settings of
1024x1024 resolution, 320 master gain, -1.20
digital offset and 18% laser power.

The availability of GFP and its derivatives has thoroughly redefined fluorescence microscopy
and the way it is used in cell biology and other biological disciplines [Yus05]. Such Fluorescent
(photon-emitting) molecules are introduced into yeast cells because they have a helpful property
of fluorescing when in the presence of non-fluorescent molecules or structures under study.
When the S. cerevisiae specimen is illuminated using laser techniques in confocal microscopy,
the fluorophores (fluorescent molecules) absorbs the light photons raising them to an excited
state with a wavelength (energy) specific to the fluorophore itself. The fluorophore then returns
to its ground state and may emit a photon with lower energy (longer wavelength). This photon
might then strike the detector with the proportion of light entering the objective lens of the
microscope. The charges of electrons produced by photons striking the detector are quantified
and from these quantifications, pixel values are determined. These pixel values correspond to
the number of detected photons (cf. Fig. 1.2). From the number of photons detected at each
pixel, interpretations can be made about the presence or absence of some feature, the size and
shape of a structure, or about the relative concentration of a molecule [Ban13]. The excitation
and emission wavelength used to detect the fluorescent molecules varies with different types.
For example the GFP is imaged with excitation at 488 nm and emission at 505-530 nm.

Now that the image acquisition is performed, we shift our discussion to the image analysis
phase.
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Figure 1.2: Schematic Image Formation of Fluorescence Microscopy. (a) - basic setup. (b) -
the specimen is illuminated in higher energy light, fluorophores become excited.
(c) - Lower energy Light is emitted; some enters the objective lens and is detected.

1.3.2 Image Analysis

When digital cameras where introduced to microscopy, digital image analysis has developed as
an established complement, allowing routine quantification of microscope observations [Tho96].
Currently, flow cytometry is one of the methods used to measure levels of fluorescent proteins;
this can, however, not provide the quantification that image analysis can. Hence, the use of image
analysis was probed to accomplish further progress. Digital image analysis, widely known as
image analysis, is when a machine automatically studies an image to obtain useful information
from it. The applications of digital image analysis are continuously expanding through all areas
of science and industry. It has been successfully applied in a wide variety of fields ranging from
astronomical observations to cell analysis. To name few other fields: nuclear medicine, medical
diagnostics, industry, lithography, microscopy, lasers, biological imaging, remote sensing, law
enforcement, radar images, geological exploration [Gon08], sports management [Fer99] and
chemical imaging [Sch95]. There are many different techniques used in automatically analyzing
images. Each technique may be useful for a small range of tasks. However, there still are
not any known methods of image analysis that are generic enough for wide ranges of tasks,
compared to the abilities of a human’s image analyzing capabilities [Sol11]. In our domain,
we considered few of these techniques including image processing, image segmentation and
feature extraction discussed hereafter.

Image Processing

Image processing is usually used to refer to digital image processing. It is a process that
accepts an image as an input, and the output may be either image or a set of characteristics
or parameters related to the image. It is the use of computer algorithms to perform image
processing on digital images. Since images are defined over two dimensions (perhaps more),
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image processing may be modelled in the form of multidimensional systems. Image processing
is the only practical technology for classification, feature extraction, multi-scale image analysis
and pattern recognition [Gon08].

Image Segmentation

Crucial to image analysis is image segmentation, which is defined as subdividing an image
into its constituent regions or objects [Gon08]. The result of image segmentation is objects
representing connected regions of similar intensity. From these regions, measurements can be
conducted. Some practical applications of image segmentation are image processing, computer
vision, face recognition, medical imaging, digital libraries, image and video retrieval, and cell
image analysis to measure gene expression [Tle13, van07].

Segmentation of individual cells relies on the ability to detect cell boundaries and classifying
all pixels in a given image as foreground or background. The differentiation between foreground
and background pixels can be accomplished by a threshold function determined by a simple
intensity based method, or by more complex functions such as graphical models, pattern
recognition, deformable templates, cell contours or the watershed algorithm [Don13b].

There are a number of refining segmentation algorithms, tracking algorithms, morphology
characterization, and protein localization. However, we lack a robust approach for the seg-
mentation and tracking of budding yeast [Don13b]. The result of such a robust segmentation
algorithm enables us to extract binary masks and contours of cells. These obtained masks and
contours allow us to measure various features of those objects, i.e. cells. More details on object
measurement follow hereafter.

Measurement and Features

Herein, we will define the concepts of measurement, features, textures and feature extraction.
Measurement

In its classical definition throughout physical sciences, measurement is the determination or
estimation of ratios of quantities [Mic99]. However, information theory recognises that all
data are inexact and statistical in nature. Thus the definition of measurement in information
theory is “a set of observations that reduce uncertainty where the result is expressed as a
quantity” [Hub07]. In general, we can state that measurement is the assignment of a number to a
characteristic of an object or event, which can be compared with other objects or events [Ped91].
The science of measurement is pursued in the field of metrology, which includes all theoretical
and practical aspects of measurement [BIP08].

Measurement is a cornerstone in Bio-Imaging and pattern recognition as well as in most
science fields. It is an important step in the discovery process. In Biological image analysis,
measurement is strongly related to features and textures extracted from images. Hereafter, we
will define what a feature is? what a texture is? and we will highlight on the well-known feature
extraction techniques followed within bio-imaging.
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Features
In computer vision and image processing, a feature is a piece of information which is relevant
for solving the computational task related to a certain application. This is the same sense as
feature in machine learning and pattern recognition generally, though image processing has
a very sophisticated collection of features. Features may be specific structures in the image
such as points, edges or objects. Features may also be the result of a general neighborhood
operation or feature detection applied to the image. In general definition, an image feature is a
representation or an attribute of an image describing certain special characteristics of the pattern
of interest.

In our application it is not sufficient to extract only one type of feature to obtain the relevant
information from the image data. Instead multiple different features are extracted, resulting
in multiple feature descriptors at each image point. The information provided by all these
descriptors is organized as the elements of one single vector, referred to as a feature vector.
The set of all possible feature vectors constitutes a feature space. A common example of
feature vectors appears when each image point is to be classified as belonging to a specific
class. Assuming that each image point has a corresponding feature vector based on a suitable
set of features, meaning that each class is well separated in the corresponding feature space, the
classification of each image point can be done using standard classification methods [wik15].
Chapter 4 applies such classification on our feature space.

Textures
An image texture is a set of metrics calculated in image processing designed to quantify the
perceived texture of an image. Image texture gives us information about the spatial arrangement
of color or intensities in an image or selected region of an image [Sha01]. In other words,
it is defined as the visual effect which is produced by spatial distribution of total variations
over relatively small areas [Bar95]. Image textures are believed to be a rich source of visual
information. They are complex visual patterns composed of entities, or sub-patterns, that have
characteristic brightness, colour, slope, size, etc... Thus a texture can be regarded as a similarity
grouping in an image. Image textures can be artificially created or found in natural scenes
captured in an image. Image textures are one way that can be used to help in segmentation or
classification of images. To analyze an image texture in computer graphics, there are two ways
to approach the issue: Structured Approach and Statistical Approach. A structured approach
sees an image texture as a set of primitive texels in some regular or repeated pattern. This works
well when analyzing artificial textures. However, since natural textures are made of patterns of
irregular sub-elements as is the case in our application, statistical approach is used. In general,
statistical approach is easier to compute and is more widely used. It sees as image texture as a
quantitative measure of the arrangement of intensities in a region.

Feature extraction
Feature extraction is defined as locating those pixels in an image that have some distinctive
characteristics [Gub09]. The most known feature extraction techniques in image analysis are
classified into first-order histogram based features, invariant moment features, co-occurrence
matrix based features, and multi-scale features [Mat98]. More details about these techniques
will be discussed in Chapter 4.
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1.3.3 Data Analysis

After performing the measurement, data analysis is necessary to make the measurement mean-
ingful for users. Data analysis can be defined as the process for obtaining raw data and
converting it into information useful for decision making and suggesting conclusions [Jud11].
The workflow depicted in Fig. 1.3 illustrates the general process followed within bioinformatics.
Initially images are acquired from the imaging device during the image acquisition phase; then
these images undergo segmentation to locate the individual objects. Following the segmentation
is the measurement phase where objects are measured for various features. The obtained
data must be processed or organized for analysis [Sch13], but the data could be incomplete,
contain duplicates, or contain errors. Such issues are presented and corrected through data
cleaning [Ara15]. Once the data is processed and cleaned, it can be analyzed. Analysts apply
a variety of techniques referred to as exploratory data analysis to begin understanding the
messages contained in the data [Few04]. Descriptive statistics are generated to help understand
the data. These data are examined in graphical format using data visualization techniques
to communicate key messages contained within the data through these graphical means and
charts [Fri08]. Machine learning models and algorithms can be applied to identify relationships
among the variables or to classify the instances of the data based on these variables. Data
mining and machine learning plays a major role here. They focus on modelling and knowledge
discovery for predictive rather than purely descriptive purposes. The output of such models
is data products fed back to the user such as conclusions or identified subtle patterns residing
within the data.

1.4 Thesis Structure

In the remaining chapters we explain the research we have set out to perform.
Chapter Two: Image Analysis Platform. This chapter presents a complete framework for

biological experiments. It demonstrates how an automated platform based on a complete image
analysis pipeline assist biologists in their experiments? Moreover, this chapter discusses the in-
dividual modules that form the complete framework, including the segmentation, measurement,
data analysis and the GUI that combines these modules together.

Chapter Three: Hough Transform Based Contour Extraction and Optimization. In
this chapter, we show how a new approach based on Hough transform and minimal path
algorithms can improve the segmentation of ovoid objects, i.e. yeast cells. We start by defining
Hough transform and minimal path algorithms. Subsequently we present our general approach
to detect ovoid objects in microscope images by detecting circular arcs using a variety of the
Hough transform. In addition, we discuss the application of minimal path algorithms to extract
the exact contour of detected objects from a polar representation of the image surrounding the
object. Furthermore, this chapter presents an additional novel algorithm to expand the extracted
contours of ovoid objects. Such expansion is necessary for some settings due to the inherently
fuzzy nature of edges and delicate microscope settings. This chapter explains how the polar
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Figure 1.3: Flow Chart of the data analysis process

representation of images is used to expand the initially detected contours by applying circular
shortest paths. In addition, it explains the three introduced parameters to control the expansion
process. These parameters are resistance, limit and convergence. The expansion of a sample
contour is demonstrated as well in this chapter. Finally, results and comparison with other
methods are evaluated using a dataset of S. cerevisiae yeast cells.

Chapter Four: Machine Learning to Improve Object Recognition and Discrimina-
tion of Cell Groups Using Sophisticated Features. This chapter specifically address machine
learning where we introduce features to be used in a machine learning approach to automat-
ically identify cell groups cultivated in two different media. We use the same approach to
classify cell objects from artefacts. First we discuss the feature extraction techniques including
first-order histogram features, texture measurement, moment invariants, co-occurrence matrix
based features and multi-scale wavelet-based texture measurement. Subsequently, various
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classification methods are evaluated to build a model imported into the yeast analysis platform
to be trained for the automatic discrimination of cell groups. This discrimination helps showing
that there are different gene expression patterns between cells cultivated under different stress
levels. Moreover, the same classification methods are evaluated to build another model for
the identification of cell objects. This model is used to discriminate the segmented objects in
images into intact cell objects or artefacts such as debris and dead cells.

Chapter Five: The Effect of NaCl on 14-3-3 Proteins and Nha1 antiporter. In this
chapter, the designed image analysis platform is used in a case study to determine the effect of
sodium chloride on 14-3-3 genes including Bmh1 and Bmh2 in addition to the NHA1 encoding
an antiporter. The study also includes a mutant of BMH1 (∆bmh1) to study the expression of
Nha1 under different osmotic stress levels. The result obtained from using the yeast analysis
software is also validated with that obtained from flow cytometry.

Chapter Six: Discussion. In this chapter, we draw out conclusions learned from this
dissertation and give scope for further research and applications.




