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Chapter 2

Unirationality of del Pezzo
surfaces of degree 2

In this section we will present some results about unirationality of del
Pezzo surfaces of degree 2. In particular, we will show that all del Pezzo
surfaces of degree 2 over a finite field are unirational. All the material
presented in this chapter is part of joint work with Ronald van Luijk,
and it can be found in [FvL15]; many of these results have already been
published in [FvL16].

2.1 The main results

In Chapter 1 we have already seen that every del Pezzo surface, and so
in particular every del Pezzo surface of degree 2, over an algebraically
closed field is birational to the projective plane.

The same statement does not need to hold if the field is not alge-
braically closed, and so we look at weaker notions. Let k be any field
and let X be a variety of dimension n over k. We say that X is unira-
tional if there exists a dominant rational map Pn 99K X, defined over
k.

Work of B. Segre, Yu. Manin, A. Knecht, J. Kollár, and M. Pieropan
prove that every del Pezzo surface of degree d ≥ 3 defined over k is
unirational, provided that the set X(k) of rational points is non-empty.
For references, see [Seg43, Seg51] for k = Q and d = 3, see [Man86,
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Chapter 2. Unirationality of del Pezzo surfaces of degree 2

Theorem 29.4 and 30.1] for d ≥ 3 with the assumption that k is large
enough for d ∈ {3, 4}. See [Kol02, Theorem 1.1] for d = 3 in general.
See [Pie12, Proposition 5.19] and, independently, [Kne15, Theorem 2.1]
for d = 4 in general. Since all del Pezzo surfaces over finite fields have
a rational point (see [Man86, Corollary 27.1.1]), this implies that every
del Pezzo surface of degree at least 3 over a finite field is unirational.

Building on work by Manin (see [Man86, Theorem 29.4]), C. Sal-
gado, D. Testa, and A. Várilly-Alvarado prove that all del Pezzo surfaces
of degree 2 over a finite field are unirational as well, except possibly for
three isomorphism classes of surfaces (see [STVA14, Theorem 1]). In
this chapter, we show that these remaining three cases are also unira-
tional, thus proving our first main theorem.

Theorem 2.1.1. Every del Pezzo surface of degree 2 over a finite field
is unirational.

More generally, we give some sufficient conditions for a del Pezzo
surface of degree 2 to be unirational.

Theorem 2.1.2. Suppose k is a field of characteristic not equal to 2,
and let k be an algebraic closure of k. Let X be a del Pezzo surface of
degree 2 over k. Let B ⊂ P2 be the branch locus of the anti-canonical
morphism π : X → P2. Let C ⊂ P2 be a projective curve that is bira-
tionally equivalent to P1 over k. Assume that all singular points of C
that are contained in B are ordinary singular points. Then the following
statements hold.

1. Suppose that there is a point P ∈ X(k) such that π(P ) ∈ C − B.
Suppose that B contains no singular points of C and that all in-
tersection points of B and C have even intersection multiplicity.
Then the surface X is unirational.

2. Suppose that one of the following two conditions hold.

(a) There is a point Q ∈ C(k) ∩ B(k) that is a double or a
triple point of C. The curve B contains no other singular
points of C, and all intersection points of B and C have
even intersection multiplicity.
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2.1. The main results

(b) There exist two distinct points Q1, Q2 ∈ C(k) ∩ B(k) such
that B and C intersect with odd multiplicity at Q1 and Q2

and with even intersection multiplicity at all other intersec-
tion points. Furthermore, the points Q1 and Q2 are smooth
points or double points on the curve C, and B contains no
other singular points of C.

Then there exists a field extension ` of k of degree at most 2 for
which the preimage π−1(C`) is birationally equivalent with P1

` ; for
each such field `, the surface X` is unirational.

Corollary 2.1.3. Suppose k is a field of characteristic not equal to 2.
Let X be a del Pezzo surface of degree 2 over k. Assume that X has a k-
rational point, say P . Let C ⊂ P2 be a geometrically integral curve over
k of degree d ≥ 2 and suppose that π(P ) is a point of multiplicity d− 1
on C. Suppose, moreover, that C intersects the branch locus B of the
anti-canonical morphism π : X → P2 with even multiplicity everywhere.
Then the following statements hold.

1. If π(P ) is not contained in B, then X is unirational.

2. If π(P ) is contained in B, it is an ordinary singular point on C
and we have d ∈ {3, 4}, then there exists a field extension ` of k
of degree at most 2 for which the preimage π−1(C`) is birationally
equivalent with P1

` ; for each such field `, the surface X` is unira-
tional.

In the next section, we will present the three difficult surfaces and
prove Theorem 2.1.1. The main tool is Lemma 2.2.2, which states that
it suffices to construct a rational curve on each of the three del Pezzo
surfaces.

Recall that if X is a del Pezzo surface of degree 2, then X admits
56 exceptional curves (cf. [Man86, Theorem IV.26.2]). A point on X is
called a generalised Eckardt point if it lies on four of the 56 exceptional
curves.

If a point P on a del Pezzo is not a generalised Eckardt point,
and it does not lie on the ramification locus of the anti-canonical mor-
phism, then Manin’s construction, extended by C. Salgado, D. Testa,
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Chapter 2. Unirationality of del Pezzo surfaces of degree 2

and A. Várilly-Alvarado, yields a rational curve that satisfies the as-
sumptions of case (1) of Corollary 2.1.3 with the degree d being such
that there are 4− d exceptional curves through P (cf. Example 2.3.7).

The three difficult surfaces do not contain such a point. The proofs
of unirationality of these three cases use a rational curve that is an
example of case (2) of Corollary 2.1.3 instead (cf. Remark 2.2.4 and
Example 2.3.9). Here we benefit from the fact that if k is a finite field,
then any curve that becomes birationally equivalent with P1 over an
extension of k, already is birationally equivalent with P1 over k itself.
For two of the three cases, the rational curve we use has degree 4. For
the last case, the curve we use has degree 3, but there also exist quartic
curves satisfying the hypotheses of case (2) of Corollary 2.1.3. This
raises the following question (cf. Question 2.4.6, Remark 2.4.8, and
Example 2.4.9), which together with case (2) of Corollary 2.1.3 could
help proving unirationality of del Pezzo surfaces of degree 2 over any
field of characteristic not equal to 2.

Question 2.1.4. Let d ∈ {3, 4} be an integer. Let X be a del Pezzo
surface of degree two over a field of characteristic not equal to 2, and let
P ∈ X(k) be a point on the ramification locus of the anti-canonical map
π : X → P2. Does there exist a geometrically integral curve of degree d
in P2 over k that has an ordinary singular point of multiplicity d− 1 at
π(P ), and that intersects the branch locus of π with even multiplicity
everywhere?

For some d, X, and P , the answer to this question is negative (see
Example 2.4.9), but in all cases we know of (all over finite fields), there
do exist singular curves of degree d with a point of multiplicity at least
d− 1 at π(P ). Hence, it may be true that the answer to Question 2.1.4
is positive for X and P general enough.

In line with case (1) of Corollary 2.1.3, we can ask, in fact for any
integer d ≥ 1, an analogous question for points P that do not lie on
the ramification locus, where we do not require the singular point to be
ordinary. In this case, if P lies on r ≤ 3 exceptional curves, then Manin’s
construction shows that the answer is positive for degree d = 4 − r.
Therefore, this analogous question is especially interesting when P lies
on four exceptional curves (cf. Remark 2.3.5 and Example 2.3.8).

In Section 2.3 we prove Theorem 2.1.2 and a generalisation, Corol-
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2.2. Proof of the first main theorem

lary 2.1.3. In Section 2.4 we discuss how to search for curves satisfying
the assumptions of Theorem 2.1.2 and in particular of Corollary 2.1.3.

2.2 Proof of the first main theorem

Set k1 = k2 = F3 and k3 = F9. Let γ ∈ k3 denote an element satisfying
γ2 = γ+1. Note that γ is not a square in k3. For i ∈ {1, 2, 3}, we define
the surface Xi in P = P(1, 1, 1, 2) with coordinates x, y, z, w over ki by

X1 : − w2 = (x2 + y2)2 + y3z − yz3,

X2 : − w2 = x4 + y3z − yz3,

X3 : γw2 = x4 + y4 + z4.

These surfaces are smooth, so they are del Pezzo surfaces of degree 2. C.
Salgado, D. Testa, and A. Várilly-Alvarado proved the following result.

Theorem 2.2.1. Let X be a del Pezzo surface of degree 2 over a finite
field. If X is not isomorphic to X1, X2, or X3, then X is unirational.

Proof. See [STVA14, Theorem 1].

We will use the following lemma to prove the complementary state-
ment, namely that X1, X2, and X3 are unirational as well.

Lemma 2.2.2. Let X be a del Pezzo surface of degree 2 over a field k.
Suppose that ρ : P1 → X is a non-constant morphism; if the character-
istic of k is 2 and the image of ρ is contained in the ramification divisor
RX , then assume also that the field k is perfect. Then X is unirational.

Proof. See [STVA14, Theorem 17].

For i ∈ {1, 2, 3}, we define a morphism ρi : P1 → Xi by extending
the map A1(t)→ Xi given by

t 7→ (xi(t) : yi(t) : zi(t) : wi(t)),

where
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Chapter 2. Unirationality of del Pezzo surfaces of degree 2

x1(t) = t2(t2 − 1),

y1(t) = t2(t2 − 1)2,

z1(t) = t8 − t2 + 1,

w1(t) = t(t2 − 1)(t4 + 1)(t8 + 1),

x2(t) = t(t2 + 1)(t4 − 1),

y2(t) = −t4,
z2(t) = t8 + 1,

w2(t) = t2(t2 + 1)(t10 − 1),

x3(t) = (t4 + 1)(t2 − γ3),

y3(t) = (t4 − 1)(t2 + γ3),

z3(t) = (t4 + γ2)(t2 − γ),

w3(t) = γ2t(t8 − 1)(t2 + γ).

It is easy to check for each i that the morphism ρi is well defined,
that is, the polynomials xi, yi, zi, and wi satisfy the equation of Xi,
and that ρi is non-constant. The methods used to find these curves are
exposed in Section 2.4.

Theorem 2.2.3. The del Pezzo surfaces X1, X2, and X3 are unira-
tional.

Proof. By Lemma 2.2.2, the existence of ρ1, ρ2, and ρ3 implies that
X1, X2, and X3 are unirational.

Proof of Theorem 2.1.1. This follows from Theorems 2.2.1 and 2.2.3.

Remark 2.2.4. Take any i ∈ {1, 2, 3}. Set Ai = ρi(P1) and Ci = πi(Ai),
where πi = πXi : Xi → P2 is as described in the previous section. By
Remark 2 of [STVA14], the surface Xi is minimal, and the Picard group
PicXi is generated by the class of the anti-canonical divisor −KXi . The
same remark states that the linear system | − nKXi | does not contain
a geometrically integral curve of geometric genus zero for n ≤ 3 if
i ∈ {1, 2}, nor for n ≤ 2 if i = 3. For i ∈ {1, 2}, the curve Ai has
degree 8, so it is contained in the linear system | − 4KXi |. The curve
A3 has degree 6, so it is contained in the linear system | − 3KXi |. This
means that the curve Ci has minimal degree among all rational curves
on Xi. The restriction of πi to Ai is a double cover Ai → Ci. The curve
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Ci ⊂ P2 has degree 4 for i ∈ {1, 2} and degree 3 for i = 3, and Ci is
given by the vanishing of hi, with

h1 =x4 + xy3 + y4 − x2yz − xy2z,

h2 =x4 − x2y2 − y4 + x2yz + yz3,

h3 =x2y + xy2 + x2z − xyz + y2z − xz2 − yz2 − z3.

For i ∈ {1, 2}, the curve Ci has an ordinary triple point Qi, with
Q1 = (0 : 0 : 1), Q2 = (0 : 1 : 1). The curve C3 has an ordinary
double point at Q3 = (1 : 1 : 1). For all i, the point Qi lies on the
branch locus Bi = BXi .

We will see later that the curve Ci intersects the branch locus Bi
with even multiplicity everywhere. Of course, one could check this
directly as well using the polynomial hi. In fact, had we defined Ci
by the vanishing of hi, then one would easily check that Ci satisfies
the conditions of part (2) of Corollary 2.1.3, which gives an alternative
proof unirationality of Xi without the need of the explicit morphism ρi
(see Example 2.3.9). Indeed, in practice we first found the curves C1,
C2, and C3, and then constructed the parametrisations ρ1, ρ2, ρ3, which
allow for the more direct proof that we gave of Theorem 2.2.3.

2.3 Proof of the second main theorem

Let k be a field of characteristic different from 2 and recall the notation
introduced in Section 1.2.3. In what follows X denotes a del Pezzo
surface of degree 2 over k, the map π : X → P2 is its associated double
covering map, with branch locus B ⊂ P2 and ramification locus R ⊆ X.
The map ι : X → X is the involution of X induced by the double
covering map π. Let P be a point inside X(k).

Combining Lemma 2.2.2 and Corollary 1.2.27 it is possible to relate
the existence of some particular plane curves with the unirationality of
a del Pezzo surface of degree 2.

Proposition 2.3.1. Let C ⊂ P2 be a geometrically integral projec-
tive curve with g(C) = 0. Let C̃ denote its normalisation and set
n = #b(C̃, B). The following statements hold.
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Chapter 2. Unirationality of del Pezzo surfaces of degree 2

1. If n = 0, then there exists a field extension ` of k of degree at
most 2 such that the preimage π−1(C`) consists of two irreducible
components that are birationally equivalent to C`. For each such `
for which C` is rational, the surface X` is unirational.

2. If n = 0 and C is rational and there exists a rational point
P ∈ X(k) with π(P ) ∈ C − B, then the preimage π−1(C) con-
sists of two rational components and X is unirational.

3. If n = 2 and the preimage π−1(C) is rational, then the surface X
is unirational.

Proof. First note that since B is a smooth quartic, it has genus 3,
then by the initial hypothesis g(C) = 0 it follows that C 6= B. Let
A = π∗(C) the pull back of the curve C on the surface X. Since C is
geometrically integral and C 6= B, the curve A is geometrically reduced.
The morphism A → C induced by π has degree 2, and so A = A ×k k
consists of at most two components. Then there is an extension ` of k
of degree at most 2 such that the components of A` are geometrically
irreducible. Let ` be such an extension and let D be an irreducible
component of A`.

Suppose n = 0. Then, from Corollary 1.2.27.(1), the preimage
π−1(C`) consists of two irreducible components that are birationally
equivalent to C`. If, moreover, C` is rational, then Lemma 2.2.2 implies
the unirationality of X`, proving statement (1).

Assume C is itself rational and there is a rational point P ∈ X(k)
such that π(P ) ∈ C − B. Then we have that P 6= ι(P ) and the points
P and ι(P ) lie in different components of A` = D` ∪ ι(D`). Since the
Galois group G = G(`/k) fixes the points P and ι(P ), it follows that G
also fixes D` and ι(D`), so these components are defined over k. Then
statement (2) follows from (1) taking ` = k.

Statement (3) follows immediately from Corollary 1.2.27.(2) and
Lemma 2.2.2.

Remark 2.3.2. Note that statement (1) of Proposition 2.3.1 is consistent
with [STVA14, Corollary 1.3], in which it is stated that if X is a del
Pezzo surface of degree 2 over a finite field k, then there is a quadratic
extension k′/k such that Xk′ is unirational.
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2.3. Proof of the second main theorem

Remark 2.3.3. Let D be a geometrically integral curve over a field k
with g(D) = 0. Then there exists a field extension ` of k of degree at
most 2 such that D` is rational. In fact, if k is a finite field, then D
is rational over k. Therefore, if k is finite in Proposition 2.3.1, then C
is rational; moreover, by case (3) we conclude that if n = 2, then X is
unirational over k.

Remark 2.3.4. Propositions 1.2.26 and 2.3.1 imply that the geometri-
cally integral projective curves D ⊂ X with g(D) = 0 are exactly the
geometrically irreducible components above geometrically integral pro-
jective curves C ⊂ P2 with g(C) = 0 and #b(C̃, B) ∈ {0, 2}, where C̃
denotes the normalisation of C.

Remark 2.3.5. Suppose P ∈ X(k) is a rational point that does not lie
on the ramification curve, so π(P ) 6∈ B. Suppose C is a geometrically
integral curve of degree d that has a singular point of multiplicity d− 1
at π(P ), and that intersects B with even multiplicity everywhere. Then
Proposition 1.2.31 shows that b(C̃, B) is empty, so, by Corollary 1.2.27,
the pull back π∗(C) splits into two components.

If X is general enough, then the Picard group PicX of X is gen-
erated by the canonical divisor KX , and the automorphism group of
X acts trivially on PicX, so these two components would be linearly
equivalent to the same multiple of KX ; as their union is linearly equiv-
alent to −dKX , we find that d is even. Hence, for odd d, the answer to
the analogous question mentioned below Question 2.1.4 is negative for
X general enough.

It is possible, however, that, even for odd d, a variation of this
analogous question still has a positive answer. If we forget the del
Pezzo surface, and only consider the quartic curve B ⊂ P2 with a point
Q ∈ P2 that does not lie on B, we could ask for the existence of a curve
of degree d that intersects B with even multiplicity everywhere, and on
which Q is a point of multiplicity d − 1. The argument above merely
shows that if such a curve exists for odd d and Q lifts to a rational point
on the del Pezzo surface, then the surface does not have Picard number
one.

Proof of Theorem 2.1.2. Assume that the assumptions of statement (1)
hold. This implies that Cs ∩ B = ∅ and b(C,B) = ∅. Therefore, by
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Chapter 2. Unirationality of del Pezzo surfaces of degree 2

Proposition 1.2.31, we have #b(C̃, B) = 0. Statement (1) follows from
applying part (2) of Proposition 2.3.1.

Assume statement (2a) holds. This means that Cs ∩B = {Q} and
b(C,B) = ∅. Since Q is a double or triple point of C, Proposition 1.2.31
implies that #b(C̃, B) = 2. The conclusion of statement (2) follows
from applying part (3) of Proposition 2.3.1 and Remark 2.3.3.

Assume statement (2b) holds. It means that b(C,B) = {Q1, Q2}
and Cs ∩ B ⊆ {Q1, Q2}. Since the points Q1 and Q2 are distinct,
Proposition 1.2.31 implies that #b(C̃, B) = 2. As before, the conclu-
sion of statement (2) follows from part (3) of Proposition 2.3.1 and
Remark 2.3.3. This concludes the proof of the theorem.

Proof of Corollary 2.1.3. Set Q = π(P ). Let LQ denote the line in
the dual of P2 consisting of all lines L ⊂ P2 going through Q, and
note that LQ is isomorphic to P1. Since C has degree d and π(P ) is
a point of multiplicity d − 1, each line in LQ intersects C in a unique
d-th point, counting with multiplicity. It follows that C is smooth at
all points T 6= Q. It also follows that the rational map C → LQ that
sends a point T ∈ C to the line through T and Q is birational, so C is
birationally equivalent with P1. By hypothesis, all intersection points
of B and C have even intersection multiplicity.

Assume that Q is not contained in B. Since C is smooth away from
Q, the curve B contains no singular points of C. Then X is unirational
by part (1) of Theorem 2.1.2. This proves part (1).

Assume that Q is contained in B, that Q is an ordinary singularity
of C, and d ∈ {3, 4}. Then Q is a double or a triple point of C. Since
Q is the only singularity of C, the curve B contains no other singular
points of C. Then X is unirational by part (2) of Theorem 2.1.2. This
proves part (2).

We now give some examples of curves that satisfy the conditions of
Theorem 2.1.2 or Corollary 2.1.3.

Example 2.3.6. If C is a bitangent to the branch curve B that is defined
over k, and C(k) contains a point Q 6∈ B that lifts to a k-rational point
on X, then Theorem 2.1.2 implies that X is unirational. We can also
prove this directly. Indeed, in this case the pull back π−1(C) consists
of two exceptional curves that are defined over k, so X is not minimal.
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Blowing down one of these exceptional curves yields a del Pezzo surface
Y of degree 3 with a rational point. This implies that Y , and therefore
also X, is unirational.

Example 2.3.7. Suppose the point P ∈ X(k) is not a generalised Eckardt
point and P is not on the ramification curve. Set Q = π(P ), let
ρ : LQ → X be as in [FvL15, Section 4, p.6], and set C = π(ρ(LQ)).
Then by [FvL15, Proposition 4.14], the map ρ(LQ) → C has degree
1, so by Propositions 1.2.26 and 1.2.31, the intersection multiplicity of
C and the branch curve B is even at all intersection points. Also by
[FvL15, Proposition 4.14], the curve C has a point Q off the branch
curve B of multiplicity degC−1, so the curves of Manin’s construction
are examples of the curves described in Corollary 2.1.3. For further
discussion on this see [FvL15, Remark 4.15].

Example 2.3.8. Consider the surface X ⊂ P(1, 1, 1, 2) over F3, defined
by the equation

w2 = x4 + y4 + z4.

The surface X is a del Pezzo surface of degree 2. All its rational points
either are on the ramification curve, or they are generalised Eckardt
points. In fact, the surface X has 154 rational points over F9, with 28
of those lying on the ramification locus. The remaining 126 are gener-
alised Eckardt points, which is also the maximum number of generalised
Eckardt points a del Pezzo surface of degree two can have (see [STVA14,
before Example 7]). It follows that Manin’s method does not apply to
this surface. Let P be the point (0 : 0 : 1 : 1) on X. Then P is a gener-
alised Eckardt point and its image Q = π(P ) = (0 : 0 : 1) ∈ P2 does not
lie on the branch locus B, which is given by x4 + y4 + z4 = 0. Consider
the curve C ⊂ P2 given by x3y + xy3 = z(x+ y)2(y − x). The curve C
is a geometrically integral quartic plane curve that has a triple point at
Q and that intersects B with even multiplicity everywhere. Therefore,
by case (1) of Corollary 2.1.3, the surface X is unirational.

Of course, unirationality of X was already known: it follows for
instance from Lemma 20 in [STVA14] (cf. Example 2.3.10 below). It
is nice to see, though, that, even though Manin’s construction and the
generalisation in [STVA14] do not produce a curve in P2 of some degree d
with a point of multiplicity d−1 at Q, and even intersection multiplicity
with B everywhere, such curves do still exist, and then case (1) of
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Chapter 2. Unirationality of del Pezzo surfaces of degree 2

Corollary 2.1.3 implies unirationality of X. This gives a positive answer
to the question below Question 2.1.4 for d = 4 and this particular surface
X and this generalised Eckardt point P .

One might ask whether there are curves of lower degree satisfying
the hypotheses of case (1) of Corollary 2.1.3. Indeed, there are conics
that do, for example the one given by y2 = xz. An exhaustive com-
puter search, based on Proposition 2.3.1.(2), and Corollary 2.4.2, shows
that there are no cubic curves with a double point at Q satisfying the
hypotheses of Corollary 2.1.3 and its case (1).

Example 2.3.9. Let X1, X2, X3 be the three del Pezzo surfaces defined
as in Section 2.2 and let Bi be their branch locus, for i = 1, 2, 3. For
i = 1, 2, 3, all rational points of the surface Xi lie on the ramifica-
tion locus. Consider the rational points P1 = (0 : 0 : 1 : 0) ∈ X1,
P2 = (0 : 1 : 1 : 0) ∈ X2, and P3 = (1 : 1 : 1 : 0) ∈ X3, and set
Qi = π(Pi). Clearly, we have Qi ∈ Bi. Set d1 = d2 = 4 and d3 = 3. Let
Ci ⊂ P2 be the projective plane curve of degree di given by the poly-
nomial hi defined as in Remark 2.2.4. The curve Ci is geometrically
irreducible and it has an ordinary singular point at Qi of multiplicity
di − 1. Given that the curve Ci pulls back to the geometrically irre-
ducible rational curve Ai of Remark 2.2.4, we find from Corollary 1.2.27
and Proposition 1.2.31 that Ci intersects Bi with even multiplicity ev-
erywhere.

Of course, one could also check directly that Ci intersects Bi with
even multiplicity everywhere. Then Corollary 2.1.3 and Remark 2.3.3
give an alternative proof that the surface Xi is unirational (cf. Re-
mark 2.2.4). There is a quartic alternative for C3 as well. The curve
C ′3 ⊂ P2 given by the vanishing of

h′3 =γ2x4 + x3y + γx2y2 + γ3xy3 − y4 + x3z + γx2yz + xy2z

− γy3z + γx2z2 + xyz2 + γ3y2z2 + γ3xz3 − γyz3 − z4

is geometrically integral, has an ordinary triple point at (−1 : 1 : 1),
and intersects B with even multiplicity everywhere.

Example 2.3.10. Let k be a field with characteristic different from 2.
Let a1, . . . , a6 ∈ k be such that the variety X in the weighted projective
space P = P(1, 1, 1, 2) defined by

w2 = a2
1x

4 + a2
2y

4 + a2
3z

4 + a4x
2y2 + a5x

2z2 + a6y
2z2
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is a del Pezzo surface of degree 2. This is the surface of Lemma 20 in
[STVA14], where it is noted that the surface in P given by the equation
w = a1x

2 + a2y
2 + a3z

2 intersects the surface X in a curve D, which
the anti-canonical map π : X → P2 sends isomorphically to the plane
quartic curve C ⊂ P2 given by

(a4 − 2a1a2)x2y2 + (a5 − 2a1a3)x2z2 + (a6 − 2a2a3)y2z2 = 0.

They also note that this curve C is birationally equivalent to a conic
under the standard Cremona transformation, so C and D are rational
over an extension of k of degree at most 2. If they are rational over k,
then X is unirational.

Indeed, one checks that the curve C satisfies the conditions of part
(1) of Proposition 2.3.1, and if C is rational over k, then it also satisfies
the conditions of part (1) of Theorem 2.1.2, where one can take P to
be any of the points on X above any of the singular points (0 : 0 : 1),
(0 : 1 : 0), and (1 : 0 : 0) of C.

2.4 Finding appropriate curves

In this section, we assume that the characteristic of k is not 2, and
we give sufficient easily-verifiable conditions for a curve C to satisfy
the hypotheses of Corollary 2.1.3. This is also how we found the three
curves, C1, C2, and C3 of Remark 2.2.4, whose existence implies unira-
tionality of the three difficult surfaces X1, X2, X3 (see Example 2.3.9
and Remark 2.4.7).

Let X ⊂ P(1, 1, 1, 2) be a del Pezzo surface of degree 2, given by
w2 = g with g ∈ k[x, y, z] homogeneous of degree 4. Let B ⊂ P2(x, y, z)
be the branch curve of the projection π : X → P2. Then B is given
by g = 0. Let P ∈ X(k) be a rational point and set Q = π(P ).
Without loss of generality, we assume Q = (0 : 0 : 1). Let C ⊂ P2 be
a geometrically irreducible curve of degree d ≥ 2 on which Q is a point
of multiplicity d− 1.

There are coprime homogeneous polynomials fd−1, fd ∈ k[x, y] of
degree d − 1 and d, respectively, such that C is given by zfd−1 = fd.
The projection away from Q induces a birational map from C to the
family LQ of lines in P2 through Q. Its inverse is a morphism ϑ that
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sends a line L ∈ LQ to the d-th intersection point of L with C. If we
identify LQ with P1, where (s : t) ∈ P1 corresponds to the line given by
sy = tx, then ϑ : P1 → C sends (s : t) to

(sfd−1(s, t) : tfd−1(s, t) : fd(s, t)).

The curve C has no singularities outside Q, and we may identify the
morphism ϑ : P1 → C with the normalisation of C. The points on P1

above the point Q are exactly the points where fd−1(s, t) vanishes. The
curve C has an ordinary singularity at Q if and only if d > 2 and
fd−1(s, t) vanishes at d− 1 distinct k-points of P1(s, t).

The pull back π∗(C) is birationally equivalent with the curve given
by w2 = G in the weighted projective space P(1, 1, 2d) with coordinates
s, t, w, and with

G = g
(
sfd−1(s, t), tfd−1(s, t), fd(s, t)

)
∈ k[s, t].

Proposition 2.4.1. For any point T ∈ P1(k), the intersection multi-
plicity µT (P1, B) equals the order of vanishing of G at T .

Proof. Since C either has degree 2 or it is singular, it is not equal to B.
As C is irreducible, it has no irreducible components in common with
B. By symmetry between s and t, we may assume T = (α : 1) for some
α ∈ k. Then the local ring OT,P1 is isomorphic to the localisation of

k[s] at the maximal ideal (s−α). Let ` ∈ k[x, y, z] be a linear form that
does not vanish at ϑ(T ). Then locally around ϑ(T ) ∈ P2, the curve B
is given by the vanishing of the element g/`4, whose image in OT,P1 is
G(s, 1)/L(s, 1)4 with L(s, t) = `

(
sfd−1(s, t), tfd−1(s, t), fd(s, t)

)
. Since

L(s, 1) does not vanish at α, we find that µT (P1, B) equals the order
of vanishing of G(s, 1) at α, which equals the order of vanishing of G
at T .

Corollary 2.4.2. We have b(P1, B) = ∅ if and only if G is a square in
k[s, t].

Proof. By Proposition 2.4.1, we have b(P1, B) = ∅ if and only if the
order of vanishing of G is even at every point T ∈ P1(k). This is
equivalent with G being a square in k[s, t].
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If B does not contain the unique singular point Q of C, then ϑ
induces a bijection b(P1, B) → b(C,B), so in this case we also have
b(C,B) = ∅ if and only if G is a square in k[s, t]. The following propo-
sition gives an analogue of this statement when Q is contained in B.

Proposition 2.4.3. Suppose that Q is contained in B. Then the ratio-
nal polynomial H = G/fd−1(s, t) is in fact contained in k[s, t]. Suppose,
furthermore, that the tangent line to B at Q is given by h = 0 with
h ∈ k[x, y], and that Q is an ordinary singular point on the curve C.
Then the following statements hold.

1. Suppose d is odd. Then the set b(C,B) is empty if and only if H
is a square in k[s, t].

2. Suppose d is even. If h divides fd−1, then H/h(s, t) is contained
in k[s, t]. The set b(C,B) is empty if and only if h divides fd−1

and H/h(s, t) is a square in k[s, t].

Proof. Write g =
∑4

i=0 giz
4−i, where gi ∈ k[x, y] is homogeneous of

degree i for all 0 ≤ i ≤ 4. If g(Q) = g0 vanishes, then each monomial of
g is divisible by x or y, which implies thatG is divisible by fd−1, which in
turn shows H ∈ k[s, t]. Suppose that all hypotheses hold. By g(Q) = 0
we find g0 = 0. The tangent line to B at Q is given by g1 = 0, so h is a
scalar multiple of g1. Note that all statements are invariant under the
action of GL2(k) on P1 and P2 given on their respective homogeneous
coordinate rings k[s, t] and k[x, y, z] by γ(s) = as + bt, γ(t) = cs + dt
and γ(x) = ax+ by, γ(y) = cx+ dy, γ(z) = z for

γ =

(
a b
c d

)
.

After applying an appropriate element γ ∈ GL2(k) and rescaling h, we
assume, without loss of generality, that h = g1 = y.

If y divides fd−1, then t divides fd−1(s, t); since all monomials in g
besides y are divisible by x2, xy, or y2, it follows that in this case G
is divisible by tfd−1(s, t), so H/t is contained in k[s, t]. This does not
depend on d being even.

In the open neighbourhood of Q given by z 6= 0, the curve B is
given by the vanishing of g/z4 = g(x/z, y/z, 1) =

∑
i gi(x/z, y/z). The
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maximal ideal m of the local ring OQ,C is generated by x/z and y/z,
so the image of g/z4 in OQ,C/m2 is g1(x/z, y/z) = y/z. Let T ∈ P1(k)
be a point with ϑ(T ) = Q, and let n be the maximal ideal of the
local ring OT,P1 . Then the image of g in OT,P1/n2 equals the image of
y/z, which is tfd−1(s, t)/fd(s, t). The point T corresponds to a linear
factor of fd−1(s, t). Since fd(s, t) does not vanish at T , we find that
the valuation vT (g) of g in OT,P1 is at least 2 if t vanishes at T , that
is, µT (P1, B) ≥ 2 if T = (1 : 0). We have µT (P1, B) = v(g) = 1 if
T 6= (1 : 0). From Lemma 1.2.24 we conclude

µQ(C,B) =

{
d− 2 + µ(1:0)(P1, B) if y divides fd−1,

d− 1 otherwise.
(2.1)

We now consider the two cases.

1. Suppose d is odd. From (2.1) it follows that µQ(C,B) is even
if and only if either y divides fd−1 and µ(1:0)(P1, B) is odd, or y
does not divide fd−1. This happens if and only if µT (P1, B) is odd
for all T ∈ P1 at which fd−1(s, t) vanishes. For all other points
R ∈ C with R 6= Q, the multiplicity µR(C,B) is even if and only if
µϑ−1(R)(P1, B) is even. From Proposition 2.4.1, we conclude that
b(C,B) is empty if and only if the order of vanishing of G is odd
at all points T ∈ P1 at which fd−1(s, t) vanishes and even at all
other points. This is equivalent with H being a square in k[s, t].

2. Suppose d is even. From (2.1) it follows that µQ(C,B) is even if
and only if y divides fd−1 and µ(1:0)(P1, B) is even. As in the case
for odd d, this implies that b(C,B) is empty if and only if the
order of vanishing of G is odd at all points T 6= (1 : 0) at which
fd−1(s, t) vanishes, and even at all other points, including (1 : 0).
Since the order of vanishing of tfd−1(s, t) at (1 : 0) is 2, this is
equivalent to G/(tfd−1(s, t)) = H/t being a square in k[s, t].

This finishes the proof.

We have already seen that the pull back π∗(C) is birationally equiv-
alent with the curve given by w2 = G in P(1, 1, 2d). This curve splits
into two k-rational components if and only if G is a square in k[s, t].
If Q is an ordinary singular point of C that lies on B, then this never
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happens. However, the curve π∗(C) may itself be k-rational, in which
case G factors as a square times a quadric.

We will now focus on the case d = 4, so Q is a triple point. The
following corollary says that if Q is an ordinary triple point, then we do
not need to factorise G, as we know exactly which part should be the
square, and which the quadric.

Corollary 2.4.4. Suppose that Q is an ordinary singular point of C
that lies on B. If the pull back π∗(C) ⊂ X is k-rational, then we have
d ≤ 4.

Moreover, suppose d = 4, and let the tangent line to B at Q be given
by h = 0 with h ∈ k[x, y]. Then the pull back π∗(C) ⊂ X is k-rational if
and only if there is a constant c ∈ k∗ such that the following statements
hold:

1. the polynomial h divides f3;

2. the polynomial cH(s, t)/h(s, t) is a square in k[s, t];

3. the conic given by cw2 = f3(s, t)/h(s, t) in P2(s, t, w) is k-rational.

Proof. Suppose π∗(C) is k-rational. Then π∗(C) is geometrically inte-
gral and has genus g(π∗(C)) = 0. From Proposition 1.2.26 we obtain
b(P1, B) = 2. From Proposition 1.2.29 we conclude that the contri-
bution cQ(C,B) is at most 2. Moreover, this proposition also gives
cQ(C,B) ≥ d − 2 with equality if and only if µQ(C,B) is even. We
conclude d ≤ 4.

Suppose d = 4. Then we have equality cQ(C,B) = 2 = #b(P1, B),
so µQ(C,B) is even, and we find that b(C,B) is empty. From Proposi-
tion 2.4.3 we find that h divides f3, and m = H(s, t)/h(s, t) is a square
in k[s, t]. Let c be the main coefficient of m(s, 1). Then cm is a square
in k[s, t]. Therefore, the k-rational curve given by w2 = G with

G = cm · h2(s, t) · c−1f3(s, t)/h(s, t) (2.2)

in P(1, 1, 2d) is birationally equivalent with the conic given by the
equation cw2 = f3(s, t)/h(s, t) in P2(s, t, w), which is therefore also
k-rational.

Conversely, if there is a constant c such that cH(s, t)/h(s, t) is a
square in k[s, t], then it follows from (2.2) that the conic given by

61



Chapter 2. Unirationality of del Pezzo surfaces of degree 2

cw2 = f3(s, t)/h(s, t) in P2(s, t, w) is birationally equivalent with the
curve in P(1, 1, 2d) given by w2 = G, which is birationally equivalent
with π∗(C). Hence, if this conic is k-rational, then so is π∗(C).

Remark 2.4.5. Corollary 2.4.4 helps us in finding all curves C of degree
d = 4 that satisfy the conditions of case (2) of Corollary 2.1.3 with
` = k. More explicitly, after a linear transformation of P2, we may
assume that Q = (0 : 0 : 1), and the tangent line to B at Q is given by
y = 0. Then we claim that every curve C of degree d = 4 that satisfies
the conditions of case (2) of Corollary 2.1.3 with ` = k is given by

yzφ2 = x4 + yφ3

for some homogeneous φ2, φ3 ∈ k[x, y] of degree 2 and 3, respectively,
with φ2 squarefree and not divisible by y. Indeed, we find that f3 is
divisible by y, so there is a φ2 ∈ k[x, y] such that f3 = yφ2; since C
is irreducible, the polynomial f4 is not divisible by y, so the coefficient
of x4 in f4 is nonzero, and after scaling φ2, f3, and f4, we may assume
that there exists a φ3 ∈ k[x, y] such that f4 = x4 + yφ3. Moreover, Q is
an ordinary singularity if and only if φ2 is squarefree and not divisible
by y.

Hence, to find all such curves C, we are looking for all pairs (φ2, φ3)
with φi ∈ k[x, y] homogeneous of degree i, such that

1. the polynomial φ2 is squarefree and y does not divide φ2,

2. the curve given by yzφ2 = x4 + yφ3 is geometrically integral,

3. there is a constant c ∈ k∗ such that polynomial c·G(s, t)/(t2φ2(s, t))
with

G = g
(
stφ2(s, t), t2φ2(s, t), s4 + tφ3(s, t)

)
is a square,

4. the conic given by cw2 = φ2(s, t) in P2(s, t, w), with c as in (3), is
k-rational.

Note for (3) that, because the characteristic is not 2, a homogeneous
polynomial H ∈ k[s, t] of even degree is a square in k[s, t] if and only
if there is a constant c ∈ k∗ such that cH is a square in k[s, t], which
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happens if and only if γ−1H(s, 1) is a square in k[s], where γ is the
main coefficient of H(s, 1). This follows from the fact that a monic
polynomial in k[s] is a square in k[s] if and only if it is a square in k[s].
Moreover, the c ∈ k∗ for which cH is a square, form a coset in k∗/k∗2,
so whether or not (4) holds does not depend on the choice of c.

Question 2.1.4 for d = 4 can be rephrased using Remark 2.4.5. It is
equivalent to the following question.

Question 2.4.6. Let k be a field of characteristic not equal to 2, and
g ∈ k[x, y, z] a homogeneous polynomial of degree 4 such that the curve
B ⊂ P2(x, y, z) given by the equation g = 0 is smooth, it contains the
point Q = (0 : 0 : 1), and the tangent line to B at Q is given by y = 0.
Do there exist homogeneous polynomials φ2, φ3 ∈ k[x, y] of degree 2 and
3, such that conditions (1)–(3) of Remark 2.4.5 are satisfied?

Remark 2.4.7. If k is a (“small”) finite field, then we can list all pairs
(φ2, φ3) with φi ∈ k[x, y] homogeneous of degree i, and check for each
whether the conditions (1)–(4) of Remark 2.4.5 are satisfied. In fact,
condition (4) is automatically satisfied over finite fields. Indeed, this
is how we found the curves C1, C2 given in Remark 2.2.4, whose exis-
tence implies unirationality of the three difficult surfaces X1, X2 (see
Example 2.3.9). Finding the rational cubic curve C3 on X3, as given in
Remark 2.2.4, was easier, based on part (1) of Proposition 2.4.3.

Remark 2.4.8. For any integer i, let k[x, y]i denote the (i+1)-dimensional
space of homogeneous polynomials of degree i. In general, over any field,
we can describe the set of pairs (φ2, φ3) ∈ k[x, y]2 × k[x, y]3 satisfying
condition (3) of Remark 2.4.5 as follows.

Identify k[x, y]2× k[x, y]3 with the affine space A7 and let R denote
the coordinate ring of A7, that is, R is the polynomial ring in the
3 + 4 = 7 coefficients of φ2 and φ3. Let Z ⊂ A7 be the locus of all
(φ2, φ3) that satisfy condition (3).

For generic φ2, φ3, that is, with the variables of R as coefficients,
the coefficients of the polynomial

G′ = G(s, t)/(t2φ2(s, t))

of condition (3) of Remark 2.4.5 lie in R. For general enough g, the
coefficient c ∈ R of s12 in the polynomial G′ ∈ R[s, t] is nonzero. On
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the open set U of A7 given by c 6= 0, we may complete G′(s, 1) to a
square in the sense that there are polynomials G1, G2 ∈ R[c−1][s] with
G1 monic of degree 6 in s and G2 of degree at most 5 in s such that
G′(s, 1) = cG2

1 − G2. The vanishing of the six coefficients in R of G2

determines the locus Z ∩U inside U of all pairs (φ2, φ3) at which cG′ is
a square. Note that we have c = G′(1, 0). For each point (s0 : t0) ∈ P1,
we can use an automorphism of P1 that sends (s0 : t0) to (1 : 0), to
similarly describe the intersection of Z with the open subset of A7 where
G′(s0, t0) is nonzero; it is also given by the vanishing of six polynomials
in R. We can cover A7 with open subsets of this form, thus describing
Z completely.

A naive dimension count suggests that the locus Z has dimension
7− 6 = 1. This is consistent with the following, similarly naive, dimen-
sion count. The family of quartic curves in P2 is 14-dimensional, as it is
the projective space P(k[x, y, z]4), where k[x, y, z]4 is the 15-dimensional
vector space of polynomials of degree 4. The codimension of the subset
of those curves having a triple point at Q is 6, and demanding that the
intersection multiplicity µQ(C,B) is at least 4 cuts down another di-
mension. Since B is also a quartic curve, by Bezout’s theorem it follows
that B and C have 16 intersection points, counted with multiplicity.
Hence, generically, the curves in the remaining 7-dimensional family in-
tersect B, besides in Q, in 16− 4 = 12 more points. One might expect
the subfamily of those curves where this degenerates to six points with
multiplicity 2 to have codimension 6, in which case this would leave a
1-dimensional family of quartic curves with a triple point at Q ∈ B and
intersecting B with even multiplicity everywhere.

However, the locus Z also contains some degenerate components
that we are not interested in. For example, the locus of all (0, φ3) for
which f4 = x4 + yφ3 is a square is contained in Z and has dimension
2. Also, for any smooth conic Γ that contains Q, that has its tangent
line at Q given by y = 0, and that has even intersection multiplicity
with B everywhere, we get a 1-dimensional subset of Z consisting of
pairs (φ2, φ3) that correspond with the union of Γ with any double line
through Q (these lines are parametrised by P1). Note that in all these
degenerate cases the curve C is reducible. Another degenerate case is
the limit of Manin’s construction. By [FvL15, Remark 4.11], this limit
curve is the non-reduced curve π∗π

∗(2L) = 4L, where L is the tangent
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line to B at Q, given by y = 0. Hence, this quartic curve is given by
y4 = 0, which does not correspond to a point on the affine set Z, as the
coefficient of x4 is zero.

Let Z0 denote the affine subset of Z corresponding to curves C that
are geometrically integral and on which Q is an ordinary triple point.
Then Questions 2.1.4 (for d = 4) and 2.4.6 can be rephrased by asking
whether the subset Z0 contains a k-rational point.

Example 2.4.9. Let B ⊂ P2 be the smooth curve given by

y4 − x4 − x3y − xy3 + y3z + yz3 = 0

over k = F3, and let Q be the point (0 : 0 : 1) ∈ B(k). The tangent
line to B at Q is given by y = 0. Running through all the homogeneous
polynomials in x, y of degree 2 and 3 over k one can find that there
is no pair (φ2, φ3) of polynomials satisfying conditions (1)–(3) of Re-
mark 2.4.5; there do exist pairs satisfying only conditions (2) and (3).
This means that Questions 2.1.4 (for d = 4) and 2.4.6 have negative
answer in this specific case. It could, however, still be true that the
answer is positive for X and P general enough.

Notice that the curve B is isomorphic to the Fermat curve of degree
four, that is, the curve given by x4 +y4 +z4 = 0, via the following linear
change of variables:

(x : y : z) 7→ (x− z : x+ y + z : z).
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