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Chapter 1

Background

In this chapter we introduce some basic notions that will come in handy
later. In Section 1.1 we introduce lattices, focusing on integral lattices
and giving some properties that will be mostly used in Chapter 3; in
Section 1.2 we introduce some basic notions of algebraic geometry, to-
gether with some well and less well known results that are needed to
state and prove the results contained in the next chapters.

1.1 Lattice theory warm up

In this section we introduce the notion of lattices together with some
basic results for later use. In the first part we follow [vL05, Section 2.1].

For any two abelian groups A and G, a symmetric bilinear map
A×A→ G is said to be non-degenerate if the induced homomorphism
A→ Hom(A,G) is injective.

A lattice is a free Z-module L of finite rank endowed with a non-
degenerate symmetric, bilinear form bL : L× L→ Q, called the pairing
of the lattice. If x, y are two elements of L, the notation x · y may be
used instead of bL(x, y), if no confusion arises.

A lattice is called integral if the image of its pairing is contained
in Z.

An integral lattice L is called even if bL(x, x) ∈ 2Z for every x in L.

A sublattice of L is a submodule L′ of L such that bL is non-
degenerate on L′.
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Chapter 1. Background

A sublattice L′ of L is called primitive if the quotient L/L′ is torsion
free.

The signature of L is the signature of the vector space LQ = L⊗ZQ
together with the inner product induced by the pairing bL.

Let E and L be two lattices. We define E ⊕ L to be the lattice
whose underlying Z-module is E×L and whose pairing bE⊕L is defined
as follows. Let (e, l), (e′, l′) be two elements of E × L; then we set

bE⊕L
(
(e, l), (e′, l′)

)
:= bE(e, e′) + bL(l, l′).

Remark 1.1.1. The natural embeddings of E and L into E ⊕ L defined
by

e 7→ (e, 0)

and
l 7→ (0, l)

respectively, both respect the intersection pairings on E,L and E ⊕ L.

If S is a sublattice of a lattice L, then we define its orthogonal
complement, denoted by S⊥, to be the sublattice of L given by

S⊥ = {x ∈ L | ∀y ∈ S, bL(x, y) = 0 }.

Lemma 1.1.2. Let S be a sublattice of a lattice L. The following
statements hold.

1. The orthogonal complement S⊥ of S is a primitive sublattice of L
and its rank equals rk(L)− rk(S);

2. S ⊕ S⊥ is a finite-index sublattice of L;

3. (S⊥)⊥ = SQ ∩ L.

Proof. This is a well known result. For a proof, see for example [vL05,
Lemma 2.1.5].

Let L be a lattice with pairing bL. With L(n) we denote the lattice
with the same underlying module and pairing given by n · bL.

Let L be a lattice of rank n with pairing bL and fix a basis (e1, ..., en)
of L. Then the Gram matrix of L with respect to the basis (e1, ..., en)
is the n× n matrix [bL(ei, ej)]1≤i,j≤n.
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1.1. Lattice theory warm up

The determinant, also called discriminant, of the lattice L, denoted
by detL, is the determinant of any Gram matrix of L. One can easily
see that the determinant of a lattice is independent of the choice of the
basis, and hence of the Gram matrix.

Remark 1.1.3. Let M be an r × r symmetric Q-matrix with maximal
rank. Then (Zr,M) denotes the lattice whose underlying Z-module is
Zr and whose intersection pairing is defined by

ei · ej := M [i, j]

where e1 = (1, 0, ..., 0), ..., er = (0, ..., 0, 1) is the standard basis of Zr
and M [i, j] is the (i, j)-th entry of the matrix M .

A lattice L is called unimodular if detL = ±1.

Lemma 1.1.4. Let E and L be two lattices of rank m and n, and
signature (e+, e−) and (l+, l−), respectively. Then the lattice E⊕L has

1. rank equal to m+ n,

2. determinant equal to detE · detL,

3. signature equal to (e+ + l+, e− + l−).

Proof. Fix the bases (e1, ..., em) and (l1, ..., ln) for E and L respectively,
and letM andN be the the associated Gram matrices. By the definition
of the pairing bE⊕L it follows that the Gram matrix of E⊕L with respect
to the basis (e1, ..., em, l1, ..., ln) is the block matrix(

M 0
0 N

)
.

The statements follow.

Lemma 1.1.5. Let S be a finite-index sublattice of a lattice L. Then
the determinant of S equals [L : S]2 · det(L).

Proof. [BHPVdV04, Lemma I.2.1].

Let L be an integral lattice. We define the dual lattice of L to be
the lattice

L∗ = {x ∈ LQ | ∀y ∈ L, bL(x, y) ∈ Z }.
The pairing on L∗ is given by linearly extending bL to L∗; we will use
bL to also denote the pairing on L∗.
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Chapter 1. Background

Remark 1.1.6. Sometimes the dual lattice L∗ of an integral lattice L
is also defined as Hom(L,Z). The two definitions are equivalent, in
fact L∗ and Hom(L,Z) are isomorphic as abelian groups, and the map
Ψ: L∗ → Hom(L,Z) defined by x 7→ (x∗ : y 7→ bL(x, y)) is an isomor-
phism. In order to see it, let (e1, ..., er) be a basis of L, then there
exists a basis (x1, ..., xr) of L∗ such that xi · ej = δi,j ; analogously, there
is a basis (y1, ..., yr) of Hom(L,Z) such that yi(ej) = δi,j . Obviously
x∗i = yi, and so it follows that Ψ is an isomorphism.

Given an integral lattice L, it is easy to see that L is a sublattice of
the dual lattice L∗; nevertheless, the dual lattice L∗ does not need to
be integral, since there is no condition on bL(x, y) to be integral for any
x, y inside L∗ − L.

Lemma 1.1.7. Let L be an integral lattice. Then L is a finite index
sublattice of L∗ and | detL| = [L∗ : L].

Proof. Well known result. For a proof we refer to [vL05, Lemma 2.1.13].

Remark 1.1.8. From Lemma 1.1.7 it follows that if L is a unimodular
lattice, then L is equal to its dual lattice L∗.

Let L be an integral lattice, let S ⊂ L be a sublattice and let T = S⊥

be its orthogonal complement inside L. We can naturally embed S ⊕ T
into L, by sending (s, t) ∈ S ⊕ T to s+ t ∈ L.

Let x be an element of L. By Lemma 1.1.2, the lattice S ⊕ T has
finite-index inside L; let m be the index [L : S⊕T ]. Then mx ∈ S⊕T ;
write mx = s + t, for some s ∈ S, t ∈ T . Consider the element
s/m ∈ LQ and let y be an element of S. Since t ∈ T = S⊥, one
has that y · s = y · (s+ t). Then y · s = y · (s+ t) = y · (mx) = m(y · x),
that is, y · s is divisible by m. It follows that y · (s/m) is an integer and
so, by the generality of y, the element s/m ∈ SQ is contained in S∗.
The same argument holds to show that t/m ∈ T ∗.

Then we define a map L→ S∗⊕T ∗ by sending x ∈ L to the element
(s/m, t/m) ∈ S∗⊕T ∗. The next lemma shows that this map is a finite-
index embedding.

Lemma 1.1.9. Let L be an integral lattice, and S a sublattice of L. Let
T = S⊥ be the orthogonal complement of S inside L. Then the maps
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1.1. Lattice theory warm up

defined before are finite-index embeddings.

S ⊕ T ↪→ L ↪→ S∗ ⊕ T ∗

Proof. The first map is trivially an embedding and, by Lemma 1.1.2,
S ⊕ T has the same rank as L, so the embedding is finite-index.

Also the second map is trivially injective.
The lattice L has finite index inside S∗ ⊕ T ∗ since S∗ ⊕ T ∗ has, by

Lemma 1.1.7, the same rank as S ⊕ T , that in turn has the same rank
as L, as we have seen before.

Let L be an even lattice with pairing bL. We define the discriminant
group of L to be the quotient

AL := L∗/L.

The pairing bL of L induces a map qL : AL → Q/2Z, called the dis-
criminant quadratic form of L, defined by [x] 7→ bL(x, x) + 2Z. The
discriminant group is a finite group, and the minimal number of gener-
ators is denoted by `(AL).

Lemma 1.1.10. The map qL is well defined and quadratic. The cardi-
nality of AL equals |detL|.

Proof. This is a standard result. For a proof see [vL05, Lemma 2.1.17].

Lemma 1.1.11. Let L be an even lattice of rank r, and let AL denote
its discriminant group. Then `(AL) ≤ r.

Proof. The group AL is generated by the classes of the generators of
L∗, and L∗ has the same rank as L, namely r.

Let L be a unimodular lattice, and S ⊂ L a primitive sublattice of L;
let T denote the orthogonal complement S⊥ of S inside L. Recall that
Hom(L,Z) and Hom(S,Z) are isomorphic to L∗ and S∗, respectively (cf.
Remark 1.1.6); since L is unimodular, then L = L∗ (cf. Remark 1.1.8).
The restriction map Hom(L,Z)→ Hom(S,Z) induces a map L→ AS .

L = L∗
∼= // Hom(L,Z) // Hom(S,Z)

∼= // S∗ // S∗/S = AS
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Chapter 1. Background

The kernel of this map is S ⊕ T , and so it induces an isomorphism

ψS : L/(S ⊕ T )→ AS .

The analogous construction for L and T induces an isomorphism

ψT : L/(S ⊕ T )→ AT .

Let δS : AS → AT be the isomorphism given by the composition
ψT ◦ ψ−1

S .

Proposition 1.1.12. Let L, S, T and δS be defined as before. Then the
following diagram commutes.

AS

qS
��

∼=
δS

// AT

q
ST

��
Q/2Z

[−1]
// Q/2Z

Proof. [Nik79, Proposition 1.6.1] or [BHPVdV04, Lemma I.2.5].

Let L be a lattice. With O(L) we denote the group of isometries
of L.

Let S be a sublattice of L. With O(L)S we denote the group of
isometries of L sending S to itself.

An isometry σ of a lattice L extends by linearity to an isometry
of L∗. It therefore induces an automorphism σ̄ of the discriminant
group AL. In this way we define the map ρL : O(L)→ Aut(AL).

Corollary 1.1.13. Let L be an even unimodular lattice and S a primi-
tive sublattice of L. Let T = S⊥ denote the orthogonal complement of S
inside L. There is an isomorphism %S between Aut(AS) and Aut(AT )
making the following diagram commute.

O(L)S
resS

yy

resT

%%
O(S)

ρS
��

O(T )

ρT
��

Aut(AS)
∼=
%S

// Aut(AT )
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1.1. Lattice theory warm up

Proof. Let δS : AS → AT be the isomorphism as in Proposition 1.1.12.
Define %S : Aut(AS)→ Aut(AT ) by

φ 7→ δS ◦ φ ◦ δ−1
S .

First notice that % is bijective, since the map Aut(AS) → Aut(AT )
defined by

φ 7→ δ−1
S ◦ φ ◦ δS

serves as its inverse.
The commutativity of the diagram follows from the fact that we use

δS to identify AS and AT . See also [Huy15, Lemma 14.2.5].

Lemma 1.1.14. Let L be a unimodular lattice and S a primitive sub-
lattice of L and keep the notation as in Corollary 1.1.13.

Let resS,T : O(L)S → O(S)×O(T ) be the map defined by

α 7→ (α|S , α|T ).

Then the map resS,T is well defined, injective, and its image is

{(β, γ) ∈ O(S)×O(T ) | %S(ρS(β)) = ρT (γ)}.

Proof. See [Huy15, Proposition 14.2.6] or [Nik79, Theorem 1.6.1, Corol-
lary 1.5.2].

Proposition 1.1.15. Let L be an even indefinite lattice of signature
(m,n) and rank m+n, with discriminant lattice AL. If `(AL) ≤ m+n−2,
then any other lattice with the same rank, signature and discriminant
group is isomorphic to L.

Proof. See [Nik79, Corollary 1.13.3] or [HT15, Proposition 5].

Let L be an even lattice, S ⊆ L a finite-index sublattice, and
ι : S ↪→ L the inclusion map.

Let p ∈ Z be a prime and consider the quotient group L/pL. If x
is an element of L, we denote with [x]L = x+ pL its class inside L/pL.
The same construction and notation holds if we substitute L with S.
When clear from the context, we will drop the subscripts L or S, and
we will write simply [x] for [x]L or [x]S , respectively.

The inclusion map ι induces the homomorphism ιp : S/pS → L/pL,
defined by

ιp : [x]S 7→ [x]L.
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Chapter 1. Background

Remark 1.1.16. Notice that if p is a prime, then S/pS and L/pL are
Fp-vector spaces and the homomorphism ιp is a homomorphism of Fp-
vector spaces.

We define Sp to be the kernel of ιp.

Lemma 1.1.17. The following equality holds:

Sp =
S ∩ pL
pS

.

Proof. The inclusion S∩pL
pS ⊆ Sp is trivial.

In order to see the other inclusion, let λ be an element of S such
that [λ] ∈ Sp, that is, ιp([λ]) ∈ pL. From this it follows that λ = pλ′,
for some λ′ ∈ L. Then λ ∈ S ∩ pL and the statement follows.

Lemma 1.1.18. Let x, y, x′, y′ be elements of L such that [x]L = [x′]L
and [y]L = [y′]L. Then bL(x, y) ≡ bL(x′, y′) mod p.

Proof. From the hypothesis it follows that there exist two elements
λ, µ ∈ L such that x′ = x+ pλ and y′ = x+ pλ. Then

bL(x′, y′) = bL(x+ pλ, y + pµ) =

= bL(x, y) + pbL(x, µ) + pbL(λ, y) + p2bL(λ, µ)

≡ bL(x, y) mod p.

Using the pairing bL on L and Lemma 1.1.18, we can define sym-
metric, bilinear forms on L/pL and S/pS, denoted by

bL,p : (L/pL)2 → Z/pZ

and
bS,p : (S/pS)2 → Z/pZ

respectively, both defined by sending ([x], [y]) to bL(x, y) mod p.

Lemma 1.1.19. The following diagram commutes.

(S/pS)2

ι2p
��

bS,p // Z/pZ

(L/pL)2
bL,p

// Z/pZ
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1.1. Lattice theory warm up

Proof. Let x, y be two elements of S. Then

bL,p(ιp([x]S), ιp([y]S)) = bL,p([x]L, [y]L) = bL(x, y) mod p.

By definition

bS,p([x]S , [y]S) = bL(x, y) mod p.

Let [x]L be an element of L/pL, and define the homomorphism

[x]∗ : S/pS → Z/pZ

by sending [y]P ∈ S/pS to bL,p([x], [y]). In this way we get the morphism

φL,p : L/pL→ Hom(S/pS,Z/pZ),

defined by sending [x]L to [x]∗. In the same way, we define the morphism

φS,p : S/pS → Hom(S/pS,Z/pZ).

Let kp denote the kernel of φS,p.

Lemma 1.1.20. The subspace kp contains Sp and it is fixed by all the
isometries of S.

Proof. First we show Sp ⊆ kp. Let x be an element of Sp and fix a
representative x ∈ S of x, that is x = [x]S . By Lemma 1.1.17, there is a
x′ ∈ L such that x = px′. It follows that

[x]∗([y]S) = [px′]∗([y]S) = bL,p(px
′, y) = p bL,p(x

′, y) ≡ 0 mod p,

for any y ∈ S. So φS,p([x]S) = [x]∗ = 0 and hence [x]S ∈ kp.
In order to show that kp is fixed by the isometries of S, let [x]S

be an element of kp and σ any isometry of S. Then we have that
[σx]∗([y]S) = bL(σx, y) = bL(x, σ−1y). Since [x]S ∈ kp we have that
[x]∗ = 0, and so bL(x, σ−1y) ≡ 0 mod p. It follows that, for any y ∈ L,
bL(σx, y) ≡ 0 mod p, and therefore [σx] ∈ kp.

15



Chapter 1. Background

Lemma 1.1.21. The following diagram commutes.

0 // Sp
� � //
� _

��

S/pS
ιp // L/pL

φL,p
��

0 // kp
� � // S/pS

φS,p
// Hom(S/pS,Z/pZ)

Proof. The left square is trivially commutative, since all the maps in-
volved are inclusions.

The right square is also commutative since ιp preserves the pairing
on L/pL (cf. Lemma 1.1.19).

Remark 1.1.22. Let S be a lattice of rank r and fix a basis (e1, ..., er).
Let M be the Gram matrix of S associated to the fixed basis. Then we
have that S is isometric to the lattice (Zr,M); the isometry is given by
sending ei to the i-th element of the canonical basis of Zr.

Using this notation, kp is the subspace of S/pS ∼= (Z/pZ)r given by
the classes of the elements x ∈ Zr such that x ·M ≡ 0 mod p.

Keeping the notation introduced before, let x ∈ S be such that
[x]S ∈ kp and x2 ≡ 0 mod 2p2. Let y be another element of S such
that [x]S = [y]S , that is, there is an element z ∈ L such that y = x+pz.
It follows that y2 = (x + pz)2 = x2 + 2px · z + p2z2. By hypothesis
x2 ≡ 0 mod 2p2; since [x]S ∈ kp, the product x · z is divisible by p, and
so 2px · z ≡ 0 mod 2p2; since L, and therefore S, is an even lattice,
z2 is even, and so p2z2 ≡ 0 mod 2p2; hence y2 ≡ 0 mod 2p2. We can
then define k′p ⊂ S/pS to be the following subset of kp:

k′p := {[x]S ∈ kp | x2 ≡ 0 mod 2p2}.

Lemma 1.1.23. The subset k′p ⊂ kp contains Sp and it is invariant
under all the isometries of S.

Proof. First we show that Sp is contained in k′p. Let x be an ele-
ment of Sp. By Lemma 1.1.17, there is an element y ∈ L such that
x = [py]. It follows that x = [py + px′], for any x′ ∈ S. Then
x2 = p2y2 + 2p2y · x′ + p2x′2. Recall that L is an even lattice, and
so y · x′ ∈ Z and y2, x′2 ∈ 2Z. Then, x2 ≡ 0 mod 2p2 and thus we have
proved Sp ⊆ k′p.
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1.1. Lattice theory warm up

In order to show that k′p is invariant under the isometries of S con-
sider a class [x] ∈ k′p and let σ be an isometry of S. By Lemma 1.1.20
σ[x] ∈ kp. Since σ is an isometry, (σx)2 = x2 ≡ 0 mod 2p2, and so also
σx is an element of k′p.

Corollary 1.1.24. The equality S = L holds if and only if ιp is injective
for every prime p.

Proof. We only need to prove that if ιp is injective for every prime p
then S = L, as the other implication is trivial.

Assume then that ιp is injective for every prime p. Let λ be an
element of L. Since S has finite index inside L, there is a minimal
m ∈ Z>0 such that mλ ∈ S.

If m = 1 we are done. So assume m > 1. Then m can either be a
prime or not a prime.

If m is a prime, say q, let Sq = S∩qL
qS be the kernel of the map

ιq : S/qS → L/qL (cf. Lemma 1.1.17). Then it follows that [qλ] is
inside Sq. By assumption, Sq = {0}. This means that [qλ] = 0 or,
equivalently, that qλ ∈ qS. Since S is a torsion-free group (it is a
lattice), we can conclude that λ ∈ S. But then, by the minimality of
m, we get m = 1, contradicting the assumption of m to be greater than
1.

If m is not a prime, let p be a prime divisor of m and write m = pm′,
for some m′ ∈ Z. Using the same argument as before, we show that m′λ
is in S. In this way we got a m′ < m such that m′λ ∈ S, contradicting
the minimality of m.

This shows that m = 1 and so, by generality of λ, we have proved
that S = L.

Let L be an integral lattice, and let S ⊂ L be a finite-index sublattice
of L. Let p be a prime, and let ep denote the dimension of Sp = S∩pL

pS
as Fp-vector space. Let ([y1], ..., [yep ]) be an Fp-basis of Sp. Then there
exist x1, ..., xep ∈ L − S such that [yi] = [pxi], for i = 1, ..., ep. Let S′

be the sublattice of L generated by S ∪ {x1, ..., xep}. Obviously S is a
finite-index sublattice of S′ and, by construction, we have that pS′ is
contained in S.

Lemma 1.1.25. Let L, S, S′, ep and x1, ..., xep ∈ L − S be defined as
before. Then S′/S is an Fp vector space of dimension ep.

17



Chapter 1. Background

Proof. Since pS′ is contained in S, the quotient S′/S is an Fp-vector
space. We claim that the classes [x1], ..., [xep ] form an Fp-basis for
S′/S. Clearly, they generate it, since they are the only generators
of S′ not contained in S. To show that they are linearly indepen-
dent, assume by contradiction that there are a1, ..., aep ∈ Fp such that
a1[x1] + ... + aep [xep ] = 0. This means that if we lift the classes
a1, ..., aep ∈ Fp to the integers b1, ..., bep ∈ Z, then b1x1 + ... + bepxep
is inside S; so, multiplying by p, it follows that b1y1 + ...+ bepyep ∈ pS.
This last statement implies that a1[y1] + ...+ aep [yep ] = 0 ∈ S/pS, con-
tradicting the hypothesis on ([y1], ..., [yep ]) to be an Fp-basis of Sp. Then
([x1], ..., [xep ]) is an Fp-basis for S′/S and the statement follows.

Corollary 1.1.26. Sp and S′/S are isomorphic as Fp-vector spaces.

Proof. By Lemma 1.1.25, S′/S is an Fp-vector space of dimension ep;
the Fp-vector space Sp has dimension ep by definition. So Sp and S′/S
are two Fp-vector spaces of the same dimension, hence they are isomor-
phic.

Remark 1.1.27. A more direct way to show that Sp and S′/S are iso-
morphic is given by considering the following commutative diagram with
exact rows.

0 // 0 //

��

0 //

��

Sp

��
0 // S

[p] //� _

��

S //� _

��

S/pS //

��

0

0 // S′
[p] //

��

S′ //

��

S′/pS′ // 0

S′/S
[p] // S′/S

Then, applying the snake lemma, we have the exact sequence

0 // Sp // S′/S
[p] // S′/S.

Since pS′ ⊆ S, the map [p] given by the multiplication by p is the zero
map. The map Sp → S′/S is then an isomorphism.
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1.2. Geometric background

Proposition 1.1.28. Let p be a prime, and let L, S, S′ and ep be defined
as before. Then detS′ = p−2ep detS.

Proof. Since S is a finite-index sublattice of S′, it follows that the index
[S′ : S] equals the cardinality of S′/S; by Lemma 1.1.25, the Fp-vector
space S′/S has dimension ep, and so

[S′ : S] = #(S′/S) = pep .

Then, by Lemma 1.1.5, we have that detS = p2ep detS′ or, equivalently,
detS′ = p−2ep detS.

Remark 1.1.29. Since L is an integral lattice, so are S and S′, and
therefore detS and detS′ are both integers. It follows that, for any
prime p, if pm is the maximal power of p dividing detS, then 2ep ≤ m.

As immediate consequence, we have that the map ιp is injective for
all the primes p whose square does not divide detS.

Remark 1.1.30 (Some classic lattices). Here we introduce the notation
for some notable lattices. These lattices will be useful later.

With U we denote the lattice of rank 2 and Gram matrix

(
0 1
1 0

)
.

Let n be a positive integer.
With An we denote the lattice associated to the root system An. It

is an even, positive definite lattice of rank n and determinant n+1. See
[CS99, Section 4.6.1] for more information.

With E8 we denote the lattice associated to the root system E8. It
is an even, positive definite lattice of rank 8 and determinant 1. See
[CS99, Section 4.8.1] for more information.

With ΛK3 we denote the lattice given by

ΛK3 := U⊕3 ⊕ E8(−1)⊕2.

One can immediately notice that ΛK3 is an even unimodular lattice of
rank 22, determinant −1, and signature (3, 19).

1.2 Geometric background

In this section we give some general definitions and results in algebraic
geometry. We focus on the study of surfaces. After giving the definition
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Chapter 1. Background

of surface, we present some well-known results about the Picard group
of a surface, double covers, K3 surfaces, and del Pezzo surfaces.

Let k be a field. A variety over k is a separated, geometrically
reduced scheme X that is of finite type over Spec k.

We say that a variety X is smooth if the morphism X → Spec k is
smooth.

A variety has pure dimension d if all its irreducible components have
dimension d.
A curve is a variety of pure dimension 1.
A surface is a variety of pure dimension 2.
A three-fold is a variety of pure dimension 3.

Let X be a variety over a field k, and let K be any extension of k.
Then we denote by XK the base-change of X to K. Let k be a fixed
algebraic closure of k. Then we denote by X := Xk the base-change of
X to k.

1.2.1 The Picard lattice

In this subsection we introduce the notion of Picard lattice of a surface.
In doing so we basically follow [Har77, Section II.6] and [vL05, Section
2.2].

Let X be a scheme. We define the Picard group of X, denoted by
PicX, to be the group of isomorphism classes of invertible sheaves of
X (see [Har77, p.143]).

Remark 1.2.1. Equivalently, one can define the Picard group of X
as the group H1(X,O∗). In fact [Har77, Exercise III.4.5] shows that
PicX ∼= H1(X,O∗).

Let X be an irreducible variety over a field k. We define the Cartier
divisor group, denoted by CaDivX to be the group H0(X,K∗/O∗),
where K is the sheaf of total quotient rings of O. A Cartier divi-
sor is principal if it is in the image PCaDivX of the natural map
H0(X,K∗)→ H0(X,K∗/O∗). We define the Cartier divisor class group,
denoted by CaClX, to be the quotient CaDivX/PCaDivX. For more
details about these definitions, see [Har77, p.141], or also [HS00, A.2.2].

Assume X to be smooth, and let K(X) denote the function field
of X. We define the (Weil) divisor group, denoted by DivX, to be
free abelian group generated by all the prime Weil divisors of X. The
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group of principal divisors of X, denoted by PDivX, is the image of the
map K(X)∗ → DivX, defined by sending a function f to the divisor
(f) =

∑
Y vY (f)Y , where the sum is over all the prime Weil divisors Y

and vY (f) is the valuation of f in the discrete valuation ring associated
to the generic point of Y . We define the (Weil) divisor class group,
denoted by ClX, to be the quotient DivX/PDivX. For more details
about these definitions, see [Har77, p.130], or also [HS00, A.2.1].

Proposition 1.2.2. Let X be an irreducible, smooth variety over a field
k. Then there are natural isomorphisms

DivX ∼= CaDivX,

and
PicX ∼= CaClX ∼= ClX.

Proof. See [Har77, Proposition II.6.11] for the proof of DivX ∼= CaDivX.
See [Har77, Proposition II.6.15] for the proof of PicX ∼= CaClX.
See [Har77, Corollary II.6.16] for the proof of PicX ∼= ClX.

Remark 1.2.3. If X is a smooth, irreducible variety, then we can identify
Weil divisors and Cartier divisors. We will then simply talk about
divisors, without specifying ‘Weil’ or ‘Cartier’. In general, if we leave
out this specification, a divisor is intended to be a Weil divisor.

From now on, let X be a projective, smooth, geometrically irre-
ducible surface over a field k. Fix an algebraic closure k of k and let
X = Xk denote the base-change of X to k.

Theorem 1.2.4. There is a unique pairing DivX×DivX → Z, denoted
by C ·D for any two divisors C,D, such that

1. if C and D are nonsingular curves meeting transversally, then
C ·D = #(C ∩D), the number of points of C ∩D;

2. C ·D = D · C;

3. (C1 + C2) ·D = C1 ·D + C2 ·D;

4. if D is a principal divisor then D · C = 0, for any divisor C.

Proof. [Har77, Theorem V.1.1].
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We call this unique pairing on DivX the intersection pairing of X.
Let k1 be an extension of k such that k ⊆ k1 ⊆ k. Then the intersection
pairing of X restricts to a pairing on DivXk1 ; in particular, it restricts
to a pairing on DivX.

Remark 1.2.5. From Theorem 1.2.4.(4), it immediately follows that the
intersection pairing of X induces a pairing on ClX ∼= PicX.

Let D,E ∈ DivX be two divisors of X. We say that D and E are
linearly equivalent, denoted by D ∼lin E, if and only if they have the
same class inside ClX ∼= PicX.

Remark 1.2.6. Trivially, DivX/ ∼lin= ClX.

Let T be a non-singular curve. We define an algebraic family of
effective divisors on X parametrised by T to be an effective Cartier
divisor D on X × T , flat over T (cf. [Har77, Example III.9.8.5]).

Let D and E be two divisors of X. We say that D and E are prealge-
braically equivalent if and only if there are two non singular curves T1, T2

defined over k, two algebraic families D1 and D2 of effective divisors on
X parametrised by T1 and T2 respectively, two closed fibers D1, E1 of D1

and two closed fibersD2, E2 ofD2, such thatD = D1−D2, E = E1−E2.
We say that D and E are algebraically equivalent, denoted by D ∼alg E,
if there is a chain of divisors D = C0, C1, ..., Cn = E in DivX such that
Ci and Ci+1 are prealgebraically equivalent, for i = 0, ..., n − 1. Let
Div0

algX be the group of divisors of X that are algebraically equiv-

alent to 0, and let Pic0
algX be its image inside PicX. We define

the Néron–Severi group of X, denoted by NSX, to be the quotient
DivX/Div0

algX. For more details about these definitions see [Har77,
Exercise V.1.7].

Theorem 1.2.7 (Néron–Severi). Let X be defined as before. Then
NSX is a finitely generated abelian group.

Proof. See [LN59] or [Nér52] for a proof with k arbitrary. See [Har77,
Appendix B.5] for a proof with k = C.

Remark 1.2.8. By Theorem 1.2.7, we have that NSX ∼= Zρ⊕(NSX)tors,
for some integer ρ ∈ Z≥0. We define this ρ = ρ(X) to be the Picard
number of X. Note that ρ = dimQ NS(X)⊗Q.
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We say that D and E are numerically equivalent, using the notation
D ∼num E, if and only if D ·C = E ·C for every divisor C ∈ DivX. Let
Div0

numX be the group of divisors of X that are numerically equivalent
to 0, and let Pic0

numX be its image inside PicX. We define NumX to
be the quotient DivX/Div0

num.

Remark 1.2.9. Let D and E two divisors of X. From Theorem 1.2.4.(4)
it immediately follows that if D and E are linearly equivalent, they are
numerically equivalent too (cf. Proposition 1.2.11).

Proposition 1.2.10. The group NumX is a torsion free abelian group.

Proof. The group NumX is abelian since it is a quotient of DivX,
which is abelian by definition.

In order to see that NumX is torsion free let D be a divisor of X and
let [D]num its class inside NumX. Assume m[D]num = [mD]num = 0.
This means that (mD) · C = 0, for every divisor C ∈ DivX. It follows
that, for every divisor C ∈ DivX

0 = (mD) · C = m(D · C),

and so either m = 0, or (D·C) = 0 for every C ∈ DivX, i.e., [D]num = 0.
Hence NumX is torsion free.

Proposition 1.2.11. Let D,E be two divisors of X. If D ∼lin E, then
D ∼alg E. If D ∼alg E, then D ∼num E.

Proof. See [Har77, Exercise V.1.7.(b) and (c)].

Remark 1.2.12. The previous proposition tells us that there are two
natural surjections:

PicX → NSX → NumX.

Remark 1.2.13. From Proposition 1.2.11, we trivially get that:

Pic0
alg X ⊆ Pic0

numX,

and that

PicX/Pic0
algX

∼= NSX,

PicX/Pic0
numX

∼= NumX.
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Proposition 1.2.14. The natural map NumX → NSX/(NSX)tors is
an isomorphism.

Proof. It follows from [vL05, Proposition 2.2.17] and Remark 1.2.13.

Remark 1.2.15. From Proposition 1.2.14, it follows that NumX is a
free Z-module of rank ρ(X); also note that the intersection pairing of
X naturally induces a pairing on NumX. Then NumX, endowed with
the pairing induced by the intersection pairing, is a lattice of rank ρ(X).

Also, using the surjection NSX → NumX, the pairing on NumX
induces a pairing on NSX.

We can summarize the previous definitions and results with the
following commutative diagrams with exact rows.

0 // PDivX �
� //� _

��

DivX // PicX

��

// 0

0 // Div0
alg X

� � //
� _

��

DivX // NSX

��

// 0

0 // Div0
numX

� � // DivX // NumX // 0

0 // Pic0
alg X

� � //
� _

��

PicX // NSX

��

// 0

0 // Pic0
numX

� � // PicX // NumX // 0

Remark 1.2.16. If the adjective ‘geometric’ precedes any of the oper-
ators of this subsection introduced so far, then we mean the operator
acting on X instead of X. For example, the geometric Picard group of
X is the Picard group of X, that is, PicX.

Assume k is perfect and let Gk := Gal(k/k) be the absolute Galois
group of k, and fix an embedding of Xbar inside a projective space over
k; then Gk acts on the set of prime divisors of X, by acting on the
coefficients of the equations defining them. This induces an action of
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Gk on DivX and, since Gk sends principal divisors to principal divisors,
it also induces an action of Gk on PicX.

Let k1 ⊂ k be an algebraic extension of k. Let D be an element
of DivX. We say that k1 is the field of definition of D if Gal(k/k1) is
the stabilizer of D inside Gk; we say that D can be defined over k1 if
Gal(k/k1) is contained in the stabilizer of D inside Gk.

Analogously, if [D] is an element of PicX, we say that k1 is the field
of definition of [D] if Gal(k/k1) is the stabilizer of [D] inside Gk; we say
that [D] can be defined over k1 if Gal(k/k1) is contained in the stabilizer
of [D] inside Gk.

Remark 1.2.17. Let k1 ⊂ k an algebraic extension of k. Let D be an
element of DivX and let [D] denote its class inside PicX. The fact
k1 is the field of definition of [D] does not imply that k1 is the field of
definition of D: there might be an element σ ∈ Gal(k/k) sending D
to D′ = σD, such that D′ 6= D but [D] = [D′]. For the same reason,
the fact that [D] can be defined over k1 does not imply that D can be
defined over k1.

Let X be a surface over k = C. Then we can consider the complex
analytic space Xh associated to X. The topological space of Xh has
X(C) as underlying set. Let OXh denote structure sheaf of Xh. The
exponential sequence

0→ Z→ OXh → O
∗
Xh
→ 0

of sheaves induces an exact sequence of (cohomology) groups

0→ H1(Xh,Z)→ H1(Xh,OXh)→ H1(Xh,O∗Xh)→ H2(Xh,Z)→ ... .

Serre, in [Ser56], showed that H i(Xh,OXh) ∼= H i(X,OX) for every i.
Since PicX ∼= H1(X,O∗X) (cf. Remark 1.2.1), we have the following
exact sequence of groups.

0→ H1(Xh,Z)→ H1(X,OX)→ PicX → H2(Xh,Z)→ ... . (1.1)

Proposition 1.2.18. The Néron–Severi group NSX is isomorphic to a
subgroup of H2(Xh,Z) and the second Betti number b2 = dimH2(Xh,C)
is an upper bound for the Picard number of X.
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Proof. The image of H1(X,OX) inside PicX is exactly Pic0
alg X (see

[Har77, Appendix B, p. 447]). Recalling that NSX ≡ PicX/Pic0
alg X

(cf. Remark 1.2.13), the statement immediately follows from the exact
sequence (1.1).

Remark 1.2.19. The pairing of NSX induced by the intersection pairing
of X (cf. Remark 1.2.15) corresponds to the cup-product of H2(Xh,Z).

1.2.2 Weighted projective spaces

In the next sections, we will use the notion of weighted projective space.
In introducing it we follow [Dol82].

Let Q = (q0, ..., qr) be a r + 1-tuple of positive integers. Let k be
any field and let S(Q) be the polynomial algebra k[T0, ..., Tr] over the
field k graded by the conditions

deg Ti = qi,

for i = 0, ..., r. We define the weighted projective space of type Q, or
weighted projective space with weights Q, the projective scheme given
by Proj(S(Q)), denoted by Pk(Q).

If k = Q, we might drop the subscript and write P(Q) for PQ(Q).

Example 1.2.20. If Q = (1, ..., 1︸ ︷︷ ︸
r+1

), then the weighted projective space

with weights Q is simply the projective space Pr.
Let f(T0, ..., T1) be a homogeneous polynomial of weighted degree

d. Then the equation f(T0, ..., T1) = 0 defines an hypersurface of degree
d in Pk(Q). We say that an hypersurface of Pk(Q) is an hyperplane if
it has degree d = 1.

Example 1.2.21. The equation Ti = 0 defines an hyperplane if and only
if qi = 1.

Remark 1.2.22. For more theory and results about weighted projective
spaces we refer to [Dol82] and [Kol96, V.1.3].

1.2.3 Double covers

In this subsection we introduce the notion of double cover of a surface,
focusing on double covers of the projective plane. Given a double cover
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X of the projective plane, the main goal of the subsection is to give a
characterization of the plane curves whose pull-back on X splits into
two irreducible components. A large deal of what is described in this
subsection is a part of a joint work with Ronald van Luijk, and can be
found in [FvL15, Section 5].

Let k be a field with characteristic different from 2, and fix an alge-
braic closure k of k.

Let X,Y be two smooth, projective surfaces defined over k. We say
that X is a double cover of Y if there is a morphism f : X → Y that
is surjective, finite and of degree 2 (see [Har77, Section II.3] for these
definitions).

Let π : X → Y be a double cover of Y .

By definition of the double cover, the pre-image inside X(k) of a
point of Y (k) has at most 2 elements. We define the branch locus of π,
denoted by B ⊂ Y (k), to be the subset of Y (k) defined by

{x ∈ Y (k) | #π−1(x) = 1 }.

Proposition 1.2.23. The branch locus of π is a divisor of Y .

Proof. It follows from [Zar58].

We define the ramification locus of π, denoted by R ⊂ X, to be the
preimage π−1(B) on X of the branch locus B.

The double cover π : X → Y induces the involution ιX on X, defined
by sending each point P ∈ X to the unique other point of the fiber
π−1(π(P )), unless P ∈ R; if P ∈ R, then ιX fixes P .

The following definitions are given as in [FvL15, Section 5.1]. Given
a curve C over k, the normalisation map ϑ : C̃ → C is unique up to
isomorphism; the curve C̃ is regular and both C̃ and ϑ are called the
normalisation of C. For more details, see [Mum99, Theorem III.8.3] for
the case that C is irreducible; for the general case, take the disjoint
unions of the normalisations of the irreducible components. If P is a
singular point of C, we say that P is an ordinary singular point if, when
we consider the blow up of C at P , all the points above P are smooth.

Recall that the geometric genus g(C) of a geometrically integral
curve C over k is defined to be the geometric genus of the unique reg-
ular projective geometrically integral model of C; for the definition of
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geometric genus, see [Har77, p. 181]. If C is itself projective, then this
model is the normalisation C̃ of C. Note that we have g(Ck) ≤ g(C)

with equality if and only if C̃ is smooth (see [Tat52]). In particular,
we have g(C) = 0 if and only if C̃ is smooth and C is geometrically
rational.

Let C ⊂ P2
k be a curve over k and S ∈ C a closed point of C with

local ring OS,C ; let V ⊂ P2 be an open neighbourhood of S, and let
C ′ ⊂ P2

k be a curve that in V is given by h = 0 for some h ∈ OP2(V );
assume that S does not lie on a common component of C and C ′; then
the intersection multiplicity µS(C,C ′) of C and C ′ at S is the length
of the OS,C-module OS,C/(h). If S is a smooth point of C, then the
local ring OS,C is a discrete valuation ring, say with valuation vS , and
µS(C,C ′) equals vS(h).

We extend the notion of intersection multiplicity, replacing the point
S on the curve C by a branch of C, that is, a point of the normalisation
of C.

Let C ⊂ P2 be a curve and let ϑ : C̃ → C be the normalisation of
C. Let T ∈ C̃ be a closed point with local ring OT,C̃ . Let C ′ ⊂ P2

k

be a curve that is given in an open neighbourhood V ⊂ P2 of ϑ(T )
by h = 0 for some h ∈ OP2

k
(V ). If the curves C and C ′ have no

irreducible components in common, then the intersection multiplicity
µT (C̃, C ′) of C̃ and C ′ at T is defined to be the length of the OT,C̃-
module OT,C̃/(ϑ

∗h).

With the same notation as above, the quantity µT (C̃, C ′) is the
same as ordT (h) as defined in [Ful98, Section 1.2]. Since C̃ is regular,
the local ring OT,C̃ is a discrete valuation ring, say with valuation vT ,

and we have µT (C̃, C ′) = vT (ϑ∗h). If k is algebraically closed, then we
have µT (C̃, C ′) = dimkOT,C̃/(ϑ

∗h).

Lemma 1.2.24. Let C,C ′ ⊂ P2
k be curves with no common irreducible

components, and let ϑ : C̃ → C be the normalisation of C. Then for
every S ∈ C we have

µS(C,C ′) =
∑
T 7→S

µT (C̃, C ′) · [k(T ) : k(S)],

where the summation runs over all closed points T ∈ C̃ with ϑ(T ) = S
and where [k(T ) : k(S)] denotes the degree of the residue field extension.
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Proof. This follows immediately from [Ful98, Example 1.2.3].

Let C,C ′ ⊂ P2
k be curves over k that do not have any components

in common. Let Γ denote either C or its normalisation C̃. Then we
define the subset b(Γ, C ′) of Γ(k) as

b(Γ, C ′) = {T ∈ Γ(k) : µT (Γ, C ′) is odd}.

From now on let X be a smooth, projective, irreducible surface over
k, and let π : X → P2

k be a double cover of the projective plane.

Lemma 1.2.25. Let D be a geometrically integral curve on X, let
C = π(D) be its image under π, and assume C is not equal to the
branch locus B. Let D̃k, C̃k be the normalisations of Dk and Ck respec-

tively. The restriction of π to D induces a morphism π̃ : D̃k → C̃k. The

branch locus of π̃ is exactly b(C̃, B) ⊂ C̃(k).

Proof. We present the proof as in [FvL15, Lemma 5.4]. Without loss
of generality, we assume k = k. Let ϑ denote the normalisation map
C̃ → C. Let T ∈ C̃(k) be a point. Since C̃ is regular, the local ring OT,C̃
is a discrete valuation ring, say with valuation vT . As the characteristic
of k is not equal to 2, there is an open neighbourhood V ⊂ P2 of ϑ(T )
and an element h ∈ OP2(V ) such that the double cover π−1(V ) of V
is isomorphic to the subvariety of V × A1(u) given by u2 = h. We
denote the image of h in the local ring OT,C̃ and the function field

k(C̃) = k(C) by h as well. The extension k(C) ⊂ k(D) of function
fields is obtained by adjoining a square root η ∈ k(D) of h to k(C).
Note that the degree of the restriction of π to D is 1 if and only if this
extension is trivial, i.e., h is a square in k(C). The intersection B ∩ V
is given by h = 0, so we have µT (C̃, B) = vT (h). Suppose T ′ ∈ D̃(k)
is a point with π̃(T ′) = T . Since the characteristic of k is not equal to
2, the extension OT,C̃ ⊂ OT ′,D̃ of discrete valuation rings of k(C) and
k(D) = k(C)(η), respectively, is ramified if and only if vT (h) is odd,
that is, T is contained in b(C̃, B), which proves the lemma.

Proposition 1.2.26. Let D be a geometrically integral projective curve
on X, let C = π(D) be its image under π, and assume g(C) = 0.
Assume also that C is not equal to the branch locus B. Let C̃ denote
the normalisation of C and set n = #b(C̃, B). The following statements
hold.
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1. If n = 0, then π restricts to a birational morphism D → C and
g(D) = 0.

2. If n > 0, then π restricts to a double cover D → C and we have
that g(D) = g(Dk) = 1

2n− 1.

Proof. From g(C) = 0, we find that the normalisation C̃ is smooth.
Since the characteristic of k is not 2 and for any finite separable field
extension ` of k we have g(D`) = g(D) (see [Tat52, Corollary 2]), we
may (and do) replace k, without loss of generality, by a quadratic ex-
tension ` for which C̃(`) 6= ∅. Then C̃ is isomorphic to P1. Let D̃
denote the normalisation of D. The morphism π induces a morphism
π̃ : D̃ → C̃ ∼= P1 of degree at most 2. We claim that D̃ is smooth.
Indeed, if deg(π̃) = 1, then this is clear. If deg(π̃) = 2, then because
the characteristic of k is not 2, the curve D̃ can be covered by open
affine curves that are given by y2 = f(x) for some polynomial f ∈ k[x];
the regularity of D̃ implies that each polynomial f is separable, which
implies that D̃ is smooth. This shows that g(D) = g(Dk), so we may
(and do) replace k, without loss of generality, by k.

By hypotheses, C does not equal the branch locus B, so we may
apply Lemma 1.2.25. The Riemann-Hurwitz formula then yields

2g(D)− 2 = 2g(D̃)− 2 = deg(π̃) · (2g(C̃)− 2) + n = n− 2 deg(π̃).

If n = 0, then we find deg(π̃) = 1 and g(D) = 0. If n > 0, then π̃ is not
unramified, so deg(π̃) = 2 and we obtain g(D) = 1

2n− 1.

Corollary 1.2.27. Let C ⊂ P2 be a geometrically integral projective
curve with g(C) = 0 that is not equal to the branch locus B. Let C̃ de-
note its normalisation and set n = #b(C̃, B). The following statements
hold.

1. If n = 0, then there exists a field extension ` of k of degree at
most 2 such that the preimage π−1(C`) consists of two irreducible
components that are birationally equivalent with C`.

2. If n > 0, then the preimage π−1(C) is geometrically integral and
has geometric genus 1

2n− 1.
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Proof. Let A = π∗(C) the pullback of the curve C on the surface X.
Since C is geometrically integral and C 6= B, the curve A is geometri-
cally reduced. The morphism A → C induced by π has degree 2, and
so A = A ×k k consists of at most two components. Then there is an
extension ` of k of degree at most 2 such that the components of A` are
geometrically irreducible. Let ` be such an extension and let D be an
irreducible component of A`.

Suppose n = 0. Applying Proposition 1.2.26 to D` and C` = π(D`)
shows that the morphism D` → C` induced by π is a birational map.
Since D` → C` has degree 2, there is a unique second component of A`,
which equals ι(D`). This proves the first statement.

Suppose n > 0. By Proposition 1.2.26, the morphism Dk → Ck
induced by π has degree 2, so Dk is the only component of Ak and
therefore A is geometrically integral. Its genus follows from Proposi-
tion 1.2.26.

Remark 1.2.28. In Corollary 1.2.27 the hypotheses do not involve only
the curve C, but also its normalisation C̃. In particular, in (1) we
assume that #b(C̃, B) = 0. Even though the cardinalities of b(C̃, B)
and b(C,B) are not always the same, in some cases the equality holds:
for example, if C is smooth, then C ∼= C̃, and so #b(C̃, B) = #b(C,B);
if C is singular, but all the singularities lie outside C∩B, then again the
equality holds. For more details about the relation between #b(C̃, B)
and #b(C,B), see Propositions 1.2.29 and 1.2.31.

In the previous results, we described the preimage π−1(C) ⊂ X of a
curve C ⊂ P2, by looking at the intersection points of the branch locus
B with the normalisation C̃ of C. It is possible to give an analogous
description of π−1(C) by looking at the intersection points of B and
C itself, if we assume that all singular points of C that lie on B are
ordinary singular points.

The following proposition describes the integer n used in Proposi-
tion 1.2.26 in terms of C directly.

Proposition 1.2.29. Let C,C ′ ⊂ P2 be two projective plane curves with
no components in common. Let C̃ be the normalisation of C. Assume
also that C ′ is smooth and that all singular points of C that lie on C ′

are ordinary singularities of C. For each point S ∈ C(k), let mS denote
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the multiplicity of S on C. Then we have

#b(C̃, C ′) =
∑

S∈C(k)∩C′(k)

cS(C,C ′)

with

cS(C,C ′) =

{
mS if mS ≡ µS(C,C ′) (mod 2),

mS − 1 if mS 6≡ µS(C,C ′) (mod 2).

Proof. Let ϑ : C̃ → C be the normalisation map. Then we may write
b(C̃, C ′) =

⋃
S bS(C̃, C ′) with

bS(C̃, C ′) = {T ∈ ϑ−1(S) : µT (C̃, C ′) is odd}

and where the disjoint union runs over all S ∈ C(k) ∩ C ′(k). Suppose
S ∈ C(k)∩C ′(k). Since C ′ is smooth and the point S is either smooth or
an ordinary singularity on C, at most one of the mS points T ∈ ϑ−1(S)
satisfies µT (C̃, C ′) > 1. Hence, there is a point T0 ∈ ϑ−1(S) such
that for all T ∈ ϑ−1(S) with T 6= T0 we have µT (C̃, C ′) = 1 and thus
T ∈ bS(C̃, C ′). Since we are working over an algebraically closed field,
Lemma 1.2.24 yields µS(C,C ′) = µT0(C̃, C ′) +mS − 1. Hence, we have
T0 ∈ bS(C̃, C ′) if and only if mS and µS(C,C ′) have the same parity. It
follows that #bS(C̃, C ′) = cS(C,C ′). The proposition follows.

We will continue to use the notation cS(C,C ′) of Proposition 1.2.29,
which we call the contribution of S with respect to C ′. We set cS(C,C ′)
equal to 0 for S ∈ C(k) with S 6∈ C ′.
Remark 1.2.30. Let C ⊂ P2 be a geometrically integral projective curve.
The points of contribution 0 with respect to C ′ are the points of C(k)
that are not on C ′, together with the smooth points S ∈ C(k) for which
µS(C,C ′) is even. The points of contribution 1 are the smooth and
double points S of C(k) with S ∈ C ′ for which µS(C,C ′) is odd. The
points of type m > 1 are the ordinary singular points S of C(k) of
multiplicity m or m+ 1 with S ∈ C ′ for which µS(C,C ′) ≡ m (mod 2).

Proposition 1.2.31. Let C and C ′ be two geometrically integral pro-
jective curves in P2. Let C̃ denote the normalisation of C and let
Cs ⊂ C(k) denote the set of singular points of C. Assume that C ′

is smooth and that all singular points of C that lie on C ′ are ordinary.
Then the following statements hold.
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1. The set b(C̃, C ′) is empty if and only if the sets b(C,C ′) and Cs∩C ′
are.

2. We have #b(C̃, C ′) = 2 if and only if either

(a) b(C,C ′) = ∅ and there exists a point S ∈ C(k) such that
mS ∈ {2, 3} and Cs ∩ C ′ = {S}, or

(b) there exist two points of C, say S1, S2 ∈ C(k), with S1 6= S2,
such that b(C,C ′) = {S1, S2} and mS1 ,mS2 ∈ {1, 2} and
Cs ∩ C ′ ⊂ {S1, S2}.

Proof. Given that the contributions cS(C,C ′) are nonnegative, this fol-
lows easily from Proposition 1.2.29 and Remark 1.2.30.

1.2.4 K3 surfaces

In this subsection we briefly introduce the notion of K3 surface, giv-
ing the definition, some basic properties and some results that will
be needed in the following of the thesis. For an extensive study of
the topic, see [Huy15]; for more details about K3 surfaces over C,
see [BHPVdV04].

Let k be any field. A K3 surface over k is a smooth, projective,
geometrically irreducible surface X with canonical divisor KX ∼lin 0
and H1(X,OX) = 0. A complex K3 surface is a K3 surface defined over
k = C.

Let X be a K3 surface over a field k. For p, q ∈ {0, 1, 2}, we define
the (p, q)-Hodge number as

hp,q := dimHq(X,Ωp
X),

where Ωq
X =

∧q ΩX is the sheaf of regular q-forms on X.

Remark 1.2.32. Let X be a complex K3 surface. Then one can consider
the Hodge structure on H i(X,C) =

⊕
p+q=iH

p,q(X), where Hp,q(X)
denotes the group Hp(X,Ωq

X).
For an introduction to Hodge theory on complex surfaces, we refer

to [BHPVdV04, Section IV.2]; for an extensive study of Hodge theory
on complex manifolds (and not only), see [Voi07].

We present now some basic results about K3 surfaces over any field
k first, and then for complex K3 surfaces in particular.
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Proposition 1.2.33. Let X be a K3 over a field k. The the following
statements hold.

1. Linear, algebraic and numeric equivalences are all equivalent, that
is, PicX ∼= NSX ∼= NumX.

2. The Hodge diamond of X is the following.

1
0 0

1 20 1
0 0

1

3. The Picard number of X is at most 22, that is,

ρ(X) ≤ 22.

4. The arithmetic genus pa of X is

pa(X) = 1.

Proof. 1. [Huy15, Proposition 1.2.4].

2. [Huy15, Subsection 1.2.4].

3. [Huy15, Remark 1.3.7].

4. By definition pa = dimH2(X,OX)− dimH1(X,OX). Since X is
a K3 surface, H1(X,OX) = 0 and OX ∼= ωX = Ω2

X , and so it
follows that dimH1(X,OX) = 0 and

dimH2(X,OX) = dimH2(X,Ω2
X) = h2,2 = 1,

using point (2). Then pa = 1 − 0 = 1. See also [Har77, Exercise
III.5.3] and [Huy15, Subsection 1.2.3].

From Proposition 1.2.33.(1) it follows that PicX, endowed with the
pairing induced by the intersection pairing of X, is a lattice of rank
ρ(X) (cf. Remark 1.2.15), called the Picard lattice of X.
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Proposition 1.2.34. The lattice PicX is an even lattice of signature
(1, ρ(X)− 1).

Proof. The parity of PicX follows from the adjunction formula for sur-
faces (see [Har77, Proposition V.1.5]), recalling that X is a K3 surface
and so K = 0.

The signature immediately follows from the Hodge index theorem
(cf. [Har77, Theorem V.1.9]).

Lemma 1.2.35. Let X be a K3 surface over a field k, and let D ∈ DivX
be such that D2 = −2. Then either D or −D is linearly equivalent to
an effective divisor.

Proof. Let L(D) be the sheaf associated to the divisor D, and set
hi(D) = dimH i(X,L(D)). By the Riemann–Roch formula we have

h0(D)− h1(D) + h2(D) =
1

2
D · (D −K) + 1 + pa,

(cf. [Har77, Theorem V.1.6]). By Serre duality (cf. [Har77, Theorem
III.7.7]), h2(D) = h0(K −D). Since X is a K3 surface, K = 0 (by defi-
nition) and pa = 1 (cf. Proposition 1.2.33); since, by initial assumption,
D2 = −2, we have

h0(D)− h1(D) + h0(−D) = 1.

Since the terms on the left-hand side of the equation are all non-negative
integers,

h0(D) + h0(−D) ≥ 1.

It follows that h0(D) ≥ 1 or h0(−D) ≥ 1, that is, D or −D is linearly
equivalent to an effective divisor, respectively.

If X is a K3 surface over k = C, then we have some more results.

Proposition 1.2.36. Let X be a complex K3 surface. Then the fol-
lowing statements hold.

1. The cohomology group H2(X,Z), endowed with the cup product,
is a lattice isometric to the lattice ΛK3 (cf. Remark 1.1.30).

35



Chapter 1. Background

2. There is a primitive embedding of lattices PicX ↪→ H2(X,Z).
The image of the embedding is H2(X,Z) ∩H1,1(X).

3. ρ(X) ≤ 20.

4. Let X ′ be another complex K3 surface, and assume there is a
dominant rational map X ′ 99K X. Then ρ(X) = ρ(X ′).

Proof. 1. [BHPVdV04, Proposition VIII.3.3.(ii)].

2. It follows from Lefschetz (1, 1) Theorem (cf. [BHPVdV04, Theo-
rem IV.2.13]).

3. It directly follows from point (2) of this proposition, Remark 1.2.32,
and Proposition 1.2.33.(2).

4. [Sch13, Proposition 10.2].

Remark 1.2.37. If X is a K3 surface over C, Proposition 1.2.36.(2) tells
us that there is a primitive embedding of lattices PicX ↪→ H2(X,Z). If
we consider the étale cohomology instead of the singular one, a similar
statement holds also for K3 surfaces defined over finite fields, as follows.

Let X be a K3 surface over a finite field k of characteristic p. Let
` be a prime different from p and define the étale cohomology groups
H i

ét(X,Z`) and the Tate twist H i
ét(X,Z`(1)) as in [Mil80].

It turns out that H i
ét(X,Z`(1)) is a Z`-module of rank 1, 0, 22, 0, 1

for i = 0, 1, 2, 3, 4 (cf. [Băd01, Section 8.4 and Theorem 10.3]). In
particular, H2

ét(X,Z`(1)) has rank 22, it is endowed with a perfect pair-
ing with values in Z`, and there is a primitive embedding of lattices
PicX ⊗ Z` ↪→ H2

ét(X,Z`(1)), respecting the given pairings (see [Mil80,
Remark V.3.29.(d)]).

Remark 1.2.38. The isometry H2(X,Z) ∼= ΛK3 in Proposition 1.2.36.(1)
is not unique, nor canonical. Fixing such an isometry φ is called a
marking of X. The pair (X,φ) is called a marked K3 surface.

Remark 1.2.39. Let X be a K3 surface over a field k. If ρ(X) = 22,
then X is said to be supersingular.

If k ↪→ C and ρ(X) = 20, then X is said to be singular.
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Remark 1.2.40. If X is a complex K3 surface, then we define the tran-
scendental lattice of X, denoted by T = T (X), to be the orthogonal
complement of the image of PicX inside H2(X,Z). Note that from
Proposition 1.2.36.(2) one has H2,0(X)⊕H0,2(X) ⊆ T (X)⊗ C.

In what follows, if X is a complex K3 surface, we will identify PicX
with its image inside H2(X,Z).

After giving some basic definitions, we state the Global Torelli The-
orem for K3 surfaces, and we show how it can be used to obtain some
information about the automorphism group of a complex K3 surface.

Let X and Y be two complex K3 surfaces. A lattice homomorphism
φ between H2(Y,Z) and H2(X,Z) is called a Hodge isometry if it pre-
serves the lattice pairing and its C-linear extension φC preserves the
Hodge structure, that is, φC(Hp,q(Y )) = Hp,q(X).

A Hodge isometry is called effective if it sends ample classes to ample
classes.

Proposition 1.2.41. Let f : X → Y be an isomorphism between two
K3 surfaces. The isomorphism f induces, by pull-back, a lattice ho-
momorphism f∗ : H2(Y,Z) → H2(X,Z). The homomorphism f∗ is an
effective Hodge isometry.

Proof. Let f∗ : H2(Y,Z)→ H2(X,Z) be the homomorphism induced by
f , by pull-back. Since f is an isomorphism, f∗ is an isometry of lattices.
The pull-back of a holomorphic 2-form of Y is a holomorphic form of X,
hence the C-linear extension f∗C of f∗ sends H2,0(Y ) to H2,0(X); since

H0,2(Y ) = H2,0(Y ), we also have that f∗C sends H0,2(Y ) to H0,2(X);
hence f∗C sends H2,0(Y )⊕H0,2(Y ) to H2,0(X)⊕H0,2(X) and therefore
also H1,1(Y ) to H1,1(X). Thus, f∗ is an Hodge isometry.

To show that f∗ is also effective, let D ∈ PicY be a very ample
class. Then D gives an embedding φD : Y → Pn, for some integer n,
determined by a basis (s0, ..., sn) of H0(Y,D). If f is an isomorphism,
then the composition f◦φD is an embedding of X, given by the elements
f ◦si = f∗si ∈ H0(X, f∗D). Thus, also f∗D is a very ample class. Using
the linearity of f∗, it follows that f∗ sends ample divisor classes to ample
divisor classes, proving the statement.

The previous proposition states that every isomorphism X → Y of
complex K3 surfaces gives an effective Hodge isometry from H2(Y,Z)
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to H2(X,Z). The converse is also true, as shown by the following
theorem.

Theorem 1.2.42 (Torelli theorem for K3 surfaces). Let X,Y be two
complex K3 surfaces and let φ : H2(Y,Z) → H2(X,Z) be an effective
Hodge isometry. Then there is a (unique) isomorphism f : X → Y such
that φ = f∗.

Proof. It follows from [BHPVdV04, Theorem VIII.11.1 and Corollary
VIII.11.4].

Let X be a K3 surface and let f be an automorphism of X. Then
f induces, by pull-back, an isometry, say φ, of PicX. Define the map
(·)∗Pic : Aut(X) → O(PicX) by sending any f to the corresponding φ.
In general, (·)∗Pic does not need to be injective, but we will show that in
some cases it is so (cf. Proposition 1.2.47).

Remark 1.2.43. We have seen that every automorphism f of X induces
an effective Hodge isometry f∗ of H2(X,Z) (cf. Proposition 1.2.41).
Let OH(H2(X,Z)) denote the subgroup of effective Hodge isometries
of H2(X,Z), and let us identify PicX with its image inside H2(X,Z).
Then, by Proposition 1.2.36.(2), PicX = H1,1(X) ∩H2(X,Z), and so
an effective Hodge isometry sends the Picard lattice to itself. Then, we
can define the restriction map

|Pic : OH(H2(X,Z))→ O(PicX)

sending an effective Hodge isometry of H2(X,Z) to the isometry it
induces on PicX. Note that if f is an automorphism of X, then the
isometry of PicX it induces equals the map (f∗)|Pic. In other words,
the following diagram is commutative.

Aut(X)
(·)∗Pic //

(·)∗

''

O(PicX)

OH(H2(X,Z))

|Pic

77

Thanks to Theorem 1.2.42, we know that the automorphisms of
X are in a 1-to-1 correspondence with the effective Hodge isometries
of H2(X,Z).
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Let T (X) be the transcendental lattice of X. By Corollary 1.1.13,
there is an isomorphism % : Aut(AP )→ Aut(AT ) between the automor-
phism groups of the discriminant groupsAP = APic(X) andAT = AT (X),
making the following diagram commute.

Aut(X)

(·)∗
��

OH(H2(X,Z))
resT

''

resP=|Pic

ww
O(PicX)

ρP
��

O(T (X))

ρT
��

Aut(AP ) %P
// Aut(AT )

Proposition 1.2.44. The group OH(H2(X,Z)) is isomorphic to a sub-
group of the group

{(β, γ) ∈ O(PicX)×O(T (X)) | %P (ρP (β)) = ρT (γ)}. (1.2)

Proof. Let OPic(H
2(X,Z)) be the subgroup of O(H2(X,Z)) given by all

the isometries sending PicX to itself. Then, by definition, OH(H2(X,Z))
is contained in OPic(H

2(X,Z)). Also, from Lemma 1.1.14, we have
that OPic(H

2(X,Z)) is isomorphic to the group (1.2). The statement
follows.

Corollary 1.2.45. The group Aut(X) embeds into the group (1.2) in
Proposition 1.2.44.

Proof. By the Torelli theorem for K3 surfaces (cf. Theorem 1.2.42),
the group Aut(X) is in 1-to-1 correspondence with OH(H2(X,Z)). By
Proposition 1.2.44, OH(H2(X,Z)) is isomorphic to a subgroup of the
group (1.2).

Proposition 1.2.46. Let X be a K3 surface with odd Picard number.
Then O(T (X)) = {± idT }.

Proof. See Corollary [Huy15, 3.3.5].
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Proposition 1.2.47. Let X be a complex K3 surface, and assume that
its Picard lattice has odd rank and discriminant not a power of 2. Then
the map (·)∗Pic : Aut(X)→ O(PicX) is injective.

Proof. We have seen that the map (·)∗Pic equals the composition of
the pull-back (·)∗ : Aut(X) → OH(H2(X,Z)) and the restriction map
|Pic : OH(H2(X,Z))→ O(PicX) (cf. Remark 1.2.43). It follows that if
φ ∈ O(PicX) is an element in the image of Aut(X), then there is an
automorphism f of X such that φ = f∗|PicX . Now assume that there

is also another such automorphism, say f ′, such that φ = (f ′)∗PicX or,
equivalently, such that φ = f ′∗|PicX . By Proposition 1.2.44 we have that

the automorphisms f and f ′ respectively correspond to the elements
(φ, ρ) and (φ, ρ′) in O(PicX) × O(T (X)), with φ inducing the same
automorphism on AP = AT as ρ and ρ′ respectively.

By Proposition 1.2.46 we have that ρ, ρ′ ∈ {± idT (X)}. If ρ = ρ′,
then f and f ′ correspond to the same element in O(PicX)×O(T (X))
and therefore they must be equal (cf. Corollary 1.2.45). Then assume,
without any loss of generality, that ρ = idT and ρ′ = −idT . It follows
that ρ induces the identity on AP and ρ′ the multiplication by −1,
and they both must be equal to the morphism induced by φ. The
identity and the multiplication by −1 can be the same map only if AP
is isomorphic to a power of the group Z/2Z. Since the cardinality of
the discriminant group of a lattice equals the determinant of the lattice,
and by the initial hypothesis the determinant of PicX is not a power
of 2, then AP cannot be isomorphic to a power of Z/2Z and therefore ρ
and ρ′ do not induce the same automorphism of AP . This way we get a
contradiction, coming from the assumption that ρ 6= ρ′. Hence, ρ = ρ′

and this concludes the argument.

After talking about automorphism of K3 surfaces in general, we
introduce the notion of symplectic automorphisms. Let X be a K3
surface and let f be an automorphism of X. We say that f is symplectic
if the induced action on H0(X,Ω2) = H2,0(X) is the identity. The
symplectic automorphisms of X form a subgroup of Aut(X), denoted
by

Auts(X) ⊂ Aut(X).
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Lemma 1.2.48. Let X be a K3 surface and let f be an automorphism
of X. Then f is symplectic if and only if f∗ acts as the identity on
T (X).

Proof. See [Huy15, Remark 15.1.2].

Proposition 1.2.49. Let X be a complex K3 surface. Let f be a sym-
plectic automorphism of X, and assume f has finite order n. Then f
fixes a finite number of points of X. In particular, if # Fix(f) denotes
the number of points fixed by f , we have that only the following tuples
(n,# Fix(f)) can and do occur.

n 2 3 4 5 6 7 8

# Fix(f) 8 6 4 4 2 3 2

ρ(X) ≥ 9 13 15 17 17 19 19

The table has been completed by a lower bound for ρ(X) coming from
the existence of a symplectic automorphism of order n.

Proof. See [Huy15, Section 15.1.2].

We conclude the section by giving some results about families of K3
surfaces.

Theorem 1.2.50. The family of marked complex K3 surfaces with Pi-
card number at least ρ is parametrised by the union of countably many
complex manifolds of dimension 20− ρ.

Proof. It follows from [Dol96, Corollary 3.2].

Lemma 1.2.51. Let X→ A1
k be a flat proper morphism over a field k,

such that its fibers are K3 surfaces. Assume the characteristic of k to be
0. Let η and t be the generic point and a closed point of A1, respectively,
and let Xη and Xt denote the fibers above η and t respectively. Then
the specialization map

spt : PicXη → PicXt

preserves the intersection pairing, is injective and has torsion-free cok-
ernel.

The same holds also if we base-extend Xη and Xt to an algebraic
closure of their field of definition.
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Proof. It follows from [MP12, Proposition 3.6]. See also [Huy15, Propo-
sition 17.2.10].

Lemma 1.2.52. Let k be a number field and let Ok be its ring of in-
tegers. Let X be a K3 surface over k, and let X → Spec(Ok) be an
integral model of X. Let p be a prime of good reduction for X, that is,
the fiber Xp is a K3 surface. Then the reduction map

spp : PicX → PicXp

preserves the intersection pairing, is injective and has torsion-free cok-
ernel.

The same holds also if we base-extend X and Xp to an algebraic
closure of their field of definition.

Proof. Just note that if η is the generic point of Spec(Ok), and Xη
denotes the fiber of X above η, then Xη ∼= X. The result then follows
from [MP12, Proposition 3.6]. See also [EJ11, Theorem 3.4] and [Huy15,
Remark 17.2.11].

1.2.5 Del Pezzo surfaces

In this section we introduce the notion of del Pezzo surface and some
basic results about these surfaces, focusing on del Pezzo surfaces of
degree 1 and 2. For a general introduction to del Pezzo surfaces we
refer to [Man86, Sections IV.24-26] and [Kol96, Section III.3]; another
standard reference is also [Dem80].

Let X be a smooth, projective, geometrically irreducible surface over
a field k. We say thatX is a del Pezzo surface if its anti-canonical divisor
−KX is ample. We define the degree of X to be the self intersection
K2
X of its (anti-)canonical divisor.

From now until the end of the subsection, let X denote a del Pezzo
surface over k, and let d denote the the degree of X.

Lemma 1.2.53. Keeping the notation introduced before, one has the
following inequality: 1 ≤ d ≤ 9.

Proof. [Man86, Theorem IV.24.3.(i)].
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Remark 1.2.54. A set of closed points on the plane is said to be in
general position if no three points lie on a line; no six points lie on a
conic; no eight points lie on a singular cubic, with one of the points at
the singularity.

Theorem 1.2.55. Keeping the notation as before, the following state-
ments hold, under the assumption that k is algebraically closed.

1. If d = 9, then X is isomorphic to P2.

2. If d = 8, then X is isomorphic to either P1×P1 or to the blow-up
of P2 at one point.

3. If 7 ≥ d ≥ 1, then X is isomorphic to the blow-up of P2 at 9− d
points in general position.

If d ≥ 3, then the converse of the above statements is also true, that
is, the blow up of P2 at 9 − d points in general position is a del Pezzo
surface of degree d.

Proof. [Man86, Theorem IV.24.4].

Remark 1.2.56. For d ∈ {1, 2}, stricter conditions on the points are
required in order for the converse of Theorem 1.2.55.(3) to hold. For
the details, see [Man86, Theorem IV.26.2].

Corollary 1.2.57. Let X be a del Pezzo surface over an algebraically
closed field k. Then X is birational to P2

k.

Proof. Trivial using Theorem 1.2.55.

Corollary 1.2.58. Let X be a del Pezzo surface over k, assume that
X is not birational to P1 × P1 and that k is algebraically closed. Set
r := 9− d. Then PicX, endowed with the intersection pairing of X, is
a lattice of rank r + 1, admitting a basis (E0, E1, ..., Er) such that

• E2
0 = 1;

• E2
i = −1, for i = 1, ..., r;

• Ei · Ej = 0, for every i 6= j.

Proof. [Man86, Proposition IV.25.1].
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Proposition 1.2.59. Let X be a del Pezzo surface of degree d over k.
If d = 1, then X is isomorphic to a hypersurface of degree 6 inside

Pk(1, 1, 2, 3). Conversely, any smooth hypersurface of degree 6 inside
Pk(1, 1, 2, 3) is a del Pezzo surface of degree 1.

If d = 2 then X is isomorphic to a hypersurface of degree 4 inside
Pk(1, 1, 1, 2). Conversely, any smooth hypersurface of degree 4 inside
Pk(1, 1, 1, 2) is a del Pezzo surface of degree 2.

Proof. See [Kol96, Theorem III.3.5].
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