
An online corpus of UML Design Models : construction and empirical
studies
Karasneh, B.H.A.

Citation
Karasneh, B. H. A. (2016, July 7). An online corpus of UML Design Models : construction and
empirical studies. Retrieved from https://hdl.handle.net/1887/41339
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/41339
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/41339


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/41339 holds various files of this Leiden University 
dissertation. 
 
Author: Karasneh, B.H.A. 
Title: An online corpus of UML Design Models : construction and empirical studies 
Issue Date: 2016-07-07 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/41339
https://openaccess.leidenuniv.nl/handle/1887/1�


Summary

In this thesis, we address two problems in Software Engineering. The first problem is
how to assess the severity of software defects? The second problem we address is that
of studying software designs. We explain each of these problems next in a little more
detail.

Assigning severity to a software defect is currently done by software developers
based on their experience. In practice it turns out developers do not take the task of
registering the severity of defects very seriously and often register just a default value
offered by a defect tracking tool. Therefore, we study whether we can provide mean-
ingful automated support for assessing the severity of defects. Automated support
for assessing the severity of software defects helps human developers to perform this
task more efficiently and more accurately. In this thesis, we present a new approach
(MAPDESO) for assessing the severity of software defects based on the IEEE Standard
Classification for Software Anomalies. The novelty of the approach lies in its use of
uses ontologies and ontology-reasoning which links defects to system level quality
properties. The approach was validated by studying how it performs on an industrial
project. In this validation, the automated prediction method performs well compared
to the manual classification performed on an industrial project. We found that our
MAPDESO approach based on ontologies outperforms selected machine learning clas-
sifiers. At the company where we conducted the study, people appreciate the result of
MAPDESO.

Our research can be positioned in the field of Empirical Software Engineering – this
is a branch of Software Engineering that aims to create knowledge through the analysis
of artefacts (and processes) that are part of software development projects. The large
majority of studies in this field focus on program texts (’source code’) expressed in
some programming language. While software designs area a critical aspect of most
software development projects, software designs are hardly studied by the empirical
software engineering community.

One of the main reasons why studying software designs is challenging is the lack
of their availability. In our research we found that software designs are commonly
stored as UML diagrams in image formats and are available from various sources on
the internet. Hence we decided to collect a large number of UML models in images



170 Summary

and convert them to real models. Therefore, we developed the following software
tools: 1) UMLCrawler, which can download a large number of UML diagrams from
the internet, 2) UMLImgClassifier, which can classify UML class diagrams from other
diagrams, and 3) Img2UML, which can extract model information from UML models
stored in image formats and generate XMI files. The generated XMIs are compatible
with different UML tools, where the models can be edited and analysed. Our validation
shows that UMLImgClassifier and Img2UML provide high accuracy for classifying
and converting UML diagrams to XMI files.

The aforementioned tools are building blocks for constructing a UML Repository.
We built an online repository which contains UML class diagrams, XMIs and various
design metrics of the class diagrams. In this thesis we present this repository and some
of its services of such as sharing, searching, questioning, ranking, defining experiments,
uploading, downloading and charting.

This repository is the first of its kind and we believe it will be a useful resource
for the empricial software engineering research community. In support of this, we
conducted a series of empirical studies using the UML Repository. These empirical
studies are a drop in the ocean of empirical studies that can be conducted using this
repository.

Our first study shows some examples of interesting relations between class dia-
grams design metrics. In this way, the corpus of UML designs can be used to find
patterns in UML models and hence to figure out good and bad practices. This yields
reference data that can be used in quality assurance of UML designs.

Our next study studies the relation between the quality of the UML design and the
associated source code. Our most prominent findings in this study are: First, modeled
classes (classes that are both in the design and the source code) undergo more changes
and contain more faults than classes that exist only in the source code (hence not in the
design). Second, anti-patterns can be detected early in the design, and anti-patterns
that exist in the design transfer to the source code in the same classes. Third, modeled
classes that have anti-patterns in the design have more changes and faults than other
classes that do not have anti-patterns in the design. Our study is the first study of the
relation between the quality of UML-based software designs and their impact on the
quality of the source code.

Subsequently, we studied how the repository can be used in educational settings.
Our first study in this direction investigates the difference between students and experts
in assessing the quality of UML class diagrams. We assessed quality along six quality
attributes and distinguished between students’ self-assessment and peer-assessment.
We found that there is a significant difference between experts and students in both
self-assessment and peer-assessment. We found a high correlation between experts
and peer-assessment for assessing understandability. In addition, we found that
there is the single quality attribute understandability which is correlated with most
other quality attributes in both experts’ assessments and students’ peer-assessments.
Moreover we found that students seem to avoid giving peers low grades. Hence peer



171

assessment by students should not be used for grading in class settings. However,
using qualitative analysis of the feedback given in conjunction with the assessment, we
observed that novices provide comments on the quality of UML designs that is similar
to that which experts’ give. Therefore, we conclude that the feedback provided by
students’ is valuable, and while peer-grading may not be a good idea, using students
for peer-feedback provides useful information for improving their designs.

After that, we conducted a study into using examples for teaching software design.
To this end, we offered students the possibility to use the UML repository while per-
forming some design assignment and for improving an initial design they have made
without the repository. We conclude that the examples help students in constructing
and improving their design. Quantitative analysis showed that experts graded the
models produced by students that used examples higher than students in the control
group (without repository) for all quality attributes. We conclude that the model
repository is a suitable environment for offering model examples – in the sense that
its content is useful, but also that model examples can be found in an effective way.
Furthermore, the students appreciate the fact that the UML Repository allows them to
search for models based on various parts of the model such as class names, attributes,
and operations. This type of search is not available anywhere else, also not via generic
search engines on the internet. To conclude, this series of empirical study illustrates
the importance of the corpus of UML models.




