
An online corpus of UML Design Models : construction and empirical
studies
Karasneh, B.H.A.

Citation
Karasneh, B. H. A. (2016, July 7). An online corpus of UML Design Models : construction and
empirical studies. Retrieved from https://hdl.handle.net/1887/41339

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/41339

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/41339

Cover Page

The handle http://hdl.handle.net/1887/41339 holds various files of this Leiden University
dissertation.

Author: Karasneh, B.H.A.
Title: An online corpus of UML Design Models : construction and empirical studies
Issue Date: 2016-07-07

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/41339
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter6
UML Repository As Benchmark for
Quality Analysis

In this chapter, we illustrate some analysis that based on the UML Repository as a benchmark
for quality analysis. First, we show common characteristics of class diagrams in the repository.
In addition, we show the relation between models size and coupling metric. Then we describe
our study of the relation between anti-patterns in design models and source code. We show
the impact of the quality of the design models measured by anti-patterns on the quality of the
source code measured by numbers of changes and faults.

This chapter is based on the following publications:

• Bilal Karasneh, Michel R. V. Chaudron, Foutse Khomh and Yann-Gaël
Guéhéneuc. Studying the Relation between Anti-patterns in Models and
in Source Code. In Proceedings of the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering, Osaka, Japan. 2016.

• Bilal Karasneh, Michel R. V. Chaudron. Online Img2UML Repository: An
Online Repository for UML Models. In Proceedings of the 3rd International
Workshop on Experiences and Empirical Studies in Software Modeling (EESS-
MOD@MODELS 2013), pages 61-66, Miami, USA. 2013.

98 UML Repository As Benchmark for Quality Analysis

In chapter two, we talked about software quality models, and showed how to
measure software quality. In this chapter, we spot some characteristics of class
diagrams in the repository based on their design metrics. We think these charac-

teristics are important to assess the quality of class diagrams, because it helps to find
common patterns in class diagrams, and measures these patterns in terms of quality.
Furthermore, we present our study of the relation between anti-patterns in the design
and quality of source code based on number of changes and faults.

6.1 Common Characteristics of Class Diagrams

Finding out common characteristics of the designs provide a way to measure their
quality. The repository contains a big collection of class diagrams, which are related
to different application domains and created by different designers. Thus, it can
be considered as a good place to apply empirical studies. We analyze the size of
class diagrams and the relation between size and maximum coupling. These metrics
influence the complexity of class diagrams. Based on that analysis, we aim to find
common patterns. We notice that coupling includes three relationships: association,
composition and aggregation.

6.1.1 The Size of Class Diagrams

In this subsection, we describe the size of the diagrams in the repository. Figures 6.1
and 6.2 show a boxplot of class diagrams size and its distribution in the repository
respectively. Table 6.1 provides descriptive details of figure 6.1. We see that the
maximum number of classes is relatively small. We see that it is not common to find a
class diagram with a big size - The median number of classes is nine.

Table 6.1: Descriptive statistics of the size of class diagrams in the repository

No. Diagrams Median Quartile 25% Quartile 75%
Diagrams size 810 9 5 13

6.1.2 Maximum Coupling

We believe that maximum coupling in class diagrams can be an important indicator of
the complexity of class diagrams. So if there is at least one class in a class diagram that
show a high coupling, this determines the complexity of that class diagram. Figure 6.3
shows the boxplot of the maximum coupling of the class diagrams in the repository.
Table 6.2 shows the descriptive statistics of Figure 6.3.

Common Characteristics of Class Diagrams 99

Figure 6.1: Size of class diagrams in the repository

Figure 6.2: Distribution of class diagrams size in the repository

6.1.3 The Relation between Class Size and Max. Coupling

It is interesting to study the relation between the size of class diagrams and the maxi-
mum coupling that they indicate. Figure 6.4 shows a Bubble chart for diagrams size
and their maximum coupling. Figure 6.4 shows that there is a positive correlation

100 UML Repository As Benchmark for Quality Analysis

Figure 6.3: Maximum coupling for diagrams in the UML Repository

Table 6.2: Descriptive statistics of Max. coupling in class diagrams in the repository

No. Diagrams Median Quartile 25% Quartile 75%
Diagrams size 810 3 2 4

between diagrams size and maximum coupling. It shows that when the diagram
size is high, the maximum coupling also will be high, which it makes diagrams more
complex. In Figure 6.4, the trendline also shows the coefficient of determination (R2 =
0.07). A correlation of 0.10 is seen as a weak relationship, 0.30 as moderate, and 0.50
as strong relationship [80]. This interpretation is fit in our data because it is randomly
collected, and the behavior, skill, and experience of the designer are different. The
Pearson correlation that we calculated between the diagrams size, and the maximum
coupling is significant (p < 0.01) and it is a moderate relationship (r = 0.46).

6.1.4 Discussion

Our study is a preliminary study of the size of class diagrams and maximum coupling.
The size of the diagrams is relatively small, which it means that it is not common to
have big diagram size. The maximum coupling is small, which could be considered as a
hint of the complexity of class diagrams. The relation between class diagrams size and
maximum coupling is moderate. However, this moderate relationship shows that the
complexity of class diagrams increases when the size of class diagrams increases. We

Studying the Relation between Design Quality and Source Code 101

Figure 6.4: Relation between Diagrams size and Max. coupling

notice that 11% of class diagrams have a maximum coupling of zero. These diagrams
do not contain any association, but they do inheritance and dependency relationships.

6.2 Studying the Relation between Design Quality and Source
Code

Many software engineers focus on the quality of source code, and they do not give
enough attention to the quality of the design. There are few studies about the con-
tribution of software design on software development, because it is challenging to
study.

In this section, we study the impact of software design on the source code. We
investigated two open source software projects that have a design, different released
versions of the source code, and we can access their changes and bugs among the
different released versions. Then, we study the effect of anti-patterns in design on the
quality of the source code measured by number of changes and number of bugs. For
achieving this, we did two studies:

• First, we investigate seven open source software projects that have design and
made a comparison between occurrences of anti-patterns in the design and the
source code.

• Second, we measured the relation between anti-patterns in design and the quality
of the source code based on changes and bugs. We use the same two open source
projects that we used in the first experiment.

102 UML Repository As Benchmark for Quality Analysis

Table 6.3: Descriptive statistics of Max. coupling in class diagrams in the repository

Project Name Modeled classes Not-Modeled classes Total
ArgoUML 88 2731 2819

Wro4j 197 876 1073

6.2.1 Relation between Software Design and Source Code

We conducted an experiment with two big open-source software projects to measure
the quality of classes that appear both in the design and the source code, and classes
that appear only in the source code. We selected ArgoUML and Wro4j because we
can access to the class changes and bugs reports for all versions of the software. More
information about ArgoUML and Wro4j is in Table 6.8. For ArgoUML, we use nine
different released versions and for Wro4j, we use six different released versions.

6.2.1.1 Experiment Design

We categorized classes in the source code into two categories:

1. Modeled classes, which are classes that appear in the design and source code.

2. Not-Modeled classes, which appear in source code only.

Then we used Mann-Whitney test to compare the means of the number of changes and
the number of bugs between both categories. We used Mann-Whitney test because it
matches the precondition in both cases.

The number of classes in the design is small as it is usual in open-source software
projects. We collected the corresponding of the classes that appear in the design and
code. Therefore, the Modeled classes are the classes that appear in the design and the
code, and their corresponding in the code, and the Not-Modeled classes are the classes
that are only in the code. Table 6.3 shows both categories for both the ArgoUML and
Wro4j projects. We use IntelliJ IDEA1 to find the corresponding classes in the code.

6.2.1.2 Results

Tables 6.4 and 6.5 show the mean of changes and bugs for both Modeled classes and
Not Modeled classes in both ArguUML and Wro4j, respectively. In ArgoUML, the
result of the Mann-Whitney test shows that there is a significant difference between
Modeled classes and Not-Modeled classes in both terms of changes and bugs, where
p-value = 0.000 and p-value = 0.007 respectively.

In Wro4j, the results are the same, where the result of the Mann-Whitney test shows
that there is a significant difference between Modeled classes and Not-Modeled classes

1https://www.jetbrains.com/idea/

Studying the Relation between Design Quality and Source Code 103

Table 6.4: Means of classes Changes in ArgoUML and Wro4j

Project Name Categories Mean

Changes
ArgoUML

Modeled classes 22
Not-Modeled classes 7.78

Wro4j
Modeled classes 15.17

Not-Modeled classes 6.56

Table 6.5: Means of classes faults in ArgoUML and Wro4j

Project Name Categories Mean

Bugs
ArgoUML

Modeled classes 0.82
Not-Modeled classes 0.42

Wro4j
Modeled classes 2.91

Not-Modeled classes 1.04

in both numbers of changes and bugs, where p-value = 0.000 and p-value = 0.000,
respectively.

Next, we show the relation between the number of changes and two code metrics,
Line of Code (LOC) and average Cyclomatic Complexity (AvgCyc). Table 6.6 shows the
correlations between number of changes in ArgoUML and Wro4j with LOC and Avg-
Cyc. The number of changes in Modeled classes has significantly higher correlations
with LOC than Non-modeled classes in both ArgoUML and Wro4j: Modeled classes
that have higher LOC have more changes. Table 6.7 shows the correlation between
faults, LOC and AvgCyc: the number of faults in Modeled classes have significantly
higher correlations with LOC than Non-modeled classes in both ArgoUML and Wro4j.
More faults exist in Modeled classes that have higher LOC. AvgCyc does not have a
correlation with Modeled classes or Non-modeled classes.

6.2.1.3 Results Discussion

The result shows that there is a significant difference between Modeled classes and
Non-Modeled classes categories in both cases changes and bugs. The means of changes
and bugs of Modeled classes are higher than Non-Modeled classes, which mean the
Modeled classes have more changes and bugs in both ArgoUML and Wro4j among
different released versions. We explain this result as Modeled classes important and
could have the main functionality of the system, so it has more changes during different
released versions. We explain the faults by the positive relation between the number of
changes and number of faults [81]. Therefore, classes in the design have more changes,
this tend to have more faults. Indeed, the implementation should follow the design,
which results in developers transferring problems from the design to the source code.
We notice that, problems in the design may cause and propagate more problems in the

104 UML Repository As Benchmark for Quality Analysis

Table 6.6: Correlation between Changes, LOC and AvgCyc

Project Name Categories
Correlation

R2 Formulas
AvgCyc LOC

Changes
ArgoUML

Modeled classes 0.30 0.74 0.54 Y=0.727+0.018(LOC)
Not-Modeled classes 0.21 0.43 0.19 Y=1.352+0.004(LOC) +0.092(AvgCyc)

Wro4j
Modeled classes 0.06 0.62 0.39 Y=-1.937+0.315(L0C)

Not-Modeled classes 0.00 0.38 0.17 Y=6.191+0.104(LOC)(AvgCyc)

Table 6.7: Correlation between Changes, LOC and AvgCyc

Project Name Categories
Correlation

R2 Formulas
AvgCyc LOC

Bugs
ArgoUML

Modeled classes 0.35 0.53 0.32 Y=-0.54+0.001(LOC) +0.041(AvgCyc)
Not-Modeled classes 0.13 0.26 0.07 Y=0.07+0.000(LOC)

Wro4j
Modeled classes 0.02 0.6 0.35 Y=-0.266+0.060(LOC)

Not-Modeled classes -0.01 0.40 0.18 Y=0.953+0.026(LOC) -0.417(AvgCyc)

source code because in the code more information and functions should be added.

6.2.2 Effects of Anti-patterns on Software Quality

There are very few studies on the origins of the occurrences of anti-patterns in the
source code. Knowing where and when anti-patterns are introduced could help
software designers and developers improve the quality of the software systems. In
this section, we explore the origins of anti-patterns by tracing them back to design
models. We conduct our study using the models selected randomly from the UML
Repository, which is a unique repository containing pairs of architects and designers’
models (UML class diagrams) linked to the corresponding source code, when available.
For each system, we analyze both its UML design models and its source code.

Since their inception in software engineering, design patterns (i.e., reusable solu-
tions to recurring design problems) [82] and anti-patterns (i.e., poor solutions to design
and implementation problems) [83] have been the subject of many research works.
This research works focused on design patterns specification [84], detection [85], and
on the analyzes of their impact and life-cycle. Tufano et al. [86], Vaucher et al. [87],
and Chatzigeorgiou and Manakos [88], investigated the evolution of anti-patterns in
software systems, and observed that anti-patterns are not necessarily only introduced
in the source code during maintenance and evolution activities. They reported that
many classes are “born” anti-patterns. Following on this observation, we set out to
investigate whether design models produced by architects and designers before the
implementation contains anti-patterns. In addition, we see if theses anti-patterns trans-
late in the source code, i.e., if these anti-patterns concern the same classes in design
models and the source code implementing these models.

On the one hand, as long as the code follows the decisions embedded in the models,
the same patterns/anti-patterns from the models should appear in the source code. On

Studying the Relation between Design Quality and Source Code 105

the other hand, if we can use the right patterns and follow the right design decisions
early on in the development cycle, we could prevent the occurrence of anti-patterns in
the code.

6.2.2.1 Related Work

There are many research works on the definition, specification, detection, correction,
and analysis of the life-cycles of design patterns and anti-patterns. Because we focus
on anti-patterns, we describe here three works that (1) showed that anti-patterns do
impact negatively class change- and fault-proneness, (2) studied the introduction and
removal of some anti-patterns qualitatively, and (3) reported four lessons on their
life-cycles. We describe the specification and detection of anti-patterns in Sections
6.2.2.3 and 6.2.2.4.

Khomh et al. [89] investigated the impact of anti-patterns on classes in object-
oriented systems by studying the relation between anti-patterns and class change- and
fault-proneness. They showed that in 50 out of 54 releases of the four analyzed systems,
classes participating in anti-patterns are more change and fault-prone than others.

Vaucher et al. [87] studied the "God class" anti-patterns, which describes large
classes that "know too much or do too much". The literature postulated that God
classes are created by accident as functionalities are incrementally added by developers
to central classes over the course of their evolution, Vaucher et al. observed that, in
some systems, God classes are created by design, as the best solution to a particular
problem, for example, when a functionality is not easily decomposable or when there
exist strong requirements on efficiency or performance. They studied the life-cycles
of God classes in the source code of Eclipse JDT and Xerces; investigating how they
arise, how prevalent they are, and whether they remain as the system evolves over
time. They distinguished between those classes that are God classes by design from
those that occurred by accident in the implementation. They concluded that some God
classes are created by design but most are the result of a decay of the systems. They
propose that developers use detection techniques and refactoring to track and prevent
anti-patterns in their systems.

Following this previous work, Tufano et al. [86] studied the life-cycle of five anti-
patterns in Android, Apache, and Eclipse and drew the following lessons: (1) classes
often play roles in anti-patterns from their inception in the systems, (2) the metric
values of the classes that started to play some roles in some anti-patterns only during
the evolution of the systems have specific trends, (3) refactoring operations, in addition
to other changes, may lead to the introduction of anti-patterns, and (4) time pressure is
the main cause of the introduction of anti-patterns. With these lessons, in the particular
lesson (1), they confirmed the hypothesis of this present study that anti-patterns are
not necessarily the results of developers’ lack of times/skills but could be due to the
very designs of the systems.

Chatzigeorgiou and Manakos [30], who investigated the evolution of anti-patterns

106 UML Repository As Benchmark for Quality Analysis

Table 6.8: Studied Software Systems

Project Name Descriptions URLs

ArgoUML
An open source UML modeling
tool

http://argouml.
sourceforge.net

Annoyme
Adds beautiful typewriter sounds
to Desktop keyboards

https:
//github.com/
dedeibel/annoyme

JGAP
Package of Genetic Algorithm and
Genetic Programming

http://jgap.
sourceforge.net

Mars_Simulation
Project to create a simulation of
future settlements on Mars

http://mars-sim.
sourceforge.net

Msv_Poker
Poker Game (poker server and
poker client)

https://github.
com/mihhailnovik/
msvPoker

Neuroph
Lightweight Java neural network
framework to develop network
architecture

http://neuroph.
sourceforge.net

Wro4j Web resource optimizer for Java
http://code.google.
com/p/wro4j

in object-oriented systems reported that anti-patterns tend to linger in systems for
multiple releases.

All these studies considered occurrences of anti-patterns in the source code of the
studied systems (and their revisions) or design models reverse-engineered from their
source code. They did not study the prevalence of anti-patterns in design models
created before (and–or during) development in comparison to that in the source code
implementing these design models. Our following study aims at confirming the
observations that, in some designs, anti-patterns are present from the very beginning
of the inception of the systems. In addition, these anti-patterns in the design have an
impact on the implementation.

6.2.2.2 Experiment Design

The seven open-source systems selected from UML Repository are available from
Github, SourceForge, and Google Code. The studied software systems are in Table 6.8.
We notice that it is much easier to use UML Repository for finding such case studies
that contain UML design with source code. It is hard to inside code repositories to
find software projects that contain UML design. We conduct this study using both
architects’ and designers’ models of software systems and the implementation of these
models as source code.

http://argouml.sourceforge.net
http://argouml.sourceforge.net
https://github.com/dedeibel/annoyme
https://github.com/dedeibel/annoyme
https://github.com/dedeibel/annoyme
http://jgap.sourceforge.net
http://jgap.sourceforge.net
http://mars-sim.sourceforge.net
http://mars-sim.sourceforge.net
https://github.com/mihhailnovik/msvPoker
https://github.com/mihhailnovik/msvPoker
https://github.com/mihhailnovik/msvPoker
http://neuroph.sourceforge.net
http://neuroph.sourceforge.net
http://code.google.com/p/wro4j
http://code.google.com/p/wro4j

Studying the Relation between Design Quality and Source Code 107

6.2.2.3 Anti-patterns Identification

We use the Ptidej2 tool suite, which implements the anti-pattern detection approach
DECOR (Defect dEtection for CORrection) [85], to identify occurrences of anti-patterns
in both models and source code. DECOR is an approach based on the automatic
generation of detection algorithms from rule cards. It converts anti-patterns descrip-
tions automatically into detection algorithms and identifies the occurrences of these
anti-patterns in UML class diagrams and the source code of systems.

We apply DECOR in three steps: first, we reuse/define a rule card describing an
anti-pattern through a domain analysis of the literature [84]. From the rule card, we
generate a detection algorithm. Finally, we apply the detection algorithm on models of
systems to detect the different occurrences of the anti-pattern in these systems. DECOR
has appropriate performance, precision, and recall for our study.

DECOR can be applied to any object-oriented system through the use of the PADL
[90] meta-model and POM framework [91]. PADL describes the structure of systems
and a subset of their behavior, i.e., classes and their relationships. POM is a PADL-
based framework that implements more than 60 structural metrics. We apply DECOR
on models obtained either from the class diagrams available in the repository, by
parsing the corresponding XMI files, or by parsing the corresponding C++ and Java
source code.

6.2.2.4 Anti-patterns Specification

Concretely, we detect the occurrences of four anti-patterns which are: (1) Complex
class, (2) Large class, (3) Lazy class, and (4) LongMethod. We are using the metrics
available in Ptidej for both class diagrams and source codes.

Essentially, we specify the Lazy Class in terms of the number of methods defined
in the classes. We define the Complex Class as the number of methods and the
relationships among classes: a class that defines many methods and that has many
relationships (in or out) is inherently complex. Long Method can only be computed on
classes from the source code because we need the number of statements in the methods.
Finally, we specify Large Class as the "opposite" of a Lazy Class, in terms of the number
of methods in the classes. The details of the specification and detection of the anti-
patterns are outside the scope of this chapter because we reuse the specifications and
detection algorithms used in previous work and detailed in the presentation of DECOR
to which we refer the reader [84].

6.2.2.5 Results

We now report the results of detecting anti-patterns in models and source code of
seven systems from the UML Repository using Ptidej. First, we show some analysis of

2http://www.ptidej.net

108 UML Repository As Benchmark for Quality Analysis

Table 6.9: Summary of number of Classes in class diagrams versus in source code

Project Name
Classes in class

diagrams
Classes in
source code

Proportion of
classes

Annoyme 17 59 0.29
ArgoUML 51 1722 0.03

JGAP 19 191 0.1
Mars_Simulation 32 953 0.03

Msv_Poker 22 55 0.4
Neuroph 26 179 0.15

Wro4j 28 598 0.05

the numbers of classes in the models and their source code. Then, we summarize the
anti-patterns detected in both models and their source code.

Table 6.9 shows an overview of classes in the models and source code, which
proportions are based on the equation 6.1:

Proportion of classes = No. of classes in the Design

No. classes in the source code
(6.1)

The numbers of classes in the source code are higher than in the models, but we found
that some classes in the models were missing in the source code. This is also expected
because the models, which are conceptual models, are often refined by developers
during implementation. However, these refinements are not always documented back
in the models. In Table 6.10, we show the proportions of classes that exist in models
and source code. The proportions in Table 6.10 are measured using the following
equations 6.2 and 6.3:

C.C.C. to the Design = No. classes exist in both Design and source code

Number of class in Design
(6.2)

C.C.C.totheImplementation =
No. of classes exist in both Design and source code

Number of class in source code
(6.3)

C.C.C. = Common Classes Compared
Common Classes = Classes exist in class diagrams and the implementation

The majority of classes contained in the models are also present in the source code of
the systems. However, classes in the class diagrams represent only a fraction of the
total numbers of classes contained in the source code. Nevertheless, next we show that

Studying the Relation between Design Quality and Source Code 109

Table 6.10: Proportion of classes that exist in both class diagrams and source code

Project Name
Common

Classes

Common classes
compared to the

Design

Common classes
compared to the
Implementation

Annoyme 14 0.82 0.24
ArgoUML 44 0.86 0.03

JGAP 18 0.95 0.09
Mars_Simulation 29 0.91 0.03

Msv_Poker 13 0.59 0.24
Neuroph 24 0.92 0.13

Wro4j 23 0.82 0.04

anti-patterns appear in class diagrams during the design phase are transferred to the
implementation.

We can detect three anti-patterns in the class diagrams: Complex Class, Large Class,
and Lazy class. We can only detect LongMethod in the source code because class
diagrams are abstract representations of the systems, and they contain only method
signatures without the implementation details needed to compute the lengths of the
methods. In Table 6.11, we report the numbers of anti-patterns that we found in the
class diagrams and source code of the studied systems. We calculate the proportion
of classes that play the same roles in the same anti-patterns in class diagrams and the
source code based on Equation 6.4:

Proportion of classes = No. S.AP.in.D.and.I

No. Anti − patterns in class diagrams
(6.4)

S.AP.in.D.and.I = Same anti-patterns in the same classes in Design and implementation

Table 6.12 shows the number of anti-patterns that exist in the same classes in class
diagrams and the source code. We also show the proportion based on Equation 6.4.
From Table 6.12 we show that there is a significant proportion of classes playing the
same role in the same anti-patterns in the class diagrams, and the source code (36%).
We notice that some anti-patterns appear in class diagrams and the same classes in the
source code have different anti-patterns. We relate this to a common mistake in both
open-source and commercial software development that they update the source code
and do not update the design.

Next, we focus on individual anti-patterns and occurrences of each one in class
diagrams and source code.

110 UML Repository As Benchmark for Quality Analysis

Table 6.11: Anti-patterns detection in both class diagrams and source code

Project Name
APs∗ in

Design

APs in the
Implementa-

tion

Long-
Method APs
in the source

code

Same APs in
the same classes
in Design and

Implementation
Annoyme 10 16 0 5
ArgoUML 20 545 256 10

JGAP 14 252 130 5
Mars_Simulation 24 370 206 3

Msv_Poker 16 18 8 4
Neuroph 12 41 27 4

Wro4j 28 209 130 12
∗APs = Anti-patterns

Table 6.12: Proportion of classes in class diagrams that transfer same anti-patterns to the
source code

Project Name
APs∗ in

Design

Same APs in the
same classes in

Design and
Implementation

Proportions of same
classes have same
APs in Design and

Implementation
Annoyme 10 5 0.5
ArgoUML 20 10 0.5

JGAP 14 5 0.38
Mars_Simulation 24 3 0.12

Msv_Poker 16 4 0.25
Neuroph 12 4 0.33

Wro4j 28 12 0.43
Average 0.36
∗APs = Anti-patterns

6.2.2.6 Complex Class

Regarding the Complex Class anti-pattern, very few occurrences are found in class dia-
grams, which means that architects and designers’ tend to avoid excessively complex
classes. However, developers do not seem to follow the same care during implemen-
tation as we observe proliferations of occurrences of the Complex Class anti-pattern
in the source code of ArgoUML, JGAP, Mars, and Wro4j. Figure 6.5 shows show the
number of occurrences of Complex class anti-patterns detected in the class diagrams
and source code. We explain this observation by two facts. On the one hand, models

Studying the Relation between Design Quality and Source Code 111

Figure 6.5: Occurrences of the complex class anti-pattern in class diagrams and source code

tend to be sketches of the actual implementation and, hence, do not contain all the
details and complexity of the source code while the source code must, by its very defi-
nition, contain the actual algorithms, which may be intrinsically complex to implement.
On the other hand, complex classes in source code tend to arise because of the lack of
time for developers to research the best (i.e., simplest) implementation. Hence, it is our
experience and observation that source code tends to be inherently more complex than
necessary and, therefore, more complex that the models.

6.2.2.7 Large Class

Occurrences of the Large Class anti-pattern are absent from both models and source
code, except for Wro4j, whose model contains five occurrences of the Large class anti-
pattern, as shown in Figure 6.6. As reported by Vaucher et al. [87], Large Classes are
sometimes present in systems because they are the best solution to some problems, for
example when the problem is not easily decomposable. Such cases seem to be rare
in models: only one system out of seven contains occurrences of the Large Class for
the same reasons as mentioned above. So, modelers’ focus on the essentials of classes,
developers lack of time to introduce proper abstractions and, thus, their tendency to
"grow" classes to implement new features.

6.2.2.8 Lazy Class

Lazy class, which is the most frequent anti-pattern among the four anti-patterns under
study, is more prevalent in models than source code (see Figure 6.7. We explain this

112 UML Repository As Benchmark for Quality Analysis

Figure 6.6: Occurrences of the large class anti-pattern in class diagrams and source code

Figure 6.7: Occurrences of the Lazy class anti-patterns in class diagrams and source code

result by the fact that, during the design phase, developers try to anticipate future
evolutions of the systems, which often lead to many abstract classes that do not contain
necessarily enough behavior to justify their existence. These classes are considered
Lazy classes by our detection technique and by definition of the anti-pattern. However,
as Figure 6.7 shows, in all systems but ArgoUML, these excessive abstractions are
corrected later by developers during the implementation of the systems.

Studying the Relation between Design Quality and Source Code 113

6.2.2.9 LongMethod Class

Occurrences of the Long Method anti-pattern are also introduced in the source code in
large number by developers. Again, we explain this observation and the difference
between models and source code in two ways. First, models do not contain all the
details necessary to identify Long Methods because of their very nature as sketches.
Second, as previously mentioned, developers tend to implement features as fast as
possible, under time pressure, and thus cannot take the time required to refactor their
code and to avoid long methods.

6.2.2.10 Result Discussion

From the results presented in the results section, three of the four anti-patterns under
study could be detected in class diagrams, i.e., during the design, which is considered
an early stage of the software development life-cycle. We could not find occurrences of
the Long Method anti-pattern in models because the detection of this anti-pattern is
based on the numbers of Line of Code (LOC) of the methods, which is not available in
class diagrams.

Table 6.10 shows that some classes contained in the models disappear in the source
code, which can be considered two ways. First, having a class in a model and not
having this class in the source code could be a design violation. For example, an
architect or designer could have introduced a Facade between two subsystems, later
the Facade is removed by developers for the sake of simplicity of implementation or
performance of execution. Such a removal could yield to unintended accesses to some
subsystems and also reduce information hiding.

However, having less information in models and not in source code such as classes,
can also be the result of a lack of traceability in the project, because developers may have
refined the model during implementation while failing to document the modifications
and updating the models. Indeed, updates and changes to the source code without
updating the models is a common practice observed in many software projects. Hence,
our results confirm the software engineering lore that models are not synchronized
with their source code by developers.

In addition, we observe that most of the classes that are in models and disappear
in source code are Lazy Classes (see Figure 6.7, which confirms our intuition about
developers refining the models because Lazy classes are the result of excessive abstrac-
tions. With a better knowledge of the system under development, developers may
decide to remove some of the abstractions that result from architects’ and designers’
speculations about future evolutions of their systems. The average proportion of the
same classes in the models and the source code that have same anti-patterns is 36%,
which represents an important fraction of the total number of anti-patterns contained
in the design. Hence, by acting early on these anti-patterns, architects, designers, and
developers could improve the quality of their systems. Defects contained in design

114 UML Repository As Benchmark for Quality Analysis

models are known to be particularly expensive if they are not fixed quickly because
classes in the models are the backbone of the source code and, in most models, are the
most important classes in the source code. Thus, our results report and confirm that (1)
classes in models may have anti-patterns, which propagate to the source code; and, (2)
classes in both models and source code have the same anti-patterns in half the cases.

Also, following the broken windows theory [92], which states that a broken window
may lead to a general degradation of the whole environment, we make the following
argument. Similarly, we argue that when design problems are not fixed quickly, they
tend to propagate in the system causing other problems. Therefore, it is important
to track and fix design problems as early as possible in the development cycle. The
results of this study show that software organizations can make use of anti-patterns
detection tools like Ptidej during the design phase and track and fix anti-patterns
in their software system as early as the design phase. Thus, anti-patterns detection
tools will help prevent defects that could occur because of anti-patterns. Indeed, the
refactoring of anti-patterns should be easier and less costly at modeling level than
during implementation.

6.2.3 Effects of Anti-patterns in design on Software Changes and Faults

In this study, we focus on seven types of anti-patterns, Complex, Large, Lazy, Blob,
ClassDataShouldBePrivate, RefusedParentBequest, and BaseClassShouldBeAbstract
classes. We study the effect of anti-patterns of the classes appear in the design and
the source code. We study the impact of anti-patterns appear in the design on the
quality of the same classes in the source code measure based on the number of change-
and fault-proneness the source code. Indeed, we use the Ptidej tool suite for detecting
anti-patterns in the design (class diagrams).

6.2.3.1 Experiment Design

We categorized classes in the design into two categories:

• Anti-patterns category, which contains classes that have anti-patterns in design.

• No-Anti-patterns category, which contains classes that do not have anti-patterns
in design.

Then we use the Mann-Whitney test to compare the means of the number of changes
and the number of bugs between both categories.

Because the number of classes in designs is small as usual in open-source software
projects, we did the same as in section 6.2.1.1 that we collected classes in the design
and their mapped classes in the implementation. We use IntelliJ IDEA to find the
mapped classes in the implementation to the classes in the design. Therefore, the Anti-
patterns category becomes the classes that have anti-patterns in the design and their

Studying the Relation between Design Quality and Source Code 115

Table 6.13: Summary of classes used in the experiment

Project Name Anti-patterns Category No-Anti-patterns Category Total
ArgoUML 56 32 88

Wro4j 130 69 199

Table 6.14: Means of classes changes in ArgoUML and Wro4j

Project Name Categories Mean

Changes
ArgoUML

Anti-pattens 30.8
No-Anti-patterns 06.59

Wro4j
Anti-pattens 16.6

No-Anti-patterns 12.26

mapped classes in the implementation, and the No-Anti-patterns category contains
the classes that do not have anti-patterns in the design and their mapped classes in the
implementation. Table 6.13 shows both categories in both the ArgoUML and Wro4j
projects. We take into account the number of changes and bugs occurred in different
versions of both ArgoUML and Wro4j. We collected anti-patterns, changes and bugs for
each class, then we entered the collected data into a database and made some queries
for analyzing, filtering and organizing categories based on classes in the design (with
their mapped classes) and occurrences of bugs and changes in the implementation of
all versions.

6.2.3.2 Results

Tables 6.14 shows the mean of changes for both categories in the both ArguUML and
Wro4j. Tables 6.15 shows the mean of bugs for both categories in the both ArguUML
and Wro4j. We use the Mann-Whitney test because the test fits in our cases. The
result of the Mann-Whitney test shows that there is a significant difference between
the Anti-patterns category and the No-Anti-patterns category in ArgoUML in terms of
changes and bugs, where p-value = 0.000 and p-value = 0.015 respectively.

In Wro4j, the results are the same, where the results of the Mann-Whitney test
show that there is significant difference between the Anti-patterns category and the
No-Anti-patterns category in both numbers of changes and bugs, where p-value =
0.000 and p-value = 0.004 respectively.

Table 6.16 and Table 6.17 show the correlations between numbers of changes and
faults in Anti-patterns classes and No-anti-patterns classes with both LOC and AvgCyc.
Table 6.16 shows that the numbers of changes have significantly higher correlations
with LOC in No-anti-patterns classes than Anti-patterns classes in both ArgoUML
and Wro4j: in systems with anti-patterns, size is not the only factor affecting change-
proneness. The occurrence of anti-patterns also contributes to the occurrence of changes.

116 UML Repository As Benchmark for Quality Analysis

Table 6.15: Means of classes faults in ArgoUML and Wro4j

Project Name Categories Mean

Bugs
ArgoUML

Anti-pattens 1.2
No-Anti-patterns 0.15

Wro4j
Anti-pattens 3.16

No-Anti-patterns 2.38

Table 6.16: Correlation between Changes, LOC and AvgCyc

Project Name Categories
Correlation

R2 Formulas
AvgCyc LOC

Changes
ArgoUML

Anti-patterns classes 0.41 0.67 0.44 y=0.997+0.017
No-anti-patterns classes 0.33 0.85 0.72 Y=0.149+0.028(LOC)

Wro4j
Anti-patterns classes 0.06 0.59 0.35 Y=0.989+0.245(LOC)

No-anti-patterns classes 0.02 0.7 0.48 Y=-0.698+0.465(LOC)

Table 6.17 shows the correlations between numbers of faults, LOC, and AvgCyc in Ar-
goUML and Wro4j: the numbers of faults in No-anti-patterns classes have significantly
higher correlations with LOC than Anti-patterns classes in both ArgoUML and Wro4j.
More faults occur in bigger No-antipatterns classes. For Anti-pattern classes, there is
no strong correlation with LOC, which means that faults exist no matter the size of the
classes. For AvgCyc, the correlations with changes is higher in Anti-patterns classes,
which means that complex classes have more changes.

6.2.3.3 Discussion

The results show that there is a significant difference between Anti-patterns category
and Non-Anti-patterns category. Therefore, and because of the mean of changes and
mean of bugs of Anti-patterns category are bigger than No-Anti-patterns category
in both ArgoUML and Wro4j, we conclude that the classes that have anti-patterns at
design in ArgoUML and Wro4j, have more changes and bugs in the implementation.

From this experiment, we observe that classes that have antipatterns in the designs
and corresponding classes in the source code of ArgoUML and Wro4j have more
changes and faults in the implementation.

The broken windows theory [93] states that a broken window may lead to a general
degradation of the whole environment and we argue that developers should solve these
design problems before transferring them to the source code to reduce implementation
and maintenance effort.

Similarly, we argue that when design problems are not fixed quickly, they tend
to propagate in the system causing other problems. It is therefore, important to
track and fix design problems as early as possible in the development cycle. The
results of this study show that software organizations can make use of anti-patterns

Threat to Validity 117

Table 6.17: Correlation between faults, LOC and AvgCyc

Project Name Categories
Correlation

R2 Formulas
AvgCyc LOC

Bugs
ArgoUML

Anti-patterns classes 0.48 0.61 0.42 Y=-0.90+0.001(LOC) +0.054(AvgCyc)
No-anti-patterns classes 0.35 0.81 0.65 Y=-0.072+0.001(LOC)

Wro4j
Anti-patterns classes -0.01 0.57 0.49 Y=0.377+0.046(LOC)

No-anti-patterns classes 0.01 0.7 0.48 Y=-1.534+0.097(LOC)

detection tools like Ptidej during the design phase and track and fix anti-patterns
in their software system as early as the design phase. Thus, anti-patterns detection
tools will help prevent defects that could occur because of anti-patterns. Indeed, the
refactoring of anti-patterns should be easier and less costly at modeling level than
during implementation.

6.3 Threat to Validity

This section discusses the threats to validity of our study following common guidelines
for empirical studies [94].

6.3.1 Construct Validity

In our anti-patterns study, we assumed implicitly that each anti-pattern is of equal
importance, when in reality, this may not be the case. Future work must study the
impact of the anti-patterns found in models in well-used dependent variables, such as
class change- and fault-proneness, to assert whether all anti-patterns in models have a
similar impact in the source code during implementation and maintenance.

6.3.2 Internal Validity

The UML Repository contains class diagrams collected from different categories. How-
ever, we still miss industrial models. Therefore, we ask companies to share their models
for educational purpose.

The accuracy of Ptidej impacts our results. However, Ptidej has been successfully
used in multiple studies [85][86][87][89], which have been ported to achieve high
precision and recall [84]. However, other anti-pattern detection techniques and tools
should be used to confirm our results.

In addition, the level of details of UML models affects the detection of anti-patterns
in the class diagrams. It is possible that the lack of detailed information in class
diagrams also affected the detection of anti-patterns. However, because the detection
of these anti-patterns requires a high level of details in design (classes, methods,
relations, and hierarchies (which are contained in the model)), we are confident about

118 UML Repository As Benchmark for Quality Analysis

the validity of our results. Yet, we will replicate our study with other techniques and
tools in the future.

6.3.3 External Validity

We used two open source software projects in two studies, and made our conclusion
based on these two systems. We use seven open source projects in another study and
our conclusion is based on this data set. These systems that used in our studies are
available in the UML Repository. It has different sizes and belong to different domains.
Nevertheless, further validation on a larger set of systems is desirable, considering
systems from different domains as well as systems from same domains.

6.4 Conclusion and Future Work

In this chapter, we describe a corpus study on the diagrams in the UML Repository.
We show examples of an interesting relation between maximum coupling and size
of the diagrams. More studies can be performed with this dataset, which can show
behaviors of the designers, good patterns and bad patterns, also common patterns and
anti-patterns.

We performed three experiments to investigate the relation between quality of the
design and the source code.

In our study, we find that classes in the design have more changes and bugs
than others. In the second, we investigated whether the design models produced
by architects and designers before the implementation of software systems contain
anti-patterns. We also examined whether the occurrences of the anti-patterns in models
translate into the source code, affecting the same classes in models and the source code
implementing these models. We conducted an empirical study on the prevalence of
four anti-patterns: Complex Class, Large Class, Lazy Class, and Long Method, using
both the architects’ and designers’ models of the seven systems (selected from the UML
Repository) and the source code of these systems.

Our results showed that on average, 36% of the classes in the models that belong to
anti-patterns also exist in the source code and also play roles in the same anti-patterns.
Hence, we showed that anti-patterns appeared very early and concluded that architects
and designers would benefit from help to identify and control these anti-patterns as
early as possible.

Seven types of anti-patterns could be detected in the design phase: Complex, Large,
Lazy, Blob, ClassDataShouldBePrivate, RefusedParentBequest, and BaseClassShould-
BeAbstract classes. These anti-patterns mostly reappeared again in the source code
in the same classes. Hence, it would be wise for maintenance teams to detect these
anti-patterns early to save time and effort.

Conclusion and Future Work 119

We found that classes in the design that have anti-patterns had more changes and
bugs in the implementation. Therefore, anti-patterns should be detected and solved
early in the design phase because in the source code it makes more changes and faults.

Future work includes analyzing more pairs of designers’ models and their cor-
responding source code as well as analyzing more projects to propose prevention
techniques. Because refactoring is easier at the design level, we aim to propose a
technique to automatically refactor anti-patterns detected in models. For example, we
envision that a Complex Class can be divided into two or more classes in models as
well as in the source code. We will also consider anti-patterns as benchmarks for mod-
els quality and we plan to apply anti-patterns detection for whole models and systems
in the UML Repository. We will make this information public to foster replications and
contrasting studies.

