
An online corpus of UML Design Models : construction and empirical
studies
Karasneh, B.H.A.

Citation
Karasneh, B. H. A. (2016, July 7). An online corpus of UML Design Models : construction and
empirical studies. Retrieved from https://hdl.handle.net/1887/41339
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/41339
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/41339


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/41339 holds various files of this Leiden University 
dissertation. 
 
Author: Karasneh, B.H.A. 
Title: An online corpus of UML Design Models : construction and empirical studies 
Issue Date: 2016-07-07 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/41339
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter2
Background

In this chapter, we briefly introduce some software quality models. Then we introduce in short
Ontologies development, languages, and reasoners. Later, we introduce UML as a software
modeling language, and the UML diagram types that are commonly used. Finally, we explain
the severity of software defect.

Software Engineering (SE) as defined in [10], is the application of a systematic,
disciplined, quantifiable approach to the development, operation and main-
tenance of software. Nowadays many application domains demand reliable

and sustainable software products. In order to be able to discuss and measure software
quality, several quality models have been proposed. We will discuss these in this chap-
ter. Also, we will discuss the notion of software defect and defect severity. Next, we
will introduce the concept of the UML notation which is used for representing software
designs. We conclude this chapter with discussing the main concept of ontologies.
These will form the basis for representing knowledge about software systems and their
application domains.

2.1 Quality Models

Software quality models are a set of software quality characteristics (also called quality
attributes and quality properties) and their associations. These characteristics are
quantifiable so that it provides the basis for assessing the quality of software systems.
The effort for assuring that software is going to have certain quality attributes called



10 Background

Software Quality Assurance (SQA). SQA defines a set of activities and procedures
to control a product during its development, which at the end possess the expected
quality attributes.

2.1.1 Software Quality Models

There are several software quality models presented to assess object-oriented quality
attributes. The assessments are quantitatively (e.g. using metrics), or qualitatively
through informal assessments, such as peer review. We show some renowned quality
models:

• ISO/IEC 25010 [11]: this standard is the replacement of the standard ISO/IEC
9126 [12]. Compatibility was added as a main characteristic, and security moved
from a sub-characteristic to the main characteristic of its set of sub-characteristics.
Some other sub-characteristics were added in this revision (confidentiality, in-
tegrity, nonrepudiation, accountability and authenticity, functional completeness,
capacity, user error protection, accessibility, availability, modularity and reusabil-
ity), while compliance was removed. Figure 2.1 illustrate the ISO 25010 quality
model.

• McCall’s Model [13]: This is the first quality model introduced in 1977. The
authors differentiate between two quality attributes known as quality factors. The
second level of quality attributes known as quality criteria that can be measured.

• Boehm Models [14]: The Boehm tries to overcome the problems of McCall’s
model, and it addresses the shortcomings of evaluating the quality of software. It
added some more characteristics to McCall’s model, emphasizing maintainability
and hardware performance. It presents a hierarchical structure for high-level,
intermediate level and primitive characteristics.

• QMOOD Model [15]: Bansiya and Davis introduced a hierarchical quality model
for object-oriented systems based on Dromey’s Model (MOOD) [16]. The model
defines evaluation functions for such quality attributes as reusability, flexibility
and understandability, based on eleven object-oriented design metrics. However,
it does not formally define metrics.

• PQMOD Model [17]: This quality model is composed of a set of rules for the
evaluation of quality taking in account design patterns.

• Lange and Chaudron [18]: To the best of our knowledge, this is the only specific
model for quality of UML models. An overview of their framework is in Figure
2.2. This quality model is different from other models in that it considers UML
models as an intermediate product of software development that derives it
quality from the degree by it supports other software engineering activities.



Quality Models 11

Figure 2.1: Framework of ISO 25010 quality models

2.1.2 Measuring Software Quality

The measurement lies at the heart of many systems in our lives. Economic mea-
surements determine price and pay increases. Medical system measurements enable
doctors to diagnose specific illnesses. Measurements in atmospheric systems are the
basis for weather prediction. Therefore, measurement helps us to understand our
world, interact with our surroundings, and improve our lives. Fenton [19] shows
that in software engineering, measurement is important for three activities: First, the
measurement can help us to understand what is happening during development and
maintenance. We assess the current situation, establishing baselines that help us to
set goals for future behavior. Second, the measurement allows us to control what is
happening in our projects. Using our baselines, goals, and understanding of rela-
tionships, we predict what is likely to happen and make changes to processes and
products that help us to meet our goals. Third, measurement encourages us to improve
our processes and products. For instance, we may increase the number or type of



12 Background

Figure 2.2: Framework of (Lange and Chaudron) for quality of UML models

design reviews we do, based on measures of specification quality and predictions of
likely design quality. Measuring an entity is measuring the attributes of that entity.
Understanding the attributes of an entity helps to understand the entity better. Design



Severity of Software Defect 13

measurement is the application to measure design artifacts. It aims at understanding,
predicting, controlling or improving the quality attributes of the software product.
For measuring software design, the practices have been revolving around the use of
metrics [20]. Design metrics are used to assess the quality, size and complexity of
software. They look at the quality of the software design at a particular point in the
development cycle. Design metrics tend to be more locally focused and more specific,
thereby allowing them to be used effectively to examine directly and improve the
quality of the product’s components. The most famous design metrics originate from
the work of Chikdamber and Kemerer [20]. They developed six object-oriented design
metrics that are still widely used in various design measurement nowadays. Many
works in software quality prediction aim to predict the probability of software model
to contain faults [21][22][23]. Most of these work validate metrics proposed in [20] for
their effects or relation to quality aspects of software such as module fault-proneness
[24].

2.2 Severity of Software Defect

According to the IEEE Standard Classification, for Software Anomalies [25], the cause
of a software problem is called a software defect. We show the common vocabulary for
terms useful in this context:

• Defects:

– A fault if it is encountered during software execution (thus causing a failure)
[25].

– Not a fault if it is detected by inspection or static analysis and removed prior
to executing the software [25].

• Fault: an incorrect step, process, or data definition in a computer program [10].

• Failure: represents the inability of a system or component to perform its required
functions within specified performance requirements [10].

• Error: A human action that produces an incorrect results [25].

The dictionary in [10], relates all these terms to one another by distinguishing
between:

• a human action (a mistake),

• It is manifestation (a hardware or software fault),

• The result of the fault (a failure),

• The amount by which the result is incorrect (the error).



14 Background

Hence, a software defect is the reason for producing an incorrect or unexpected
result in a computer program or system, or it causes it to behave in unintended ways.
Therefore, to deploy a high-quality software product, it needs to be tested first. Defects
found in the testing phase need to be solved within a specific time constraint – before
the deployment date. Software teams need to decide on the order in which to fix
these defects. The assignment of severity levels to defects is specific for every software
system or company and is done manually, usually by test analysis according to their
expertise. However, it is often the case that a defect is assigned the default severity
level, which typically is medium. A user might not agree with the assignment of the
default severities level and might want to fix some defects sooner than others. In the
next chapter, we explain how we use ontologies to automate assigning severity levels
to software defects.

2.3 Ontologies in SE

The most common definition of ontologies says that an ontology is an explicit spec-
ification of a conceptualization [26]. In other words, ontologies are explicit formal
specifications of the terms in the domain and the relations among them [26]. According
to a more elaborate version of the definition, an ontology defines a common vocab-
ulary for researchers who need to share the information in a domain. It includes
machine-interpretable definitions of basic concepts in the domain and relations among
them [27]. Moreover, ontologies formalize knowledge, represented in a language that
supports reasoning [28]. Developing an ontology is similar to defining a set of data and
their structure to be used by other programs. For instance, problem-solving methods,
domain-independent applications, and software agents use ontologies and knowledge
bases built from ontologies as data [27]. We summarize some reasons for developing
ontologies:

• To share a common understanding of the structure of information among people
or software agents. to enable reuse of domain knowledge.

• To make domain assumptions explicit.

• To separate domain knowledge from the operational knowledge.

• To analyze domain knowledge.

2.3.1 Ontology Editors

Developing an ontology requires a specialized environment for editing that makes
it easier to build and maintain them. Such environments are called ontology editors.
Currently, there are many ontology editors, each having its strengths and weaknesses.



Ontologies in SE 15

According to the World Wide Web Consortium (W3C)1 , examples of ontology editors
are Protégé2, SWOOP3, OntoStudio4, NeOn Toolkit5, Knoodl6. In addition to an editor,
a reasoner is useful to enable automated reasoning about the ontology.

2.3.2 Web Ontology Language

Web Ontology Language (OWL)7 is the most recent development in standard ontology
languages. OWL is a W3C Recommendation for representing ontologies, and it is the
language with the strongest impact on the Semantic Web [29]. OWL is intended to
provide a language that can be used to describe classes (concepts) and the relations
between them that are inherent in Web documents and applications. The logical model
is the base of OWL, which makes it possible for concepts to be defined and described.
Complex concepts can be built up out of simpler concepts. Moreover, the logical
model allows the use of a reasoner, which can help to maintain the hierarchy of the
concepts correctly [30]. As explained in the OWL Guide8 and at [30], OWL provides
three sublanguages: OWL-Lite, OWL-DL, and OWL-Full. All of these are designed for
use by specific communities of implementers and users. The defining feature of each
sublanguage is its expressiveness. OWL-Lite is the least expressive while OWL-Full is
the most expressive. OWL-DL’s expressiveness falls in between. Each sublanguage is
an extension of its simpler predecessor, both in what they can legally express and in
what can validly conclude. OWL-Lite is the sublanguage with the simplest syntax. Its
intended use is in situations where only a simple class hierarchy and simple constraints
are required [30]. Because of the simple class hierarchy and constraints, automated
reasoning is not used in OWL-Lite ontologies. OWL-DL is more expressive than OWL-
Lite. OWL-DL is intended to be used when users want the maximum expressiveness
without losing computational completeness9, and decidability10 of reasoning systems.
OWL-DL is so named because it is based on Description Logics (DL). According to
[30], Description Logics represent a decidable fragment of First Order Logic and are
amenable to automated reasoning. Therefore, it is possible to compute the classification
hierarchy automatically and check for inconsistencies in an ontology that conforms to
OWL-DL [30]. OWL-Full is the most expressive sublanguage. It is meant for users who
want maximum expressiveness with no guarantees for decidability or computational
completeness. Hence, it is not possible to perform automated reasoning on OWL-Full

1http://www.w3.org/
2http://protege.stanford.edu/
3http://www.mindswap.org/2004/SWOOP/
4http://www.ontoprise.de/en/products/ontostudio/
5http://neon-toolkit.org/
6http://www.knoodl.com/
7http://www.w3.org/2004/OWL/
8http://www.w3.org/TR/owl-guide/
9All entailments are guaranteed to be computed

10All computations/algorithms will finish in finite time



16 Background

Figure 2.3: The Taxonomy of UML Diagram Types

ontologies, as stated in [30].A reasoner (also called inference engine) is a software
application that derives new facts or associations from existing information [? ]. It is a
key component for working with ontologies. The survey results in [? ] indicate that
the most popular reasoners are Jena11, RacerPro12, Pellet13 and FaCT++14. We have
chosen the Pellet reasoner. It supports the full expressivity of OWL-DL and satisfies
our reasoning needs.

2.4 Unified Modeling Language

Unified Modeling Language (UML) is a standard modeling language that created in
1997 by the Object Management Group15. Since then, it has been the industry standard
for modeling software-intensive systems. Figure 2.3 shows the taxonomy of the UML
diagrams.

UML was born out of the object modeling technique (OMT) [31], Booch[32], and
Object-Oriented Software Engineering (OOSE) [33]. UML nowadays the de facto
standard for software industry [34]. The current standard of UML, i.e., when we write
this thesis, is version 2.4, which was released in August 2011. A beta version 2.5

11http://jena.apache.org/about_jena/about.html/
12http://www.racer-systems.com/products/racerpro/
13http://pellet.owldl.com/
14http://owl.man.ac.uk/factplusplus/
15http://www.omg.org/



Unified Modeling Language 17

released in September 2013. In UML 2.4, there are 14 types of diagrams divided into
three categories, structure diagrams, behavior diagrams and interaction diagrams as
shown in Figure 2.3. From the 14 types of diagrams, three diagrams are the most used
in practice, namely class diagram, sequence diagram, and use case diagram [35]. We
briefly introduce these diagrams next.

2.4.1 Class Diagrams

The class diagram is the most common structural model of the UML. Class model
represents the static structure of the system in terms of classes, relationships between
these classes and constraints in the relationships. The class diagram also constrains the
way classes may interact with each other.

2.4.2 Sequence Diagrams

UML sequence diagrams are used to model the interaction behavior of systems. The
sequence diagram shows the interactive behavior of collaborations of interaction
participants working together by depicting the sequence in which messages exchange.

2.4.3 Use Case Diagrams

Use case diagrams capture the functionality of software system by describing which
interactions should be supported between users and the system. It contains use cases,
actors, and their relationships.

2.4.4 Challenges of modeling and studying using UML

UML offers flexibility and freedom in modeling. There is no one correct design for
a given problem, and different correct scenarios can be proposed. There is a need to
assess the quality of UML models to differentiate between solutions. For this, we need
to study UML models deeply. One of the main problems of studying UML models is
the lack of sharable software development software [36]. The collection of models from
commercial software development is difficult because for different reasons companies
like to keep their system design confidential. In open source software, development use
of UML is not as common as the (inevitable) use of source code. Therefore, in Software
Engineering there is a need to share modeling artifacts [37]. Therefore, collecting
UML models is more difficult, and this difficulty makes empirical research of UML
challenging. Moreover, there is no open technology for creating model repositories as
there exist for source code. Many free code repositories are available, which improves
the ability to develop code metrics, and facilitates empirical research for source code
domain in general.



18 Background

One problem that makes collecting of UML models challenging is the large va-
riety of representations by different Computer-Aided Software Engineering (CASE)
tools. These differ in both graphical representation and/or in terms of XML Metadata
Interchange (XMI).

We found that UML models are available in abundance on the Internet, but rather
than in CASE-tool format, they are stored in image formats. The problem with image
formats is that the model content (e.g. class names) cannot be extracted out of them.
Although many CASE tools support features like creating, modifying and exporting
UML models into different formats, current CASE tools cannot recognize UML in
images. This inability of CASE tools limits the usability of the UML models that are
available as images.

2.5 Repositories in SE

Creating repositories is common in different domains, and it is important to preserve
the history and the evolution of the collected data for future use, especially in re-
search. In addition, repository-managers manage the accessibility of the available data.
Repositories can be classified in many different ways including but not limited to:

• Types of data, such as PDF, images and videos.

• Contents of data, such as newspapers, sports and medicine.

• Technology used, such as rational database and file system.

• Users, such as students, researchers and fans.

We can classify repositories based on data available into two general categories: Disci-
plinary repositories and Multidisciplinary repositories.

Disciplinary repositories are repositories that archive works and data associated
with these works in a particular subject area. For example, in biology, bio-repositories
are important because they maintain biological samples, and preserve samples and as-
sure the quality of these samples. Specimen Central16 is the world’s open biospecimen
research database. Another example is in the area of linguistics, SLDR17 is a speech
and language data repository that gathering and sharing language data.

Multidisciplinary repositories are repositories that archive works related to different
subjects. ELSEVIER18 and nature.com19 are examples of these repositories, where they
have many articles related to different research areas.

16http://specimencentral.com/
17http://sldr.org/
18https://www.elsevier.com/
19https://www.nature.com/



Repositories in SE 19

In software engineering, software systems become more complex, and produce
a large number of artifacts from documentation and different kind of models to the
source code. It is difficult task to organize and share these artifacts because it contains
different material types. Therefore, many repositories have been created for a different
purpose.

In addition, many conferences are held to propose new repositories, challenging,
data showcase and experiments on the available dataset. For example Mining Soft-
ware Repositories (MSR) and PRedictOr Models In Software Engineering (PROMISE)
conferences. MSR is an international conference and is co-located with International
Conference on Software Engineering (ICSE) since 2004. MSR field analyzes the rich data
in software repositories to discover interesting information about software systems.

Rodriguez et al. [38] classify repositories in software engineering as well as dis-
cussing their open problems. They classify software engineering repositories into:

1. Source code, can be used to study software properties, such as size and complex-
ity.

2. Source Code Management Systems, it stores all the changes that the different
source code undertake during the project.

3. Issue tracking system. Bugs, defects and user requests are archived in issue
tracking systems, where users and developers can meet and discuss about defects
found, or new functionality.

4. Messages between developers and users. The messages between users and
developers are archived in the form of mailing lists, which can also be mined for
research purposes.

5. Meta-data about the projects. This meta-data may include intended-audience,
programming language, domain of application or license.

6. Usage data. For example, statistics about software downloads.

We show that Rodriguez et al. [38] are missing models repository, which are
repositories contains software design models.

Some CASE Tools have model repositories that enable collaborative modeling. This
collaborative lets members commit and update models. This is the same as in the
source code developments by version control systems. For example, collaborative
modeling as in VisualParadigm20, where it lets modelers work on the same project
concurrently without overwriting each other’s works. Actually, the use of standard
version control systems such as Subversions (SVN) is not sufficient, because we need
more such as searching models contents and collaboration.

We show some examples of software repositories that are proposed for different
purposes:

20http://www.visual-paradigm.com/



20 Background

• Repositories of source code:

– CodeProject21.

• Repositories of source code and support versioning:

– GitHub22.

– Bitbucket23.

– Google code24.

• Repositories of code metrics and defects:

– PROMISE Repository25.

• Repositories for design models:

– ReMoDD repository26.

– VPository27.

21http://www.codeproject.com/
22https://github.com/
23https://bitbucket.org/
24https://code.google.com/
25http://openscience.us/repo/index.html
26http://www.remodd.org/
27http://www.vpository.com/


