

Universiteit Leiden

The handle <http://hdl.handle.net/1887/40905> holds various files of this Leiden University dissertation.

Author: Ateba Ngoa, U.

Title: The effect of parasitic co-infections on immune responses in Gabon : particular emphasis on malaria and helminths

Issue Date: 2016-07-07

Chapter 4

Associations between helminth infections, *Plasmodium falciparum* parasite carriage and antibody responses to sexual and asexual stage malaria antigens

Ulysse Ateba-Ngoa^{1,2,3*}, Sophie Jones⁴, Jeannot Fréjus Zinsou^{2,3},
Josiane Honkpehedji^{2,3}, Ayola Akim Adegnika^{1,2,3}, Jean Claude Dejon
Agobe^{2,3} Marguerite Massinga-Loembe^{2,3}, Benjamin Mordmüller^{2,3},
Teun Bousema^{4,5} and Maria Yazdanbakhsh¹

Affiliations

¹ Department of Parasitology, Leiden University Medical Center,
Albinusdreef 2 2333 ZA Leiden, The Netherlands

² Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraße 27
D-72074 Tübingen, Germany

³ Centre de Recherches Médicales de Lambaréné, BP : 118,
Lambaréné, Gabon

⁴ Department of Immunology and Infection, London School of Hygiene
& Tropical Medicine, Keppel Street, WC1E 7HT, London, UK

⁵ Department of Medical Microbiology, Radboud university medical
center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands

American Journal of Tropical Medicine and Hygiene: Accepted for
publication

Abstract

Infections with helminths and *Plasmodium* spp. overlap in their geographical distribution. It has been postulated that helminth infections may influence malaria transmission by altering *P. falciparum* gametocytogenesis. This cross-sectional study assessed the effect of helminth infections on *P. falciparum* gametocyte carriage and on humoral immune responses to sexual stage antigens in Gabon. *Schistosoma haematobium* and filarial infections as well as *Plasmodium falciparum* asexual forms and gametocyte carriage were determined. The antibody responses measured were to sexual (Pfs230, Pfs48/45) and asexual *P. falciparum* antigens (AMA1, MSP1, GLURP).

A total of 287 subjects were included. The prevalence of microscopically detectable *P. falciparum* asexual parasites was higher in *S. haematobium* infected subjects in comparison to their uninfected counterparts (47% vs 26% $p = 0.003$), but this was not different when filarial infections were considered. *P. falciparum* gametocyte carriage was similar between schistosoma or filaria infected versus uninfected subjects. We observed a significant decrease of Pfs48/45 IgG titre in *S. haematobium* infected subjects ($p=0.037$) whereas no difference was seen for Pfs230 antibody titre, nor for antibodies to AMA1, MSP1 or GLURP.

Our findings suggest an effect of *Schistosoma haematobium* on antibody responses to some *P. falciparum* gametocyte antigens that may have consequences for transmission-blocking immunity.

Introduction

In many malaria endemic regions, helminth infections are also prevalent, thereby affecting the same population ^{1,2}. There is some evidence suggesting an interaction between helminth and *Plasmodium spp*, however, this has not been consistent. For example the prevalence and severity of malaria as well as *P. falciparum* parasitemia density has been reported to be higher ^{3,4} in some but lower ^{5,6} in other studies comparing helminth-infected subjects with those uninfected. Similarly, at the immunological level, there are conflicting reports regarding the effect of chronic helminth infections on the immune responses to *Plasmodium spp.* ^{7,8}. The immunological protection against clinical malaria episodes is associated with a more pronounced Th1 response ⁹ and with the production of cytophilic antibodies (IgG1 and IgG3) ^{10,11}. However the immune phenotype of helminth-infected subjects is generally characterized by a Th2 skewed response ^{12,13} and is marked by the production of non cytophilic IgG (IgG4) and IgE antibodies ¹⁴. Helminth infections have also been shown to induce a strong regulatory network that can dampen the immune response to unrelated antigens like those from *Plasmodium spp.* parasites ^{15,16}. One may therefore speculate that malaria specific immune responses may be impaired in subjects chronically infected with helminths. However studies that have assessed this question have yielded conflicting results indicating that larger and better designed studies are needed ¹⁷⁻²⁰.

To date, studies assessing the co-infection of helminths and malaria have mainly focused on the asexual forms of *P. falciparum* (reviewed in ²¹). However there are indications that helminth infections may also influence the prevalence or density of *P. falciparum* gametocytes, the parasite stage responsible for transmission of infections to mosquitoes ²². Studies in Africa and Asia have reported an increased prevalence of *P. falciparum* gametocyte carriage in helminth infected subjects ^{22,23}. Interestingly using a murine model of coinfection Noland et al. showed that transmission of gametocytes from mice to mosquitoes was higher when mosquitoes were fed on helminth and malaria coinfecte mice ²⁴. Taken together these findings might indicate a role for helminths in sustaining malaria transmission in co-endemic areas.

Towards understanding the effect of helminths on malaria immunity and transmissibility we have conducted a cross-sectional study in an area

endemic for both helminths and malaria. In this study, we have assessed the effect of *S. haematobium* and filarial parasites on the prevalence of sexual and asexual forms of *P. falciparum* parasite. Finally we determined the association between helminth and malaria co-infections on the humoral responses to sexual stage antigens Pfs230 and Pfs48/45, along with a panel of asexual stage antigens (AMA1, MSP1 and GLURP).

Methods

Study population study area and study procedure

The study participants were selected among the population of the Zilé village in the Moyen-Ogooué province (Gabon). This village is endemic for *Schistosoma haematobium*, *Loa loa* and *Mansonella perstans* as well as for various geohelminths²⁵⁻²⁷. Malaria is also endemic in the area with *P. falciparum* reported as dominant species²⁸. Inclusion of participants in the study was not random but rather based on their willingness to participate. Participants were recruited at home during field visits of the study team. Urine and blood samples collected in EDTA tubes were taken for all the subjects to assess for schistosoma, filaria and malaria infection. Venous blood was drawn and serum was obtained for ELISA.

Parasitological diagnosis

Plasmodium spp. infection was determined by microscopic examination of thick blood smears. Asexual forms of the parasite were detected by the Lambaréne method as described elsewhere²⁹. The presence of *P. falciparum* gametocytes was established using the WHO method after counting 1000 leukocytes. DNA extraction and real time PCR (qPCR) was carried on to detect sub-microscopic infection by asexual stage *P. falciparum* as previously described³⁰.

Schistosoma haematobium infection was determined before inclusion in the study. Schistosoma eggs were sought in 10 ml of fresh urine passed through a 12-µm pore-size filter. Absence of infection was set after the negativity of three urines samples collected after three consecutive days. A subject was classified as infected if at least one egg was detected in the urine sample.

L. loa and *M. perstans* microfilaria was detected by a modified Knott method³¹. Microfilaria count was determined by microscopy and difference between species was established based on the presence of the sheath of *Loa loa*.

ELISA

Pfs48/45-10C was obtained from the chimeric R0-10C vaccine protein³². R0 was cleaved from Pfs48/45-10C and successful removal of GLURP-R0 was confirmed by testing plasma samples from GLURP-vaccinated volunteers³³. Pfs230-230CMB was obtained from Fraunhofer USA Center for Molecular Biotechnology. Apical membrane antigen (AMA-1 3D7, Biomedical Primate Research Centre, Rijswijk, the Netherlands), merozoite surface protein 119 (MSP-119 Wellcome allele, provided by Patrick Corran, London School of Hygiene & Tropical Medicine with permission of Tony Holder) and R2 region of GLURP, provided by Michael Theisen, Statens Serum Institut, Copenhagen.

AMA-1, MSP-1 and GLURP ELISAs were performed as described previously³⁴. Pfs48/45 and Pfs230 antibodies were quantified as follows; 96 well Maxisorp NUNC plates (Nalge Nunc International Corp., Naperville, IL, USA) were coated overnight at 4°C with 100µl per well of 0.1µg/ml of antigen diluted in PBS. Plates were blocked for 30 minutes with 150µl of 5% non-fat skimmed milk (Marvel, Premier International Foods Ltd., Spalding, UK) in PBS. Following this, plates were washed 3 times with PBS, and 100µl of test serum was diluted to 1/500 in PBS (with 1% milk and 0.05% Tween 20), and incubated on the plates for 4 hours at room temperature. Plates were then washed 3 times as before and incubated with 100µl per well of human-IgG-HRP (Pierce Biotechnology Inc., Rockford, IL, USA) diluted to 1/40,000 in PBS with 0.05% Tween 20, for 2 hours at room temperature. Next plates were washed 4 times, then 100µl of tetramethylbenzidine substrate (TMB) solution was added per well and incubated for 20 minutes. Reactions were stopped using 50µl per well of 0.2M sulphuric acid and optical densities were measured at 450nm (Bio-Rad iMark Microplate Reader, Hertfordshire, UK). For all assays, averaged sample ODs were normalized (using the midpoint dilution as reference), against a titration curve fitted to the positive control sample by least squares minimisation using a three variable sigmoid model^{34,35}. The mixture model was used to distinguish positive and negative samples by fitting test sample ODs to

two Gaussian distributions using maximum likelihood methods in STATA (Version 11, Statacorp, Texas, USA). The mean OD of the seronegative (the test samples with low ODs) population plus 3 standard deviations was used as the cut off value. Antibody densities were expressed as % of the reference value (i.e. the normalised value).

Statistical analysis

The statistical analysis was conducted using STATA (Version 11, Statacorp, Texas, USA) and R (Version 3.0.1, R core team, Vienna, Austria). Chi square test was used for comparison of proportion. Continuous data that were not normally distributed were transformed either using a log10 transformation or a Box-Cox transformation when appropriate. Comparison of mean was carried out using the student t test or the ANOVA test for normally distributed data or the Man Whitney and the Kruskal Wallis test otherwise. Multivariable linear regression analysis was performed to assess the relationship between infectious status and the antibody response specific to *P. falciparum* gameteocyte antigens. Significance level was set for a p value < 0.05.

Ethics

The study was approved by the “Comité d’éthique Régional de Lambaréné” (CERIL). Informed consent was obtained from each participant and in case they had less than 18 years old from their parents or legal guardians. Appropriate treatment was given to children found with *P. falciparum* or *S. haematobium* infection as per the local guidelines.

Results

A total of 287 participants were included in this study. Among them, 229 (81%) had either *Schistosoma haematobium* or one of the filarial infections, *M. perstans* or *L. loa*, while 197 (75%) carried *P. falciparum* parasite as determined by PCR or 120 (42%) as determined by microscopy. None of the participants carrying *P. falciparum* were symptomatic for malaria. Co-infection with plasmodium and with one or more helminth species was found in 155 (55%) subjects (Table 1).

Table 1: Characteristics of the study population

Characteristics	% (n/N)
Age (in years): Median (IQR)	11 (8-15)
Sex*: M/F	153/134
Hemoglobin level (in g/dl): Median (IQR)	11.3(10.5-12.2)
Subjects with <i>P. falciparum</i> asexual stage infection (diagnosed by microscopy)	42 (120/285)
Subjects with <i>P. falciparum</i> asexual stage infection (diagnosed by PCR)	75 (197/262)
<i>P. falciparum</i> gametocyte carriers	19 (52/275)
Subjects with <i>S. haematobium</i> infection	75 (214/284)
Subjects with Filaria infection**	28 (81/287)
Helminth infection status	
Subjects with no helminth infection	20 (55/284)
Subjects infected with one helminth specie	57 (163/284)
Subjects infected with more than one helminth species	23 (66/284)
Subjects with <i>P. falciparum</i> and helminth coinfection	55 (155/284)

*M= male, F=Female, ** *loa loa* and *Mansonella perstans*

The prevalence of microscopic *P. falciparum* asexual parasites was higher in *S. haematobium* infected subjects in comparison to those free of *S. haematobium* infection (47% vs 26% p = 0.003, Table 2) while *P. falciparum* gametocyte carriage was similar between helminth infected and uninfected subjects (Table 2). Also when malaria parasites were detected by PCR, we observed a higher malaria prevalence in *S. haematobium* infected individuals, albeit not statistically significant (p=0.07; Table 2). We did not detect any differences when comparing those with and without filarial infections (table 2). The absence of association between filaria and carriage of sexual and asexual forms of *P. falciparum* remained even after correction for age in a multivariable analysis (data not shown). In this study, we measured the total IgG response of the participants to 3 asexual (MSP1, AMA1 and GLURP) and two sexual (Pfs48/45 and Pfs230) *P. falciparum* antigens. We did not observe a statistically significant effect of age or gender on the level of the different antibodies (data not shown). Asexual *P. falciparum* parasites, as determined by microscopy, did not influence the level of the five antibodies measured.

Table 2: Characteristics of the study population stratified by helminth infections

	<i>S. haematobium</i> infection status		<i>p</i>	Filaria infection status*		<i>p</i>	
	Uninfected subjects	Infected subjects		Uninfected subjects	Infected subjects		
Age in years: Median (IQR)	10(6)	11(6.7)	0.9	10(5)	14(8)	<0.001	
Sex (M/F)**	38/32	112/102	0.2	113/93	40/41	0.4	
Haemoglobin level (g/dl): Mean (SD)	11.6 (1.3)	11.2 (1.45)	0.06	11.3 (1.3)	11.5 (1.6)	0.3	
Subjects with <i>P. falciparum</i> asexual stage infection (diagnosed by microscopy): n (%)	18/70 (26%)	100/214 (47%)	0.003	86/206 (42%)	34/81 (43%)	1	
Subjects with <i>P. falciparum</i> asexual stage infection (diagnosed by PCR): n (%)	45(66.2%)	146 (78%)	0.07	136 (74%)	58 (78%)	0.55	
<i>P. falciparum</i> gametocyte carriers: n (%)	14(20.1%)	36 (18%)	0.8	41 (21%)	11 (14%)	0.2	

**Loa loa* and *Mansonella perstans*, **M= male, F=Female

However, when *P. falciparum* asexual form was determined by PCR, higher antibody concentrations were observed in infected subjects compared to uninfected for Pfs230 (65.7 [95%CI: 59.3-72.5] vs 51.1 [95%CI: 42.7-60], *p*= 0.01) and AMA1 (1430.8 [95%CI: 1064.3-1904.9] vs 689.9 [95%CI: 391.7-1147.3] *p*= 0.01) but not for other antibodies, as shown in Table 3. Moreover, we found that+ carriage of *P. falciparum* gametocytes was associated with a trend toward increased antibodies to Pfs48/45 in gametocyte-positive (55.1 [95% CI 46.2-66.2] compared to gametocyte-negative individuals (44.7 [95%CI 40.4-49.3]; *p* = 0.056). The same trend was observed for Pfs230 (72[95%CI 60.5-84.4] in gametocyte-positive and 59.8 [95%CI 54.1-65.6] in gametocyte-negative individuals, *p* = 0.068) as shown in Table 3.

Regarding helminth infections, we observed a significant decrease of Pfs48/45 IgG titres in *S. haematobium* infected subjects compared to those uninfected (44.2 [95%CI 39.7-49.2] vs 53.2 [95%CI 46.3-60.7], *p* = 0.037) whereas no difference was seen for Pfs230 antibody titres, nor for the other antibodies as shown in Table 3. In contrast to *S. haematobium*, filarial infection was not associated with a significant effect on the concentration of antibodies to sexual or asexual *P. falciparum* stage antigens.

Table 3: Effect of malaria and helminth infection as well as malaria exposure on the level of total IgG specific to Pfs48/45, Pfs230, GLURP, MSP1 and AMA1

		Pfs48/45	Pfs230	GLURP	MSP1	AMA1	
		Mean (\pm SD)	p	Mean (\pm SD)	p	Mean (\pm SD)	p
<i>P. falciparum</i> asexual stage infection status (diagnosed by microscopy)	Uninfected	46 (6.3)		59.5 (14.3)		55.9 (5.9)	
	Infected	47(6.5)	0.8	65.1 (15.6)	0.3	71.7 (5.9)	0.25
<i>P. falciparum</i> asexual stage infection status (diagnosed by PCR):	Uninfected	40.2 (5.5)		51.1 (11.5)		48.6 (5.7)	
	Infected	48.7 (6.6)	0.068	65.7 (16.2)	0.01	69.2 (6)	0.16
<i>P. falciparum</i> gametocyte carriage status	Non carriers	44.7 (6.4)		59.8 (15.1)		58.2 (6)	
	carriers	55.1 (5.7)	0.056	72 (13)	0.068	74 (5)	0.36
<i>S. haematobium</i> infection status	Uninfected	53.2 (4.3)		63.3 (12.3)		69 (4.7)	
	Infected	44.2 (7)	0.037	61.3 (15.7)	0.7	60 (6.4)	0.53
Filaria infection status*	Uninfected	46.5 (6.4)		62.2 (15.4)		61 (5.4)	
	Infected	46.2 (6.2)	0.9	60.9 (13.5)	0.8	65 (7.5)	0.79

**Loa loa* and *Mansonella perstans*

To further assess how schistosome infection affects the humoral responses to *P. falciparum* sexual and asexual stage antigens, we performed a multivariable analysis on the titre of antibodies against the five antigens. In this analysis asexual *P. falciparum* infection diagnosed by PCR, *P. falciparum* gametocyte carriage, hemoglobin concentration and participant age was used as predictor variables. These predictor variables were selected based on their reported effect on gametocyte carriage and on antibodies specific to *P. falciparum* asexual or sexual stage antigens.

Table 4 : Multivariable linear regression analysis assessing the effect of *S. haematobium* infection, *P. falciparum* infection as detected by PCR, haemoglobin level as well as age on antibodies to *P. falciparum* sexual and asexual stage antigens. Three models were considered for this analysis. In the first model all subjects were included regardless of whether or not they were infected with *S. haematobium*. Subsequent analysis focus on *S. haematobium* uninfected (model 2) or infected subjects (model 3).

Antibody	Covariates	<i>S. haematobium</i> infection status					
		All subjects		<i>S. haematobium</i> uninfected subjects		<i>S. haematobium</i> infected subjects	
		β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value
Pfs48/45	<i>S. haematobium</i> infection	0.68 (0.48-0.97)	0.0352	-	-	-	-
	Infection with asexual forms of <i>P. falciparum</i>	1.14 (0.78-1.67)	0.487	1.85 (1.25-2.74)	0.003	0.93 (0.56-1.55)	0.773
	Carriage of sexual forms of <i>P. falciparum</i>	1.41 (0.93-2.15)	0.106	1.16 (0.73-1.85)	0.529	1.5 (0.87-2.6)	0.142
	Hemoglobin level	1 (0.89-1.13)	0.95	1.02 (0.89-1.18)	0.748	1.01 (0.87-1.17)	0.946
	Age	1.01 (0.99-1.03)	0.125	1.02 (1-1.03)	0.03	1.01 (0.99-1.04)	0.316
Pfs230	<i>S. haematobium</i> infection	0.79 (0.54-1.17)	0.237	-	-	-	-
	Infection with asexual forms of <i>P. falciparum</i>	1.19 (0.78-1.81)	0.412	1.91 (1.1-3.34)	0.023	0.93 (0.54-1.61)	0.792
	Carriage of sexual forms of <i>P. falciparum</i>	1.30 (0.82-2.07)	0.264	1.37 (0.71-2.66)	0.348	1.26 (0.7-2.27)	0.431
	Hemoglobin level	0.98 (0.86-1.12)	0.785	0.97 (0.79-1.19)	0.757	0.98 (0.84-1.16)	0.86
	Age	1.01 (0.99-1.03)	0.261	1.01 (0.99-1.03)	0.345	1.01 (0.99-1.04)	0.293

Table 4 (contd) : Multivariable linear regression analysis assessing the effect of *S. haematobium* infection, *P. falciparum* infection as detected by PCR, haemoglobin level as well as age on antibodies to *P. falciparum* sexual and asexual stage antigens. Three models were considered for this analysis. In the first model all subjects were included regardless of whether or not they were infected with *S. haematobium*. Subsequent analysis focus on *S. haematobium* uninfected (model 2) or infected subjects (model 3).

Antibody	Covariates	S. haematobium infection status					
		All subjects		S. haematobium uninfected subjects		S. haematobium infected subjects	
		β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value
AMA1	<i>S. haematobium</i> infection	0.64 (0.3-1.35)	0.242	-	-	-	-
	Infection with asexual forms of <i>P. falciparum</i>	2.02 (0.9-4.53)	0.085	3.74 (1.08-12.93)	0.038	1.56 (0.55-4.38)	0.4
	Carriage of sexual forms of <i>P. falciparum</i>	1.25 (0.51-3.05)	0.629	1.41 (0.32-6.17)	0.645	1.16 (0.38-3.52)	0.786
	Hemoglobin level	1.03 (0.8-1.32)	0.846	1.24 (0.79-1.95)	0.344	0.97 (0.72-1.32)	0.86
	Age	1.03 (0.99-1.07)	0.085	1.03 (0.98-1.08)	0.258	1.04 (0.99-1.09)	0.144
MSP1	<i>S. haematobium</i> infection	0.76 (0.43-1.36)	0.357	-	-	-	-
	Infection with asexual forms of <i>P. falciparum</i>	0.69 (0.37-1.29)	0.248	0.79 (0.3-2.1)	0.633	0.66 (0.3-1.47)	0.312
	Carriage of sexual forms of <i>P. falciparum</i>	0.92 (0.46-1.85)	0.822	0.61 (0.19-1.96)	0.4	1.06 (0.45-2.48)	0.9
	Hemoglobin level	0.91 (0.75-0.11)	0.363	0.99 (0.69-1.41)	0.95	0.89 (0.71-1.13)	0.341
	Age	1.01 (0.98-1.04)	0.492	0.998 (0.96-1.04)	0.928	1.02 (0.98-1.06)	0.4
GLURP	<i>S. haematobium</i> infection	0.81 (0.45-1.32)	0.399	-	-	-	-
	Infection with asexual forms of <i>P. falciparum</i>	1.52 (0.9-2.56)	0.116	2.17 (0.9-5.21)	0.082	1.34 (0.69-2.56)	0.386
	Carriage of sexual forms of <i>P. falciparum</i>	1.36 (0.76-2.42)	0.303	1.37 (0.48-3.89)	0.551	1.33 (0.66-2.68)	0.427
	Hemoglobin level	0.99 (0.84-1.16)	0.878	1.19 (0.87-1.64)	0.276	0.94 (0.77-1.14)	0.522
	Age	1.03 (1-1.05)	0.027	1.02 (0.99-1.06)	0.186	1.03 (0.99-1.06)	0.068

We fitted the model for the total population as well as for *S. haematobium* uninfected and infected individuals, separately. In the total population, we observed no apparent association between Pfs230, AMA1, GLURP or MSP1 antibody responses and *S. haematobium* infection (Table 4) but we did find a significant decrease of Pfs48/45 antibody titre in *Schistosoma* infected subjects compared to their uninfected counterparts ($\beta=0.68$, 95%CI: 0.48-0.97, $p=0.035$, Table 4). When restricting the analysis to subjects not infected with *S. haematobium*, we observed that *P. falciparum* infection as determined by PCR was associated with a significant increase of Pfs48/45 ($\beta=1.84$, 95%CI: 1.2-2.7, $p=0.003$, Table 4) and Pfs230 specific antibodies ($\beta=1.9$, 95%CI: 1.2-3.3, $p=0.02$) as shown in Table 4. This association was not seen when the model was applied to those infected with *S. haematobium* (Table 4).

Discussion

To our knowledge this is the first study to assess the effect of helminth infections on both the carriage and the humoral immune response to *P. falciparum* sexual stage antigens. Our primary interest was to determine if gametocyte production, and antibody responses to gametocyte antigens, was higher in malaria-schistosome co-infected subjects. What we observed is that whilst gametocyte carriage as determined by microscopy did not differ between individuals infected with malaria alone and with malaria and *S. haematobium*, antibody levels to Pfs48/45 sexual stage antigen but not to Pfs230 were lower in co-infected individuals. Our initial hypothesis, based on the literature, was that a higher prevalence of *P. falciparum* gametocytes and markers of gametocyte exposure would be found in *S. haematobium* co-infected individuals^{22,23}. Contrary to this hypothesis, we observed no apparent effect of *S. haematobium* co-infection on gametocyte carriage. This could be explained by the fact that we used microscopy to detect gametocytes, which is less sensitive than molecular methods³⁶. It is possible that molecular detection methods for gametocytes or functional assays (e.g. standard membrane feeding) could have given a different picture in line with what has been described in two studies in the literature showing that helminth infections increase gametocyte carriage^{22,23}. A more sensitive marker of gametocyte exposure than

microscopy might be antibodies to two gametocyte antigens, Pfs230 and Pfs48/45^{37,38}. Antibody responses to these molecules indeed appeared to be elevated in patent gametocyte carriers, suggesting that they may serve as specific markers of gametocyte exposure. Interestingly, in the current study, lower levels of antibodies to Pfs48/45 but not to Pfs230 were seen in subjects with schistosome infection. This suggests either a spurious finding, a selective suppressory effect of *Schistosoma* co-infection on antibody responses against Pfs48/45 or lower immunogenicity of Pfs48/45 and amenable to modulation. In line with our finding, a study in Papua New Guinea with high transmission of malaria showed that if sera recognized the gametocyte surface antigens, the response was dominated by antibodies to Pfs230 with fewer people showing a response to pfs48/45³⁹. However helminth infections which are highly prevalent in the area were not considered and therefore it is not possible to delineate whether the low response to Pfs48/45 is due to the presence of helminth infections.

In our study we noted a higher percentage of schistosoma infected participants was infected with *P. falciparum*, this was statistically significant when parasites were detected by microscopy but fell short of significance when PCR was used to detect malaria parasites. One way to interpret this is that schistosome infections are associated with higher burden of malaria parasites. The higher carriage of *P. falciparum* suggests a possible interaction between helminths and *P. falciparum*, which is unlikely to be explained by structural features of the houses, an important factor in malaria transmission, as houses in our study area were very similar to each other. Other factors such as nutritional status or proximity to water bodies could explain such an interaction but we did not collect data on these parameters.

We did not observe an effect of schistosomiasis on the antibody titres to *P. falciparum* asexual stage antigens, AMA1, GLURP or MSP1. This is in line with the results from Lyke *et al.*⁷ in Mali but it contrasts to the observations of Diallo *et al.* in Senegal who reported a significant increase of the humoral response to plasmodium antigens in *Schistosoma* infected subjects⁸. A plausible explanation of these differences might lie in the characteristics of the populations studied as well as in the epidemiological feature of malaria and schistosomiasis in

the different study areas. For instance in the study in Mali all participants came from an area where, like in our study area, both malaria and schistosomiasis show intense seasonal transmission ⁷. In contrast the study in Senegal was conducted in an area of low malaria transmission and helminth free subjects were recruited from a village where *S. haematobium* had never been reported before and was absent at the time of the study ⁸. Because exposure to these parasites is expected to be very different in the two studies, this could affect the immune response profiles measured. Finally it is also important to emphasize that Diallo et al. measured the level of the different IgG subclasses whereas Lyke et al. and ourselves studied total IgG. Future studies should examine the effect of helminths on IgG subclasses since protection to malaria is linked with an increase of cytophilic antibodies of IgG1 and IgG3 subclasses. Why filarial infections did not affect the antibody responses to malarial antigens is not clear. Species dependent effect of helminth on malariometric indices and on malaria specific immune response have already been reported ^{40,41}. It is possible that schistosomiasis has a more pronounced effect on the host immune response and/or metabolism than filarial infections. In this study we observed for example that *Schistosoma* but not filaria infected subjects were more likely to be anemic. Future studies will need to expand and further assess the effect of filaria or other helminths species on malaria transmission

The present study should be regarded as hypothesis generating and calls for additional work to assess the association between helminths and malaria transmission. Future studies should ideally have a longitudinal design and include the collection of material for sensitive gametocyte detection by RNA-based methods ⁴². Future studies should also determine the functional importance of the observed decrease of Pfs48/45 specific IgG in schistosoma infected subjects using mosquito feeding assays.

In summary this study suggests a selective effect of *S. haematobium* on the humoral response to an important *P. falciparum* sexual stage antigen. It indicates an association between helminths and malaria transmission and may form a starting point for more detailed studies on the consequences of dual infections for disease transmission.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft-funded project Deutsch-Afrikanische Kooperationsprojekte in der Infektiologie (DFG-Projekt KR 1150/6-1), the EU-funded project Immunological Interplay between Poverty Related Diseases and Helminth infections: An African-European Research Initiative “IDEA” (HEALTH-F3-2009-241642) and the EU-funded project The targeted development of a new generation vaccine for schistosomiasis “TheSchistoVac” (HEALTH-F3-2009- 242107). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

4

References

1. Mazigo, H. D. *et al.* Co-infections with *Plasmodium falciparum*, *Schistosoma mansoni* and intestinal helminths among schoolchildren in endemic areas of northwestern Tanzania. *Parasit Vectors* **3**, 44 (2010).
2. Brooker, S. *et al.* Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. *Am. J. Trop. Med. Hyg.* **77**, 88–98 (2007).
3. Mulu, A. *et al.* Epidemiological and clinical correlates of malaria-helminth co-infections in Southern Ethiopia. *Malar. J.* **12**, 227 (2013).
4. Sangweme, D. T. *et al.* Impact of schistosome infection on *Plasmodium falciparum* Malaria metric indices and immune correlates in school age children in Burma Valley, Zimbabwe. *PLoS Negl Trop Dis* **4**, e882 (2010).
5. Lyke, K. E. *et al.* Association of *Schistosoma haematobium* infection with protection against acute *Plasmodium falciparum* malaria in Malian children. *Am. J. Trop. Med. Hyg.* **73**, 1124–1130 (2005).
6. Lemaitre, M. *et al.* Coinfection with *Plasmodium falciparum* and *Schistosoma haematobium*: Additional Evidence of the Protective Effect of Schistosomiasis on Malaria in Senegalese Children. *Am J Trop Med Hyg* **90**, 329–334 (2014).

- 7.Lyke, K. E. *et al.* Antigen-specific B memory cell responses to Plasmodium falciparum malaria antigens and Schistosoma haematobium antigens in co-infected Malian children. *PLoS ONE* **7**, e37868 (2012).
- 8.Diallo, T. O. *et al.* Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens. *PLoS ONE* **5**, e12764 (2010).
- 9.Torre, D. *et al.* Role of Th1 and Th2 cytokines in immune response to uncomplicated Plasmodium falciparum malaria. *Clin. Diagn. Lab. Immunol.* **9**, 348–351 (2002).
- 10.Bouharoun-Tayoun, H. & Druilhe, P. Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. *Infect. Immun.* **60**, 1473–1481 (1992).
- 11.Courtin, D. *et al.* The Quantity and Quality of African Children's IgG Responses to Merozoite Surface Antigens Reflect Protection against Plasmodium falciparum Malaria. *PLoS One* **4**, (2009).
- 12.Winkler, S. *et al.* Increased frequency of Th2-type cytokine-producing T cells in microfilaremic loiasis. *Am. J. Trop. Med. Hyg.* **60**, 680–686 (1999).
- 13.Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. *Nat. Rev. Immunol.* **3**, 733–744 (2003).
- 14.Hagan, P., Blumenthal, U. J., Dunn, D., Simpson, A. J. & Wilkins, H. A. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. *Nature* **349**, 243–245 (1991).
- 15.Metenou, S. *et al.* Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. *J. Immunol.* **186**, 4725–4733 (2011).

16.Wammes, L. J. *et al.* Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. *Eur. J. Immunol.* **40**, 437–442 (2010).

17.Dolo, H. *et al.* Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults. *PLoS Negl Trop Dis* **6**, e1890 (2012).

18.Noone, C. *et al.* Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. *Malar. J.* **12**, 5 (2013).

19.Lyke, K. E. *et al.* Effects of concomitant *Schistosoma haematobium* infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. *Infect. Immun.* **74**, 5718–5724 (2006).

20.Metenou, S. *et al.* Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. *J. Immunol.* **186**, 4725–4733 (2011).

21.Nacher, M. Helminth-infected patients with malaria: a low profile transmission hub? *Malar. J.* **11**, 376 (2012).

22.Nacher, M. *et al.* Association of helminth infections with increased gametocyte carriage during mild falciparum malaria in Thailand. *Am. J. Trop. Med. Hyg.* **65**, 644–647 (2001).

23.Sangweme, D. T. *et al.* Impact of schistosome infection on Plasmodium falciparum Malariometric indices and immune correlates in school age children in Burma Valley, Zimbabwe. *PLoS Negl Trop Dis* **4**, e882 (2010).

24.Noland, G. S., Graczyk, T. K., Fried, B. & Kumar, N. Enhanced malaria parasite transmission from helminth co-infected mice. *Am. J. Trop. Med. Hyg.* **76**, 1052–1056 (2007).

25.Akue, J. P. *et al.* Epidemiology of concomitant infection due to *Loa loa* and *Mansonella perstans* in Gabon. *PLoS Negl Trop Dis* **5**, e1329 (2011).

- 26.Adegika, A. A. *et al.* Epidemiology of parasitic co-infections during pregnancy in Lambaréné, Gabon. *Tropical Medicine & International Health* **15**, 1204–1209 (2010).
- 27.Ngoa, U. A. *et al.* Assessment of the effect of *Schistosoma haematobium* co infection on malaria parasites and immune responses in rural populations in Gabon: study protocol. *SpringerPlus* **3**, 388 (2014).
- 28.Wildling, E. *et al.* Malaria epidemiology in the province of Moyen Ogoov, Gabon. *Trop. Med. Parasitol.* **46**, 77–82 (1995).
- 29.Planche, T. *et al.* Comparison of Methods for the Rapid Laboratory Assessment of Children with Malaria. *Am J Trop Med Hyg* **65**, 599–602 (2001).
- 30.Adegika, A. A. *et al.* Microscopic and Sub-Microscopic *Plasmodium Falciparum* Infection, but Not Inflammation Caused by Infection, Is Associated with Low Birth Weight. *Am J Trop Med Hyg* **75**, 798–803 (2006).
31. Goldsmid, J. M. Studies on the laboratory diagnosis of human filariasis: preliminary communication. *J. Clin. Pathol.* **23**, 632–635 (1970).
- 32.Theisen, M. *et al.* A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages. *Vaccine* **32**, 2623–2630 (2014).
- 33.Hermsen, C. C. *et al.* Glutamate-rich protein (GLURP) induces antibodies that inhibit in vitro growth of *Plasmodium falciparum* in a phase 1 malaria vaccine trial. *Vaccine* **25**, 2930–2940 (2007).
- 34.Drakeley, C. J. *et al.* Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 5108–5113 (2005).
- 35.Priyetti, C. *et al.* Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda. *Parasite Immunol.* **35**, 164–173 (2013).

36. Bousema, T. & Drakeley, C. Epidemiology and infectivity of *Plasmodium falciparum* and *Plasmodium vivax* gametocytes in relation to malaria control and elimination. *Clin. Microbiol. Rev.* **24**, 377–410 (2011).

37. Bousema, J. T. *et al.* A longitudinal study of immune responses to *Plasmodium falciparum* sexual stage antigens in Tanzanian adults. *Parasite Immunol.* **29**, 309–317 (2007).

38. Bousema, T. *et al.* The dynamics of naturally acquired immune responses to *Plasmodium falciparum* sexual stage antigens Pfs230 & Pfs48/45 in a low endemic area in Tanzania. *PLoS ONE* **5**, e14114 (2010).

39. Carter, R., Graves, P. M., Quakyi, I. A. & Good, M. F. Restricted or absent immune responses in human populations to *Plasmodium falciparum* gamete antigens that are targets of malaria transmission-blocking antibodies. *J. Exp. Med.* **169**, 135–147 (1989).

40. Nacher, M. Interactions between worms and malaria: good worms or bad worms? *Malar. J.* **10**, 259 (2011).

41. Supali, T. *et al.* Polyparasitism and its impact on the immune system. *Int. J. Parasitol.* **40**, 1171–1176 (2010).

42. Wampfler, R. *et al.* Strategies for detection of *Plasmodium* species gametocytes. *PLoS ONE* **8**, e76316 (2013).

