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A triple origin for the lack of

5 tight coplanar circumbinary
planets around short-period
binaries

Transiting circumbinary planets are more easily detected around short-period than long-period binaries,
but none have yet been observed by Kepler orbiting binaries with periods shorter than seven days. In
triple systems, secular Kozai-Lidov cycles and tidal friction (KLCTF) have been shown to reduce the
inner orbital period from ~ 10* to a few days. Indeed, the majority of short-period binaries are observed
to possess a third stellar companion. Using secular evolution analysis and population synthesis, we show
that KLCTF makes it unlikely for circumbinary transiting planets to exist around short-period binaries.
We find the following outcomes. (1) Sufficiently massive planets in tight and/or coplanar orbits around the
inner binary can quench the KL evolution because they induce precession in the inner binary. The KLCTF
process does not take place, preventing the formation of a short-period binary. (2) Secular evolution is not
quenched and it drives the planetary orbit into a high eccentricity, giving rise to an unstable configuration,
in which the planet is most likely ejected from the system. (3) Secular evolution is not quenched but the
planet survives the KLCTF evolution. Its orbit is likely to be much wider than the currently observed inner
binary orbit, and is likely to be eccentric and inclined with respect to the inner binary. These outcomes lead
to two main conclusions: (1) it is unlikely to find a massive planet on a tight and coplanar orbit around a
short-period binary, and (2) the properties of circumbinary planets in short-period binaries are constrained
by secular evolution.

Hamers, A.S., Perets, H.B. & Portegies Zwart, S.F. MNRAS 445, 3, 3180-3200 (2016)
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5.1 Introduction

An increasing number of transiting circumbinary planets around solar-type main-sequence (MS)
binary stars are being discovered by the Kepler mission. Currently, 10 such planets are known
(see Table [.2; top rows). The orbital periods of the stellar binaries in the systems discovered
so far have a mean value of 20.4 d; the shortest period is 7.45 d (Kepler 47; Orosz et al| 2012a).
In contrast, the Kepler eclipsing binaries without circumbinary planets typically have shorter
orbital periods, with a mean period of 2.8 d. There exists a bias for detecting more transiting cir-
cumbinary planets around shorter-period binaries because (1) the shorter period results in more
transits in a given amount of time, and (2) the binary precession period is only a few years
long, resulting in intersecting binary and planet orbits (as seen in the plane of the sky) during
the Kepler mission (Martin & Triaud 2015). Because of this bias, many circumbinary planets
are expected to have been observed around short-period Kepler eclipsing binaries. However,
so far, none have been found.

If the apparent lack of (nearly) coplanar circumbinary planets around close binaries is intrin-
sic and not related to (yet unknown) observational bias(es), then this raises the question of its
origin. The following two observations suggest that this origin is related to the (MS) evolution
of solar-type triple star systems.

* The fraction of tertiary companions to spectroscopic binaries is a strong function of the
inner period, increasing from 0.34 for inner periods Py, > 12d to 0.96 for Py, < 3d
(Tokovinin et al! 2006). For the Kepler eclipsing binaries in particular, the tertiary frac-
tion for inner binaries with periods < 3 d is ~ 20% (Rappaport et al. 2013; Conroy et al.
2014). The latter studies are limited (by observing time) to triples with outer periods
< 3yr. The complete tertiary fraction for these Kepler binaries, i.e. including any outer
period, is likely much larger.

* In the survey of [Tokovinin (20144), a peak is found in the (inner) period distribution
around 3 d. As shown by Fabrycky & Tremaing (2007); Naoz & Fabrycky (2014), this
peak in the period distribution can be explained by the combination of the secular gravi-
tational torque of the tertiary companion and tidal friction in the inner binary. The former,
through Kozai-Lidov (KL) oscillations (Lidov 1962; Kozai 1962), can excite the inner
binary orbit to high eccentricity. Consequently, tides are much more effective, leading to
tidal dissipation and shrinkage of the orbit, and, eventually, to a tight and (nearly) circu-
lar orbit. In this scenario, the precursors of the binaries affected by KL cycles with tides
have orbital periods ranging roughly between 10 and 10* d.

The lower limit of 10 d of precursor binaries is right in the ballpark of the orbital periods
of the currently observed Kepler systems with transiting circumbinary planets. Also, there are
a number of observed wider systems orbited by at least one circumbinary planet; some of them
are listed in Table (bottom rows). Therefore, a large fraction of these precursor binaries
might have a circumbinary planet in a stable orbit in-between the ‘inner’ and ‘outer’ stellar
orbits (henceforth, we refer to the inner and outer stellar binaries simply as the ‘inner’ and
‘outer’ binaries; see also Fig. B.1]).

Here, we show that in these stellar triples with a circumbinary planet around the inner binary,
the planet can strongly affect the secular orbital evolution of the inner binary compared to the
situation without a planet, provided that certain conditions are met (see below). This ‘shielding’
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Figure 5.1: A schematic depiction (not to scale) of the hierarchical configuration of the systems considered
in this paper. The circumbinary planet (1m3) orbits the inner binary (m1 and my); the outermost star (ms),
in the outer binary, orbits the centre of mass of the inner binary+planet system.

effect arises from a quenching of the eccentricity oscillations in the inner binary induced by
the torque of the outer binary, because of precession induced from the circumbinary planet.
The shielding effect is similar to the quenching of KL oscillations in stellar triples because of
additional sources of orbital precession (notably, precession associated with general relativity,
tidal bulges and/or stellar rotation). In some cases, however, resonances can occur that enhance
the eccentricity oscillations in the inner binary (such resonances can also occur in isolated triples
in conjunction with general relativity; Naoz et al. 2013b).

Typically, shielding of KL oscillations by the presence of the planet is only effective for
massive planets that are in a (nearly) coplanar and tight orbit with respect to the inner binary.
This implies the following two scenarios for the secular evolution of the system.

+ If the precursor binary is orbited by a massive planet in a tight and coplanar orbit, then
planet shielding can prevent the binary from shrinking through the combined effects of

KL cycles and tidal friction (KLCTF).
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* On the other hand, if the planet is of low mass and in an inclined and wide orbit with
respect to the inner binary, then shielding is typically ineffective, and the binary can
shrink through KLCTF to become a short-period binary.

Assuming that short-period binaries are produced through KLCTF, then this implies an intrin-
sic lack of massive planets in tight and coplanar circumbinary orbits (i.e. strongly shielding
planets), whereas far-away and inclined low-mass circumbinary planets (i.e. weakly shielding
planets) could still be abundant. This is consistent with the current null-detections of transiting
Kepler circumbinary planets around short-period binaries.

The goal of this paper is to quantify the above argument. The organization is as follows.
In SectionB.2, we briefly describe our methods and assumptions. In Section.3, we study the
secular gravitational dynamics of stellar triples with a circumbinary planet, and we quantify
the conditions when the planet can affect the inner binary. In order to evaluate the effect of
circumbinary planets in a population of triples in the field, we carry out a population synthesis
study in Sectionf5.4. We discuss our results in Section .3, where we also describe, using direct
N-body integrations, the fate of circumbinary planets that become unstable because of secular
evolution. We conclude in Section.4.

We remark that nearing the completion of this paper, we became aware of two similar and
independent studies on the lack of circumbinary planets around short-period binaries in stellar
triples by Martin et al) (2015) and Mufioz & Lai (2015).

5.2 Methods and assumptions

We model the system of a circumbinary planet orbiting the inner binary in a stellar triple system
as a hierarchical quadruple system in the ‘triple-single’ configuration, which we studied previ-
ously in Hamers et al! (2015) (hereafter HPAPZ15). In the latter work, the Hamiltonian of the
system was derived and expanded in terms of the ratios of the three binary separations 4, 75
and r¢, where, by assumption, r¢c >> rg > 7a. In the current context, binary A corresponds to
the inner binary, binary B to the orbit of the planet around the inner binary, and binary C to the
orbit of the tertiary star around the centre of mass of the inner binary+planet system (evidently,
the latter nearly coincides with the centre of mass of the inner binary). For consistency with
HPAPZ15, we use indices 1 and 2 to denote quantities associated with the inner binary primary
and secondary, respectively, index 3 for the planet, and index 4 for the tertiary star.

A schematic depiction of our configuration is shown in Fig. 5.1.

In HPAPZ15, the orbit-averaged Hamiltonian was derived, and a numerical algorithm was
developed within the amuse framework (Portegies Zwart et al) 2013}; Pelupessy et al, 2013) to
solve the resulting equations of motion. Post-Newtonian (PN) dynamics at the 1PN order are
taken into account as described by equation (9) of HPAPZ15.

Here, we extended this algorithm by also including the effects of tidal friction within the
inner binary. Gravitational perturbations by the planet and the tertiary star with regards to the
inner binary tidal evolution were ignored. We adopted the equilibrium tide model (Eggleton
et al) [1998), in which it is assumed that each star quasi-hydrostatically adjusts its shape to the
time-varying perturbing potential of its companion. Following Barker & Ogilvig (2009), we
adopted a constant tidal quality factor ) related to the mean motion n and the tidal lag time
7 via @ = 1/(n1). Below, instead of @), we use the directly related quantity Q' = 3Q/(2k)
(Barker & Ogilvig 2009), where k is the second-order potential Love number. Typical values
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of Q' for solar-type stars, as inferred from observations, are Q' ~ 5.5 x 10° —2 x 10% (Meibom
& Mathieu 2005; Ogilvie & Lin 2007).

A constant ) implies that 7 = 1/(nQ) = P/(27Q) scales with the orbital period, and,
therefore, 7 effectively decreases as the orbital period decreases due to tidal friction. This may
not give an entirely accurate description; e.g. Socrates & Katz (2012) and Socrates et al| (2012)
show that with a number of simplifying assumptions, 7 is constant, and the results of Hansen
(2010) suggest that @)’ is not constant and dependent on the semimajor axis (cf. equation 13
of Hansen 2010). Nevertheless, as argued by Barker & Ogilvig (2009), given the current un-
certainties in the underlying tidal dissipation mechanisms and, therefore, the efficiency of tidal
dissipation, the assumption of a constant @ is useful for studying the general effects of tidal
friction.

The equilibrium tide model is included in our algorithm by adding the relevant terms
den /dt|1p, dha /dt|R, 2y /dt|r and d€2; /dt|rp in the equations of motion, as given by equa-
tions (A7)-(A15) of Barker & Ogilvie (2009). Here, ey, and hy, are the eccentricity vector and the
specific angular momentum vector of orbit k, respectively, and €2, is the spin angular momen-
tum vector of star k£ € {1, 2}. Throughout this paper, the initial spin vectors €2 are assumed
to be parallel with the inner orbital angular momentum vector hy.

Our algorithm, that models the orbital evolution, is coupled within amuse with the stellar
evolution code sea (Portegies Zwart & Verbunf [1996; Toonen et al! 2012), which is also in-
terfaced within amuse. We use the latter code to compute the masses and radii during in the
integration. In this work, we focus on low-mass MS stars. Therefore, the time-dependence of
the latter quantities is weak for time-scales less than a Hubble time. We remark, however, that
this is no longer the case for post-MS evolution.

5.3 The planet-shielding effect

Before studying the effect of circumbinary planets in a population of triples (cf. Section5.4),
we first focus on a simplified case where the stellar triple system is kept fixed, and planets are
‘inserted’ at stable orbits at various loci in-between the inner and outer binaries. The aim is
to gain quantitative insight into the effect of the planetary orbit on the eccentricity oscillations
and the tidal evolution in the inner binary. For simplicity, we here focus on triples in which
the octupole-order terms are unimportant. Note, however, that the (non-cross) octupole-order
terms are always included in the integrations (cf. Section5.5.9), and no restriction is made with
respect to the importance on the octupole-order terms in Section 5.4

5.3.1 Kepler transiting circumbinary systems

Here, we focus on systems similar to the Kepler transiting circumbinary systems. The inner
semimajor axes in the latter are as ~ 0.1—0.2 AU (cf. the top rows of Table 5.2)), and relativistic
precession is therefore important in these systems. As is well known from previous studies
(e.g., Holman et al} [1997; Blaes et al! 2002; Naoz et al| 2013b), general relativistic precession
limits the range of semimajor axes and eccentricities of tertiary orbits for which the inner orbit
eccentricity is excited. In general, an order-of-magnitude estimate of the KL time-scale for the
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Section 5.3.1 5.3.2 .4
my /Mg 1 1 0.83 0.5-1.22
ma /Mg 0.5 0.5 0.50 0.1-1.2°
ms/ M 0.01-1  0.001-3.16 0.01-1 0.01-1
ma /Mg 1 1 0.73 0.1-1.2°¢
ax/AU 0.2 1 0.20 0.03-2.04
ag/AU 1-5 10-50 1.09-1.22 0.14-
3.1x10% ¢
ac/AU 20 160 7.73 1.5-
1.8x10% 4
ea 0.01 0.01 0.40 0.01-0.95F
e 0.01 0.01 0.01 0.01
ec 0.01 0.01 0.30 0.01-0.95F
ia/° 0.01 0.01 0.01 0.01
ig/° 0.01-180 0.01-180  0.01-180  0.01-180
ic/° 75 85 73.7 0.01-180 ¢
wa/° 0.01 0.01 287.7 0.01-180 "
wg/° 0.01 0.01 281.0 0.01-180 "
we/° 0.01 0.01 51.6 0.01-180"
Qn/° 0.01 0.01 166.1 0.01-180 "
Qp/° 0.01 0.01 42.6 0.01-180 "
Qc/° 0.01 0.01 340.1 0.01-180 "
Pypini/d N/A 10 10 10
7./106 N/A 1 1.9 0.55-2h
Tak N/A 0.08 0.08 0.08

2 Salpeter distribution dN /dm1 oc mq 2.35

b Sampled from mo = giumy, where 0 < g;, < 1 is linearly distributed.

¢ Sampled from my = gout(m1 + m2), where 0 < gout < 1 is linearly distributed.

d Lognormal distribution in the orbital period Pj with mean log,((Px/d) = 5.03, standard deviation
Tlog, (P /d) = 2-28 and range —2 < log;y(P/d) < 10. Triples are subject to stability constraints, and the
inner binary should not merge in the absence of a planet.

¢ Linearly sampled for each triple, with lower limit ag | = 1.5 ap crit, AB, Where ap crit, B is the critical semimajor
axis for dynamical stability of the planet in a coplanar orbit around the inner binary, and which is adopted from the
fitting formula given by (Holman & Wiegert 1999). The upper limit is a,y = 0.9 ap crit, 3, Where ap crit,Bc is the
largest possible value of ap for dynamical stability with respect to the orbit of the tertiary star, estimated by applying
the Mardling & Aarseth 2001 criterion to the BC pair, with an ‘outer’ mass ratio of gout = ™4 /(m1 +ma + ms).
f Sampled from a Rayleigh distribution, d N /dey, o ey, exp(fﬁei), with rms (ei)l/2 = 8~1/2 = 0.33 (Ragha]
van et al| 2010).

¢ Sampled from a linear distribution in cos(ic), with —1 < cos(ic) < 1.

h Sampled from a linear distribution.

Table 5.1: Initial conditions for the systems in Section.3.1] (first column, cf. Figs F.3-5.4), for the systems in
Section.3.2 (second column, cf. Figs B.3 and B.g), for the systems in Section.5.3 (third column, cf. Fig. £.20),
and for the population synthesis in SectionB.4 (fourth column). Note that for the third column, the systems are
integrated with the secular code until the orbit of the planet intersects with the inner binary; subsequent evolution
is carried out using direct N-body integration (cf. Section B.5.3). The orbital angles (inclinations iy, arguments of
pericentre wy, and longitudes of the ascending node €2,) are defined with respect to an arbitrary, but fixed reference
frame; see equation (6) of HPAPZ15 for the relation between these angles and the orbital vectors. The spin periods
Pipin, o tidal quality factors Q. and radii of gyration 74 ;, apply to the inner binary stars and are used for tidal
evolution.
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Figure 5.2: Top row: maximum eccentricities in the inner binary (red bullets) and circumbinary orbit (blue
stars) for the integrations of SectionB.3.1] (cf. the left column of Table B_1)), as a function of the initial as
(left column), ip (middle column) and mg (right column). In the left column i5 = 0° and m3 = 1 Mj;
in the middle column ag = 1.2 AU and ms = 1 Mj; and in the right column ag = 1.2 AU and ig = 0°.
The corresponding value of Qg (cf. equation B.§) is indicated in the top left panel. In the bottom row, the
average inclination between the inner and circumbinary orbits is shown. The two black vertical dashed
lines in the top right panel indicate Earth and Jupiter masses, respectively.
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Figure 5.3: [llustration of the time evolution of the eccentricities of the inner orbit and the circumbinary,
for six systems corresponding to the top-left panel of Fig. F.2. In each panel, the value of Q is indicated.

binary pair k[ is given by

2
P _ ‘Pl mgp + Mk.s + mis 1 2\3/2
KLkl = ( - el)

, 5.1
Py my s 1)

where my, = mq, mis = mo and m; s = mg in the case of Pxi ag, Mmrp = M1 + mao,
my,s = m3 and my s = my in the case of P e, and my , = my, my s = mo and my s = my
in the case of Pxp ac (Innanen et all 1997, HPAPZ15, see also 2015). The (pairwise)
1PN time-scale for orbit £ is given by

1 ag
LipNk = gpk (1—¢3) — (5.2)

where 74 1, = Gmmt,k/CQ, with Mg 4 = M1 + Ma, Migs = M1 + Mo + ms3 and My c =

my + ma + mg + mu, is the gravitational radius. Equating equation (B.1)) as applied to the AC

pair, to equation (5.2) as applied to binary A, we find that relativistic precession dominates in

binary A if

4.2 2 1/3

—1/2 | axe (1 - eA) mg(my + mo + ms + my)
3G(m1 -+ m2)2(m1 “+ mo + m4)

~ 34 AU, (5.3)

ac > (1 —eg)

where for the numerical estimate we assumed e, = ec = 0.01, m; = 1 Mg, mgy = 0.5Mg,
ms = 1 My and my = 1 Mg. In the remainder of Section , we shall assume these values
for the numerical estimates.



5.3 The planet-shielding effect 195

b3 e
. 7 e ~ o
ERAI N
L]
. J® . }"'. I K g4
(I ~f ¢l d, 4% .
[ . o‘.|.‘-‘..0
e I SO I
><'\ ! *%e0 © ' oo
< | o | o .
G 101 : f ST
L]
| l oo
— :
|

[T\ ] —

Y L]
. ° °
“ L] [ ]
° " %
P RIS T .
[)
“"‘. ° ® o o ® ¢ % °
g . SR Sk S IS O T v
-1 o L i J 3 °
) 10 ° ‘.‘ | o ... o Ny |":.‘.'o‘ Q:QC‘
° L) ® o L S
. o lede "o o ° L, 1 . ° o %6
| e . P
— b ¢ le © .o. % ] * ® o o ¢
. .I l . oo | % .‘ ... ) .
|

ap = 1.73AU; Q) = 0.68

1072 T
0 30 60

120 150 0 30 60

90 90 120 150
ig/° ig/°

Figure 5.4: [llustration of the joint dependence of the maximum eccentricities in binaries A and B on aa
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An estimate of the lower limit on ac for dynamical stability with respect to the inner binary
(not yet taking into account the circumbinary planet, and ignoring the dependence on mutual
inclination) is given by (Mardling & Aarseth 2001))

2.8aa my 1+ ec 2/5
> 1 ~ 0.67 AU. 5.4
ac 1—ec |:( +’I711—|-’I’I”L2) \/1—€C:| -4)

Here, we assume a fixed ac = 20 AU. With this choice, the octupole parameter €y ac, defined
as

mp —Mmzap €c

(5.5)

€oct,AC = my + ms ac 1 _ 6(2:,
is €oct,ac ~ 1.7 X 1075, indicating that octupole-order terms in the Hamiltonian expansion
for the AC pair are unimportant (Lithwick & Naoz 2011); Katz et al! 2011; Naoz et al. 2013a;
Teyssandier et al| 2013; Li et al! 2014b). Assuming an initial mutual inclination of ix¢c = 75°
between binaries A and C, and with the inclusion of the 1PN terms, the maximum eccentricity
attained in binary A, without a circumbinary planet, iS A max = 0.88.

As a next step, we include a circumbinary planet with mass mg in orbit around binary
A with semimajor axis ag < ac, and with various mutual inclinations iag. For simplicity,
the circumbinary orbit is assumed to be initially nearly circular, i.e. eg = 0.01. Assuming
iag = 0°, for dynamical stability with respect to the inner binary, the semimajor axis ag must
satisfy (Holman & Wiegert 1999)

ag > aAf(eA,MA) ~ 0.48 AU, (5.6)

where f(ea, pa) is a function of the inner binary eccentricity e, and mass ratio pa = ms/(mi+
ma), given by equation (3) of Holman & Wiegert (1999). An estimate of the largest possible
value of ap for dynamical stability with respect to the outer orbit, binary C, ignoring dependen-
cies on inclinations, is given by (Mardling & Aarseth 2001))

1—ec my 1+ ec —2/5
< 1
B < dc 2.8 K +m1+m2+m3> \/1ec]
~ 5.8 AU. 5.7

Note that, strictly speaking, the criterion of (Mardling & Aarseth 2001]) only applies to three-
body systems. However, by carrying out a number of /NV-body integrations with mikkora (Mikkola
& Merritt 2008) and sakura (Gongalves Ferrari et al! 2014) within amuse, we find that circu-
lar circumbinary orbits with ag = 5.8 AU in the system of our choice are indeed dynamically
stable on time-scales of a few multiple periods of the outer binary.

Based on these estimates, we carried out integrations of the long-term secular dynamical
evolution with our orbit-averaged algorithm (cf. Section.2)), with ag ranging between 1 and 5
AU, i between 0 and 180°, and m3 between 102 and 10° M. To simplify the interpretation,
tidal evolution is not included in Section . The integration time was set to 2FPxy ac, i.¢. the
time-scale for two KL oscillations in the AC pair, without taking into account the effect of the
planet. A comprehensive list of initial parameters is given in the left column of Table b.1.

In the left, middle and right panels of the first row of Fig. 5.2, we show the resulting max-
imum eccentricities in binaries A (red bullets) and B (blue stars) as a function of ag (with
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ig = 0° and mg = 1 M), ig (with ag = 1.2 AU and ms = 1 Mj), and mgs (with ag = 1.2 AU
and ig = 0°), respectively. In the bottom row of the same figure, we show the average inclina-
tions between orbits AB as a function of ag, ig and m3. In the top left panel, we also show an
equivalent dependence on the parameter Q, defined as the initial ratio of the KL time-scales
for the AB and AC pairs,

0y = Pxi.AB,0
0= 5"
Pxi.aco

3 2\ /2
_ (aB) my M+ mg +mg + my <1—6B,o>

ac mz  mi+ mo+my 1—6%’0
3/2
(o) ma (L=
ac ) ms l—e%,0
ap 3
~0.1 ( ) . 5.8
0.13 (125 (5.8)

Here, in the third line, we neglected the planet mass compared to the sum of all stellar masses.
We note that Q is closely related to the quantity R defined by HPAPZ15, and is given by

~ Fxiaspo
Rp = KLABO
Pxr.cyo

3/2
3/2 1/2 2
a3 / my + mo / my [1—egy
aAa% mi + mo + ms mg \ 1— 6%70
3/2 2 3/2
(o my [(1—ep
anal ms \1—e2,

ag 3/2
~ O, () . (5.9)

aa

Ifig = 0° and Qp >> 1, emax,a ~ 0.88 is the same as in the case without the planet (cf.
the top-left panel of Fig. 5.2). In this limit, the torque of the outer orbit on the inner orbit (for
which PK_I} Ac 18 a proxy) is much larger than the torque of the circumbinary orbit on the inner
orbit (for which PK_L{ ap K PK_L{ ac 1s a proxy). The circumbinary orbit therefore only has a
small perturbative effect on the inner orbit, and the maximum eccentricity is not affected. If
Qo > 1, then also R >> 1 (cf. equation B.9). This implies that the torque of binary B is not
strong enough to maintain coplanarity between binaries A and B, as is shown in the bottom-left
panel of Fig. 5.2, Effectively, binary B decouples from binary A, and the torque of the outer
orbit results in high-amplitude eccentricity oscillations in binary B.

The latter oscillations have large enough eccentricities for the circumbinary orbit to intersect
with the inner binary, i.e. 7,3 = ag(l — eg) < raa = aa(l + ea). This is the case for all
points below the black solid line in the top-left panel of Fig. 5.2. For the purposes of this section,
no stopping conditions were imposed on the eccentricities during the integrations. However, in
reality, the circumbinary orbit is dynamically unstable for points below the black solid line. This
is borne out by integrating some of the systems below this line with direct V-body integration,
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where the orbital parameters are set to correspond to the moment of maximum eccentricity of
binary B. We investigate the possible outcomes for these cases of dynamical instability further
in Sectionp.5.3.

On the other hand, if ig = 0° and Qp < 1, emax,a = €a 0. In this case, the net torque on
the inner orbit is dominated by the circumbinary orbit. Consequently, the inner orbit precesses
much more rapidly compared to the case without the planet, and this results in a quenching of
the KL eccentricity oscillations otherwise induced by the outer orbit. Furthermore, the period
of the latter oscillations is substantially reduced, as is illustrated in Fig. 5.3, where we show
the time evolution of e and eg for several values of 9, assuming ig = 0° and m3 = 1 M;.
Note that the inclination between orbits A and B remains zero in this case (cf. the bottom-left
panel of Fig. F.2), and that octupole-order terms are not dominant, even for our smallest value
ag = 1 AU (for ag = 1 AU, €5ee,aB = 6.7 X 10~%). Therefore, the circumbinary orbit, on its
own, does not induce eccentricity oscillations in binary A.

Whenever the circumbinary orbit becomes unstable, the planet could collide with one of
the stars, or be ejected from the system (see also Section.5.3). Evidently, in either case, the
planet can no longer shield the inner binary from KL-eccentricity oscillations induced by the
outer orbit. Typically, this occurs whenever the circumbinary orbit is relatively close to the outer
orbit (Qy = 1), and is therefore strongly affected by the latter orbit’s torque. In the same regime,
however, shielding is ineffective. This implies that dynamical instability does not necessarily
rule out the possibility for shielding by the planet. In the top-left panel of Fig. 5.2, this is indeed
the case: the circumbinary orbits become unstable for Qg 2 1, whereas shielding only occurs
for Qg < 1.

The dependence of the maximum eccentricities on ¢g is shown in the top middle panel of
Fig. 5.2 for ag = 1.2 AU. There is a strong dependence of the planet’s shielding ability on ip.
For coplanar (either prograde or retrograde) orbits, es max is close to the initial value e o. As
the initial orbit of the planet becomes more inclined with respect to the inner binary, shielding
becomes less efficient. Interestingly, for ig close to 90°, shielding is again more efficient.

The nature of the dependence on ig also strongly depends on ag. In Fig. .4, we show the
dependence on ig for other values of ag, assuming mz = 1 M. Generally, emax,a is weakly
dependent on ig for either small ag or Qp < 1 (in which case emax,a & €a0), Or large ag or
Qo > 1 (in which case emax A is approximately equal to the value in absence of the planet).
In the intermediate regime, there is a complicated dependence on ig. Generally, quenching of
the KL eccentricity oscillations in binary A is most efficient for close to coplanar orbits (in the
case of Fig. 5.4, 0° < ig < 30° and 150° < ig < 180°). Furthermore, for some values of ag,
quenching can also be effective for ig ~ 90° (cf. the top middle panel of Fig. 5.2 and the top
left panel of Fig. [.4).

The dependence on ms is illustrated in the top-right panel of Fig. 5.2 (for ag = 1.2 AU
and i3 = 0°). The planet mass must be large enough for shielding to be effective, which is
intuitively easy to understand. In our example, a Jupiter-mass planet can effectively shield the
inner binary, assuming that it is coplanar with and close to the inner binary, whereas an Earth-
mass planet cannot provide shielding, regardless of its orbit.

5.3.2 A triple with a shrinking inner binary orbit

Having considered in Section.3.1 the planet’s ability to shield the inner binary from KL ec-
centricity oscillations induced by the outer orbit, we here extend the analysis by also including
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Figure 5.5: Example evolution of the inner binary semimajor axis (top panel), the inner binary eccentricity
(bottom panel; black lines), and the circumbinary eccentricity (bottom panel; red lines), for the triple
system discussed in Section.3.J. Two planet masses are assumed: mz = 1072 M; (solid lines) and

ma ~ 1.32 x 10" M (dashed lines). In either cases, ag = 40 AU and i = 0° initially.
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Figure 5.6: The final inner orbital period for the integrations of Section.3.7 (cf. the second column of
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right column ag = 40 AU and ig = 0°. Cases where the planet became unstable are denoted with black

Crosses.

the effects of tidal friction in the inner binary. We choose a triple system with a relatively wide
inner binary (ap = 1 AU or Py ~ 300d) and tight outer binary (ac = 160 AU), such that in
the absence of a planet, the inner binary becomes highly eccentric because of KL eccentricity
cycles induced by the tertiary, and shrinks to a tight binary with Px ~ 8d.

As in Section.3 1], we carry out a set of integrations with a planet with various values of
agp, g and m3. A comprehensive list of the initial conditions is given in the second column
of Table . For each system, the integration time is set to 10 Px;, ac =~ 50 Myr. In contrast
to SectionB.3, here we stop the integration if the circumbinary orbit intersects with the inner
binary, i.e. if rp g = ag(1l — eg) < raa = aa(l + ea) (neglecting the radii of the stars and
the planet). We assume that in the latter case, the planet either collides with one of the stars or
is ejected from the system (see also Section[.5.3), and, therefore, the subsequent evolution is
equivalent to the situation without a planet, i.e. the inner binary shrinking to an inner final inner

period Py r ~ 8d.

In Fig. 5.3, we show, as an example, the evolution of the inner binary semimajor axis ax
(top panel), the inner binary eccentricity e, (bottom panel; black lines), and the circumbinary
eccentricity eg (bottom panel; red lines), where ag = 40 AU and ig = 0° initially. Two planet
masses are assumed: m3 = 1072 Mj (solid lines) and m3 =~ 1.32 x 10~ Mj (dashed lines).
The values of Q are =~ 55 and = 0.42 for these values of mg3, respectively.

For the low planet mass (Qq = 55), shielding is ineffective, and the inner orbit eccentricity
becomes highly excited, resulting in efficient shrinkage of the orbit. Interestingly, this also
increases the relative strength of the torque of the outer orbit compared to the inner orbit on the
circumbinary orbit. Consequently, the eccentricity of the circumbinary orbit becomes excited
att ~ 25 Myr. Although not the case here, the latter eccentricity could become high enough for
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the circumbinary orbit to intersect with the inner binary, and become unstable. In other words,
KL cycles with tidal friction tend to destabilize the circumbinary planet, and this further reduces
the chances of a circumbinary planet residing in a stable orbit around a binary that shrank due to
KL cycles with tidal friction. This consequence of inner binary shrinkage on the planet orbital
stability was also noted by Martin et al! (2015) and Muiioz & Lai (2015).

In contrast, for the high planet mass (Qp =~ 0.42), shielding is effective, and the inner
binary eccentricity does not become high enough for efficient tidal friction. Nevertheless, es
still oscillates with an amplitude of ~ 0.6. The circumbinary orbit eccentricity does not become
excited in this case.

In the left, middle and right panels of Fig. B.6, we show the final inner period Prrasa
function of ag (with ig = 0° and m3 = 1 Mj), ig (with ag = 40 AU and m3 = 1 Mj), and
mg (with ag = 40 AU and ig = 0°), respectively. Cases where the planet became unstable
are denoted with black crosses. There is a strong dependence of the final inner period on the
circumbinary parameters. If ap is sufficiently small (the regime Qy < 1), shielding is effective,
and the inner binary does not shrink. For larger ag, the planet becomes unstable, and is therefore
unable to shield the inner binary. Note that in this regime of Qy = 1, shielding would have been
ineffective even if the circumbinary orbit would be stable (cf. Fig. 5.2).

Similarly, there is a strong dependence on ig. For coplanar (either prograde or retrograde)
circumbinary orbits, shielding can be effective (if ap is small enough) and the inner binary does
not shrink. However, for highly inclined orbits, the planetary orbit is unstable and, subsequently,
the inner binary shrinks. The boundaries between these regimes, ig ~ 45° and ig ~ 135°,
are very similar to the critical values for eccentricity excitation due to the KL mechanisms
(assuming quadrupole order). We note that, for much more compact circumbinary planets with
a small ratio ag/aa, instability can occur for even coplanar systems (Li et al| 2014a).

For the value of ag and ig in the right panel of Fig. 5.6, the planetary orbit is stable for all
assumed masses m3. Effective shielding, and hence shrinkage of the inner orbit, can only occur
if the planet is sufficiently massive, in this case, if mg = 0.1 Mj.

5.4 Planets in triples with short-period inner binaries

5.4.1 Initial conditions

In Section .3, we demonstrated the planet’s ability to shield the inner binary assuming a fixed
triple system, and used specific worked-out examples to understand the evolution of circumbi-
nary planets affected by a third companion. In the following, we study the effect of circumbinary
planets in the more general case, and consider a large orbital phase-space through the study of
a population of triples, for which the inner binary, in absence of a planet, would be affected by
KL cycles with tidal friction.

For stellar triples, a number of surveys of solar-type MS stars (Duquennoy & Mavyor 1991};
Tokovinin et all 2006; Raghavan et al| 2010; Tokovinin 2014a) have given insight into the
initial distributions of the masses and orbital parameters. However, initial distributions for a
circumbinary planet in orbit of the inner binary, for which observations are currently strongly
biased, are very poorly constrained. Therefore, we generate initial conditions using a combina-
tion of Monte Carlo sampling for the stellar triple system, and fixed grids for the circumbinary
planet. Our procedure consists of the following four steps (a succinct summary is given in the
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fourth column of Table [.1)).

1. A stellar triple system is sampled, similarly to Fabrycky & Tremaine (2007); Naoz &
Fabrycky (2014). For the inner binary, the primary mass m4 is sampled between 0.5 and 1.2
Mg assuming a Salpeter distribution, dN /dm; o« m~2-35 (Salpetet 1955). The secondary
mass mo is sampled from msy = g,y with the constraint 0.1 < my/Mg < 1.2, where g,
is sampled from a flat distribution with 0 < ¢;, < 1. The mass of the tertiary star, my, with
0.1 < my/Mg < 1.2, is sampled from my = (m1 + Mma2)qout, Where goy is sampled from a
flat distribution 0 < gy < 1. The stellar radii, Ry, Re and Ry, are computed initially, and at
subsequent times, using the stellar evolution code sesa as described in Section5.2. The spins
2, and Q, of the stars in the inner binary are initially assumed to be parallel with the inner
orbital angular momentum, and the spin periods are assumed to be 27 /||Q|| = 10 d. The tidal
quality factors @)}, for the inner binary primary and secondary stars (cf. Section b.2) are sampled
linearly between 5.5 x 10° and 2 x 108, adopted from Ogilvie & Lirl 2007, who constrained
@}, using observations of spectroscopic binaries by Meibom & Mathieu (2005). The gyration
radii r ;, for the primary and secondary stars are assumed to be g ;, = 0.08.

The inner and outer orbital periods, Py and P, are both sampled from a lognormal dis-
tribution with mean log,,(Py/d) = 5.03, standard deviation oo, (p,/a) = 2.28 and range
—2 < logyo(Py/d) < 10. The latter distribution is consistent with the orbital periods of bi-
naries as found by Duquennoy & Mayor (1991)); Raghavan et al, (2010); Tokovinin (20144).
We choose to impose the further restriction of Py < 103 d, because most of the progenitor
systems of short-period binaries produced through KL cycles with tidal friction initially have
P, < 10%d (Fabrycky & Tremaind 2007). The corresponding semimajor axes, aa and ac, are
computed from the orbital periods using Kepler’s law (neglecting the planet mass ms).

The eccentricities es and ec are sampled from a Rayleigh distribution, dNV /dey,

o ey, exp(—fe?), with rms (e?)1/2 = 3~1/2 = (.33, consistent with the results of Raghavan
et al! 2010. In Raghavan et al! (2010), in contrast with Duquennoy & Mayor (1991)), the eccen-
tricity distribution is found not to be substantially different for periods P, < 102 d and periods
P, > 102 d. Therefore, we choose not to sample eccentricities from a thermal distribution for
binaries with P, > 103 d as in Fabrycky & Tremaind (2007).

The inner and outer orbits are assumed to be randomly oriented, i.e. their arguments of
pericentre wy, and 2 are sampled from a random distribution, and their mutual inclination iac
is sampled from a distribution that is linear in cos(iac ). Note that, without loss of generality, we
fix the inner orbit to be aligned with the z axis of the coordinate system, i.e. we set iy = 0°. The
initial mutual inclinations ixg and iac are therefore equal to the initial individual inclinations
i and ic, respectively.

Sampled triple systems are rejected in the following cases at this stage.

+ The stability criterion of Mardling & Aarseth 2001 is not satisfied.

+ In isolation, the stars in the inner binary would experience strong tidal interaction, i.e.
aA(l — eA) <3 (Rl + R2>

+ In isolation, the stars in the inner binary would fill their Roche lobe, i.e. R, < Ry j for
k € {1,2}, where Ry is the Roche lobe radius computed at pericentre according to the
analytic fitting formulae given by Sepinsky et al| (2007).

2. For the sampled systems of step (1), additional selection is made based on the outcome of
the integration of isolated systems. This is to ensure that in the absence of the planet, the system



5.4 Planets in triples with short-period inner binaries 207

0< Ppg/d<6

N = 5155

PDF

6 < Pag/d < 100

[, N = 6417
o
~
0+ + + + + t
100 < R\_f/(l < 100
I, N = 3986
= T
[l
0[).‘() 0‘.2 0‘.-’1 0‘.6 018 1.‘0 7‘3 7‘2 7‘1 6 i 3‘0 60 9‘0 lé[) 150 7‘2 7‘1 6
ag log0(Qo) ip/° logyo(ms/Mj)

Figure 5.11: The distributions of the parameters ag (first column), Qo (second column), i (third column)
and ms (fourth column) for systems in which the orbit of the planet remains stable during the entire
evolution, and no other stopping conditions occurred. Systems are binned with respect to the final inner
orbital period Pj,r; each row corresponds to a different bin, indicated in the first column. Also indicated
in the first column is the number of systems in the corresponding bin of Pj .

would remain dynamically stable, and that the inner binary is shrunk substantially because of
KL cycles with tidal friction. The integration time for each system is sampled linearly between
1 and 10 Gyr. In addition, the following stopping conditions are always imposed.

* The stars in the inner binary collide or fill their Roche lobe, computed as above.
* One of the three stars evolves past the MS.

First, the sampled systems are integrated taking into account only the inner binary evolution,
i.e. stellar and tidal evolution. From these systems, we reject those for which the stars in the
inner binary collide, fill their Roche lobe, or evolve past the MS. The former two cases can occur
because of tidal friction; note that our inner binaries are initially not circular, nor synchronized
[see Section5.5.4 and Appendix B.B for discussion on magnetic braking (MB) effects].

Secondly, the sampled systems are integrated taking into account the evolution of the triple
system without a circumbinary planet, i.e. taking into account KL cycles in the inner and outer



208 Circumbinary planets in stellar triples

binaries, and tidal evolution in the inner binary. From these systems, we also reject those for
which the inner binary stars collide or fill their Roche Lobe.

In Fig. .7, we show the initial (dotted lines) and final (solid lines) inner period distribu-
tions for the case of an isolated inner binary system (black lines), and an isolated triple system
(blue lines). Consistent with previous studies on KLCTF (Mazeh & Shaham 1979; Eggleton &
Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007; Naoz & Fabrycky 2014), the effect of
the tertiary star is to produce an enhancement of systems with periods roughly between 1 and
6d.

3. We select systems for which, in the case of an isolated triple, the inner binary shrinks
substantially during the evolution. To quantify this criterion, we show in Fig. b.§ the distribution
of the factor feprink = aa i/ aa ¢ With which the inner binary semimajor axis decreases during the
evolution for the case of isolated triples. Based on this distribution, we select systems for which
fshrink = 1.5. Effectively, this implies that the majority of the systems evolve to a system with
a short-period inner period, 1 < P, ¢ < 6. This is demonstrated in Fig. b.9, where we show the
distribution of fink in the triple case, for different bins of the final inner orbital period.

4.For each of the Ny = 192 remaining sampled triple systems, we define a three-dimensional
grid in (ag, ig, m3), with size 10 x 10 x 3 = 300. The inclinations ig range from 0 to 180°, and
for the planet mass m3 we assume three values, 1072, 10~ and 10° M;. For ag, we impose
the lower and upper limits ag; and ag y, respectively.

The lower limit is assumed to be ag,| = 1.5 ap crit, AB, Where ag crit,aB 1S the critical semi-
major axis for dynamical stability of the planet in a coplanar orbit around the inner binary,
and which is adopted from the fitting formula given by (Holman & Wiegert 1999). The lat-
ter formula is a function of the inner binary mass ratio ;1 = ms/m4 and eccentricity e,. The
factor of 1.5 in ag| = 1.5 ap crit,aB 18 @ ‘safety factor’; close to the regime of dynamical sta-
bility, the orbits are non-Keplerian (e.g. Lee & Peale 2006; Leung & Leg 2013; Bromley &
Kenyon 2015), and, therefore, the orbit-averaged approach no longer applies. The upper limit
is assumed to be ag,y = 0.9 ap crit,sc, Where ap crit,gc is the largest possible value of ag for
dynamical stability with respect to the orbit of the tertiary star. The latter value is estimated by
applying the Mardling & Aarseth 2001 criterion to the BC pair, with an ‘outer’ mass ratio of
Gout = M4/ (M1 +ma +mg).

In the analysis below, we use the dimensionless quantity aug which is closely related to ag,
and is defined as

ap — ap,|

ag = (5.10)

aBu — aB,l.
This quantity is motivated by the fact that the allowed range of initial ag for dynamical stability
varies per triple system. By construction, this is not the case for ap, which, for any sampled
triple, ranges between ag = 0 (ag = 1.5 aB crit, AB, 1.€. the planet’s orbit is close to the dynam-
ical stability limit with respect to the inner binary), and ag = 1 (ag = 0.9 aB cit,BC, 1.€. the
planet’s orbit is close to the dynamical stability limit with respect to the outer binary). In other
words, by using ag, we can evaluate the effect of the circumbinary planet for a population of
triples with different parameters.

For the Nguag = 300 x 192 = 57600 integrations with a planet, the following additional
stopping conditions are set.

* The circumbinary orbit is unstable with respect to the inner and outer binaries according
to the (Mardling & Aarseth 2001) criterion.
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* The circumbinary orbit intersects with the inner binary, i.e. ag(1 — ep) < ax(1 + ea),
and is therefore unlikely to be stable.

For some quadruple systems, the integration proceeded slowly. We therefore imposed a
maximum wall time of 15 min per system, which was reached for 19% of the integrated sys-
tems. In Fig. .10, we show the distribution of Q (cf. equation [.8§) for the systems in which
the maximum wall time was exceeded. For =~ 60% of these systems, Qp < 1. As shown previ-
ously in Section.3, for Qy < 1, shielding is typically effective, whereas it is not for Qy > 1.
Therefore, for the purposes of the analysis below, we will assume that in the systems that ex-
ceeded the integration wall time, if Qp < 1, shielding is completely effective and hence the
inner orbital period does not change (i.e. Pa s = Pa;), and if Qp 2 1, shielding is completely
ineffective and hence the inner orbital period shrinks as much as would be the case without a
planet. Clearly, this is approximate because in reality, there is no sharp transition between the
two regimes and there is also a dependence on the inclination ig (cf. Fig. 5.2). However, we do
not expect that the approximation strongly affects our conclusions.

5.4.2 Results

Initial parameters for surviving planets as a function of the final binary period

In Fig. 5.11], we show the distributions of the initial parameters o (cf. equation 5.10), Qg (cf.
equation f.8), i and ms in the first through fourth columns, respectively, for systems in which
the orbit of the planet remains stable during the entire evolution according to the criteria dis-
cussed in SectionB.4.1|. Each row in Fig. corresponds to a different bin of the final inner
orbital period, P .

For short periods, the planet tends to be further away from the inner binary (i.e. ag and Qg
are typically larger) compared to longer periods. This trend is compatible with the lack of tight
coplanar planets around short-period binaries, although for our sampled population, there is
certainly no absolute lack of planets in tight (i.e. ap < 0.3) orbits around short-period binaries.

In fact, for 1d < Py ¢ < 6d, the distribution of g is still peaked around ag = 0.1. There
are two important factors that contribute to this.

1. In our initial triple population, there is a non-negligible number of systems with initial
inner periods 1d < Pp; < 6d (cf. Fig. B.7). Evidently, for these systems, a possible
outcome is a final period 1d < P,y < 6d when the inner orbit did not shrink due
to effective shielding by the planet, likely corresponding to a massive planet in a tight
and/or coplanar orbit. In other words, in principle, a short-period binary can simply be
born with a tight and coplanar planet, and the planet would prevent the inner orbital
period from becoming even shorter. Given the observational evidence for a third stellar
companion around most short-period binaries (Tokovinin et al| 2006), one might consider
the possibility that such binaries can not primordially form without the effects of KLCTF.
If this is the case, then the primordially short-period binaries in our simulations should
not be considered, and therefore, we would expect no tight coplanar circumbinary planets
to exist at all around short-period binaries.

2. For ag = 0.3 or Qy > 10°, the planetary orbit for a large fraction of systems becomes
highly eccentric and intersects with the inner binary, and likely becomes unstable (cf.



210 Circumbinary planets in stellar triples

Sections and (.5.3). These cases are not included in Fig. 5.11, and this produces a
bias for an absence of stable systems with ag 2 0.3.

To take these complicating factors into account, we introduce the ‘shielding efficiency’
shield Which quantifies the planet’s ability to shield the inner binary from KL eccentricity os-
cillations induced by the tertiary star, defined as

Tshield = fshrink,triple - fshrink,quad ) (51 1)

f shrink,triple — 1

Here, fshrink,wriple 1S the factor with which the inner binary semimajor axis decreases in the ab-
sence of a planet, and fnrink, quad 1 the corresponding factor with a planet present. Note that
we restrict to systems for which fshrink iriple = 1.5. If the planet is able to fully shield the inner
binary, ferink,quad = 1, and 7shicia = 1. On the other hand, when shielding is completely inef-
fective, fohrink,quad = Sshrink,triple> a0d Nshicla = 0. For some systems, we find that the planet can
enhance the inner binary eccentricy excitations; in this case, 7gieiq < 0 (cf. Section.4.2).

In Fig. , we show the distributions of ag, Qy, ig and mg, where the systems are now
binned with respect to nsnielg. When shielding is ineffective (nshielq =~ 0, cf. the second row in
Fig. 5.12)), Qy is invariably > 1 and ms tends to be low (i.e., the large value of m3 = 1 Mj is
disfavoured). In contrast, when shielding is highly effective (9snielq = 1, cf. the last row in Fig.
B.12), Qy is typically < 1 (with a peak near Qo = 0.1), and ms tends to be high (i.e., the large
value of m3 = 1 Mj is favoured).

The distribution of the initial ig in Fig. is a strong function of ag and ms. In Fig.
B.13, we show, for 0.9 < ngiela < 1, the inclination distribution for different ranges of o
and mg3. For ag < 0.3, there is a tendency for coplanar orbits, for both low-mass and massive
planets. For planets in wider orbits, ag > 0.3, the distribution of 45 is strongly peaked towards
ig =~ 90° for low planet masses, whereas for high planet masses, the distribution of ¢ is much
less peaked. These trends are qualitatively consistent with the smaller number of integrations
that were carried out in Section .3 for fixed parameters of the stellar triple.

In Fig. we show, for each of the final period bins of Fig. B.11], the initial distributions
of ag, Qo, ig and mg3, where additional binning was made with respect to 7ghield. Black (blue)
lines correspond to gpielg < 0.2 (Mshiela > 0.2). Cumulative distributions for the different final
period bins and the two ranges of shielding efficiencies are shown in Fig. f.13. As expected, the
close planetary orbits from the top row in Fig. (1d < Par < 6d) typically correspond to
a high shielding efficiency (cf. the blue lines in Fig. 5.14). This indicates that the inner binary
did not shrink, but was simply formed with a planet in such an orbit. On the other hand, the
wider orbits typically correspond to a low shielding efficiency (cf. the black lines in Fig. 5.14).
In the latter case, the initial inner orbit was much wider, and shrank substantially.

Unstable planets

As mentioned in Sectionf.4.2, for a large fraction of systems, the planetary orbit becomes
highly eccentric because of the torque of the outer orbit, and intersects with the inner binary.
This likely results in an unstable planetary orbit, with a high probability for the planet being
ejected from the system (for further discussion on and calculations of the outcomes, see Sec-
tion.5.3). Such orbit crossings typically occur early in the evolution. This is illustrated in Fig.
b.14, where we plot the distribution of the time of orbit crossing toss, when applicable. For
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Figure 5.12: The distributions of the parameters ag (first column), Qg (second column), g (third column)
and ms (fourth column), where systems are binned with respect to the shielding efficiency nsnicia (cf.
equation B.11)); each row corresponds to a different bin, indicated in the first column. Also indicated in
the first column is the number of systems in the corresponding bin of 7spieid-
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Figure 5.13: The distributions of the initial i for 0.9 < ngies < 1 (cf. Fig. B.12), distinguishing between
different ranges of aig and ms. In the top (bottom) row, ag < 0.3 (g > 0.3); in the left (right) column,
ms = 1072 M; (m3 = 10°M;). The number of systems in each case is indicated in each panel.
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Figure 5.14: The distributions of the parameters ag (first column), Qg (second column), g (third column)
and ms (fourth column) for systems in which the orbit of the planet remains stable during the entire
evolution, and no other stopping conditions occurred. Systems are binned with respect to the final inner
orbital period Py ¢ as in Fig. B.11); here, we also make a distinction between a low shielding efficiency
(Mshiela < 0.2; black lines) and high shielding efficiency (9sicla > 0.2; blue lines).
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Figure 5.15: Cumulative distributions for Qg, binned with respect to the final inner orbital period Pa ¢
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to the shielding efficiency 7snie (cf. equation B.11)): including the systems with ngicq < 0.2 (middle
panel), and with 7giels > 0.2 (bottom panel). The meaning of the linestyles is the same between the
different rows.



5.4 Planets in triples with short-period inner binaries 215

== 80% of the cases, t¢ross < 10 Myr, which is very short compared to the MS time-scale of any
of the stars (as described in Section .4.1), the integration time is sampled linearly between 1 and
10 Gyr). Because of this quick removal of the planet, it is unlikely that the planet could affect
the inner binary evolution in these cases, and, therefore, we correspondingly assume 7)gpiela = O.

In Fig. .17, we show the fraction f...s of systems with orbit crossing as a function of the
initial parameters ag, Qo, g and mg. This fraction increases strongly from feos =~ 0.4 for
ap & 010 feross = 0.9 for ag = 0.5. This may seem counterintuitive: for larger ag, the planet
is further away from the inner binary, therefore orbit crossings are expected to be less likely.
However, for larger ag, the planet is also placed closer to the tertiary star, causing greater
eccentricity excitation in the circumbinary orbit (e.g. the top-left panel in Fig. 5.2). Apparently,
the latter effect is (much) stronger than the former, resulting in more orbit crossings for wider
planetary orbits. As mentioned in Section 5.4.2, the high occurrence of orbit crossings produces
a tendency for a lack of stable planets for ag 2 0.3.

There is no strong dependence of foss On i, nor ms. This can be understood by noting that
the distribution of the mutual inclination between the circumbinary and the outer orbits, igc, is
the same as the distribution of the mutual inclination between the inner and outer orbits, iac (i.e.
cos[iac] was sampled linearly between -1 and 1; cf. SectionB.4.1]). Therefore, the distribution
of ipc is independent of ig, and there is no preference with regard to fess for orbits with ig
close to 90°. Furthermore, because the planet mass my is typically less than 10~2 of the stellar
masses, Pk pc & (m1 + mg + mg3 + my)/my is nearly independent of msg, explaining why
feross 18 essentially independent of mg. Note that, in contrast, the shielding efficiency 7gpiciq 1S
a strong function of ms (cf. Fig. p.12).

Final planet orbital eccentricities

In Figs and .19, we show the distributions of the planet orbital eccentricity at the end of
the integration, eg r, binned with respect to P4 r and nspic1a, respectively. In the case of binning
with respect to 7ghield, Orbit crossing cases are also included, in which case we set 7gpiclq = 0
(cf. Section5.4.2)). For a crossing of the planetary orbit with the inner binary to occur, eg needs
to be high. This causes ep  to be typically high if 7gicla = 0; in = 50% of the cases, e ¢ > 0.9.
On the other hand, if the planetary orbit remains stable, eg tends to be much smaller. For cases
of very effective shielding, i.e. 0.9 < nNgpieta < 1, = 90% of the systems have eg s < 0.2. In
Fig. 5.18, the planetary orbit remains stable in all cases, and eg,r tends to be low. There is little
to no dependence of the distribution of ep r on the final orbital period.

Reversed shielding

As shown in the top row of Fig. , in a relatively small number of cases, nspiclq < 0, 1.€.
the inner binary shrinks more compared to the situation without a planet. The values of ag for
which this occurs are strongly peaked towards small values, and Qy is peaked near @y = 1. For
Qp ~ 1, the KL time-scales for the AB and AC pairs are approximately equal, and, as similarly
mentioned with respect to the quantity Ry by HPAPZ15, this can give rise to chaotic dynamics
and possible enhancement of the eccentricity in the inner binary, and hence a negative 7spield.
Although interesting from a theoretical dynamical point of view, negative 7shielq Only occur
for a small number of systems, i.e. a fraction of 0.032 of the stable systems, and 0.0084 of all

systems.
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5.5 Discussion

5.5.1 An approximate analytic condition for planet shielding -- impli-
cations for other systems

In Section5.3.1, we have shown that planet shielding is effective for Qy < 1 (cf. Fig. b.2). We
have also confirmed this for a much larger number of systems, and with the inclusion of tidal
friction, in Section.4 (cf. Fig. 5.12). As demonstrated in e.g. Figs 5.2, .4 and 5.13, there is

also a dependence of the planet shielding ability on the inclination ig. Nevertheless, as a first
approximation, the condition @y < 1 can be used to evaluate the importance of planet-shielding
in stellar triples. Using equation (5.§), the condition can be written as

1/2
m3 My +mg + My Y3 1—eZy
ap 5&(: 27
mg my1 +ma +ms + my 1—6370

. 1/2
oo (3N (Lt
“\ma 1— 6}23,0

m 1/3
=0.1ac (3103) , (5.12)
my

where in the second line, we assumed that m3 is negligible compared to the other masses, and
in the last line, we assumed eg g = eco = 0. For small planet masses, the scaling with mg3

is ag x mé/ 3, Equation implies that for a planet of order Jupiter mass in a stellar triple
(i.e. mp ~ 1Mg for k € {1,2,4}), the circumbinary semimajor axis should be less than
approximately a tenth of the outer semimajor axis.

We remark that the fourth body orbiting the circumbinary planet system may also be less
massive (by factors up to a thousand) than was assumed in SectionsB.3 and b.4. In particular,
it could be a brown dwarf or a massive planet orbiting a lower-mass circumbinary planet. As
my decreases, equation (5.12) implies that for fixed ac, ag can be larger for shielding to be
effective. This can be explained intuitively by noting that for fixed m3 and decreasing my, the
Pk ap time-scale remains constant, whereas the Pxr, ac time-scale increases, i.e. the outermost
body becomes less dominant. This, combined with the lower efficiency of a tertiary with a lower
mass to shrink the inner orbit, suggests that the lack of circumbinary planets around short-period
binaries is even more severe for triples with low-mass tertiary companions. Similarly, shielding
is expected to be more effective for lower inner binary masses m; and mo, suggesting a more
severe lack of planets around low-mass short-period binaries.

5.5.2 Shielding of the planetary orbit by the inner binary

Although not discussed in detail here, shielding can also occur in the orbit of the planet: the
inner binary can induce rapid precession in the planetary orbit, shielding the latter against high-
amplitude KL eccentricity oscillations induced by the outer binary. This aspect was discussed
in detail by HPAPZ15, where it was shown that the approximate condition for shielding of the



5.5 Discussion 221

planetary orbit is Ry < 1, or (cf. equation 5.9)

1/3
< 1/3 2/3 (M3 29 my + mg + mg Vo1 e%,o
aB S G Gc 2
my mi + mo 1— €80

e [ 2/9
~ 0.22 a/l\/daé/5 (3103> ,
my

zO.92AU< an )1/3( ac )2/3 (7”3103)2/9 (5.13)

0.2AU 20AU My

where in the second and last lines, we neglected m3 compared to the other masses, and where
we assumed circular orbits. In general, R > Qq (cf. equation f.9), indicating that typically,
shielding of the inner binary by the planet (Qp < 1) is more likely than shielding of the planet
by the binary (Ro < 1).

We note that similar dynamics apply to satellites around the Pluto-Charon binary system in
the Solar system. As shown by Michaely et al. (2019), if the orbit of a satellite is close enough to
the Pluto-Charon binary, then precession induced by the Pluto-Charon binary on the satellite’s
orbit protects the latter from KL oscillations induced by secular perturbations of the Sun.

5.5.3 The fate of planets with unstable orbits

As mentioned in SectionsF.3 and [.4, when the orbit of the planet is relatively close to the
outer binary, the former can become highly eccentric because of KL eccentricity oscillations
induced by the tertiary companion, and intersect with the inner binary. In fact, this is a likely
scenario, as demonstrated by e.g. Fig. 5.17. Here, we investigate the possible outcomes of such
orbit crossings and hence likely unstable orbits, by integrating the four-body system using the
direct N-body code nermiTE (Hut et al)[1995) incorporated in amuse (Portegies Zwart et al. 2013
Pelupessy et al! 2013). Here, tidal effects are not included. The initial conditions are taken from
the grid, of size 300, of the initial parameters ag, ¢g and mg for one the triple systems sampled
in Sectionf5.4. Details of the parameters are given in the third column of Table b.1.

First, the systems are integrated using our secular code until the circumbinary orbit in-
tersects with the inner binary. Subsequently, we sample 100 different sets of random mean
anomalies for the three orbits, and integrate the system for each set for the duration of 40 initial
circumbinary orbital periods. In this manner, the most important outcomes are revealed for each
combination of planet parameters. In total, 300 x 100 = 3 x 10* direct N-body integrations
were carried out.

We find the following outcomes, in order of decreasing likelihood f:

1. the planet becomes unbound from the system (f =~ 0.657);

2. the planet orbits the outer binary (i.e. a circumtriple planet; f ~ 0.289)

3. the planet collides with a star (f ~ 0.029);
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4. the planet remains stable as a circumbinary planet, but with a different orbit (f =~ 0.017);

5. the planet becomes bound to a single star (f =~ 0.009).

The large probability of ejection of the planet is intuitively easy to understand from the low
mass of the planet compared to that of the stars. Circumtriple planets are also common, but
note that the integration time is limited and the orbits are typically eccentric, therefore not all
systems may be stable indefinitely.

In the top row of Fig. 5.20, we show the distribution of the fractions of the outcomes. In the
bottom row of the same figure, we show the distributions for collisions with stars (left column)
and bindings to stars (right column), where a distinction is made between the different stars.
Collisions are most common with the primary star. This is easily understood by noting that by
definition, the primary star is the most massive, and, therefore, also has the largest radius (as
described in Section.2, the radii are calculated using the sesa stellar evolution code). With
regards to the planet becoming bound to a single star, being bound to the tertiary is most likely.
This may be the result of a lower orbital speed of the planet when it is close to the tertiary
(roughly corresponding to the apocentre of the circumbinary orbit if it were still stable), as
opposed to when it is close to the inner binary (roughly corresponding to the pericentre of the
circumbinary orbit if it were still stable).

The outcomes found above — keeping in mind the caveat that they are based on integrations
of only a single triple system and that the planetary parameters were taken from a linear grid
— have interesting implications for stellar triples. Case (i), combined with the high fraction of
orbit-crossing planets as found in Section f.4.2, suggests that circumbinary planets in triples are
likely to become unbound from their parent binary early in their evolution, and become free-
floating planets. Case (ii) suggests that circumtriple planets should be fairly common. Case
(iii) provides a scenario for polluting stars in the inner binary, the primary star in particular.
Lastly, case (v) suggests that in stellar triples, circumbinary planets (i.e. P-type planets) can be
transformed into circumstellar planets (i.e. S-type planets), albeit with a low probability.

5.5.4 Implications for planets around blue straggler stars

As first suggested by Perets & Fabrycky (2009), and later studied more quantitatively by Naoz
& Fabrycky (2014), KLCTF may also lead to mergers or mass transfer in short-period binaries,
producing blue straggler stars (BSSs). Our results suggest (secular dynamical) constraints for
planets around BSSs formed in this manner, where the planets are either in a circumbinary
configuration (in case of binary BSSs) or in a circumstellar configuration (in case when the
original stellar binary merged to produce a single BSS star). Analogously to the case of short-
period binaries, we expect such planets around BSSs to be typically of low mass, and in wide
and/or inclined orbits around the BSS or BSS binary.

5.5.5 Approximations in the integrations

In the numerical integrations of Sections b.3 and b.4, the ‘cross’ term that appears in the Hamil-
tonian at the octupole—gder, H oct,cross (cf. seﬁction 2.4 of HPAPZ15), was neglected. Note that
the ‘non-cross terms’, H et aB, Hoct,3c and H o oc, Were always included in Sections.3 and
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@. For the systems considered here, it is unlikely that the cross term ﬁoct’cmss has a large ef-
fect on the dynamical evolution because its numerical value is generally very small compared
to the other terms that appear in the octupole and the next higher, hexadecupole, orders. For
example, for the system chosen in SectionB.3.1] (cf. Table B.1l; setting ms = 1 Mj, ig = 0°
and ic = 90°), the ratio r of the absolute value of the orbit-averaged cross term to the absolute
value of all other orbit-averaged terms at octupole and hexadecupole order, defined in equation
(10) of HPAPZ15,is » ~ 6 x 1078 ifag = 1 AU, and r ~ 7 x 107" if ag = 5AU. For
the system of Sectionp.3.7 (setting ms = 1 Mj, iz = 0° and ic = 90°), 7 ~ 6 x 1077 if
ag = 10AU, and r =~ 2 x 10~ 7 ifag = 50 AU.

Furthermore, in the integrations we assumed that there is only one planet orbiting the inner
binary. Among the currently limited number of Kepler transiting circumbinary planets, there
is already one system, Kepler 47 (cf. Table p.2) with three confirmed circumbinary planets
orbiting a single binary. Although the case of multiple planets is beyond the scope of this work
and left for future work, we note that in this situation, the planet with the tightest orbit with
respect to the inner binary likely has the largest potential for shielding the inner binary from the
secular torque of the outer orbit. This picture is complicated by the possibility of planet-planet
scattering and mean motion resonances if the planets are in close orbits to each other.

5.5.6 Other dissipative effects

In this work, we considered the dissipative effect of tidal friction in the inner binary. Other
potentially important dissipative processes that affect the orbital energies are gravitational wave
(GW) emission, MB and gas drag in circumbinary discs.

Gravitational wave emission

Shrinkage due to GW emission was not included for numerical reasons, but we note that it
is important only in very tight binaries that are beyond the scope of this paper. For circular
binaries, the GW inspiral time is tgw = 5c®al /[256G3m1ma(my +ma)], where ¢ is the speed
of light (Peters 1964), which is equal to 10 Gyr if log,,(Pa/d) ~ —0.4. In our population
synthesis, the final orbital periods are typically longer than this value (cf. Fig. 5.7), indicating
that shrinkage in the inner orbit due to GW emission is not important (note that the inner orbit
is typically nearly circular when the final orbital period is reached).

Magnetic braking

Many uncertainties still exist regarding the efficiency of MB. We evaluated the effect of MB
by carrying out the integrations of isolated binaries and triples as in Section[.4.1], now also
including MB for the primary and secondary stars in the inner binary, with standard assumptions
for the MB law and its efficiency. Further details are given in Appendix .B.

We find that when including the effects of MB, there is a nearly absolute absence of binaries
with periods < 10d (cf. Fig. 5.21]), which is grossly inconsistent with observations. The latter,
in contrast, show a peak in the distribution around 3-6 d (Tokovinin 2014a). This suggests that
MB is likely not as efficient as was assumed here. Because MB is not the focus of this work,
we chose to exclude it in the integrations of SectionsB.3 and b.4. Nevertheless, the apparent
discrepancy between the canonical efficiency of MB and the period distribution of solar-type

MS binaries merits future investigation.
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Drag in circumbinary gas discs

If there is a disc around the inner binary, gas drag can cause the circumbinary planet to migrate
inwards. Consequently, Qy would decrease (cf. equation 5.8), and hence the planet’s shield-
ing ability would be increased. However, the lifetime of circumbinary discs is at most a few
Myr (Alexander 2012), which is much shorter than the typical duration of our integrations (in
our population synthesis, the integration time varied between 1 and 10 Gyr to reflect the typi-
cal age of observed Kepler-like systems). Therefore, disc migration likely does not affect our
conclusions regarding planet shielding in Kepler-like systems.

5.6 Conclusions

In recent observations of circumbinary planets, there is an unexpected lack of coplanar cir-
cumbinary planets around short-period solar-type MS binaries. This goes against observational
biases of detecting such planets. We have shown that the lack can be explained by the secular
gravitational influence of a circumbinary planet in hierarchical triple systems. Our arguments
and conclusions are as follows.

1. Observations show that binaries with periods of ~ 3 — 6 d are nearly always (96%) orbited by
a tertiary companion star (Tokovinin et al| 2006). The short orbital period likely resulted from
Kozai-Lidov (KL) eccentricity oscillations in the inner orbit induced by the tertiary, combined
with tidal friction (Mazeh & Shaham [1979; Eggleton & Kiseleva-Eggleton 2001; Fabrycky &
T'remaing 2007; Naoz & Fabrycky 2014). This suggests that many of the short-period Kepler
eclipsing binaries are triple star systems. The progenitor inner binary was likely wider, with an
orbital period of up to ~ 10% d.

2. We have demonstrated that if there is a circumbinary planet around the progenitor inner
binary, then the KL eccentricity oscillations in the inner orbit induced by the tertiary can be
quenched through the secular gravitational influence of the circumbinary planet. Thereby, the
inner binary is ‘shielded’ from the torque of the tertiary star, and does not shrink to a tight or-
bit. However, this only occurs if the circumbinary planet is sufficiently massive, and if its orbit
is sufficiently close to and coplanar with the inner binary. In many other cases, the circumbi-
nary orbit is stable but cannot efficiently shield the inner binary, or the circumbinary orbit is
destabilized and is most likely ejected.

3. In particular, if a low-mass circumbinary planet is initially inclined with respect to and far
away from the inner binary, then planet shielding is typically ineffective, and the inner binary
can shrink to a tight orbit. On the other hand, for a more massive planet in an initially approxi-
mately coplanar and tight circumbinary orbit, shielding typically prevents the inner orbit from

shrinking (cf. Figs and 5.12).

4. Consequently, for systems with circumbinary planets surviving through the evolution, short-
period inner binaries typically do not have massive (mg ~ Mj) circumbinary planets on tight
(Qo < 1, where Qg is defined in equation F.§) and coplanar orbits. Namely, if the latter was
present initially, the inner binary would unlikely have shrunk to a short period. In contrast, if
the circumbinary planet is less massive (ms ~ 1072 Mj) and initially inclined with respect
to and far away from the inner binary (Qgy 2 1), then shrinkage is possible. This trend is
consistent with the current Kepler observations. The transition with respect to the planet mass
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Figure 5.20: The distributions of the fraction of direct N-body integrations with various outcomes, in the
case that the orbit of the planet becomes highly eccentric and intersects with the inner binary. The triple
system is fixed, whereas ag, ip and g are taken from a grid with size 300 as in SectionF.4.1. Top row:
overview, with the major channels described in the legend. Bottom row: making a distinction between
stars for cases when the planet collides with a star (left column), or when it becomes bound to a star (right

column).
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and orbital semimajor axis occurs at Qg ~ 1, which, for a Jupiter-mass planet in a solar-mass
triple, corresponds to a circumbinary semimajor axis roughly equal to a tenth of the outer orbit
semimajor axis (cf. equation p.12).

Our results suggest that similar constraints also apply to planets around blue straggler stars.
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5.A  Kepler transiting circumbinary planets

In Table b.2, we give an overview of the currently known Kepler transiting circumbinary plan-
ets.
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228 Circumbinary planets in stellar triples

5.B  Magnetic braking in triples

As discussed in SectionB.5.6, we carried out the integrations of isolated binaries and triples
as in SectionB.4.1,, now also including the effects of MB for the primary and secondary stars
in the inner binary by adopting equation (1) of Barker & Ogilvie (2009). The latter equation is
based on the Skumanich relation (Skumanich 1972) and the results of Verbunt & Zwaan (1981));
Dobbs-Dixon et al! (2004). Here, we assumed a MB parameter of g = 1.5 x 10714 yr (Barket
& Ogilvig 2009).

In Fig. B.21], we show the distribution of the initial and final inner orbital periods as in Fig.
B.7, but now with MB included. MB has a large effect on the orbital evolution. In contrast to
the situation without MB, many systems merge during the evolution even for isolated binary
evolution (cf. the dashed lines in Fig. 5.21]). Furthermore, when including the tertiary star, no
peak is produced in the final period distribution for P s ~ 1 —6d as in Fig. B.7. Instead, owing
to the large number of merged systems, there is an absence of systems with these periods.

For the non-merging systems, we show the distributions of semimajor axis shrink factor
fonrink in Fig. 5.22. Although the inner binary still shrinks more in the isolated triple case com-
pared to the isolated binary case, the enhancement in fgyink 1S not nearly as large compared to
the situation without MB (cf. Fig. B.8). In other words, MB is so efficient at driving an inner
binary merger in isolation, that KL cycles with tidal friction hardly affect the evolution.

As also discussed in Section[5.5.6, this suggests that MB is likely not as efficient as was
assumed here, and this apparent discrepancy between the canonical efficiency of MB and the
period distribution of solar-type MS binaries merits future investigation.
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Figure 5.21: The initial (black) and final (blue) inner period distributions for the sampled triples as de-
scribed in Section5.4.1 (cf. Fig. B.21)), here also including the effects of MB as discussed in Section
and Appendix B.B. Distributions corresponding to isolated binary (triple) evolution are shown with black
(blue) lines. The initial distributions are shown with dotted lines. Cases when the inner binary merges are
shown with dashed lines. Otherwise, the final distributions are shown with solid lines.
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Figure 5.22: The factor fgrink = aa,i/aa,r with which the inner binary period shrinks for the sampled
triples as described in Section F4.1), here also including the effects of MB as discussed in Sectionf.5.4
and Appendix B.B. Only systems are included for which the inner binary does not merge. Black (blue)
lines: isolated binary (triple) evolution. The black vertical line indicates the cutoft value chosen for our
population synthesis study (cf. Section F.4.1)).



