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1| Introduction

1.1 Gravity

Gravity is one of the four fundamental forces of nature. It plays a crucial role in the Universe
at all scales, from the onset of the Big Bang, at the present day, and in the future. On Earth,
gravity ensures that objects are not flung into space. In the Solar system, it binds the planets
to the Sun, which itself was formed by the gravitational collapse of a giant gas cloud. Most
stars are bound by gravity in galaxies like the Milky Way and smaller clusters like globular
clusters. The largest known gravitationally bound and orbiting systems are clusters of galaxies,
with scales on the order of Mpc, and crossing times as long as Gyr. On the other hand, at the
time of writing, ESO’s Rosetta spacecraft is bound to and orbiting comet 67P at a mere distance
of 10 km.

Despite the crucial role of gravity on these disparate scales, its fundamental nature is not
yet completely understood. On the scale of galaxies (kpcs), measurements of the velocities of
galaxies in galaxy clusters, and the rotation rate of stars suggest the presence of additional un-
seen, i.e. dark matter (Zwicky 1933; Rubin et al. 1980), or a modification of the laws of gravity
on these scales, giving rise to Modified Newtonian Dynamics, or MOND (Milgrom 1983). On
the other extreme end of the length scale spectrum of the Planck length (1.6×10−35m), classi-
cal general relativity (GR) currently cannot be reconciled theoretically with quantum physics.

Between these extremes of length scales, gravity is generally well described in terms of
the theory of GR. To extraordinary accuracy, pulse timing measurements of pulsars in binary
systems have confirmed predictions by GR of the apsidal precession and the shrinkage and
circularisation of the binary orbit due to the emission of gravitational waves (GWs) (Hulse &
Taylor 1975; Burgay et al. 2003; Antoniadis et al. 2013). Until very recently, the existence
of GWs was only proven indirectly through the orbital decay of these pulsar binaries. In a
spectacular discovery, the first direct detection of GWs by the ground-based LIGO detector
was announced on February 11 2016 (Abbott et al. 2016). The source, GW150914, was a stellar
black hole binary (with masses of ≈ 36 and ≈ 29M⊙) that merged to a single black hole of
≈ 62M⊙, releasing≈ 3M⊙ of mass-energy in the form of GWs. The observed waveform was
in extremely good agreement with the predictions of GR.

The GW150914 system clearly resides in the regime of strong gravitational fields. In the
limit of weak gravitational fields, GR reduces to the Newtonian laws of motion and gravity,
which describe well the dynamics of most planetary and stellar systems. In some cases, it is
necessary to include in the Newtonian description corrections from GR, which are usually well
described in terms of the post-Newtonian (PN) framework (Einstein et al. 1938). For example,
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in the Solar system, GR corrections contribute to the apsidal precession of Mercury, and to-
gether with Newtonian gravitational perturbations from other planets, amount precisely to the
measured apsidal precession rate.

1.2 History of the N-body problem

The Newtonian laws of motion and gravitation have been the subject of research by mathemati-
cians and (astro)physicists for centuries. In the 17th century, Isaac Newton, in his Principia
(Newton 1687), famously solved his laws of motion and gravity for two-body systems, provid-
ing a theoretical understanding of Kepler’s laws of planetary motion (Kepler 1609). In modern
notation, these laws are formulated mathematically as

miR̈i =

N∑
j ̸=i

Gmimj(Rj −Ri)

||Rj −Ri||3
, (1.1)

wheremi andRi are the mass and the position vector of body i, respectively. Although seem-
ingly simple, Newton’s law of gravity turn out to be notoriously hard to solve for systems
with more than two bodies. In the 18th century, progress was made by Euler and Lagrange for
specific three-body configurations (notably, the circular restricted three-body problem). In the
context of the Solar system, Laplace and Lagrange developed approximate solutions for the
long-term evolution of the planetary orbits. Although very useful, these solutions were approx-
imate and apply only to planetary systems with a central massive body with nearly circular
and coplanar orbits. Also, strong interactions between planets, which could lead to collisions
or ejections, are not taken into account, as well as orbital resonances.

The difficulty of finding a general solution to the 3- or N -body problem led to the estab-
lishment in 1885 of a prize by the journal Acta Mathematica in honour of the 60th birthday of
King Oscar II of Sweden and Norway. The problem was posed as follows.

Given a system of arbitrarily many mass points that attract each according to Newton’s
law, under the assumption that no two points ever collide, try to find a representation of the
coordinates of each point as a series in a variable that is some known function of time and for
all of whose values the series converges uniformly.

Although he did not solve this specific problem, Poincaré received the prize for his work
on the three-body problem. In particular, he showed that no solutions exist in terms of known
‘simple’ analytic functions, and in the process, he laid the foundation for chaos theory.

The actual solution to King Oscar’s prize as it was originally formulated, although restricted
to N = 3, was found by Sundman (Sundman 1912). For the case of three bodies, he derived a
solution in terms of a convergent power series of t1/3. Although formally a solution, it did not
give physical insight into the three-body problem. In addition, the series converges extremely
slowly, making it not useful for practical applications — in order to be useful for astronomical
observations, one would need at least 108×106 terms (Beloriszky 1930).

Nearly 80 years later, Sundman’s solution for N = 3 was generalised to arbitrary N by
Wang (1991). As before, the solution does not give much physical insight, and converges ex-
tremely slowly.
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Figure 1.1: A schematic representation of two hierarchical quadruple systems in a mobile diagram. Left:
a ‘3+1’ or ‘triple-single’ configuration. Right: a ‘2+2’ or ‘binary-binary’ system.

Although no physically meaningful solutions exist to the generalN -body problem, analytic
or semi-analytic results can be obtained for certain restricted systems. In particular, in this
thesis, we will consider systems which are ordered in a hierarchy, i.e. hierarchical systems.

1.3 Hierarchies in nature

Planetary and stellar systems are often ordered in a hierarchical fashion. This can be explained
intuitively by noting that on short time-scales, i.e. time-scales comparable to the orbital peri-
ods or crossing times, non-hierarchical systems are usually unstable, or stable but unstable to
perturbations1. For example, in the Solar system, all planets orbit a common centre, the Sun
(more correctly, the centre of mass of the solar system). Their orbits are sufficiently separated
to ensure stability, at least on time-scales that are short compared to the lifetime of the Sun.
The Solar system also contains ‘deeper’ hierarchical layers: most planets are orbited by moons,
which in turn can be orbited by lighter objects (e.g. the Apollo spacecraft around the Moon).

Other, more exotic, hierarchies have been observed outside of the Solar system. For exam-
ple, planets have been observed to orbit stellar binaries (circumbinary planets). A very useful
tool in the study of hierarchical systems is themobile diagram, a tree diagram in which the hier-
archy of the system is depicted schematically2. An example is shown in the left part of Fig. 1.1,
where a quadruple system of the ‘triple-single’ or ‘3+1’ configuration is depicted. This could
represent a circumbinary planet (m3) orbiting a stellar binary (m1 +m2); the stellar binary it-
self is part of a stellar triple system (third starm4). Another possible hierarchical configuration
with four bodies is the ‘binary-binary’ or ‘2+2’ configuration, depicted in the right part of Fig.
1.1. In the latter configuration, two binary systems are orbiting each other. One might expect
that these configurations of four bodies are very rare and are ‘freaks of nature’, if existent at
all. This is not the case, however; ≈ 1 per cent of all solar-type stellar systems within 67 pc of
the Sun are hierarchical quadruple systems (Tokovinin 2014a,b). About 2/3 of those appear in
the ‘2+2’ configuration, and 1/3 in the ‘3+1’ configuration.

1An exception in the case of a three-body system (i.e. star-planet-asteroid) is the occurrence of two stable points
for asteroids orbiting the star in the same orbit as the planet, but advanced or delayed in phase (i.e. the 4th and 5th
Lagrange points). Notable examples are the Trojan and Greek asteroids that share their orbit with Jupiter.

2This term was first introduced by Evans (1968).
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Figure 1.2: Left: image of Mizar and Alcor (image credit: ESO Online Digitized Sky Survey). Right:
mobile diagram of the stellar sextuple system.

Figure 1.3:Mobile diagram of the stellar quadruple system 30 Ari with an additional planet, 30 Ari Bb.
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Even more complicated stellar systems are known. For example, the famous visual binary
Mizar and Alcor (Fig. 1.2, left) has been used as a vision test since antiquity (Allen 1899).
Mizar itself is also a visual binary, known from as early as 1617, when Benedetto Castelli
reported resolving it in a letter to Galileo Galilei (Ondra 2004; Siebert 2005). The components
in Mizar, Mizar A and B, later turned out to be binaries themselves. In fact, Mizar A is the
first spectroscopic binary known, found by Antonia Maury and reported by Pickering (1890).
A few years later, the binary nature of Mizar B, also a spectroscopic binary, was discovered
independently by Frost (1908) and Ludendorff (1908). Nearly a century later, Alcor was found
to be a binary as well (Mamajek et al. 2010; Zimmerman et al. 2010). The mobile diagram of
Mizar and Alcor, which is effectively a sextuple system, is shown in Fig. 1.2 (right). Another
example is 30 Ari, which is a stellar quadruple system in the ‘2+2’ configuration in which a
planet has been discovered around one of the stars (Fig. 1.3).

The hierarchies discussed so far are of the ‘simplex’ type composed of nested binaries, i.e.
with each parent having only two children. Another type is the ‘multiplex’ type, in which each
parent can have more than two children, and the children are not necessarily in hierarchical
orbits with respect to each other. This latter means that crossing orbits and, therefore, close
encounters, are possible.

Multiplex systems are observed in nature in addition to simplex systems. Most notably, in
the Galactic Centre (GC), which is a distance of ≈ 8 kpc from the Sun, ∼ 106 stars all orbit a
supermassive black hole (SBH) of mass ≈ 4× 106M⊙, at a distance ranging from only a few
mpc (≈ 206AU), to a few pc. These nuclear star clusters (NSCs) are known to exist in other
galaxies as well; they may in fact be present in the centre of every galaxy.

Apart from dominating their motion on short time-scales, the SBH in an NSC can have
dramatic effects on the lives of stars and other objects such as compact objects and planetesimals
residing in such an environment. When passing within the tidal radius of the SBH, tidal forces
can break up and disrupt a star, producing an energetic multiwavelength outburst known as a
tidal disruption event, of which a handful have been observed so far.

Similarly, planetesimals with sufficiently large radius passing within the tidal radius of the
SBH are separated into smaller fragments. These fragments, which are not bound by gravity
but by molecular forces (and are therefore not broken up into even smaller pieces by the tidal
force of the SBH), can subsequently be vaporised due to friction with the ambient gas around
the SBH. This produces a potentially observable short-duration flare (Zubovas et al. 2012).
The latter flares have been proposed to explain the near infrared and X-ray flares observed on
a nearly daily basis from the SBH in the GC, Sgr A*.

More tightly bound compact objects orbiting the SBH such as white dwarfs, neutron stars
and stellar-mass black holes are not tidally disrupted; however, the gradual emission of GWs
can cause the compact object to spiral into the SBH. This process can take thousands of orbits
to complete, producing a high signal-to-noise GW signal that is expected to be observable by
future space-based GW detectors.
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1.4 Secular evolution

1.4.1 Principles

As mentioned before, by necessity, hierarchical systems are stable on short times-scales, i.e.
time-scales on the order of the orbital periods. On time-scales much longer than the orbital
periods, the orbits can be interpreted as infinitesimally thin wires with a mass density that is
proportional to the time spent at the corresponding point in the orbit. In the simplest case of
a circular orbit (i.e. zero eccentricity), this implies a circle with uniform mass density. As the
eccentricity of the orbit is increased, the time spent at apocentre increases relative to the time
spent at pericentre, therefore the mass density is higher at apocentre.

These wires interact gravitationally and exert mutual torques on each other, thus transferring
angular momentum between them. On the other hand, the orbital energies (i.e. the semimajor
axes) remain constant. This implies that the eccentricities and the orientations of the orbits
change. This type of long-term gravitational interaction is generally referred to as secular evo-
lution. Depending on the type of system, secular evolution can have large implications. In the
most extreme cases, eccentricities can be driven to nearly unity, e.g. leading to collisions or
mergers of stars, planets or compact objects.

The simplest, and best-studied hierarchical system in which secular evolution can take place
is the hierarchical three-body system (cf. the left part of Fig. 1.1, withm4 removed). In this sys-
tem, secular evolution is manifested in the form of Lidov-Kozai (LK) oscillations, named after
its discoverers Lidov (Lidov 1962) and Kozai (Kozai 1962)3. If the system is highly hierarchi-
cal, i.e. if the orbital period of the ‘outer’ orbit, Porb,out, is much (≳ 102 times) longer than the
‘inner’ orbital period, Porb,in, and if the outer orbit is not highly eccentric, then LK oscillations
are highly regular. Furthermore, if the initial mutual inclination between the orbits, itot, lies
within a certain range, 39.2◦ ≲ itot ≲ 140.8◦, then the eccentricity of the inner orbit oscillates,
reaching a maximum value that depends mainly on itot4. In this limit, the eccentricity of the
outer orbit is unaffected. This can be understood intuitively by noting that the angular momen-
tum of the outer orbit is much larger than that of the inner orbit; therefore, angular momentum
exchanges have a much larger effect on the inner orbit. Assuming the inner orbit is initially
circular, the maximum eccentricity reached in the inner orbit during the LK cycles is

emax,in =

√
1− 5

3
cos2(itot). (1.2)

Equation (1.2) shows that emax,in increases as itot approaches 90◦. In other words, the larger the
initial mutual inclination, the larger the maximum inner orbit eccentricity.

The eccentricity oscillations, as well as the oscillations of the orbital orientations, occur on
a time-scale of the order of PLK, where

PLK =
P 2
orb,out

Porb,in

m1 +m2 +m3

m3

(
1− e2out

)3/2
. (1.3)

3Until a few years ago, LK oscillations were almost invariably referred to in the literature as ‘Kozai’ cycles, without
reference to Lidov. Lidovwas, in fact, the first to publish his results – in Russian – in 1961; the English version appeared
in 1962. In 1962, Lidov presented his results at a conference that Kozai also attended. Kozai, likely guided by Lidov’s
work, published a paper on the secular evolution of asteroids around Jupiter later that year in 1962.

4Strictly, this is only for initially circulating orbits with zero initial eccentricity. In other cases, eccentricity oscilla-
tions are possible for lower inclinations.
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Here, eout is the eccentricity of the outer orbit, m1 and m2 are the masses of the bodies in the
inner orbit, and m3 is the mass of the tertiary body in the outer orbit. The precise period of
the oscillations also depends on the initial orientation of the orbit; the latter dependence, which
is much weaker compared to that of the other quantities, is not included in equation (1.3).
Equation (1.3) shows that secular evolution takes place on a time-scale that is typically much
longer than the outer orbital period. In addition to the orbital periods, the mass ratio and the
outer orbit eccentricity are important factors in the period of the LK oscillations.

The above results apply only to highly hierarchical systems in which the tertiary body never
closely approaches the inner binary (i.e.Porb,out ≫ Porb,in and eout ≪ 1). In this case, the system
can be described by the lowest-order terms in the expansion of the Hamiltonian in terms of the
small separation ratio rin/rout, known as the ‘quadrupole’ order5. At this order, and making an-
other assumption relating to angular momentum conservation which is valid if Pout ≫ Pin, the
LK oscillations can be described analytically (Kinoshita & Nakai 1999, 2007). The properties
equations (1.2) and (1.3) follow from these analytical solutions.

However, if the triple system is not extremely, but still moderately hierarchical (101 ≳
Porb,out/Porb,in ≳ 102), then LK oscillations are more complex, and they are typically no longer
amenable to analytical solutions. In particular, the next-order terms in the expansion of the
Hamiltonian, known as the ‘octupole-order’ terms, give rise to modulations of the quadrupole-
order oscillations, on a time-scale that is given approximately by PLK/ϵoct, where the ‘octupole
parameter’ ϵoct < 1 is given by (Lithwick & Naoz 2011; Katz et al. 2011; Naoz et al. 2013a;
Teyssandier et al. 2013; Li et al. 2014b)

ϵoct =
|m1 −m2|
m1 +m2

[
m1 +m2

m1 +m2 +m3

(
Pin
Pout

)3
]1/2

eout
1− e2out

. (1.4)

When ϵoct is large, typically ϵoct ≳ 10−3, the octupole-order terms are important, and this can
give rise to ‘flips’ of the mutual orbital planes from prograde to retrograde, and vice versa.
These orbital flips are associated with extremely high eccentricities in the inner orbit, in some
cases as high as 1 − ein ∼ 1 − 10−7. In stellar triple systems with compact objects, these ex-
treme eccentricities can lead to violent head-on collisions of carbon-oxygen (CO) white dwarfs
(WDs) (Katz & Dong 2012). Such collisions are likely to result in a type Ia supernova (SNe
Ia) explosion because of temperatures reaching ∼ 109 K during the collision, high enough to
trigger a thermonuclear runaway explosion. Although certainly spectacular, current estimates
of the event rates are very low, i.e. ∼ 10−3 of the SNe Ia rate computed from binary popula-
tion synthesis studies (assuming mergers of COWDs in circular orbits after common-envelope
evolution) (Hamers et al. 2013). The latter are about a factor 10 lower compared to observations.

Even when eccentricities are not high enough for direct collisions, in many cases they can
be high enough to trigger strong orbital energy dissipation, notably due to tides raised on bodies,
or due to the emission of GWs. Both processes are highly sensitive to the orbital eccentricity,
and the dissipation rate peaks at the maximum eccentricities of the LK cycle. Either quickly or
gradually, the orbit shrinks (i.e. Porb,in decreases) and is circularised, and the oscillations are
quenched.

This quenching phenomenon can be understood by noting that as the inner orbital period
decreases, the LK time-scale increases (cf. equation 1.3), whereas the precession rate of the

5Note: the term ‘quadrupole’ is easily confused with ‘quadruple’.
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inner orbit due to additional forces increases. Notable additional forces arise from GR and tidal
bulges. Their associated precession rates increase with decreasing Porb,in. With an increasing
LK time-scale and a decreasing precession time-scale due to additional forces, LK cycles are
typically damped, or completely quenched.

1.4.2 Implications

This process of LK cycles combined with orbital energy dissipation has important astrophysical
implications. In stellar triple systems, it is believed that LK cycles with tidal friction (LKCTF)
drive the production of short-period binaries (orbital periods∼ 3−6 d) (Fabrycky & Tremaine
2007; Naoz & Fabrycky 2014). Such short-period binaries are believed not to have formed in
isolation; in the case of LKCTF, the initial period can be as long as 104 d. This is consistent
with observations of the period distribution of binaries, which shows a peak around ∼ 3− 6 d
(Tokovinin et al. 2006; Tokovinin 2014a), and with the tertiary fraction of binaries, which is
nearly unity for binaries with periods shorter than 3 d (Tokovinin et al. 2006).

Another important implication relates to the origin of hot Jupiter (HJ) planets, i.e. gas giant
planets of order Jupiter mass that orbit their host star in extremely tight orbits, with periods
between ∼ 3 − 10 d. It is commonly thought that these planets cannot have formed in situ
because of the low gas densities and high temperatures during the protoplanetary disk phase in
this region so close to the star (however, e.g. recently Batygin et al. 2015 suggested that in situ
formation due to core accretion is possible). Instead, they might have formed at more distant
regions from the star, i.e. beyond the ‘snow line’ where volatiles condense into solid ice grains.
The precise location of the snow line is uncertain and depends on various parameters (including
the disk age), but it is typically a few AU from the host star (i.e. an orbital period of a few 100
days). This implies that the planet must have migrated by two orders of magnitude in orbital
period.

Two main migration scenarios have been proposed: disk migration and high-eccentricity
(or high-e) migration. In the case of disk migration, the planet migrates because of gas drag
within the protoplanetary disk. There are a number of concerns with this type of migration.
Firstly, theoretical models for disk migration do not predict a preferred orbital period at which
migration stops. Observations, however, show a pile-up of HJs at periods near 5 d. Furthermore,
the observed obliquities of HJs, i.e. the angles between the stellar spin and the orbit of the HJ,
are found to be both consistent with zero, and ranging between 0 and 180 degrees, i.e. retrograde
orbits are also possible. Such high-obliquity orbits are at odds with disk migration models, in
which the obliquity remains close to, or exactly zero.

An alternative migration scenario for the formation of HJs is high-emigration. In this case,
the eccentricity of the orbit of the planet is driven to high values by one or more external per-
turbers. The high eccentricities lead to strong tidal evolution and hence orbital energy dissipa-
tion and circularisation, eventually leading to a HJ. The eccentricity excitation could be due to
planet-planet scattering interactions, or due to secular interactions induced by a stellar binary
companion or other (inclined) planets. In the case of secular interactions, a pile-up is predicted,
around 3 days, because of the stalling mechanism mentioned above. This is (approximately)
consistent with observations.

However, there are problems with these secular high-e scenarios. Evidently, a third body (in
addition to the star and the Jupiter-like planet) is required. If the third body is another Jupiter-
like planet, then the former needs to be either in a very close, eccentric and/or inclined orbit
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with respect to the inner planet. This is inconsistent with observations of the majority of HJs,
which show that HJs do not have any close-in planetary companions. Furthermore, high mutual
planetary inclinations seem unlikely if the star is isolated (this could be different if there is a
more distant binary companion which could have torqued and hence warped the protoplanetary
disk). If the third body is a star (i.e. binary companion), then it can be further away and a high
initial mutual inclination with respect to the (inner) planet seems more plausible. However,
such binary companions are observed for only ∼ 0.5 of the observed HJs (Ngo et al. 2015).

In an alternative scenario proposed byWu&Lithwick (2011), the planetary system consists
of three or more planets in orbits that are mildly eccentric and inclined (eccentricities on the
order of 0.2−0.4 and inclinations on the order of 5−20◦). The planets need not be very closely
separated; their semimajor axes could e.g. be 1, 6 and 16 AU. In this case, chaotic motion is
likely to occur. Very high eccentricities can be excited, particularly in the innermost orbit,
during highly irregular secular oscillations. The time-scale for reaching high eccentricities can
be as long as a few Gyr. This process of ‘secular chaos’ is likely very important for determining
the long-term evolution of planetary systems. For example, in the Solar system, the orbit of
Mercury is unstable due to secular chaos on a time-scale of ∼ 5Gyr relative to the current
Solar system (Laskar 1994; Ito & Tanikawa 2002; Laskar 2008; Laskar & Gastineau 2009).

Secular chaos is an interesting scenario for producing HJs on time-scales of Gyr, without
requiring close-in planets. This is currently consistent with observations, which cannot yet de-
tect planets at these larger separations with good certainty. Although promising, this scenario of
high-e migration merits further investigation, in particular with consideration of a larger range
of parameter space compared to the work of Wu & Lithwick (2011), who considered a limited
number of systems. In particular, it is unclear what range of HJs properties can be attained.

1.5 This thesis

This thesis deals with the dynamical evolution of hierarchical systems with various hierarchies,
in various astrophysical contexts. We begin by considering systems of the ‘multiplex’ type,
dominated by an SBH (Chapters 2 and 3). Subsequently, we focus on simplex-type systems,
beginning with the general dynamics of quadruple systems (Chapter 4), and continuing with an
application to circumbinary planets (Chapter 5). Finally, we generalise our methods to hierar-
chical simplex-type systems with an arbitrary hierarchical structure and an arbitrary number of
bodies (Chapter 6), and apply these methods to the production of HJs through secular evolution
in multiplanet systems (Chapter 7).

1.5.1 Chapter 2 − Relativistic dynamics around an SBH

In Chapter 2, we consider systems of the ‘multiplex’ type, and study the long-term evolution of
orbits around an SBH in a NSC, with particular emphasis on Sgr A*, the SBH in the GC. About
20 B-type stars, known as the S-stars, have been observed to orbit around a single point in
the GC. Two decades of observations have revealed their detailed orbital properties, and most
importantly, the mass of the central object. Several studies have shown that this central object,
beyond any reasonable doubt, should be an SBH with a mass of∼ 4× 106M⊙ (see Alexander
2005 and Genzel et al. 2010, and references therein).

As mentioned before, orbits around an SBH, when highly eccentric, can give rise to tidal
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disruption events, or high signal-to-noise GW signals in the case of the inspiral of a compact
object onto the SBH. Here, we refer to both events simply as ‘disruptions’. Objects on orbits that
are initially highly eccentric can be brought close to the SBH and be disrupted already during the
first orbit; the corresponding orbits are referred to the ‘loss cone’. Because the orbital periods
around the SBH are at most a few Myr (in the case of the GC), objects on initially loss cone
orbits are rapidly depleted, and do not contribute to the long-term disruption rate (i.e. on Gyr
time-scales).

However, because of gravitational interactions between objects on nearby orbits, orbits near
the SBH are not static, and change due to various effects. First of all, random encounters, or
‘fly-bys’ of two (or more) objects change all orbital properties (the energy, angular momentum
and orientation). When taking into account many of such encounters, the effect is to stochasti-
cally alter the orbital properties. Because these encounters are essentially random, this effect is
referred to as ‘non-resonant relaxation’ (NRR). However, in the case of a NSC, objects move
on (nearly) Keplerian orbits, and some encounters are, therefore, correlated. This gives rise to
secular interactions, which are similar to LK cycles in the case of the hierarchical three-body
problem. However, in this case, for a given ‘subject’ orbit, there are many ‘inner’ and ‘outer’
orbits, and the secular effects are much more complicated and irregular. Nevertheless, orbits
can still be driven to high eccentricities, potentially leading to disruption events. This type of
evolution is known as ‘resonant relaxation’ (RR).

Close to the SBH, where orbital periods are short and close encounters are very rapid (i.e.
the velocity dispersion is large), RR is very effective at changing the orbital properties and
dominates compared to NRR. Taking only into account the Newtonian effects of NRR and RR,
objects on these close orbits would rapidly evolve to loss cone orbits. However, close to the
SBH where orbital speeds v can reach a few per cent of the speed of light c, GR effects are
important, and these affect the dynamics. To lowest order in v/c, the effect of GR is apsidal
precession of the orbit; a familiar example is the relativistic precession of the orbit of Mercury
around the Sun. In the case of a NSC, however, relativistic precession rates can be much higher
compared to Mercury. Consequently, the ‘efficiency’ of the Newtonian torques associated with
RR can be reduced substantially, thereby dampening, or completely mitigating the effects of
RR.

This effect was first shown by Merritt et al. (2011), who carried out detailedN -body simu-
lations of a small cluster of 50 stellar-mass black holes, each with a mass of 50M⊙, orbiting an
SBH with a mass of 106M⊙. In their simulations, Merritt et al. (2011) noticed that as an orbit
becomes more eccentric (due to RR), the relativistic precession rate increases, until at a certain
semimajor axis and eccentricity, the orbit ‘bounces’ back to lower eccentricity. Because the
relativistic precession is also known as Schwarzschild precession, Merritt et al. (2011) coined
this phenomenon the ‘Schwarzschild barrier’ (SB). Equating the time-scales associated with
Schwarzschild precession and RR, Merritt et al. (2011) obtained an expression for the semima-
jor axis and eccentricity associated with the SB, i.e. the ‘location’ of the SB.

DirectN -body simulations scale withN2. Combined with the fact that the typical required
time-step is very short (fractions of orbits which can be as short as a few yr, whereas the de-
sired simulation time is on the order of a few Myr, or even Gyr to achieve a steady state), this
means that further work was limited by the computational complexity of detailed simulations.
In particular, realistic representations of the centres of NSCs require on the order of 103 stars,
which is not feasible with currently available direct N -body codes.

In order to make progress, we developed a new special-purposeN -body code, TEST PARTICLE
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INTEGRATOR (TPI). By making a number of simplifying assumptions about the motion of particles,
this code allows efficient integration with a large number of particles around the SBH (order
103). It is based on a splitting of particles into field particles that move on (nearly) fixed Kep-
lerian orbits around the SBH, and test particles that respond to the time-dependent potential of
the field stars and the SBH. In this approach, interactions between field particles are ignored
apart from effects associated with mass precession and relativistic precession. Furthermore, the
mass of test particles is neglected, and, therefore, test particle-test particle interactions are ig-
nored as well. Nevertheless, by comparing with slower, but more accurate N -body codes that
do not make these assumptions, we show that TPI can be used to simulate the long-term angular
momentum evolution of orbits around the SBH.

We apply TPI to the S-stars in theGC.We assume that the S-stars were formed through binary
disruption. In this scenario, first proposed by Hills (Hills 1988), a stellar binary approaches
the SBH from a wide but highly eccentric, or a hyperbolic orbit. Due to the tidal force of the
SBH, the binary is unbound, and one of the stars is ejected and escapes from the SBH, whereas
the other remains bound to the SBH in a tight and highly eccentric orbit. The escaped star is
believed to give rise to hypervelocity stars (HVSs), a group of stars observed in the Milky Way
with velocities on the order of 103 kms−1. The majority of HVSs are consistent with originating
from the GC, and their velocities (taking into account deceleration in the Galactic potential) are
consistent with the escape speed of the SBH. Furthermore, their number is consistent with the
number of S-stars (Perets et al. 2007).

The eccentricities of the orbits of the stars that remain bound to the SBH are expected
to be very high, typically e ∼ 0.98. However, this is inconsistent with the current observed
eccentricity distribution, which shows that the typical eccentricity is high (∼ 0.7), but not as
high as ∼ 0.98. To explain the statistically-lower observed eccentricities, we assume that the
orbits of the S-stars, in particular their eccentricities, are perturbed by gravitational interactions
with a background cluster of stellar-mass black holes. In TPI, the latter cluster is represented by
4800 field particles,≈ 100 times larger compared to the simulations ofMerritt et al. (2011), and
predicted by previous studied of stellar populations in the GC (Hopman & Alexander 2006b).

In our simulations, the eccentricity distribution of the S-stars indeed evolves from a highly
eccentric distribution corresponding to the initial assumed formation through binary disruption,
to a less eccentric distribution which is statistically consistent with the observed eccentricity
distribution of the S-stars. This gives indirect evidence for both the existence of the cluster
of stellar-mass black holes, and the formation mechanism of the S-stars. In particular, when
assuming an alternative background distribution of lower-mass main-sequence stars, the time-
scale for the eccentricity distribution of the S-stars to relax to the observed distribution is much
longer, and is inconsistent with the age of the S-stars.

As a next step, we determine specific coefficients from the simulations that describe dif-
fusion in angular momentum. These diffusion coefficients are very useful in Fokker-Planck
simulations, which can be used to describe the statistical dynamical evolution on very long
time-scales (exceeding Gyr), i.e. time-scales that are currently inaccessible with directN -body
integrations. Furthermore, the coefficients yield analytical insight into the long-term orbital
evolution. As a function of the angular momentum variable ℓ =

√
1− e2, we find that the SB

can be associated with a rapid drop of the coefficients with decreasing ℓ. The value of ℓ for
which this occurs, turns out to be approximately consistent with the previous expression for the
SB derived by Merritt et al. (2011).

Finally, we give simple analytic expressions for the diffusion coefficients as a function of
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ℓ, and we apply them to the Fokker-Planck equation to obtain the steady-state distribution.

1.5.2 Chapter 3 − Planetesimals in the GC

In the previous work, we considered the long-term dynamical evolution of orbits around an
SBH, and applied our results to the S-stars. In this chapter, we focus on another type of bodies
in the GC, i.e. planetesimals, and relate these to observations of flares observed from Sgr A*
in the near infrared and X-ray (Baganoff et al. 2001, 2003; Genzel et al. 2003a; Dodds-Eden
et al. 2011; Barrière et al. 2014). These flares occur approximately once per day, and are 3-100
times more luminous than the quiescent emission of the central radio source, Sgr A*.

One of the proposed explanations for the flares is that they result from the tidal disruption
of planetesimals with radius ≳ 10 km (Zubovas et al. 2012). The latter authors showed that if
such a planetesimal passes within ∼ 1AU of the SBH, it is broken up into smaller fragments
by tidal forces; the fragments subsequently vapourize because of friction with the ambient gas.
When the vapourized material is mixed with the accretion flow onto Sgr A*, enough energy
could be released to produce an observable flare.

However, very little is known about the formation and evolution of planetesimals in galactic
nuclei like the GC. One possibility is that they are formed in a large-scale spherical cloud
orbiting the SBH. Another possibility is that they are born in debris discs around stars, and
are stripped by the tidal force of the SBH or gravitational encounters with other stars. In this
chapter, we investigate both scenarios by means of numerical integrations of the Fokker-Planck
equation.Wemodel the orbital energy evolution around the SBH, taking into account the effects
of gravitational perturbations from various background perturbers.

We show that the predicted present-day disruption rates in the GC differ very little between
the two scenarios and that this conclusion depends weakly on the details of the perturbers or
other assumptions. In both scenarios, we find a disruption rate of ∼ 1 d−1 assuming that the
number of planetesimals per (late-type) star is Na/⋆ = 2 × 107. The number Na/⋆ = 2 × 107

is consistent with debris discs observed around stars in the Solar neighbourhood. In the first
scenario, in which the planetesimals are formed in a large cloud, this implies that the number
of bodies formed is strongly correlated with the number of stars, and this requires finetuning of
the quantityNa/⋆. We favour the more natural explanation that planetesimals in galactic nuclei
similar to the GC are formed in debris discs around stars, no differently than planetesimals
around stars in the Solar neighbourhood.

1.5.3 Chapter 4− Secular evolution of hierarchical quadruple systems

The first two chapters dealt with hierarchical systems of the multiplex type. In the remainder of
this thesis, we shall focus on hierarchical systems of the simplex type, i.e. systems consisting
of nested binary orbits. Each binary has two children, and the children can be either bodies or
binaries themselves (see e.g. Fig 1.1). The simplest of these, the hierarchical triple, has been
studied in detail before. However, this is not the case for hierarchical systems with more than
three bodies.

Here, we begin with the simplest possible extension and consider four bodies in the ‘3+1’
configuration, i.e. a hierarchical triple orbited by a fourth body. We assume that the system
is sufficiently hierarchical, i.e. the ratios xi of the binary separations are small. In that case,



1.5 This thesis 13

it is appropriate to expand the Hamiltonian in terms of the xi. Subsequently, we orbit aver-
age the expanded Hamiltonian, and implement the equations of motion into a computer code,
SECULARQUADRUPLE.

Subsequently, we study the secular evolution of highly hierarchical systems that are well
described by the lowest order terms in the Hamiltonian, and characterise the evolution in terms
of ratios of LK time-scales applied to different binary pairs.

1.5.4 Chapter 5 − Explaining the lack of circumbinary planets around
short-period binaries

As mentioned before, planets have been observed around stellar binaries (i.e. circumbinary
planets). The detection of transiting circumbinary planets is more tractable around short-period
binaries, i.e. binaries with periods less than ∼ 7 d. However, sofar, no such binaries have been
found. As also mentioned before, short-period main sequence binaries have been suggested
to form in triple systems, through a combination of LK cycles and tidal friction, i.e. LKCTF.
Here, we apply the method developed in Chapter 4, and we show that coplanar circumbinary
transiting planets are unlikely to exist around short-period binaries, due to secular evolution.
This is constistent with the currently observed lack of transiting circumbinary planets around
short-period binaries.

1.5.5 Chapter 6 − Secular evolution of hierarchical multiple systems

This chapter generalises the method and the algorithm developed in the earlier Chapter 4. Here,
we derive the expanded Hamiltonian for systems consisting of nested binary (i.e. simplex) or-
bits, with an arbitrary number of bodies, and an arbitrary hierarchical configuration. This in-
cludes hierarchical triple and quadruple systems (in both the ‘2+2’ and ‘3+1’ configurations),
but also much more complicated systems. For example, it applies to multistar systems with
multiplanet subsystems around any of the stars. We develop an algorithm to implement the
generised method, making long-term integrations of hierarchical systems with such complex
hierarchies feasible, and present first applications. In particular, we apply our method to Mizar
and Alcor and to 30 Ari.

1.5.6 Chapter 7 −Hot Jupiters in multiplanet systems

In the above, we mentioned a scenario for forming HJs in multiplanet systems through secular
eccentricity excitation in multiplanet systems. Current studies of this variant of high-e migra-
tion have, until recently, been limited to a number of N -body integrations. Although accurate,
such simulations are computationally costly, making large parameter space exploration unfea-
sible. Here, we apply the algorithm developed in Chapter 6 to study the formation of HJs in
multiplanet systems with at least three planets. In particular, we investigate the dependence of
the final orbital period distribution of the HJs, and compare this distribution to observations.




