Photothermal studies of single molecules and gold nanoparticles: vapor nanobubbles and conjugated polymers
Hou, L.

Citation

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/40283

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/40283 holds various files of this Leiden University dissertation.

Author: Hou, L.
Title: Photothermal studies of single molecules and gold nanoparticles: vapor nanobubbles and conjugated polymers
Issue Date: 2016-06-14
Stellingen

behorende bij het proefschrift

Photothermal Studies of Single Molecules and Gold Nanoparticles: Vapor Nanobubbles and Conjugated Polymers
door Lei HOU

1. The boiling temperature of a liquid surrounding a gold nanoparticle shifts to a much higher value compared with ambient conditions, because of the large Laplace pressure at the nano scale. *(Chapter 2 of this thesis)*

2. Vapor nanobubbles are highly dynamical under continuous heating, and the dynamics unfolds on the nanosecond time scale. *(Chapter 3 of this thesis)*

3. Vapor nanobubbles are sensitive to weak perturbations such as acoustic waves. The acoustic wave released by the vapor nanobubbles and reflected by the environment can trigger new explosions in the hot liquid layer surrounding the particle. *(Chapter 3 of this thesis)*

4. Given the large photothermal signal in near-critical xenon, excitation powers can be lowered to values that are compatible with the single-molecule detection of conjugated polymers. *(Chapter 5, 6 of this thesis)*

5. The conclusion of Shpak *et al.* that dissolved gas in the liquid prevents the recondensation of vapor bubbles at the collapse stage, might also apply to persistent vapor nanobubbles. [Shpak *et al.* *Phys. Med. Biol.* **58**, 2523 (2013)]

7. The similarity of plasmonic nanoparticles with molecules, noticed by Guerrero-Martínez et al., suggests the use of the concepts from molecular theory to understand the properties of plasmonic nanoparticles.

8. The conclusion of Habuchi et al. that emitting sites in a single conjugated molecule poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) embedded in Zeonex distribute nearly uniformly regardless of the molecular weight, is only valid for molecules that have a collapsed conformation.

9. Earthquakes are unpredictable because of the lack of statistics.

Lei HOU
Leiden, 14 June 2016