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B
Scheme of the pressure system
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Appendix B

Figure B.1: Scheme of the pressure system used for the measurements in near-critical xenon.
V1, V2, V3 and V4 are the gas valves; P1, P2 and P3 are the valves on the compression cylinder.
Pressure chamber is labeled as "Cell"; "R" is the pressure regulator.
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C
Comparison of calculated boiling

temperature with experiments

We compare the theoretical value of the critical powers for the boiling as found
in Fig.2.3 in Chapter 2 to the experimental critical powers found in Fig.3.2 of
Chapter 3 and in Chapter 4. In Chapter 3, we find that the critical absorbed
power for a particle with 40 nm radius (80 nm diameter) in water is 62.1 µW
from Fig.2.3. This is calculated for a particle in water, but in our experiments
we have particles in water on a silica substrate. To correct for this we use the
average value of the thermal conductivity of water (0.65 Wm−1K−1) and silica
(1.38 Wm−1K−1). Then we find:

P cr i t .
abs. =

1
2 (0.65+1.38)

0.65
×62.1(µW ) = 97(µW ) (C.1)

Based on the diffraction-limited microscope’s point spread function we es-
timate the size/diameter of the focus of the heating beam to be:

d = 1.22× λ

N .A.
= 1.22× 532

1.45
(nm) = 448(nm) (C.2)

Taking the refractive index of the medium surrounding a gold nanosphere
to be the average of the refractive index of water and glass, we can use Mie the-
ory to estimate the absorption cross section of the particle. We find σabs =
1.7× 104 nm2 at 532 nm. We can now relate the critical absorbed power for
the formation of a nanobubble to the critical power in the focus:

P f ocus
cr i t .

∣∣∣
80nm

=
(

A f ocus

σabs

)
×P cr i t .

abs. =
[
π(448/2)2

1.7×104

]
×97(µW ) = 0.9(mW ) (C.3)
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Appendix C

This should be compared to critical powers measured in experiments, which
depended on the conditions. For water on a BK7 glass substrate (Fig.3.6 in
Chapter 3), the critical power was about 1.0 mW, in good agreement with the
above estimate. On a fused silica substrate, because of the aberrations intro-
duced by the poor index matching with the objective, the critical power rose to
about 3 mW (see Fig.3.2, where the power is not corrected for objective trans-
mission). A similar reduction of local intensity was found by Ruijgrok et al. [83]
in the calculated and measured values of the intensity at the focus of a high
numerical-aperture objective and attributed to spherical aberrations. For pen-
tane on BK7 glass, the critical power was much lower, about 100 µW (Fig.3.5 in
Chapter 3, insert).

In Chapter 4, we use a 50 nm diameter gold sphere in water and BK7 glass
substrate. The critical absorbed power for the boiling in water around a 50 nm
gold sphere is about 42.3 µW from Fig.2.3 in Chapter 2. If we consider the sub-
strate, the critical absorbed power becomes:

P cr i t .
abs.

∣∣∣
50nm

=
1
2 (0.65+1.11)

0.65
×42.3(µW ) = 57.3(µW ) (C.4)

The N.A. of the objective used in Chapter 4 is 1.4, so the diffraction-limited
diameter of the focus of the CW heating beam (532 nm) is:

d = 1.22× λ

N .A.
= 1.22× 532

1.4
(nm) = 464(nm) (C.5)

The absorption cross section of a 50 nm diameter gold sphere on a BK7 sub-
strate in water, taking into account the BK7 substrate, is calculated to be about
7650 nm2 at 532 nm. Using the same equation as Eq.C.3, we find the critical
power in the focus for the formation of a vapor nanobubble around a 50 nm
gold sphere:

P f ocus
cr i t .

∣∣∣
50nm

=
(

A f ocus

σabs

)
× P cr i t .

abs.

∣∣∣
50nm

=
[
π(464/2)2

7646

]
×57.3(µW ) = 1.3(mW )

(C.6)
The critical power found in such calculations is close to, but a bit higher

than the CW heating power found in our pump-probe experiments when the
vapor bubble forms. Note that in the pump-probe experiments, both the pump
and probe pulses contribute to the temperature rise of gold nanoparticle. More
importantly, the acoustic vibration of the gold nanoparticle can behave as a
trigger to tear the hot liquid molecules apart and initiate a vapor bubble.
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D
Energies involved in the vapor

bubble growth

To understand bubble growth and instability better, we have estimated the main
energy contributions involved in the explosion. Although this process appears
to follow an inertial regime, we neglected kinetic energy, which can be con-
sidered in a future dynamic model. The three main contributions mentioned
in the main text of Chapter 3 were calculated as follows, assuming the non-
evaporated overheated liquid is pushed mechanically by the created vapor, with-
out heat conduction through the interfaces:

i) Surface energy: it is calculated for varying bubble radius from the surface
tension which is temperature dependent. The temperature is assumed to be
the equilibrium one, although this is certainly not true during the expansion.

ii) Latent heat and heat capacity: this energy is calculated from the internal
energy of liquid and gas, as a function of bubble diameter.

iii) Overheated liquid thermal energy: this is the heat stored in the over-
heated layer, integrating all layers of liquid whose temperature exceeds the equi-
librium curve between regimes I and II (dashed line in Figure D.1). The tem-
perature profiles of the liquid immediately before the explosion (blue solid curve)
and for two different bubble diameters (red curves) are presented in Fig.D.1.
Liquid layers with temperature above the dashed curve are in principle able to
give energy to the vapor shell and to feed the expansion.

The three energy contributions above are plotted as functions of the bubble
radius in Fig.D.2. Only half of the overheated liquid energy has been used to
heat the bubble, the other half was assumed to dissipate into the colder outer
layers. The net energy contribution, plotted in Fig.D.3 against bubble radius, is
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Appendix D

Figure D.1: Temperature profiles along the radial direction. The solid blue curve shows the initial
temperature profile. The dashed black curve (phase diagram) gives the surface temperature of
the vapor shell as found from the Laplace pressure. The solid blue curve crosses the dashed
black curve at a radius of about 50 nm, corresponding to an overheated liquid between 40 nm
and 50 nm. The solid red curves show the temperature of the liquid after it has been pushed out
by the vapor shell. The part of the solid red curves above the black dashed curve at the vapor
shell radius (i.e. the start of the red curves) represents excess energy partly available to feed the
explosion.

negative for small radius, driving bubble expansion. Its slope, corresponding
to the driving force, changes sign for 150 nm, creating an effective potential
resisting expansion. In the absence of friction and heat diffusion, the maximum
bubble diameter would be 230 nm. However, dissipation soon cools the surface
bubble and suppresses overheating, entailing the collapse of the bubble until
heating by the nanoparticle can start a new explosion.
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Figure D.2: Variations in internal energy (blue curve), surface energy (black curve) between state
I and state II, and excess overheating energy (red curve; only half this energy is available for the
bubble heating, the rest is assumed to diffuse to the cold outside liquid layers).

Figure D.3: The energy difference between state I and state II as a function of vapor shell radius.
In principle there is enough excess energy to expand the vapor shell up to about 240 nm radius,
much beyond the steady state radius of about 50 nm.
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E
Analysis of delay time between

two successive explosions

In order to understand the details of the delay time between two successive ex-
plosions in Chapter 3, we plot the delay time as a function of event number
(red dots) as well as a histogram of the delay times (green histogram) in Fig.E.1.
We attribute the strong correlation between successive delay times observed
in these plots to the slow drift of the laser power, during which bubbles ap-
peared, maintained a high repetition rate, and eventually subsided (blue trace
in insert). Indeed, upon selecting a part of the data from n=800 to 2600 where
laser power drift appears negligible, the data shows essentially no correlation
between successive delay times. We fit the histogram of the selected delay times
from n=800 to 2600 with a Gaussian distribution function as follows:

p(τ) = A

ω
p
π/2

exp

[
−2(τ−τc )2

ω2

]
(E.1)

The fitted results are shown in Fig.3.3 (d) in Chapter 3.
To further illustrate the absence of correlation between successive delay

times we simulated random delay times using the fitted Gaussian distribution.
We created scatter plots of successive delay times for both the experimental
data and simulation (in which correlation is absent), see Fig.E.2. By comparing
the two scatter plots, we conclude that the delay time data in the central part
of Fig.E.1, which we think is governed solely by the nanobubble system and not
by drift of the laser power, is essentially uncorrelated.
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Figure E.1: a) The delay time between two successive explosions as a function of the event num-
ber n. Insert: time trace of the intensity of the scattered probe light; b) Histogram of the delay
time distribution. The red line is a fitted curve. Insert: the scatter plot of τn+1 and τn .
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Figure E.2: a) A scatter plot of τn+1 and τn using the experimental data; b) A scatter plot of
simulation of a random succession of delay times drawn from the Gaussian distribution that is
used to fit to the data from n=800 to 2600.
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F
Triggering a second explosion by

a sound wave

Hereafter, we briefly speculate about the mechanism of after-burst triggering
by the echo. If enough energy is left in the hot liquid and in the gold nanoparti-
cle after the first explosion, and if the returning cooled water has enough con-
tact time with the nanoparticle to become overheated again, the system may
be reloaded for a new explosion, although the temperature profile is much less
extended than that before the main explosion. The heat diffusion length for a
time of 150 ns, the time interval between the main bubble collapse and the ar-
rival of the echo, is 100 nm (Dpent ane = 6×10−8 m2/s). For a 1 µs time it’s about
2.5 times larger, 250 nm. For a long enough waiting time, a second explosion
can take place, with a reduced amplitude as there is less energy stored in the
overheated water to feed the expanding after-bubble. Sometimes, we even ob-
serve a third after-burst, which appears again 150 ns after the second one (see
Figure F.1). This delay of 150 ns corresponds to twice the propagation time in
the oil gap (2×100µm at 1350 m/s). Indeed, the first echo from the far side of the
coverslip arrives 60 ns after the explosion, while the bubble just contracted and
not enough energy has been transferred to the liquid yet. The echo from the
objective surface arrives 150 ns later still (see Fig.3.4.c in Chapter 3) and finds
enough hot water to trigger a second explosion or after-burst. In some con-
ditions two or more afterbursts can be observed (see Fig.F.1). In these events,
the nanobubble performs as an amplifier fed back on itself, producing damped
relaxation oscillations. A similar phenomenon observed in water is shown in
Chapter 3. However, in this latter case, the oscillation period is about 30 ns and
is too short to arise from an acoustic echo. We attribute this instability to bub-
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Figure F.1: The time trace including a third after-burst (black arrow). The experimental condi-
tions are the same as Fig.3.4 in Chapter 3. The gold nanoparticle is immersed in n-pentane.

ble dynamics itself. These observations highlight the remarkable sensitivity of
the nanobubble to extremely weak multiple acoustic reflections from interfaces
more than 100 µm away.
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G
Single-shot time trace of a

persistent nanobubble

In Fig.G.1, we present a single-shot time trace of the signal of a nanobubble
formed by raising the heating power above the critical value. This event is a
typical one taken out of the long time trace with hundreds of explosions, shown
together with the heating intensity profile. The bubble starts with a small ex-
plosion clearly visible in Fig.G.1.a, and is followed by a persistent phase before
disappearing about a microsecond later when the power is decreased again.
The histogram of Fig.G.1 (c) shows the jitter delays∆ between the heating pulse
and the time of the explosion, taken at the mid-rising edge of the explosion sig-
nal. These delays are all positive, confirming that the explosions are all caused
by the heating increase. Moreover, we see that the histogram is almost 0.5 µs
broad, comparable to the spread of inter-explosion delays in the time traces in
Chapter 3 with constant heating.
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Figure G.1: The non-averaged time trace showing the improvement of nanobubble stability. a)
Probe signal; b) Heating power; The heating beam is modulated by AOM, using a block pulse
profile with a frequency of 100 kHz, and a duty cycle of 10% (1 µs on-time in a 10 µs period); c)
The histogram of the jitter delay between the probe rise edge and heating rise edge. The gold
nanoparticle is immersed in n-pentane in these measurements.
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